
ARTICLE

Multi-omics profiling of younger Asian breast
cancers reveals distinctive molecular signatures
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Breast cancer (BC) in the Asia Pacific regions is enriched in younger patients and rapidly

rising in incidence yet its molecular bases remain poorly characterized. Here we analyze the

whole exomes and transcriptomes of 187 primary tumors from a Korean BC cohort (SMC)

enriched in pre-menopausal patients and perform systematic comparison with a primarily

Caucasian and post-menopausal BC cohort (TCGA). SMC harbors higher proportions of

HER2+ and Luminal B subtypes, lower proportion of Luminal A with decreased ESR1

expression compared to TCGA. We also observe increased mutation prevalence affecting

BRCA1, BRCA2, and TP53 in SMC with an enrichment of a mutation signature linked to

homologous recombination repair deficiency in TNBC. Finally, virtual microdissection and

multivariate analyses reveal that Korean BC status is independently associated with increased

TIL and decreased TGF-β signaling expression signatures, suggesting that younger Asian BCs

harbor more immune-active microenvironment than western BCs.
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B
reast cancer (BC) remains a leading cause of cancer deaths
despite recent progress in its prevention and treatment1.
There are also wide variations in both incidence and

mortality rates around the world as country-specific trends vary
widely and may differ from global trends2,3. In countries of the
Asia-Pacific region, rapid rises of BC incidence in recent years1–3

have brought increased appreciation of Asian breast cancer as a
distinct patient population. Most notably, peak age of Asian BC is
much younger than that in western countries such as the
United States, as approximately half of the Asian BC
patients were pre-menopausal whereas only 15−30% of western
BCs are pre-menopausal4,5. The distinctive demographics of
Asian BC raised the issue of how to appropriately adapt
therapeutic strategies mainly established in the western
countries in Asia-Pacific countries such as Korea. Breast cancers
arising in younger patients (YBC) are known to be more
aggressive with increased risk of relapse and mortality6. In
particular, YBCs with estrogen receptor-positive (ER+) diseases
tend to be resistant to endocrine therapies such as tamoxifen
compared to older patients4. A recent paper also suggests
that young age was associated with significantly increased
risk of mortality only among the Luminal subtypes7. There
appeared to be higher proportions of triple negative/basal-like
and HER2 subtypes but lower proportions of ER+/Luminal A
subtypes in YBC than in older breast cancers (OBC).
Hence, it remains controversial whether YBC has a unique
biology or is only surrogate for aggressive intrinsic subtypes. The
main cause of worse outcomes in YBC also remains
undetermined8.

Genomic and molecular profiling studies have significantly
advanced our understanding of breast cancer biology along with
increasing elucidation of its intrinsic molecular subtypes and
genetic driver mechanisms9–13. Several studies have compared the
molecular landscape of YBC with that of OBC using primarily
Caucasian BC cohorts. ESR1 gene expression was reported to be
significantly lower along with lower protein expression (IHC) and
more hyper-methylation in YBCs than in OBCs8,14. GATA3
mutations were found to be significantly enriched in YBCs15

while CDH1 mutations are enriched in OBCs14. Within the ER+
subtype, YBCs were reported to harbor elevated integrin/laminin,
EGFR signaling, and TGF-β signaling expression signatures14.
Higher expression signatures of proliferation, stem cell, and
endocrine resistance were also associated with YBCs15. Recent
studies comparing breast cancers from different racial groups
have reported genomic differences mainly in the distribution of
intrinsic molecular subtypes16–18. One study compared gene
expression profiles of different age groups within a BC cohort of
113 Middle Eastern women and identified 63 genes specific to
tumors in young women19. Another study compared gene
expression and microRNA profiles between Chinese and Italian
BCs and found lower prevalence of Luminal A subtype
among Chinese BCs20. However, none of the studies to date
conducted multi-omics profiling encompassing both the genome
and the transcriptome of younger, pre-menopausal Asian BCs. It
remains unclear what molecular differences distinguish
younger Asian BCs from BCs in the western countries, the focus
for most of the currently available genomic and molecular pro-
filing work.

Here we report a study where we perform whole exome and
transcriptome profiling of a large cohort of Asian BCs enriched in
younger pre-menopausal patients. We then systematically com-
pare different categories of molecular characteristics between our
cohort and a benchmark BC cohort and are able to identify sig-
nificant differences in molecular subtype distribution, mutation
prevalence affecting oncogenes, and mutation and gene expres-
sion signatures.

Results
Overview of multi-omics profiling data. We performed whole
exome sequencing (WES) on 186 tumors and matched normal
samples and transcriptome sequencing (RNA-Seq) on 168 tumor
and 10 adjacent normal samples from a breast cancer cohort
assembled by the Samsung Medical Center in Korea—SMC
(Supplementary Data 1). We predicted somatic mutations and
copy number variations (CNVs) from the WES data and gene
expression from RNA-Seq data using published bioinformatics
tools (see Methods). As a benchmark of the currently available
breast cancer genomics data, we used WES and RNA-Seq data
provided by the TCGA BRCA study (TCGA) consisting of
1116 subjects from the United States11. The vast majority of the
SMC cohort (88.2%, n= 165) are pre-menopausal while only 19
patients (10.2%) are post-menopausal (Fig. 1a). In contrast, only
23.5% of TCGA are pre-menopausal while 72.3% are post-
menopausal. For comparison analyses, SMC was divided into two
age groups—YBC (age ≤ 40, n= 125) and IBC (age > 40, n= 62).
TCGA was divided into three age groups—YBC (age ≤ 40, n=
181), IBC (40 < age ≤ 60, n= 562) and OBC (age > 60, n= 535).
The TCGA cohort also has more lobular carcinoma cases and
higher tumor purity levels than SMC (Table 1, Supplementary
Data 2).

