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Abstract

Purpose: The tumor microenvironment has a profound

impact on prognosis and immunotherapy. However, the

landscape of the triple-negative breast cancer (TNBC) micro-

environment has not been fully understood.

Experimental Design: Using the largest original multi-

omics dataset of TNBC (n ¼ 386), we conducted an extensive

immunogenomic analysis to explore the heterogeneity and

prognostic significance of the TNBC microenvironment. We

further analyzed the potential immune escape mechanisms of

TNBC.

Results: The TNBC microenvironment phenotypes were

classified into three heterogeneous clusters: cluster 1, the

"immune-desert" cluster, with low microenvironment cell

infiltration; cluster 2, the "innate immune-inactivated" clus-

ter, with resting innate immune cells and nonimmune

stromal cells infiltration; and cluster 3, the "immune-

inflamed" cluster, with abundant adaptive and innate

immune cells infiltration. The clustering result was validated

internally with pathologic sections and externally with

The Cancer Genome Atlas and METABRIC cohorts. The

microenvironment clusters had significant prognostic effi-

cacy. In terms of potential immune escape mechanisms,

cluster 1 was characterized by an incapability to attract

immune cells, and MYC amplification was correlated with

low immune infiltration. In cluster 2, chemotaxis but inac-

tivation of innate immunity and low tumor antigen burden

might contribute to immune escape, and mutations in the

PI3K-AKT pathway might be correlated with this effect.

Cluster 3 featured high expression of immune checkpoint

molecules.

Conclusions: Our study represents a step toward person-

alized immunotherapy for patients with TNBC. Immune

checkpoint inhibitors might be effective for "immune-

inflamed" cluster, and the transformation of "cold tumors"

into "hot tumors" should be considered for "immune-desert"

and "innate immune-inactivated" clusters.

Introduction

Triple-negative breast cancer (TNBC) is the most aggressive

breast cancer subtype, which is defined as no expression of

estrogen receptor (ER) and progesterone receptor (PR) and no

amplification or overexpression of HER2 (1, 2). Early relapse and

lack of therapeutic targets are major problems in TNBC treat-

ment (3, 4). Recent research has demonstrated that TNBC had

higher immunogenicity than other subtypes do, suggesting

immunotherapeutic strategies for patients with TNBC (5–9).

However, recent clinical trials indicated that immunotherapy,

such as immune checkpoint inhibitors (ICIs), showed low

efficacy in the whole population of patients with TNBC (10–12).

A lack of patient selection based on tumor microenvironment

landscapes might be the major reason for these disappointing

results. Meanwhile, the whole landscape of TNBC microenvi-

ronment phenotypes remains unknown. Previous studies have
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focused on only one or two microenvironment cell subtypes of

TNBC (13–20), which might result in the biased understanding

of TNBC microenvironment. As microenvironment cells have

intensive cross-talk, it is more rational to consider them all as a

whole.

The development of next-generation sequencing provides

opportunities to systemically explore the tumor microenviron-

ment. As RNA sequencing of tumor tissue usually containsmicro-

environment cells, researchers have developed some expression

profile–based estimation of the abundance of microenvironment

cells in tumor tissue (21–24). Furthermore, researchers have

analyzed the connection between DNA-level alternations and

immune filtration to explore genomic alterations that drive the

low immune infiltration (25–27). However, owing to small

sample size and the lack of multi-omics data, few studies con-

ducted genomic analysis of TNBC from the perspective of

immunology.

Collectively, we questioned whether TNBC has heterogeneous

microenvironment phenotypes and what genomic events drive

the formation of these phenotypes. With multi-omics data for

the largest single-center TNBC cohort, we successfully classified

386 TNBC samples into three microenvironment clusters with

distinct potential immune escape mechanisms and genomic

drivers.

Materials and Methods

Tumor and normal samples and datasets

Weretrospectively selected 386 consecutive patientswith TNBC

who underwent surgeries at the Department of Breast Surgery,

Fudan University, Shanghai Cancer Center (FUSCC; Shanghai,

China), from January 1, 2007 to December 31, 2014. Detailed

inclusion criteria for the 386 samples were as follows: (i) female

patients; (ii) unilateral invasive ductal carcinoma; (iii) pathologic

examination of the ER, PR, and HER2 status performed by the

Department of Pathology at FUSCC through immunochemical

analysis and in situ hybridization (for HER2 status only); (iv)

patients with no evidence of metastasis at the time of diagnosis;

and (v) sufficient frozen tissue for further research. In summary,

RNA-seq data (tumor tissues: n¼ 245; paired normal tissues: n¼

90),HTA2.0microarray data (n¼141),whole-exome sequencing

data (n ¼ 268), OncoScan microarray copy-number data (n ¼

335), hematoxylin and eosin (H & E) sections data (n ¼ 300),

and tissue microarray data (n ¼ 181) were obtained. In addi-

tion, we invited two pathologists to evaluate the stromal and

intratumoral tumor-infiltrating lymphocytes (sTIL and iTIL,

respectively) and fibrosis and necrosis in H & E pathologic

sections on the basis of established guidelines (28, 29). The

studies were conducted in accordance with the Declaration of

Helsinki. All the tissue samples included in this study were

obtained with approval from the independent ethics commit-

tee/Institutional Review Board at FUSCC Ethical Committee,

and each patient provided written informed consent. The

follow-up of our cohort was completed on June 30, 2017. The

median follow-up length was 47 months (interquartile range,

29.3–73.5 months). The events included in the relapse-free

survival (RFS) analysis were defined as the first recurrence of

locally, regionally, or distantly invasive disease, a diagnosis of

contralateral breast cancer, or death from any cause. Patients

without events were censored at the last follow-up.

