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Abstract: Treatments for COVID-19 infections have improved dramatically since the beginning of the
pandemic, and glucocorticoids have been a key tool in improving mortality rates. The UK’s National
Institute for Health and Care Excellence guidance is for treatment to be targeted only at those requir-
ing oxygen supplementation, however, and the interactions between glucocorticoids and COVID-19
are not completely understood. In this work, a multi-omic analysis of 98 inpatient-recruited partici-
pants was performed by quantitative metabolomics (using targeted liquid chromatography-mass
spectrometry) and data-independent acquisition proteomics. Both ‘omics datasets were analysed for
statistically significant features and pathways differentiating participants whose treatment regimens
did or did not include glucocorticoids. Metabolomic differences in glucocorticoid-treated patients
included the modulation of cortisol and bile acid concentrations in serum, but no alleviation of
serum dyslipidemia or increased amino acid concentrations (including tyrosine and arginine) in the
glucocorticoid-treated cohort relative to the untreated cohort. Proteomic pathway analysis indicated
neutrophil and platelet degranulation as influenced by glucocorticoid treatment. These results are
in keeping with the key role of platelet-associated pathways and neutrophils in COVID-19 patho-
genesis and provide opportunity for further understanding of glucocorticoid action. The findings
also, however, highlight that glucocorticoids are not fully effective across the wide range of ‘omics
dysregulation caused by COVID-19 infections.

Keywords: glucocorticoid; dexamethasone; COVID-19; proteomics; metabolomics; mass spectrome-
try; multi-omics

1. Introduction

Whilst great strides have been made in testing for and vaccinating against COVID-19,
due to the rapid spread of new variants, the disease is progressing towards a globally
endemic status. More positively, treatment of the illness has also improved, with mortality
risk declining since the initial wave of COVID-19 infections in early 2020 [1]. A key treat-
ment for COVID-19 infections is glucocorticoid medication, for example, dexamethasone.
Synthetic glucocorticoids are a class of immunosuppressive drugs and additionally have
powerful anti-inflammatory effects, an important benefit given that severe cases of COVID-
19 are characterised by a hyperinflammatory state. The clinical action of glucocorticoids
such as dexamethasone is well described for COVID-19 treatment, with the drug’s anti-
inflammatory properties limiting lung injury, reducing both the likelihood of respiratory
complications and also death [2]. It should be noted, however, that the UK’s National
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Institute for Health and Care Excellence (NICE) guidelines on dexamethasone recommend
treatment only for those patients requiring supplemental oxygen, or with a level of hypoxia
that needs supplemental oxygen but who are unable to have or tolerate such support [3].

Glucocorticoids act through trans-repression (the decreased expression of pro-inflammatory
genes), trans-activation (the increased expression of anti-inflammatory genes) and also in part
through non-genomic mechanisms, and have a long history in the treatment of chronic upper
airways disease [4]. As with many other medications, glucocorticoids have side effects, including
acne, indigestion, adrenal suppression and/or hepatotoxicity [5], as well as broader metabolomic,
proteomic and clinical alterations such as eosinopenia [6]. These alterations have been reported
to include changes in lipid metabolism in peripheral blood [7], with increased accumulation
of triglycerides and sphingolipids [8]. Importantly, metabolic changes due to glucocorticoid
treatment are complex and inter-related, rather than straightforward and unidirectional [9].
COVID-19 itself also influences the proteome and metabolome of those infected. The COVID-19
infection has been associated with alterations in amino acid serum levels, and also with lipids
involved in glycerol metabolism, particularly triglycerides [10–12]. Bile acids have been shown
to be dysregulated in COVID-19-positive patients and concentrations have been reported as
decreased compared to negative patients [13]. There are a number of proteomic studies of
COVID-19 patients showing some agreement between proteins identified as modulated due
to this disease [14]. Inflammatory markers are elevated, particularly cytokines, often released
by hematopoietic cells and platelets [15]. Both illness and treatment have independent and
extensive influences on their host metabolomic and proteomic pathways, and the interactions
between the two will in turn be complex and patient-specific.

Metabolomic and proteomic analyses of COVID-19-positive individuals have so far
mainly concentrated on identifying biomarkers for prognosis and diagnosis [16–18], rather
than the impact of different treatment regimens. Of the small number of studies to analyse
dexamethasone treatment by ‘omics in COVID-19 patients (as opposed to clinical pre-
sentation), neutrophil degranulation has been identified as a modulated pathway [19].
Neutrophils are short-lived myeloid cells that act as a first line of defence against infec-
tion; this involves a degranulation process that is inclusive of cytokine release as well as
proteolytic enzymes [20]. Neutrophils have also been reported to produce large quantities
of neutrophil extracellular traps (that promote coagulation and inflammation), for exam-
ple in patients suffering from COVID-19 acute respiratory distress syndrome (ARDS), a
form of immune mechanism that is not modulated by dexamethasone treatment [21]. One
study reviewed the possible impact of dexamethasone on COVID-19 patients by analysing
transcriptomic data from studies on dexamethasone treatment in other conditions. As
an indirect study, however, it was not able to offer insight into molecular pathological
observations in COVID-19 patients [22]. To our knowledge, no study to date has exam-
ined the impact of glucocorticoids in COVID-19-positive participants using targeted and
quantitative liquid chromatography-mass spectrometry (LC-MS), in order to better inform
treatment choices.