Molecular subtype classification and distribution. We classified
intrinsic molecular subtypes for the BC cohorts using three
methods—ER and HER2 immunohistochemistry (IHC) analyses,
gene expression classifier (PAM50) and a naïve molecular clas-
sifier (NMC) based on ESR1, PGR, ERBB2 gene expression and
ERBB2 copy number data. Three sets of classification results were
highly concordant, with 88% of SMC samples having matching
classifications between IHC and PAM50, 92% between NMC and
PAM50 and 89% between IHC and NMC. A consensus classifi-
cation was derived based on three classifications and used in
subsequent analyses (Supplementary Fig. 1). SMC had sig-
nificantly higher proportion of the ER+/HER2+ subtype than
TCGA (16.1 vs. 5.4%, logistic regression (LR): p= 1.5e-05) but
lower proportion of the ER+ subtype than TCGA (53.6 vs. 72.8%,
LR: p= 3.3e-06) (Fig. 1b, c, Supplementary Data 3). SMC also
had significantly lower proportion of the Luminal A subtype than
TCGA (28.3 vs. 43.7%, LR: p= 7.5e-4) and higher proportion of
Luminal B (39.2 vs. 33.2%, LR: p= 0.136). In fact, the majority of
Luminal cases in SMC were Luminal B (58%) whereas the
majority of Luminal cases in TCGA were Luminal A (57%)
(Fig. 1d). These observed differences in the distribution of
estrogen receptor-positive subtypes were concordant between
gene expression-based classifications and IHC-based classifica-
tions, and remain statistically significant after correcting for
confounding effects of tumor stage and histology subtype (Sup-
plementary Data 3). We then applied an integrative genomics
approach to classify samples from two cohorts into ten IntClust
subtypes using gene expression and copy number data21,22.
Comparison of subtype distribution revealed a significant
enrichment of IntClust5, a subtype known to harbor intermediate
levels of genomic instability and an enrichment of HER2 ampli-
fications21, in SMC compared to TCGA (Fisher’s exact test (FE):
p= 0.02). The “CNA-void” IntClust4 subtype characterized by a
flat copy number landscape was enriched in TCGA (FE: p= 0.13)
(Supplementary Fig. 2).

Germline pathogenic mutations in BC predisposition genes.
Hereditary factors such as germline deleterious mutations in
BRCA1 and BRCA2 genes significantly increases predisposition to
breast cancer. About 1−5% of BCs were attributed to BRCA1/
BRCA2 mutations in primarily Caucasian BC populations23 while
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3−7% of BCs were attributed to BRCA1/BRCA2 mutations in
Asian BC24. Higher prevalence of BRCA1/BRCA2 mutation has
been associated with younger age of diagnosis and family histories
of breast cancers23,24. We examined germline pathogenic muta-
tions, defined as mutations that truncate protein reading frame or
reported as a disease-causing variant in ClinVar25, in 13 genes
known to increase breast cancer susceptibility with high to
moderate penetrance26. In total, 18.8% (35/186) of SMC harbor
germline pathogenic mutations in at least one of the 13 selected
BC predisposition genes (Supplementary Fig. 3a). We found that
BRCA1 or BRCA2 germline pathogenic mutations were sig-
nificantly enriched in SMC compared to TCGA, affecting 10.8%
of SMC but only 4.7% of TCGA (LR: p= 0.0027) (Supplementary
Data 4−5). BRCA1 or BRCA2 germline mutations were enriched
in younger patients, affecting 13.7% of SMC YBCs but only 4.8%
of SMC IBC (p= 0.08) and 3.4% of TCGA OBC (p= 6.85e-05).
Within TCGA, the YBC group also harbored higher prevalence of
BRCA1/BRCA2 mutations (12.0%) than IBCs (4.2%) and OBCs
(3.4%) (Supplementary Fig. 3b). Moreover, SMC patients with
family histories of breast cancers were significantly enriched in
YBC relative to IBC (24 vs. 8%, FE: p= 0.02). Hence, BRCA1/
BRCA2 pathogenic mutations among other hereditary factors
appeared to be a more prevalent cancer driver in this younger
Asian BC cohort.

Significantly mutated genes. WES data analyses detected
6885 somatic protein-altering mutations affecting 4949 genes
with an average of 0.6 missense mutations per Mb per sample
(Supplementary Data 6). Observed mutation burden is sig-
nificantly higher in TCGA (1.4 ± 4.5) than in SMC (0.90 ± 0.97)
(Student’s t test (ST): p= 0.01), consistent with recent reports
that somatic mutation burden increases with age in cancers27,28.
MutSigCV analysis29 further identified six significantly mutated
genes (FDR < 0.1) with a higher prevalence of somatic, protein-

altering mutations than expected—TP53, PIK3CA, GATA3,
CBFB, PTEN, and CDH1 (Table 2). All six genes were previously
reported as being significantly mutated by the TCGA BRCA
study, which also listed TP53, PIK3CA, and GATA3 as top three
mutated genes11. We also performed MutSigCV analysis on the
combined list of mutations from two cohorts and identified
109 significantly mutated genes, all of which were already iden-
tified to be significant in TCGA or rarely mutated in SMC
(Supplementary Data 7). TP53 somatic mutation prevalence
within the SMC cohort substantially varied by subtypes, with the
highest mutation prevalence observed in TNBC (87.5%) followed
by HER2+ (75%), ER+/HER2+ (64.3%) and ER+ (23.5%)
(Supplementary Data 5). TP53 mutation prevalence was sig-
nificantly higher in SMC compared to TCGA overall (47.9 vs.
32.0%, LR: p= 5.0e-5) and after excluding Lobular carcinoma
cases (49.4 vs. 37.3%, LR: p= 0.003) (Fig. 2b). GATA3, a tran-
scription factor implicated in estrogen signaling, and E-cadherin
(CDH1) were exclusively mutated in hormone positive subtypes.
Consistent with earlier reports14,15, GATA3 mutation prevalence
was higher in SMC (12.4%) than in TCGA (9.1%) whereas CDH1
was more frequently mutated in TCGA (10.1%) than in SMC
(2.4%).

Comparing the landscape of genomic alterations. We compared
gene-level prevalence of somatic alterations integrating mutations
and CNVs between SMC and TCGA overall and within subtypes
(Fig. 2a). Notably, known oncogenes such as TP53 (SMC: 47.9%
vs. TCGA: 32%) and ERBB2 (20 vs. 9.1%) were enriched in
somatic alterations in SMC compared to TCGA overall (Sup-
plementary Data 8). We then examined the prevalence of
alterations at the pathway level by grouping frequently altered
genes into five interconnected oncogenic pathways—receptor
tyrosine kinase (RTK) signaling, MAPK signaling, PI3K/AKT
signaling, cell cycle checkpoints and epigenetic regulators
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(Supplementary Fig. 4, Supplementary Data 9). Cell cycle, PI3K/
AKT, and RTK pathways were the most frequently altered,
affecting 56.5, 36.0, and 28.0% of the SMC cohort respectively
compared to 46.7, 42.7, and 21.7% of TCGA. Individually altered
at low frequencies, epigenetic regulator genes in aggregate were
altered in about 10% of SMC and 15% of TCGA. Cell cycle
checkpoint pathway alterations were significantly enriched in
SMC compared to TCGA (LR: p= 0.019). The higher frequency
of ERBB2 amplification is probably the underlying cause for the
enrichment of ER+/HER2+ and HER2+ subtypes in SMC
compared to TCGA. Furthermore, as TP53 is more frequently
inactivated in Luminal B than in Luminal A11, the enrichment of
Luminal B vs. Luminal A in SMC could result from higher
prevalence of TP53 mutations as well as ERBB2
amplifications (Fig. 2c). Hence somatic alterations affecting
oncogenic pathways when co-occurring with aberrant ER
expression could play a greater role in the pathogenesis of
younger Asian BCs.