Detailed information regarding the sample processing and

sequencing data generation is provided in the Supplementary

Materials and Methods.

Calculation of microenvironment cell abundance

To construct a compendium of microenvironment genes relat-

ed to specific microenvironment cell subsets, we considered three

aspects in the gene selection:first, the gene is specifically expressed

in one specific microenvironment cell subset; second, other

normal tissues do not express the gene; and third, the compen-

dium contains major cell types of the TNBC microenvironment.

After researching papers, wemodified two gene signatures, CIBER-

SORT (21) and MCP-Counter (23), to construct our compendi-

um. First, we filtered the gene list of CIBERSORT (see their

supplement 2). A 1.5-fold change cutoff from the highest expres-

sion cell type to the next highest expression cell type was consid-

ered as a criterion for cell type–specific expression. As a result,

324 genes were selected. As CIBERSORT do not contain sig-

natures of fibroblasts and endothelial cells, which were impor-

tant component of TNBC microenvironment, we added extra

40 genes for these cells (32 for endothelial cells and eight for

fibroblasts) from MCP-Counter gene list to our compendium.

In all, our TNBC compendium contained 364 genes represent-

ing 24 microenvironment cell types (Supplementary Fig. S1;

Supplementary Table S1). Subsequently, we used single sample

gene set enrichment analysis (ssGSEA, "GSVA" function in R) to

calculate the abundance of each cell subset in each sample with

expression data. Similarly, we also referred to another pub-

lished article (22) to construct immune cell signatures for

calculating the abundance of types 1, 2, and 17 T helper cells

(Th1, Th2, and Th17) and myeloid-derived suppressor cells

(MDSC).

Calculation of signature score distributions of

microenvironment cell subsets

To describe the constituent pattern (i.e., relative cell propor-

tions) of microenvironment cell subsets within clusters, we first

Translational Relevance

On the basis of the multi-omics data of the largest original

triple-negative breast cancer (TNBC) cohort, our study char-

acterized the landscape of the TNBC microenvironment from

an immunogenomics perspective. We revealed the heteroge-

neity and significant prognostic efficacy of TNBC microenvi-

ronment phenotypes. According to the heterogeneous micro-

environment and immune escape mechanisms of TNBC, we

proposed personalized immunotherapy for patients with

TNBC. Specifically, we suggest the selective application of

immune checkpoint inhibitors (ICIs) to patients with the

"immune-inflamed" cluster. Tumor-infiltrating lymphocytes

and expression of immune checkpoint molecules, but not

the tumor mutation burden, are potential biomarkers for

predicting the therapeutic efficacy. Moreover, the transforma-

tion of "cold tumors" into "hot tumors" and the combination

of ICIs could be considered alternative therapeutic strategies

for patients in the "immune-desert" and "innate immune-

inactivated" clusters. Some oncogenic pathways, such as the

MYC-related and PI3K-AKT pathways, were identified as

potential targets for this transformation.

Microenvironment Landscape of Triple-Negative Breast Cancer
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used the tumor purity, which was calculated by ASCAT (30), to

adjust the enrichment scores of each microenvironment cell

subset. The adjusted enrichment score was calculated as the

enrichment score divided by (1 � tumor purity). We then illus-

trated the enrichment score distributions of each microenviron-

ment cell subset to represent the relative cell proportions ("den-

sity" function in R).

Microenvironment phenotypes clustering

We performed k-means ("kmeans" function in R) clustering

and Nbclust testing ("NbClust" function in R, index ¼ "all") to

determine the optimal number of stable TNBC microenviron-

ment subtypes. To cluster samples based on the constituent

pattern of each microenvironment cell type, we scaled each

sample before clustering. Silhouette analysis was performed to

confirm the stability of the clustering. For heatmap plotting

("pheatmap" function in R), we utilized the k-means clustering

result to reorder the samples and scaled theoriginal ssGSEA results

before plotting.

Prognostic analysis of microenvironment phenotypes

We developed the univariate and multivariate Cox propor-

tional hazards model to analyze the prognostic significance of

microenvironment phenotypes. Age, tumor size, the number of

positive lymph nodes, and PAM50 subtypes were first analyzed

in univariate Cox proportional hazards model. All significant

variables were then included as covariates in the multivariate

Cox proportional hazards model. We further validated the

prognostic value of microenvironment clusters by comparing

the predictive efficacy between two models: one consisting of

tumor size and the number of positive lymph nodes as covari-

ates; and the other adding microenvironment phenotypes as

the third covariates. The AUC of time-dependent ROC curves

("timeROC" package in R) was set as the indicator of prognostic

efficacy. Statistical tests of the difference in AUC between the

two models were conducted in the first 3 years of follow-up

("compare" function in R). We also evaluated the prognostic

value of each cell subsets in the whole cohort and within each

microenvironment cluster. In each analysis process, the abun-

dance of cells was divided into high or low categories according

to the optimal cutoff ("cutp" function in R). A univariate Cox

proportional hazards model was then performed for the cate-

gorical variables of cell abundance.