The objective of this study was to quantitatively investigate the serum metabolome,
lipidome and proteome of hospital inpatients with COVID-19 to identify the combined in-
fluence of glucocorticoid treatment and COVID-19 infection, benefiting from the additional
insight offered by combining multiple ‘omics approaches [23,24]. Because glucocorticoids
were not prescribed for SARS-CoV-2 infections during the initial wave of COVID-19 in
the UK (March to June 2020) but were widely prescribed in the second wave (July 2020
onwards), there is a time component which was not controlled for in this retrospective obser-
vational study, including the presence in the UK of new variants [25–27]. For metabolomics,
the Biocrates quantitative metabolomics platform was used, employing tandem mass spec-
trometry (MS/MS) [28]. For proteomics, analysis was performed using the SWATH-MS
technique, implementing a Data-Independent Acquisition (DIA) approach for precision
identification and accurate relative quantitation of proteins [29].

The results presented here are consistent with previous work that the glucocorticoid
dexamethasone modulates the neutrophil response, and also modulates cortisol levels and
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bile acid dysregulation. The data also, however, illustrate that in many cases, glucocorticoid
treatment is not sufficient to reverse the observed phenomena of the impact of COVID-19,
for example in compensating for dyslipidemia or elevated amino acid levels in serum.

2. Results
2.1. Population Metadata Overview

The study population analysed in this work totalled 98 hospital inpatients recruited be-
tween May 2020 and March 2021. These included 37 participants with a positive COVID-19
RT-PCR test and treated with glucocorticoids up to 48 h prior to sampling, and 36 partici-
pants with a positive RT-PCR test but not treated with glucocorticoids. A control group
(n = 25) with a negative COVID-19 RT-PCR test but with symptoms consistent with a
suspected COVID-19 infection was also recruited, in a shorter timeframe between May
2020 and July 2020. Of the 37 participants treated with synthetic glucocorticoids, 30 were
treated with dexamethasone, 6 with prednisolone, 1 with methylprednisolone and none
with betamethasone or hydrocortisone. A summary of the population characteristics is
shown in Table 1.

Table 1. Characteristics of study population. P-values are shown for the positive for COVID-19:
treated with glucocorticoids group compared with the positive for COVID-19: not treated with
glucocorticoids group.

Parameters
Control Group:

Negative for
COVID-19

Not Treated with
Glucocorticoids:

Positive for
COVID-19

Treated with
Glucocorticoids:

Positive for
COVID-19

p-Value
Glucocorticoids

versus Not
Treated

n 25 36 37
Age (mean, standard deviation;

years) 65.8 ± 21.4 62.8 ± 21.2 60.6 ± 15.2 0.61

Male / Female (n) 11/14 20/16 26/11 0.19
Treated with Glucocorticoids (n) 0 0 37 0.00
Treated with Anticoagulants (n) 3 5 6 0.78

Treated for Hypertension (n) 8 15 15 0.92
Treated for High Cholesterol (n) 6 2 6 0.14

Treated for Type 2 Diabetes
Mellitus (n) 8 16 8 0.04

Treated for Ischaemic Heart
Disease (n) 6 5 6 0.78

Ex-Smoker (n) 9 9 16 0.10
Current Smoker (n) 0 2 0 0.15

Medical Acute Dependency
admission (n) 4 10 24 0.001

Intensive Care Unit admission (n) 1 0 2 0.16
Did Not Survive Admission (n) 1 3 1 0.29

Duration of pre-admission
symptoms (mean, standard

deviation; days)
6.9 ± 10.5 4.1 ± 4.1 7.0 ± 4.3 0.004

Time between positive RT-PCR
test and sampling (mean, standard

deviation; days)
na 4.3 ± 5.7 3.2 ± 3.8 0.35

Lymphocytes (mean, standard
deviation; cells/µL) 0.8 ± 0.4 0.8 ± 0.6 0.7 ± 0.6 0.36

C-Reactive Protein (mean,
standard deviation; mg/L) 129.8 ± 94.2 127.5 ± 97.8 96.3 ± 72.2 0.13

Eosinophils (mean, standard
deviation; 100/µL) 0.3 ± 0.3 0.1 ± 0.1 0.0 ± 0.0 <0.001