Identification and comparison of mutation signatures. Muta-
tion signatures are characteristic mutation patterns defined by
different types of DNA damage that occurred as a result of
exogenous and endogenous mutagens as well as DNA repair or
replicative mechanisms30. We quantified the contribution of 30

predefined mutation signatures31 in single tumors and detected
10 mutation signatures in the combined SMC and TCGA cohorts.
These signatures include age-related signature S1, homologous
recombination repair deficiency (HRD)-related signature S3, and
APOBEC enzyme-related signatures S2 and S13 (Fig. 3, Supple-
mentary Fig. 5a−b). Six of the signatures (S1-3, S5-6 and S13)
were also found by a previous mutation signature analysis of 560
BC whole genomes13. Different intrinsic subtypes exhibited dis-
tinctive patterns of mutation signatures that were consistent
between SMC and TCGA (Supplementary Fig. 5a−b). APOBEC
signatures were over-represented in HER2+ or ER+/HER2+
tumors while HRD signature was predominant in TNBC
(Fig. 3a, b, Supplementary Data 10). Mutation burden was the
most strongly correlated with APOBEC signatures S2 and S13 in
non-TNBC subtypes and the HRD signature S3 in TNBC, indi-
cating that distinctive mutagenic processes are active in different
intrinsic subtypes (Supplementary Data 10). APOBEC signatures
S2 and S13 were enriched in ERBB2 amplified tumors in both
cohorts, confirming previous report based on analysis of TCGA
data alone32 (Fig. 3d, e). HRD signature S3 was enriched in
tumors harboring BRCA1/BRCA2 pathogenic mutations in both
cohorts as expected (Fig. 3c). Notably, HRD signature S3 was
significantly enriched in the TNBC subtype of SMC compared to
TCGA (Fig. 3f). As much as 85% of TNBC cases in SMC were
HRD positive (S3 score > 0.2) compared to only 52% of TNBCs in
TCGA (FE: p= 0.7e-4). The HRD signature S3 was significantly
correlated with younger patient age in both cohorts (Pearson
correlation=−0.18, p= 1.0e-9) and under-represented in TCGA
OBC (Supplementary Fig. 5a). Further, we observed an enrich-
ment of S3 scores in tumors harboring recurrent BRCA1/BRCA2
germline missense variants compared to wild types in SMC but
not in TCGA (Supplementary Fig. 5c−d). Hence homologous
recombination repair deficiency may contribute more frequently
to the carcinogenesis of TNBCs in SMC compared to TCGA,
potentially due to differences in patient age as well as genetic
predisposition.

Virtual microdissection analysis. Bulk tumor is a complex
mixture containing tumor cells, stroma, immune cells, and nor-
mal tissue. We applied a computational approach called non-
negative matrix factorization (NMF) to perform a virtual
microdissection, separating bulk tumor gene expression into
factors representing distinct tissue compartments33. We assem-
bled a compendium of RNA-Seq data consisting of 1,678 samples,
including tumor and adjacent normal tissue samples from SMC
and TCGA, BC cell lines (CCLE) and healthy breast tissue
samples (GTEx) (Supplementary Fig. 6a). NMF analysis on this
expression compendium identified nine factors attributed to four
tissue compartments—tumor, stroma, tumor infiltrating leuko-
cytes (TIL), and normal tissue compartments (Fig. 4a; Supple-
mentary Fig. 6b). Tumor intrinsic factors exhibited differential
enrichment across molecular subtypes, allowing further associa-
tion of these factors with ER+ (F4, F7), HER2+ (F2) and TNBC
(F13) subtypes (Fig. 4b). The exemplar genes of factor F9 were
enriched in immune and inflammatory pathways (Supplementary
Data 11). Moreover, its factor weight was strongly correlated with
the CYT score34 and a wide range of immune cell signatures
(Fig. 4c, d). Based on these evidences, we attributed F9 to the TIL
compartment. Surprisingly, we found that TIL factor was sig-
nificantly enriched in SMC compared to TCGA (Student’s t test
(ST): p= 1.55e-06) (Fig. 5a). Among the many F9 associated
genes overexpressed in SMC vs. TCGA were CD8A, a marker of
the cytotoxic T lymphocytes and PD-L1, an important mediator
of immune checkpoint and target of multiple cancer immu-
notherapies (Fig. 5b).

Table 1 Clinical data summary for SMC and TCGA

SMC TCGA Statistical

significance

Subjects (n) 187 1,116

Patient age (yr) 39.3 ± 8.5 58.3 ± 13.2 p < 2.2e-16

Tumor purity (%) 71 ± 17.8 77.7 ± 10.7 p= 0.0005

Menopausal status

(n(%))

Pre-menopausal 165

(88.2%)

232 (20.8%) p= 1.12e-76

Post-menopausal 19 (10.2%) 715 (64.1%) p= 2.4e-68

Peri-menopausal 41 (3.7%)

N/A 128 (11.5%)

Clinical subtype

(n(%))

ER+ 103 (55.1%) 480 (43.0%) p= 0.04

ER+/HER2+ 27 (14.4%) 116 (10.4%)

HER2+ 15 (8%) 32 (2.9%) p= 0.07

TNBC 37 (19.8%) 121 (10.8%)

N/A 5 (2.7%) 367 (32.9%)

TNM stage (n(%))

I 27 (14.4%) 177 (15.9%)

II 101 (54%) 605 (54.2%)

III 58 (31%) 237 (21.2%)

V 1 (0.5%) 18 (1.6%)

N/A 79 (7.1%)

Histology subtype

(n(%))

Lobular carcinoma 7 (3.7%) 193 (17.3%) p= 2.9e-08

Ductal Carcinoma 172

(92.0%)

830 (74.4%) p= 2.9e-08

Others 8 (4.3%) 37 (3.3%)