Calculation of immunogenomic indicators

The detailed calculation of several bioinformatic indicators,

such as neoantigens, cancer testis antigens (CTAs), homologous

recombination deficiency (HRD) scores, and intratumoral het-

erogeneity (ITH), are described in Supplementary Materials and

Methods.

Comparison of enriched oncogenic pathways

We referred to apublished article (31) to establish a signature of

10 oncogenic pathways containing 331 genes. We then used the

ssGSEA method on these gene sets to generate enrichment scores

for each pathway in each sample. The enrichment scores were

calculated as the activated score minus the repressed score. Sub-

sequently, we compared the ssGSEA score of each pathway among

the three clusters.

Comparison of mutations among clusters

Genes with mutation frequencies greater than 2.5% were

included in our comparison. To assess cluster-specific mutated

genes, clusters were modeled (using logistic regression) as a

function of the gene's mutational status (ignoring silent events)

and mutation load. The latter one was included to diminish

confounding effects. P value less than 0.05 after adjusting for

mutation load was considered significant. Because logistic regres-

sion model only receipt dependent variable with binomial dis-

tribution, we performed comparison in every two clusters. We

conducted permutation test ("glmperm" function in R program)

in logistic analysis. Cluster-specific mutations were defined as

significantly mutated genes from the comparison of the given

cluster with one of the other two clusters (Supplementary Table

S6, column 13).

Comparison of somatic copy-number variations among

clusters

The ASCAT algorithm was used to adjust the copy number of

genes based on ploidy and purity. Samples were not included in

further analysis when ASCAT-evaluated ACF score equaled 1 or if

ASCAT failed to evaluate the purity. A regression approach similar

to mutation analysis was then used to test for copy-number

variation associations. To test a given gene, clusters were modeled

as a function of the gene's copy number (categorized by the

median value) and somatic copy-number variation (SCNV) load.

To explicitly define amplification and deletion events, we applied

this linear regression approach twice. The first run was amplifica-

tion centric, and thus, the negative copy-number valueswere set to

zero. The second run was deletion centric, and thus, the positive

copy-numbervalueswere set to zero. The cluster-specific amplified

"peak" was defined as a continuous stretch of genes (arranged in

genomic order) with a nominal P value less than 0.05 and log2
ratio greater than log2(2.5/2). Similarly, the cluster-specific delet-

ed "peak"wasdefinedas a continuous stretchof genes (arranged in

genomic order) with a nominal P value less than 0.05 and a log2
ratio less than log2(1.5/2). The comparison methods mainly

referred to some previous immunologic articles (25, 26) and the

cut-off values, log2(2.5/2) and log2(1.5/2), were also obtained

from one published high-quality article of this field (32). Cluster-

specificpeaksweredefinedas significantpeaks in each comparison

between the given cluster and every one of the other two clusters.

Statistical analysis

Student t test, Wilcoxon test, and Kruskal–Wallis test were

utilized to compare continuous variables and ordered categorical

variables, such as mutation load, neoantigen load, HRD score,

CTAsnumber, and ITH. Prior to the comparisons, thenormality of

the distributions was tested with Shapiro–Wilk test before com-

parison. Pearson x2 test or Fisher exact test were employed for the

comparison of unordered categorical variables. Permutation test

was conducted in the comparison of gene mutation frequencies

among clusters. Correlationmatrices were createdwith Pearson or

Spearman correlation. Survival analysis was performed using the

Kaplan–Meier method, and the survival of the clusters was com-

pared using the log-rank test. All the tests were two sided, and P <

0.05 was regarded as indicating significance, unless otherwise

stated. The FDR correction was utilized in multiple tests to

decrease false positive rates. All of the analyses were performed

with R software (version 3.4.2, http://www.R-project.org).

Xiao et al.
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Data availability

All data can be viewed in The National Omics Data Encyclo-

pedia (http://www.biosino.org/node) by pasting the accession

(OEP000155) into the text search box or through the URL:

http://www.biosino.org/node/project/detail/OEP000155. The

sequencing data is also available in GSE118527 (OncoScan),

GSE76250 (HTA 2.0), and SRP157974 (WES and RNAseq).

Results

Landscape of the microenvironment phenotypes in TNBC

We first established a reference microenvironment compendi-

um that included 364 genes representing 24 microenvironment

cell subsets, to systematically characterize the microenvironment

phenotypes of TNBC (Materials andMethods, Supplementary Fig.

S1; Supplementary Table S1). We then estimated the abundance

of 24 microenvironment cell subsets in each sample and con-

firmed the accuracy of our results by comparing them with those

of othermicroenvironment signatures (Supplementary Table S2).

Subsequently, we performed k-means clustering of the TNBC

microenvironment phenotypes. All 386 TNBC microenviron-

ment phenotypeswere classified into three heterogeneous clusters

(Fig. 1A). Our analysis revealed that three was the optimal and

stable clustering number (Supplementary Fig. S2). Cluster 1, the

"immune-desert" cluster (type 1 "cold tumor"), was characterized

by relatively lowmicroenvironment cells infiltration, and thus,we

selected a "red light" for this cluster, which represented low

immune infiltration. Cluster 2, the "innate immune-inactivated"

cluster (type 2 "cold tumor"), was characterized by the infiltration

of inactivated innate immune cells, fibroblasts, and endothelial

cells, and thus, we chose a "yellow light" to indicate moderate

immune infiltration. Cluster 3, the "immune-inflamed" cluster

("hot tumor"), was characterized by relatively high innate and

adaptive immune cells infiltration, and we therefore selected a

"green light" for this cluster to denote abundant immune infil-

tration. Moreover, we described the distributions of the abun-

dance of microenvironment cell subsets to analyze the relative

proportions of cell subsets within clusters. Adaptive immune cells

and inactivated innate immune cells represented the major pro-

portions in the microenvironments of the three clusters. The

relative weights of innate immune cells and nonimmune cells

were increased in cluster 2, whereas the relative proportion of

adaptive immune cells was increased in cluster 3 (Fig. 1B).

Validation of TNBC microenvironment clustering

To validate the expression profile–based clustering, we first

evaluated the sTILs and iTILs and CD8þ cells in pathologic

sections among the clusters. Cluster 3 had significantly higher

sTILs (mean, 19.86 vs. 18.06 vs. 32.65; P < 0.001), iTILs (mean,

5.27 vs. 4.58 vs. 11.02;P<0.001), andCD8þ cells (mean13.36 vs.

12.61 vs. 25.02; P < 0.001) than the other two clusters (Fig. 1C).

We further analyzed other immune signatures to validate our

microenvironment clustering. The distributions of Th1, Th2, and

Th17 and MDSCs were also coincident with our established

microenvironment clusters (Fig. 1D). Moreover, we compared

the distributions of the TNBC intrinsic subtypes among clusters.

Cluster 1mainly consisted of the classical basal-like and immune-

suppressed (BLIS) subtype; cluster 2 was mainly composed of

tumors with mesenchymal stem–like (MSL) features, which were

mostly classified as the nonbasal subtype in the PAM50 clustering;

and clusters 3 was primarily made up of the immunomodulatory

subtype, a nonclassical basal-like subtype. The luminal androgen

receptor TNBC subtype was dispersed among all three clusters

(Fig. 1E). Furthermore, we utilized the expression profiles of the

METABRIC and TCGA cohorts to externally validate the repeat-

ability of our clustering result (Supplementary Figs. S3 and S4).

Overall, we demonstrated that TNBC had three heterogeneous

microenvironment phenotypes that could not be fully explained

by mRNA-based TNBC intrinsic subtyping. The features of the

three clusters are summarized in Fig. 1F.

Prognostic significance of microenvironment cells in TNBC

Considering the important role of the tumor microenviron-

ment in prognosis, we investigated the clinical relevance of the

microenvironment clusters. The three clusters had similar clini-

copathologic characteristics (Supplementary Table S3). Cluster 3

had significantly better RFS (log-rank P ¼ 0.04) and overall

survival (OS; log-rank P ¼ 0.04) than the other two clusters

(Fig. 2A). The multivariate Cox proportional hazards model also

revealed that cluster 3 independently predicted better RFS in

TNBC (HR, 0.45; 95% confidence interval, 0.21–0.97; P ¼

0.04; Fig. 2B). The time-dependent AUC demonstrated that the

addition of microenvironment clusters into the Cox proportional

hazardsmodel significantly increased the prognostic efficacy of 1-

(AUC, 0.72 vs. 0.81; P¼ 0.0037) and 2-year (AUC, 0.74 vs. 0.81; P

< 0.001) recurrence (Fig. 2C). Furthermore, we explored the

prognostic significance of each cell subset (Fig. 2D; Supplemen-

tary Table S4). In the whole cohort, a higher infiltration of

immune cells, even the infiltration of immune suppressive cells,

predicted better prognosis. However, a within clusters analysis

revealed that the prognostic significance of the cell subsets was

diverse, even opposite, among the three clusters. Similar results

were exhibited in METABRIC cohort (Supplementary Fig. S3).

Potential extrinsic immune escape mechanisms of TNBC

The heterogeneity of the TNBCmicroenvironment phenotypes

led to the question of whether different clusters of TNBC had

distinct tumor immune escape mechanisms. On the basis of the

immunoediting theory of previous publications (33), we first

researched the extrinsic immune escapemechanism. This concept

indicates that microenvironment components other than tumor

cells contribute to the immune escape of tumor cells. The extrinsic

immune escapemechanism consists of fourmajor aspects: lack of

immune cells, presence of immunoinhibitory cells [such as type 2

macrophages and regulatory T cells (Tregs)], high concentrations

of immunoinhibitory cytokines (such as IL10 and TGF-b), and

fibrosis (34).