N/A 56 (5.0%)

Race (n(%))

Asian 187 (100%) 57 (5.1%) p= 2.53e-193

Black 158 (14.2%)

White 745 (66.8%)

N/A 156 (14%)

For SMC vs. TCGA comparisons of continuous and categorical variables, p values were calculated

using Student’s t test and Fisher’s exact test respectively
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Two ER+ associated factors (F4, F7) were strongly enriched in
estrogen signaling pathways with F7 enriched in Luminal A than
in Luminal B (Supplementary Fig. 7a). F7 was also significantly
overweight in TCGA than in SMC within the ER+ subtype (ST: p
= 1.49e-04). Moreover, F7 factor weight appeared to increase
with patient age, with YBCs harboring the lowest weights and
TCGA OBCs harboring the highest weight (Supplementary
Fig. 7b). We noticed that the estrogen receptor gene (ESR1)
expression was also positively correlated with patient age. In both
SMC and TCGA, ESR1 expression was substantially higher in
post-menopausal vs. pre-menopausal cases. ER+ tumors also
expressed ESR1 at substantially higher levels in the older TCGA
cohort compared to SMC (Supplementary Fig. 7c−d). Hence, ER
+/Luminal A tumors were less prevalent in SMC while harboring
weaker ER expression level and ER expression signature
compared to TCGA, suggesting that SMC tumors were less
dependent on estrogen receptor-mediated signaling.

Differential expression analyses. The SMC cohort was pre-
dominantly pre-menopausal (88.2%) while TCGA was pre-
dominantly post-menopausal (72.3%) (Table 1). Several studies
have compared gene expression profiles of younger, pre-
menopausal BCs with older, post-menopausal BCs within
TCGA and identified differential expression (DE) of pathways
associated with proliferation, stem cell, and endocrine
resistance14,15. However, previous expression comparisons did
not take into consideration the heterogeneous tissue compart-
ments within bulk tumors. To identify molecular differences
between the SMC pre-menopausal BCs (SMC-Pre) and the
TCGA post-menopausal BCs (TCGA-Post), we performed dif-
ferential gene expression analysis between two groups of tumors
while adjusting for the confounding effect of molecular subtype
and tumor purity. A total of 827 DE genes, among which 570
were upregulated in SMC-Pre and 257 were upregulated in
TCGA-Post, were found to be statistically significant (see Meth-
ods, FDR < 0.01, fold-change > 2 or < 0.5) (Supplementary
Data 12). We then computed GSVA scores of 6475 known
pathway genesets35 and performed similar differential compar-
isons between SMC-Pre vs. TCGA-Post. We found that 123 sta-
tistically significant DE pathways were upregulated in SMC-Pre
and 591 were upregulated in TCGA-Post (Supplementary
Data 12, Supplementary Fig. 8a).

To enhance biological insights into the molecular differences
and mitigate confounding effects of heterogeneous tumor
composition, we attributed DE genes and pathways to different
tissue compartments in bulk tumor through correlation analysis
with NMF factors (Supplementary Fig. 8b, Methods). We were
surprised to see that more of the molecular differences were
attributed to the tumor microenvironment (TME) than to the

tumor intrinsic compartment. About 51.6% (427/827) of DE
genes were associated with TME and 13.2% (109/827) of
individual DE genes were associated with tumor intrinsic
compartment. As much as 73% (253/345) of the DE pathways
unambiguously assigned to a tissue compartment were attributed
to TME while only 18% (61/345) were attributed to the tumor
intrinsic compartment. We attributed 31 DE pathways to cohort-
specific factors that may not represent true biological differences.
The strongest DE patterns in TME are dominated by immune-
and inflammation-associated pathways. About 86% (91/106) of
the TIL factor-associated pathways were upregulated in SMC-Pre
compared to TCGA-Post. T-cell markers, cytokine signaling
genes as well as immune-related pathways such as allograft
rejection, interferon α and IL-2 signaling pathways and immune
cell type signatures such as cytotoxic cells and NK cells were also
upregulated in the SMC pre-menopausal group (Supplementary
Fig. 8c). On the other hand, 96% (144/150) of tumor stroma-
associated pathways, such as response to TGF-β1 signaling, and
nearly all of the tumor intrinsic DE pathways (58/61) were
upregulated in TCGA-Post compared to SMC-Pre (Supplemen-
tary Fig. 8c). Eight of the 26 top tumor intrinsic DE pathways
were associated with ER+ factors, further supporting the
hypothesis that ER signaling is a more prevalent driver in TCGA
compared to SMC BCs (Supplementary Fig. 8d).

Differential expression analysis of SMC pre-menopausal BCs
(SMC-Pre) and the TCGA pre-menopausal BCs (TCGA-Pre)
yielded similar observations. Most of the expression differences,
54.3% (425/782) of DE genes and 79% (333/423) of DE pathways,
were associated with TME whereas only 10.2% (80/782) of
individual DE genes and 14% (61/423) of DE pathways were
associated with tumor intrinsic compartment (Supplementary
Fig. 9a, Supplementary Data 12). Mainly immune- and
inflammation-associated pathways were upregulated in SMC
pre-menopausal tumors compared to TCGA pre-menopausal
tumors (Supplementary Fig. 9b). Both TCGA pre-menopausal
and post-menopausal BCs appeared to upregulate TGF-β1
signaling and estrogen signaling pathways compared to SMC
pre-menopausal BCs (Supplementary Fig. 9b−c). The TGF-β
signaling pathway has pleiotropic functions regulating multiple
cellular processes and is known to play immune suppressive
roles36. Further analysis revealed that the TGF-β expression
signature quantified using GSVA37 as well as TGFB1 gene
expression were strongly enriched in TCGA compared to SMC
within multiple molecular subtypes, suggesting that TCGA
tumors harbor a more immune suppressed microenvironment
than SMC tumors (Fig. 5c, d).

Multivariate analyses of distinctive features. To identify causal
factors contributing to the observed molecular differences

Table 2 Significantly mutated genes in SMC

SMC TCGA SMC vs.