We compared the estimatednumber ofmicroenvironment cells

between the tumor site and a paired normal site (Fig. 3A). Cluster

1 had almost no more microenvironment cells in the tumor site

than in the paired normal site, suggesting an inability to attract

innate immune cells (resulting in failure of adaptive immunity).

The comparison of the expression of STING, the factor of spon-

taneous initiation of innate immunity, and other molecules

potentially involved in initiation of innate immunity among the

three clusters also suggested this theory (Fig. 3C; Supplementary

Figs. S3F, S4D, and S5; ref. 35). Cluster 2 had more resting and

activated innate immune cells in the tumor site, suggesting

chemotaxis but inactivation of innate immune cells (also result-

ing in failure of adaptive immunity). Cluster 3 had not only

abundant active innate and adaptive immune cells, but also

immunosuppressive cells, such as Tregs, in the tumor site,

Microenvironment Landscape of Triple-Negative Breast Cancer
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Figure 1.

Landscape of the microenvironment phenotypes in TNBC. A, K-means clustering of TNBCmicroenvironment phenotypes based on the estimated numbers of 24

microenvironment cell subsets calculated by ssGSEA. B, Signature scores distributions of four cell subsets among the three clusters after adjustment for tumor

purity. C, Pathologic scores of sTILs and iTILs and IHC scores of CD8 cells among clusters. D, Signature scores of Th1, Th2, and Th17 and MDSCs among clusters. In

the violin plots, the mean values are plotted as red dots, and the boxplot is drawn inside of the violin plot. E, Distribution of TNBC intrinsic subtypes (Lehmann

TNBC subtypes, FUSCC TNBC subtypes, and PAM50 subtypes) among the clusters. F, Summary of characteristics of each microenvironment cluster. ��� , P <

0.001; ns, P > 0.05. TMA, tissue microarray; BL1, basal-like 1; BL2, basal-like 2; M, mesenchymal; MSL, mesenchymal stem–like; UNS, unstable; LAR, luminal

androgen receptor; IM, immunomodulatory; BLIS, basal-like and immune-suppression; MES, mesenchymal-like; M1 and M2, type 1 and 2 macrophages,

respectively.

Xiao et al.
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suggesting a role of immunosuppressive cells in immune escape.

The expression of chemokines was consistent with these results

(Fig. 3B). Clusters 2 and 3 had higher expression of chemokines,

includingCCL4, CXCL9, andCXCL10,which have beenproved to

attract dendritic cells (DC) andCD8þ T cells. In addition, cluster 3

had both higher secreted immunostimulatory and immunoinhi-

bitory cytokines; cluster 2 had increased secretion of immunoin-

hibitory cytokines only; and these cytokineswere all relatively low

in cluster 1. Notably, the difference in the expression level of these

cytokines was not derived from SCNVs (all P > 0.05; Fig. 3B).

Furthermore, the fibrosis existed in all three clusters, but it did not

differ significantly among them (P¼ 0.22; Fig. 3D and E).Overall,

the inability to attract innate immune cells, the chemotaxis but

inactivation of innate immunity, the increase of immunoinhibi-

tory factors after immune stimulation might contribute to the

extrinsic immune escape of the three clusters, respectively.

Tumor immunogenicity of TNBC

We further investigated the potential intrinsic immune escape

mechanisms of TNBC. Intrinsic immune escape indicates that

tumor cells directly mediate their own immune escape. There are

at least two aspects of intrinsic immune escape: tumor immuno-

genicity and immune checkpoint molecules expression (33).

We first compared some potential factors determining tumor

immunogenicity among the three clusters: mutation load

(Fig. 4A), neoantigen load (Fig. 4B; Supplementary Fig. S6),

chromosomal instability level (Fig. 4C; Supplementary Fig. S7),

CTA level (Fig. 4D; Supplementary Fig. S8), necrosis level

(Fig. 4E), ITH (Fig. 4F) and tumor antigen-presenting capability

(Fig. 4G, left). The first five factors were the main source of tumor

antigens. In general, the difference in the tumor antigen burden

among the three clusters of TNBCwas not as large as that between

microsatellite-instable and microsatellite-stable colorectal

Figure 2.

Prognostic significance of microenvironment cells in TNBC. A, Kaplan–Meier curves of RFS and OS among the clusters. B, HRs and P values of the

covariates in the univariate and multivariate Cox proportional hazards model for RFS. C, AUC of the time-dependent ROC curve with two Cox

proportional hazards models for RFS; one included two covariates (tumor size and number of positive lymph nodes), and the other added

microenvironment clusters as covariates. The significant difference in the AUC was estimated at 1, 2, and 3 years. D, Estimation of the prognostic

value of each cell subset by using a univariate Cox proportional hazards model for RFS in all cohorts and each microenvironment cluster. The

color represents the HR, and the size of the circles represents �log10 (FDR). Larger circles represent smaller FDR values. ��� , P < 0.001;
�� , 0.001 < P < 0.01; � , 0.01 < P < 0.05; ns, P > 0.05. CI, confidence interval.
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Figure 3.