TCGA

Gene

symbol

Gene description Mut Freq

(n=186)

p value q value Mut Freq

(n=1001)

q value p value

TP53 tumor protein p53 89 (47.9%) 0 0 320 (32.0%) 0 2.89e-04

PIK3CA phosphatidylinositol-4,5-bisphosphate 3-kinase,

catalytic subunit alpha

53 (28.5%) 0 0 320 (32.0%) 2.09e-12 0.81

GATA3 GATA binding protein 3 23 (12.4%) 0 0 91 (9.1%) 0 0.49

CBFB core-binding factor, beta subunit 5 (2.7%) 0 0 21 (2.1%) 7.85e-07 0.83

PTEN phosphatase and tensin homolog 6 (3.2%) 6.40e-06 0.015 44 (4.4%) 0 0.83

CDH1 Cadherin-1 4 (2.2%) 3.64e-05 0.076 115 (11.5%) 8.64e-13 2.46e-04

SMC has 186 WES samples and 167 tumor samples with both WES and RNA-Seq data. TCGA has 1002 WES samples. Mut Freq: number of mutated samples (% of mutated samples). p value, q value:

mutation significance reported by MutSigCV. SMC vs. TCGA: Mutation prevalence were compared between SMC and TCGA by Fisher’s exact test to determine the p value
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between SMC and TCGA, we performed multivariate analyses to
evaluate independent associations among distinctive molecular
features and key clinical features (Fig. 5e). The Elastic Net
method38 was used to identify clinical and molecular features that
were independently associated with the SMC vs. TCGA cohort
status. For each feature, the variable usage statistic was deter-
mined based on the frequency of variable selection by the

predictive model and through bootstrapping39 (Fig. 5e, Supple-
mentary Data 13). The TGF-β signature and TIL factor F9 had
the top variable usage of 100% among all distinctive molecular
features. After adjusting for confounder effects of key clinical
variables including patient age, tumor purity, molecular and
histology subtypes, multiple regression analysis further demon-
strated that both features were significantly and independently
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associated with the cohort status (Supplementary Data 13).
Hence, SMC BCs seemed to harbor a more immune active TME
characterized by higher TIL factor while TCGA BCs harbored a
more immune suppressed TME characterized by higher TGF-β
signature, which were more likely to be due to ethnic or

environmental factors rather than difference in age or meno-
pausal status.

Regression analyses have also identified ERBB2 amplification,
Luminal A/B subtypes and TP53 mutation as having significant
independent associations with the cohort status while BRCA1/
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BRCA2 pathogenic mutation and ER gene expression were
independently associated with patient age (Fig. 5e). F7, one of
the two NMF factors associated with ER signaling, was strongly
associated with histology subtype (lobular carcinoma) as well as
older patient age. TP53 mutation remained significantly associated
with the cohort status (multiple linear regression (MLR): p=
0.035) after adjusting for positive associations with intrinsic
molecular subtypes and negative association with lobular carci-
noma. HRD mutation signature S3 was strongly associated with
BRCA1/BRCA2 mutation (MLR: p= 2.0e-08) and TNBC (MLR: p
= 5.1e-39) but not with cohort status. To further examine casual
associations of S3, we performed multivariate analyses for only
TNBC samples from SMC and TCGA. We observed that the
variable usage frequency for S3 increased from 19.8% over all
subtypes to 86.4% within TNBC, where independent associations
were also increased for cohort status (MLR p= 0.084) and patient
age (MLR p= 0.036) (Supplementary Data 11). Taken together,
multivariate analyses have dissected the complex interrelationships
among key clinical and molecular variables to reveal independent
association of patient age with tumor intrinsic features such as
HRD and ER signaling and link cohort status, a surrogate for
genetic predisposition and environmental factors, to TME features
such as TILs and TGF-β signaling.

Discussion
In this study, we have performed whole exome and whole tran-
scriptome profiling of 187 breast cancer tumors from a Korean
cohort enriched in younger and pre-menopausal patients, por-
traying a distinctive patient segment that remained poorly char-
acterized and underrepresented in previous genomic and
molecular profiling studies. To identify distinguishing molecular
characteristics of younger Asian BCs, we compared multi-omics
profiles between our cohort and a BC cohort from the benchmark
TCGA study, mainly consisting of Caucasian and post-
menopausal patients. We observed that the landscapes of onco-
genic alterations in SMC and TCGA bear the same hallmarks of
cancer driver genes such as TP53, PIK3CA, and GATA3 while
BRCA1 and BRCA2 are the predominant BC predisposition genes
in both cohorts. Upon closer examination, we found a number of
significant differences in SMC compared to TCGA—lower pro-
portions of ER+ and Luminal A subtypes but higher proportions
of Luminal B, lower ER gene expression within ER+ subtypes,
increased prevalence of BRCA1/BRCA2 germline pathogenic
mutations, ERBB2 amplifications and TP53 mutations, enrich-
ment of HRD mutation signature (S3) in TNBC, increased levels
of TIL factor (F9) and decreased levels of TGF-β signaling. Using
multivariate analysis approaches, we sought to elucidate causal
associations between these molecular distinctions and key clin-
icopathologic factors including cohort status and patient age. We
found that tumor intrinsic molecular differences such as BRCA1/
BRCA2 mutation and ER signaling were mainly associated with
patient age and menopausal status. On the other hand, TME-
associated features such as TILs and TGF-β signaling were
independently associated with cohort status after excluding the
confounding effects of age, molecular subtype among other
clinicopathologic features, pointing to genetic predisposition or
environmental factors being the primary causes. Hence, younger
Asian BCs appeared to harbor significant molecular differences
from western BCs that could hold important implications for
patient stratification and therapeutic treatment. As the SMC
cohort was heavily enriched in younger patients and from a single
institution, we believe our study provided a first step towards
elucidating the molecular bases of Asian BCs which would require
larger studies that include more patients from all age strata,
multiple institutions and countries.

The apparent age disparity between the two BC cohorts was a
major driver of observed molecular distinctions. BRCA1/BRCA2
germline loss-of-function mutation frequencies were found to be
age-dependent and enriched in SMC vs. TCGA, indicating there
is a greater hereditary contribution to the pathogenesis of Asian
BCs. Consistent with earlier reports, the SMC cohort harbored
higher proportions of aggressive subtypes such as HER2+ and
TNBC compared to TCGA. These younger BCs also expressed ER
at lower levels along with weaker expression signature for ER
signaling, suggesting that these tumors were less dependent on
estrogen signaling than older BCs. Further, hormone receptor-
positive tumors within SMC appeared to be more complex,
harboring more Luminal B than Luminal A as well as a higher
prevalence of oncogenic alterations including HER2 amplification
and TP53 mutations. These findings in an Asian BC cohort
independently corroborated and expanded previous reports of
lower ER mRNA expression and higher HER2 mRNA expression
in YBCs vs. OBCs8. Mutations affecting TP53, the most fre-
quently mutated gene in cancer, are associated with more
aggressive subtypes and resistance to chemotherapies40,41.
Weaker tumor addiction to ER signaling coupled with co-
occurring oncogenic drivers could in part explain the clinical
observations that hormone receptor-positive YBCs respond more
poorly to endocrine therapies than their older counterparts.