Potential extrinsic immune escapemechanisms of TNBC. A, Volcano plots of enriched (red) and depleted (blue) microenvironment cell subsets compared with

the paired normal samples (n¼ 90) for each cluster. B, Log2-fold change in mRNA expression in the tumor site relative to the paired normal tissue and log2 ratio

of copy-number values of chemokines, ILs, IFNs, and other important cytokines and their receptors for each cluster. Molecules with significantly differential

expression between the tumor site and the paired normal site (P < 0.01) were illustrated. C, STINGmRNA expression among clusters. Typical H & E sections of

fibrosis (D) and distributions of fibrosis levels among clusters (E; ���, P < 0.001; �� , 0.001 < P < 0.01; � , 0.01 < P < 0.05; ns, P > 0.05).
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Figure 4.

Potential intrinsic immune escape mechanisms of TNBC. Comparison of mutation loads (A), neoantigen load (B), HRD scores (C), CTA numbers (D), necrosis (E),

and ITH scores (F) among the three clusters. In the violin plots, the mean values are plotted as red dots, and the boxplot was drawn inside the violin plot. G,

Comparison of the log2-fold changes in mRNA expression at the tumor sites relative to the paired normal tissue and log2 ratio of the copy-number values of the

MHCmolecules, costimulators and coinhibitors for each cluster. For costimulators and coinhibitors, only molecules having significantly differential expression

between the tumor site and the paired normal site (P < 0.01) were illustrated. H,Negative correlation between VTCN1 mRNA expression and CYT. I,Distributions

of SCNVs categories of CD274 and TNFSF8. J, Correlations between tumor immunogenicity indicators, immune infiltration, and expression of immune

checkpoint molecules (��� , P < 0.001; �� , 0.001 < P < 0.01; � , 0.01 < P < 0.05; ns, P > 0.05).

Microenvironment Landscape of Triple-Negative Breast Cancer

www.aacrjournals.org Clin Cancer Res; 25(16) August 15, 2019 5009

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

a
c
rjo

u
rn

a
ls

.o
rg

/c
lin

c
a
n
c
e
rre

s
/a

rtic
le

-p
d
f/2

5
/1

6
/5

0
0
2
/1

9
3
1
9
6
6
/5

0
0
2
.p

d
f b

y
 g

u
e

s
t o

n
 2

7
 A

u
g

u
s
t 2

0
2
2



cancers. Cluster 1 (highest mutation load, HRD score, CTA

burden, and necrosis level; all P < 0.05) and cluster 2 (lowest

mutation load, HRD score, and CTA load; all P < 0.05) of TNBC

had relatively high and low tumor antigen burdens, respectively.

Moreover, both the clusters had lower MHC I–related antigen-

presenting molecules expression than cluster 3 (all P < 0.001),

contributing to their low immunogenicity. The difference in the

expression of antigen-presenting molecules among clusters was

also not explained by SCNVs (all P > 0.05; Fig. 4G, bottom left). In

addition, the three clusters had no significant differences in ITH,

although cluster 3 showed a nonsignificant tendency toward

having lower ITH (mean fraction of subclonal mutations,

20.27% vs. 21.26% vs. 15.97%; P ¼ 0.096; Fig. 4F). Overall, the

difference in tumor immunogenicity among the TNBC clusters

might be relatively small, with clusters 1 and 2 having relatively

low immunogenicity.

Regulation of immunomodulators in TNBC

The expression of immune checkpointmolecules after immune

stimulation is another potential important intrinsic immune

escape mechanism. Therefore, we referred to a database of costi-

mulatory and coinhibitory molecules (https://www.rndsystems.

com/cn/research-area/co–stimulatory-and-co–inhibitory-mole

cules) to compare these immunomodulators among clusters.

We demonstrated that cluster 3 had a higher expression of

costimulating (mostP<0.05) and immune checkpointmolecules

(all P < 0.05) than the other clusters (Fig. 4G, right). This result

suggested that cluster 3 tumors expressed immune checkpoint

molecules to avoid immune killing after immune stimulation.

The high expression of one costimulator in cluster 3, TNFSF8

(mean log2 fold change relative to the paired normal tissue,

0.05 vs. 1.41 vs. 1.70; P < 0.001), could be explained by SCNVs

(mean log2 ratio of somatic copy numbers, �0.25 vs. �0.14 vs.

0.03; P ¼ 0.002; Fig. 4I). In addition, we noticed that a coin-

hibitor, VTCN1 (B7-H7), exhibited higher expression in cluster

1 (mean log2 fold change relative to the paired normal tissue,

0.57 vs.�1.10 vs.�0.67; P¼0.014) andwas negatively correlated

with immune infiltration (Spearman correlation ¼ �0.27; P ¼

0.039; Fig. 4H). Furthermore, we investigated the relationship

among immune infiltration [TILs and cytolytic activity (CYT);

ref. 25], immunogenicity, and expression of immune checkpoint

molecules. We demonstrated that immune infiltration and the

expression of most checkpoint molecules were positively corre-

lated, whereas the mutation load, neoantigen load, HRD score,

necrosis, and ITH seemed not to be correlated with these factors

(Fig. 4J).

Correlation of genomic alterations with low immune

infiltration in TNBC

We further investigated the genomic alterations that could be

correlatedwith the low immune infiltration in clusters 1 and2.We

aimed to identify some potential targets to reverse the absence of

adaptive immune infiltration in these clusters.

We first referred to published signatures (Supplementary

Table S5) to calculate the enrichment scores of 10 common

oncogenic pathways among the three clusters (31). The Hippo,

MYC, PI3K and cell cycle–related pathways had higher scores in

cluster 1 (all P < 0.01); the Notch, TGF-b, NRF2, and RTK/RAS

pathways were enriched in cluster 2 (all P < 0.001); and the

scores of the Wnt pathway were higher in cluster 3 (all P <

0.001; Fig. 5A). GSEA validated some of these results (Supple-

mentary Fig. S9). When selecting cluster-specific mutated genes

(Materials and Methods; Fig. 5B; Supplementary Table S6), we

found that mutations among the PI3K-AKT pathway members

[PI3KCA (30.8%), AKT1 (7.7%), PIK3R1 (6.1%), and PKD1

(6.1%)]weremost frequently detected in cluster 2. After adjusting

for the mutation load, PI3KCA and AKT1 mutations remained

significantly increased in this cluster (all adjusted P < 0.05).

Our cluster-specific SCNVs analysis (Materials and Methods;

Fig. 5C; Supplementary Table S7) demonstrated that the ampli-

fication of 8q24.13–8q24.3 (MYC) was more frequent in cluster

1 (mean log2 ratio of somatic copy numbers, 3.99 vs. 3.06 vs. 3.19;

Padj < 0.05) consistent with the results of the expression

profile analysis.Other cluster 1–specific amplifications included

1p34.2 and 3q26.1-3q26.31. 1p36.22-1p36.21 (TNFRSF8,

TNFRSF1B) was a cluster 1–specific deletion. Moreover, the

amplification of 20p13-20p12.1 and 20q11.22 and the dele-

tion of 9p24.3-9p22.3 (CD274, PDCD1LG2) were specific

to cluster 2. We annotated genes located in copy-number peaks

with the Gene Ontology and Kyoto Encyclopedia of Genes and

Genomes pathways. Notably, genes located in the cluster 2–

specific amplification peaks were annotated to various path-

ways, including the innate immune response (Supplementary

Table S8). Overall, our analysis revealed that some genomic

alterations might drive the low immune infiltration in cluster 1

and cluster 2.

Discussion

Using multi-omics data from the largest single-center TNBC

cohort, our study revealed three heterogeneous TNBC microen-

vironment phenotypes and their clinical significance. Although

cluster 1 and cluster 2 were both so-called cold tumors, they

had distinct microenvironment phenotypes. Cluster 3 was the so-

called hot tumor. We emphasized the following characteristics of

the clusters that might contributed to immune escape: defects in

the attraction of innate immune cells in cluster 1, chemotaxis but

inactivation of innate immune cells and low tumor antigen

burden in cluster 2, and high expression of immune checkpoint

molecules in cluster 3. Furthermore, we found some genomic

alterations that might drive the low immune infiltration of

clusters 1 and 2 (Table 1). To the best of our knowledge, this

study constitutes the first systemic analysis of the microenviron-

ment heterogeneity of TNBC. The clustering results are in accor-

dance with the immunologic principles described by previous

articles (36).

Our study has important implications for clinical translations.

First, our results might facilitate the selection of suitable patients

for ICIs treatment. We revealed a cluster of "hot tumors" in TNBC

(cluster 3, approximately 28% of all TNBCs) and demonstrated

that high expression of immune checkpoint molecules might

lead to the immune escape of this cluster. Although most clinical

trials have shown that the efficacy of ICIs in TNBC was less than

10% (10, 11), these patients usually received several lines of

treatment without detection of the real status of immune check-

point proteins before immunotherapy. Notably, the efficacy of

PD-L1 inhibitors in first-line monotherapy could be up to

25% (10), which was consistent with the percentage of "hot

tumors" (28%) in our research. We hypothesized that some

TNBC cells, which were sensitive to ICIs, were also more sensitive

to chemotherapy. As a result, after several lines of chemotherapy,

ICI-sensitive cells were eliminated. The level of immune

Xiao et al.
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Figure 5.

Correlation of genomic alterations with low immune infiltration in TNBC. A, Heatmap of normalized enrichment scores of 10 oncogenic pathways among clusters.

B, Genes showing a significant difference (Padj < 0.05) in the comparison between every two clusters among the three clusters for nonsilent mutations are

illustrated. The color represents the cluster in which the gene had the highest mutation frequency, and the color saturation represents the mutation frequency.