Mutation signatures are genomic footprints of mutagenic
processes that occur throughout the lineage of the tumor cell and
therefore can be used to infer cancer etiologies. We predicted the
relative contributions of 30 pre-defined mutation signatures to
the complement of somatic mutations in both SMC and TCGA
BCs. Age-related signature S1, APOBEC signatures S2 and S13
and HRD signature S3 were the most predominant signatures
identified. HRD signature was found to be significantly enriched
in SMC compared to TCGA within TNBC, suggesting that DNA
repair deficiencies may be a stronger etiological factor in younger
Asian BCs. A class of inhibitors targeting the enzyme poly ADP
ribose polymerase (PARP) has shown greater efficacies in treating
tumors deficient in homologous recombination repair pathways,
such as those harboring BRCA1 or BRCA2 mutations. Taken
together with the observation of increased BRCA1/BRCA2
mutation frequencies in younger BCs, our findings raised the
possibility that PARP inhibitors could be more effective in
treating younger Asian BCs particularly within the TNBC
subtype.

Previous studies of younger vs. older breast cancers relied upon
comparing gene expression profiles of primary tumors. As bulk
tumor expression derive from a heterogeneous mixture of dif-
ferent cell types and tissue compartments, cohort-level compar-
isons tend to be confounded by differences in the composition of
these mixtures. Virtual tumor microdissection through NMF
analysis enabled us to separate expression differences that are
tumor intrinsic from those attributed to other sources such as
tumor stroma or even cohort-specific artifacts. Five of the 14
factors identified by NMF analysis were attributed to the TME
but only four were attributed to tumor intrinsic biology. Differ-
ential expression analyses integrated with tissue compartment
associations found that some DE features such as estrogen sig-
naling are tumor intrinsic whereas the majority of DE features
appear to reside in the TME. Moreover, SMC tumors appeared to
harbor more inflammatory immune microenvironments than
TCGA BCs, as indicated by higher expression levels of cytotoxic
T-cell markers and checkpoint mediators such as PD-L1. At the
same time, TCGA tumors appeared to harbor more immune
suppressed TMEs that significantly upregulate TGFB1 gene
expression and TGF-β signaling compared to SMC BCs.
Increased TILs have been associated with BRCA1 mutation42,
younger patient age and ER-negative subtypes in breast cancers43.
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However, multivariate analyses indicated that the TIL factor was
not independently associated with patient age or BRCA1/BRCA2
mutation status. Hence, these observed differences in tumor
immune microenvironment could represent an important dis-
tinction between Asian and western BCs inherently linked to
hereditary and environmental factors. As immuno-oncology
therapies are fast becoming a major addition to the anti-cancer
arsenal, these findings call for greater strides in applying IO
therapies as single agent or in combination with conventional
therapies for the treatment of Asian BC patients.

Methods
Patient sample collection and multi-omics profiling. This study was reviewed
and approved by the Institutional Review Board (IRB) of Samsung Medical Center,
Seoul, Korea (IRB No. 2013-04-005, 2012-08-065) with informed consents from
the patients for the research use of clinical and genomic data. The tumor tissues
and blood samples were prospectively collected at surgery. Ninety-five percent
(179/187) of the tumors were treatment naive. All patients were diagnosed and
treated at Samsung Medical Center. Patient samples were subjected to pathology
review to ensure that >80% of samples are composed of ≥60% tumor cells (Sup-
plementary Data 1). No statistical methods were used to predetermine sample size.

Genomic DNA from tumor was extracted using the QIAamp® DNA Mini kit
(51304, Qiagen) and AllPrep DNA/RNA Mini kit (80204, Qiagen). Genomic DNA
from whole blood was extracted using the QIAamp DNA Blood Maxi Kit (51194,
Qiagen). Both tumor and blood DNA were enriched for exonic regions using the
SureSelect XT regent kit (G9611B, Agilent) and SureSelect XT Human All Exon V5
kit (5190-6210, Agilent). Sequencing libraries were constructed for an Illumina
HiSeq 2500 systems (Illumina) and sequenced in 100-bp paired-end mode of the
TruSeq Rapid PE Cluster kit and TruSeq Rapid SBS kit (PE-402-4001, Illumina).
Exome sequencing reads were mapped to the hg19 reference genome using
Burrows-Wheeler Aligner (BWA-0.7.5a)44. PCR duplicates were removed by
picard-1.93 (http://broadinstitute.github.io/picard). The mapped reads near
putative indels were realigned and base quality was recalibrated using the GATK-
2.4-7 suite45. We aimed for 100× mean target coverage for tumors and 50× for
paired blood samples. For RNA-Seq, sequencing libraries were prepared using
TruSeq RNA Sample Preparation kit v2 (RS-122-2001 and RS-122-2002, Illumina).
Sequencing of the RNA libraries was performed on an Illumina HiSeq2500 in 100-
bp paired-end mode of the TruSeq Rapid PE Cluster kit and the TruSeq Rapid SBS
kit.

Multi-omics data analysis. RNA-Seq-derived gene expression data (TPM) from
TCGA breast cancer, CCLE and GTEX normal breast samples were obtained from
Omicsoft 2016 Q1 release, which consistently analyzed all datasets using the
Omicsoft RSEM pipeline with the same library of gene models (Omicsoft-
Gene20130723)46. Gene expression (TPM) was predicted from RNA-Seq data of
178 SMC samples (168 tumors, 10 normals) using RSEM47, hg19 as the genome
reference and the same gene model library as used by Omicsoft. We processed a
subset of SMC RNA-Seq data using the Omicsoft RSEM pipeline and found an
average correlation of 0.99 with expression profiles computed using the original
RSEM, indicating that analysis results from two RSEM pipelines are highly
compatible.

We obtained TCGA somatic mutation and CNV data from Omicsoft 2016 Q1
release, which derived the data from TCGA firehose release on January 28, 2016.
Somatic mutations were detected from WES data on 186 SMC matched tumor/
normal samples using Varscan2 v2.4.148 in the paired mutation calling mode.
Parameters were selected based on the DREAM-349 setting of the false positive
filter as recommended by Varscan2. All germline and somatic mutations were
annotated using the Ensembl Variant Effect Predictor50. Significantly mutated gene
analysis was performed using MutSigCV v1.229 from the online GenePattern
tools51. We used GATK52 to estimate depth of coverage from the bam files of 186
SMC tumor/normal samples using hg19 as genome reference. CNV segmentation
was then called by ExomeCNV v1.453 based on coverage estimates and further
annotated to derive copy number value for each gene.

Molecular subtype classification. We applied three methods for classifying
molecular intrinsic subtypes—IHC, PAM50, and NMC. The IHC subtypes were
determined by IHC assays for ER, PR, and HER2 and used in clinical diagnoses and
treatment. PAM50 subtypes were predicted using Genefu54 from the gene
expression data. We developed an in-house breast cancer subtype classifier called
naïve molecular classifier (NMC) based on ERBB2, ESR1, and PGR gene expression
and ERBB2 copy number. NMC assumed that HR-negative and -positive samples
have expression values drawn from two Gaussian distributions with their respective
mean and standard deviations. Using an expectation maximization (EM) method
implemented by the mixtools package in R, we assigned probabilities of being
drawn from either distribution to each sample with measured expression levels.
Proportion of receptor positive/negative samples as measured by IHC were used as
priors and EM algorithm was allowed to run until convergence. The distribution

with the higher probability was assigned as the NMC prediction for each of the
receptors. We determined the Consensus subtypes by integrating classification
results from IHC, PAM50, and NMC. If IHC is available, the majority vote by IHC,
NMC, and PAM50 was used. Otherwise, the NMC classification result was used. If
three methods disagree with each other, then the IHC result was used. The fol-
lowing rules were used to map IHC or NMC subtypes with PAM50 subtypes: ER+
(Luminal A and Luminal B), ER+ /HER2+(Luminal B and Her2), HER2+ (Her2)
and TN (Basal).

Integrated genomic subtype classification. The iC10 package22 in R was used for
integrative cluster assignment for both the TCGA and SMC cohort. The classifier
was trained on the genes using the “pamr” R package based on shrunken centroids.
The optimal threshold for classification was determined using cross-validation.
Intersecting genes from both gene-level copy number and gene expression data
were used. The gene expression matrix was scaled to have a zero mean and
standard deviation of 1 before integrative cluster assignment. Fisher’s exact test and
Chi-squared test were performed to assess significance of differences found in
comparison analyses.

Mutation signature analysis. We obtained a predefined set of 30 mutational
signatures from the Wellcome Trust Sanger Institute, which have been established
by analyzing somatic mutation profiles of more than 10,000 tumor samples across
40 cancer types31. Each signature represents a characteristic pattern of 96 possible
nucleotide substitution motifs, which combine six types of substitutions of central
nucleotide and 16 combinations of the immediate flanking sequence. We included
the complete set of the signatures in all the signature analyses as some signatures
share similar patterns; thus exclusion of a signature may cause overestimation of
the contribution of other signatures. To quantify the relative contribution of each
mutational signature for tumor samples, we used deconstructSigs55, which iden-
tifies the linear combination of input signatures to best explain the mutation profile
provided in trinucleotide context. Once we computed sample-wise signature pro-
files, we filtered mutation signatures present in <20% of the samples in both SMC
and TCGA cohorts. For group-wise comparisons, we pooled all the variants in a
group-wise manner, and then applied deconstructSigs to quantify mutational sig-
natures present in each group.

Non-negative matrix factorization analysis. The NMF algorithm factorizes the
gene expression matrix V of g genes and s samples into two matrixes of k factors:
gene factor matrix W of n gene weights for k factors and sample factor matrix H of
m sample weights for k factors. W represents the expression pattern of the k parts
and H represents the respective contribution of k parts in each sample or bulk
tumor56. NMF was performed on log transformed gene expression matrix V,
log2(TPM+ 1), of the combined cohorts using the R package NMF which used the
“brunet” algorithm57. We performed 30 runs of NMF and chose the factorization
that achieved the lowest approximation error for subsequent analyses. To extract
exemplar genes for each of the k factors, a score for each gene g was first calculated
representing how factor-specific it is based on an entropy measure58. Two criteria
were then used for selecting the genes. First, the gene score has to be greater than
μþ 3σ where μ and σ represents the median and the median absolute deviation of
the scores respectively. Second, the maximum contribution to a basis component of
the feature has to be greater than the median of all contributions. Pathway
enrichment analyses were performed on the exemplar genes for each factor using
the Fisher’s exact test and the MSigDB v5.1 pathway gene sets (Supplementary
Data 11). Fractional contribution of each factor in each sample was calculated by
normalizing W and H to facilitate cross factor comparison after excluding the
cohort-specific factors.W was normalized so that

P
i wij ¼ 1, which is equivalent to

multiplying a diagonal matrix S of k by k. Then H was multiplied by S−1 and
normalized by summing to 1. The average weights for each factor of various sample
groups were calculated for Fig. 4.

To attribute NMF factors to different tissue compartments, we examined the
distribution of sample factor weights in sample groups with known labels (Fig. 4a,
b). For example, Factor F7 exhibits the highest sample weights for ER+ samples in
SMC and TCGA, lower weights in other subtypes and the lowest weight in normal
and cell line names. Based on this pattern of distribution, F7 was interpreted as a
tumor intrinsic ER factor. Similarly we identified three additional tumor factors—
ER factor (F4), HER2 factor (F2), and TN factor (F13)—and three factors
associated with the normal tissues—F3, F8, and F14 (Supplementary Fig. 6). Factor
F3 has higher weight in SMC or TCGA adjacent normal samples than GTEx
normal breast samples, indicating that it harbors biological characteristics specific
to tumor adjacent normal tissue. In contrast, F8 and F14 have higher weights in
GTEx normal breast samples than in SMC or TCGA adjacent normal samples,
indicating that these factors are more presentative of health normal tissue. Besides
the three normal factors, we also attributed two more factors to the TME. TIL
factor F9 has the highest weights in tumor tissue groups such as SMC and TCGA,
lower weights in adjacent normal groups and the lowest weights in GTEx normal
and CCLE cancer cell line samples. F9 was also highly correlated with the CYT
score, a measure of cellular cytolytic activities defined as the geometric mean of
GZMA and PRF1 expression levels34 (Fig. 4c). F9 exemplar genes were significantly
enriched in the immune- and inflammation-related pathways. Moreover, factor
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9 sample weight is significantly correlated with expression signatures for many
immune cell subtypes (Fig. 4d). The stroma factor F1 exhibited higher weights in
SMC and TCGA tumor samples than in cancer cell line and GTEx normal samples.
Moreover, F1 exemplar genes are significantly enriched in epithelial mesenchymal
transition, extracellular matrix (ECM) organization and ECM regulation. Four
factors (F5, F6, F11, and F12) appear to be cohort-specific factors due to
significantly higher sample weights in one specific cohort—F5, F6 (TCGA), F6
(SMC), and F12 (CCLE). We did not find a clear association with any tissue
compartment for F10, which did not yield any significantly enriched pathway.