C, Comparison of the SCNVs between every two clusters among the three clusters. The top plot illustrates the frequency of the amplification (dark red), gain

(light red), loss (light blue), and deletion (dark blue) of each gene in each cluster, and the bottom plot illustrates the�log10 Padj value of each gene when

compared between every two clusters among the three clusters in the amplification-centric (light yellow) or deletion-centric (light green) calculations.
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checkpoint proteins after surgery could not represent this fact

after several lines of chemotherapy. Considering the more tar-

geted efficacy of ICIs than chemotherapy, we speculated that

ICIsmight need earlier lines application in "hot tumors" of TNBC.

Second, we identified potential indicators to predict ICI efficacy

in TNBC. Previous studies have suggested that the tumor muta-

tion burden (TMB), checkpoint molecules expression, and TILs

score might individually and collectively predict ICI efficacy in

other tumor types (37). However, we illustrated that the TMB of

TNBC was not associated with the TIL score or checkpoint mole-

cules expression, whereas the latter two were highly correlated

(Fig. 4J), which suggests that the latter two, but not the mutation

load, might be ideal predictors. Recently, IMpassion130, the first

phase III clinical trial of ICI in metastatic TNBC, also demonstrat-

ed that PD-L1might be a suitable biomarker to predict ICI efficacy

in TNBC (12). Moreover, the nonsignificant association between

T-cell infiltration and TMB in TNBChas been reported in previous

articles (25, 26). Several factors in addition to TMB, such as

local tumor microenvironment, host immune state, and neoanti-

gen quality, might influence the T-cell infiltration in the tumor

microenvironment as well (38–40).

Our study could also help facilitate research on the relationship

between oncogenic pathways and immune infiltration in TNBC.

The transformation from a "cold tumor" to a "hot tumor" is

currently a popular topic in cancer research. Recent studies have

suggested that the activation of oncogenic pathways might

decrease immune infiltration (41). However, few studies have

focused on the mechanisms of impaired immune infiltration in

TNBC. Our study demonstrated that at least two phenotypes of

"cold tumors" exist in TNBC. Cluster 1 was characterized by

almost no immune cell infiltration and a high percentage of

MYC amplification. Previous studies have indicated that MYC

amplification could induce the expression of CCL5, CCL23, IL1b,

CD47, and PD-L1, inactivate DCs and macrophages; and limit

natural killer, T, and B cells recruitment (42–44). Therefore, we

speculated that MYC-induced low innate immune cells chemo-

taxis might be the reason for the poor immune infiltration in

cluster 1. In addition, the features of cluster 2 were chemotaxis

but inactivation of innate immunity and higher fibroblast and

endothelial cells infiltration, with a higher mutation frequency in

PI3K-AKT pathway members. The TGF-b–related and cancer-

associated fibroblasts (CAF)-related pathways were enriched in

cluster 2. Therefore, we speculated that hyper-activated PI3K-AKT

pathway in tumor cells might play a major role in suppressing

immune infiltration in cluster 2, such as through TGF-b secretion

and CAF differentiation. In particular, previous studies have

revealed that pan-PI3K inhibition enhances antitumor immunity

and anti-PD1 response in breast cancer (45).

Our research had some limitations. First, there are more than

24 stromal cells types, and it is difficult to precisely include all

phenotypes. We classified these cell subsets into three categories,

namely, adaptive and activated innate immune cells, inactivated

innate immune cells, and nonimmune cells, which solved this

problem to some extent. In addition, immunogenomic analysis

could not reflect the cause and consequence effect. Potential

driver molecules in our research, such as MYC and the PI3K-

AKT pathway, require further functional validation. Experimental

studies are ongoing in our laboratory.

In conclusion, our study revealed that the microenvironment

phenotypes of TNBC could be classified into three heterogeneous

clusters with distinct potential immune escape mechanisms.

Specific oncogenic pathways might drive the formation of these

microenvironment phenotypes.
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Extrinsic immune escape mechanisms

Unable to attract innate

immune cells

þ � �

Unable to attract

adaptive immune

cells

þ þ �

Attract

immunosuppressive

cells

� þ þ

Fibrosis þ þ þ

Low expression of

immunostimulating

cytokines

þ þ �

High expression of

immunoinhibiting

cytokines

� þ þ

Intrinsic immune escape mechanisms

Low mutation load � þ �

Low neoantigen load � � �

Low CTA load � þ þ

Low SCNVs load � þ �

Low necrosis � � þ

Low MHC I–associated

antigen presenting

þ þ �

Low MHC II–associated

antigen presenting

þ � �

High intratumoral

heterogeneity

þ þ �

High expression of

checkpoint

molecules

� � þ

Cluster-specific DNA level alterations

Mutations TTN/TNR/

PKHD1L1/

SPTA1/

NCKAP5/

COL15A1/

ANKRD11/

MYLK

PIK3CA/NF1/

AKT1/

FBN3/

ABCC1/

DNHD1

IGSF10/

DNAH1/

CDH23/

AHNAK2/

GTF3C1

Somatic copy-number

gains/amplifications

1p34.2/3q26.1-

3q26.2/

8q24.13

20p13-

20p12.1/

20q11.22

�

Somatic copy-number

loss/deletions

1p36.22-1p36.21 9p24.3-

9p22.3

�
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