Differential expression and pathway enrichment analyses. We filtered 25% of
genes having the lowest mean expression levels and then 25% having the lowest
variation measured as standard deviation before conducting differential expression
analyses. Voom was applied to transform the gene-level normalized counts to log2-
counts per million (logCPM). For the DE pathway analysis, the GSVA algorithm37

was used to calculate signature scores for 6475 gene sets of collections H (hallmark
gene sets), C2 (curated gene sets), C5 (GO gene sets), and C6 (oncogenic gene sets)
from MsigDB v5.159. The TGF-β pathway expression signature was based on the
“HALLMARK_TGF_BETA_SIGNALING” gene set. Limma was then applied to
perform the DE gene and pathway analyses and calculate the fold change differ-
ences and statistical significance60. Molecular subtype and tumor purity were
adjusted as confounder variable in the linear model. DE pathways were selected if
FDR < 0.01 and |log2FC| > 0.2 (FC: fold-change).

Association of DE genes and pathways with NMF factors. Differential
expression analyses were typically performed to compare two groups of bulk
tumors without considering heterogeneity in tumor composition. What appears to
be upregulation of a gene in one cohort vs. another may be due to tumor intrinsic
upregulation of the DE gene or tumors from that cohort harboring greater pro-
portions of non-tumor cells that overexpress the DE gene. In this study, we tried to
identify compartmental origins of the differential expression patterns based on
NMF inferred contribution of different tissue compartments in the bulk tumor. To
associate DE genes with NMF factors, we calculated Pearson correlation r between
gene expression and factor sample weight across all samples of the expression
compendium. The maximum correlation max(r) for each gene against all factors
was used as the test statistics. Ten permutation runs were conducted on the gene
expression matrix by reshuffling samples. The max(r) for all genes then formed the
null distribution. For each DE gene, p value was calculated based on the number of
times the max(r) from the null distribution exceeded the test statistic and FDR
corrected using the Benjamini−Hochberg method. A cutoff of FDR ≤ 0.05 was used
to identify significant association with an NMF factor. Pearson correlation r was
also calculated between pathway signature scores and sample factor weight
requiring r≥ 0.6 to define an association. We then categorized DE pathways into
four major types—tumor intrinsic, TME, cohort-specific, and ambiguous. For each
pathway, the max(r) with categories of factors were calculated: max(r)tumor—tumor
factors (F2, F4, F7, and F13); max(r)TME—TME factors (F1, F3, F8, F9, and F14);
max(r)cohort—cohort-specific factors (F5, F6, F11, and F14). The following criteria
were then applied: A pathway was classified as (1) tumor intrinsic if max(r)tumor –

max(r)TME > 0.2 and max(r)tumor > 0.2; (2) TME if max(r)TME –max(r)tumor > 0.2
and max(r)TME > 0.2; (3) cohort-specific if max(r)cohort –max(max(r)tumor, max
(r)TME) > 0.2 and max(r)cohort > 0.2. Remaining DE pathways were classified as
“ambiguous”.

Multivariate analyses of clinical and molecular features. We performed logistic
regression adjusting for confounder variables to compare gene-level prevalence of
somatic and germline mutations among different groups of patients. The group
status was set as the response variable with the case group as 1 and the control
group as 0. The binary mutation status for each gene was designated as the main
factor while other potential confounder variables were treated as covariates. The p
value associated with the main factor represented the statistical significance of the
differences in mutation frequency between the case group and the control group.
FDR was calculated using the Benjamini−Hochberg method.

We performed multiple regression analyses with adjustment for confounder
variables to assess the associations between molecular differences and clinical
features. For the combined TCGA and SMC cohort, seven clinical variables were
evaluated—cohort status (SMC vs. TCGA), patient age, ER status (positive vs.
negative), tumor stage (early vs. late), menopausal status (pre vs. post), tumor
purity, and histology subtype (lobular carcinoma: yes vs. no). Nine molecular
features were evaluated—HRD-related mutation signature 3 (S3), NMF factor 7
associated with ER+ subtype (F7), NMF factor 9 associated with TILs (F9), ESR1
gene expression in log2TPM (ESR1-Exp), ERBB2 amplification status (ERBB2-
Amp), BRCA1/BRCA2 germline pathogenic mutation status (BRCA-Mut) and
TP53 somatic mutation status (TP53-Mut). Logistic regression was applied if the
molecular difference was a binary variable and regular linear regression was applied
for continuous variables. For multiple linear regression analyses, we solved the
function Y ¼ β0 þ β1X1 þ β2X2 þ � � � þ βpXp þ ε; where βj quantify the
association between variable j with the response. R function “lm” from “stats”
package was used to estimate the regression coefficients β0; β1; ¼ βp and
corresponding p values. For logistic regression analyses, we solved the function
log p xð Þ= 1� p xð Þð Þð Þ ¼ β0 þ β1X1 þ β2X2 þ � � � þ βpXp þ ε, where p xð Þ ¼

PrðY ¼ 1jXÞ and Y was the binary response variable. R function “glm” from “stats”
package was used to estimate the regression coefficients β0; β1; ¼ βp and
corresponding p values.

Generalized linear model using penalization (Elastic Net38) was performed to
evaluate independent association between each variable from the combined list of
molecular and clinical features and cohort status (SMC vs. TCGA). Consistent
lasso estimation and consistent selection of variables were achieved through
bootstrapping. The % variable usage estimate was determined as the frequency of
variable selection by the predictive model in 500 bootstraps. In addition, the
statistical significance of association between each feature vs. cohort status was
calculated using a generalized linear model that incorporated all clinical and
molecular features as covariates.

Data availability. WES and RNA-Seq data are available at European Genome-
Phenome Archive under the accession code EGAS00001002621 and GEO under
the accession GSE113184. All other remaining data are available within the Article
and Supplementary Files, or available from the authors upon request.
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