Bilateral Chest X-Ray changes (n) 2 12 27 0.001
Continuous Positive Airway

Pressure (n) 3 4 14 0.008



Int. J. Mol. Sci. 2022, 23, 12079 4 of 16

Age distributions for the glucocorticoid-treated COVID-19-positive cohort and the
untreated cohort were similar, but the treated cohort included proportionately more males.
Comorbidities are associated with severity, representing both a causative and confounding
factor. Due to hospital recruitment, however, comorbidities including type 2 diabetes
mellitus, hypertension, high cholesterol and ischaemic heart disease were present in both
the treated and untreated groups; former smokers were somewhat more represented in
the glucocorticoid-treated group. Levels of C-Reactive Protein (CRP) and eosinophils were
reduced by glucocorticoid treatment (p-values of 0.03 and 0.02, respectively), but levels of
lymphocytes were not. Within the treated cohort, participants were more likely to present
with bilateral chest X-ray changes (p-value of 0.001), more likely to require continuous
positive airways pressure (p-value of 0.008) and were also escalated to the hospital Medical
Acute Dependency Unit more frequently (p-value of 0.001), indicating that those treated
with glucocorticoids are more severely affected by COVID-19 than those not treated.

2.2. Feature Identification

We identified 472 serum metabolites and lipids that were reliably quantified in samples
(out of a theoretical maximum of 630). We then identified those metabolites that were
differentiated between those treated with glucocorticoids and those not treated at a p-value
of 0.05 or less by the non-parametric Wilcoxon rank sum test. This resulted in a list of
53 metabolites and lipids significantly altered by glucocorticoid treatment.

For proteomics, SWATH-MS identified 754 proteins. This initial dataset was then
filtered by the same method as for metabolites in order to identify proteins differentially ex-
pressed between glucocorticoids-treated and -untreated participants. A total of 68 proteins
were found to be modulated.

The top 15 altered metabolites (Table 2) and proteins (Table 3) ranked by p-value are
summarised below. Complete lists of differentiated proteins and metabolites are shown
in Supplementary Materials Tables S1 and S2, respectively; the full lists of proteins and
metabolites identified are shown in Supplementary Materials Tables S3 and S4.

Table 2. Top 15 metabolites ranked by p-value between treated and untreated cohorts measured by the
Wilcoxon rank sum non-parametric test. Cer = ceramide, CE = cholesterol ester, SM = sphingomyelin.

Metabolite p-Value Fold Change Increased/Decreased in
Glucocorticoid Group

Cortisol 9.27 × 10−9 0.26 Decreased
α-Aminoadipic acid 4.79 × 10−4 1.68 Increased

Tyrosine 7.95 × 10−4 1.31 Increased
Propionylcarnitine 7.95 × 10−4 1.66 Increased

Cer (d18:1/22:0) 8.61 × 10−4 1.28 Increased
Phenylalanine 9.69 × 10−4 1.32 Increased

CE (15:0) 1.22 × 10−3 1.27 Increased
Aconitic acid 1.27 × 10−3 0.70 Decreased

Cer (d18:1/24:0) 1.37 × 10−3 1.28 Increased
SM C18:0 1.69 × 10−3 1.30 Increased
Carnitine 2.00 × 10−3 1.34 Increased
Arginine 6.86 × 10−3 1.28 Increased

Symmetric
dimethylarginine 6.98 × 10−3 0.72 Decreased

Methionine 7.46 × 10−3 1.23 Increased
Cer (d18:2/24:0) 7.58 × 10−3 1.31 Increased
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Table 3. Top 15 proteins ranked by p-value different between treated and untreated cohorts measured
by the Wilcoxon rank sum non-parametric test.

Protein Uniprot ID p-Value Fold Change Increased/Decreased in
Glucocorticoid Group

Histidine-rich glycoprotein P04196 3.01 × 10−5 0.55 Decreased
Glutathione peroxidase 3 P22352 3.31 × 10−4 1.84 Increased

Serum amyloid A-4 protein P35542 6.76 × 10−4 1.44 Increased
Plasma protease C1 inhibitor P05155 8.02 × 10−4 1.35 Increased

Calreticulin P27797 1.39 × 10−3 0.46 Decreased
Calumenin O43852 2.20 × 10−3 0.50 Decreased

Laminin subunit beta-1 P07942 2.47 × 10−3 0.85 Decreased
Neurogenic locus notch

homolog protein 2 Q04721 2.71 × 10−3 0.74 Decreased

Neutrophil elastase P08246 3.19 × 10−3 0.54 Decreased
Serpin B3 P29508 3.22 × 10−3 0.61 Decreased
Drebrin Q16643 3.76 × 10−3 0.46 Decreased

Coagulation factor IX P00740 4.22 × 10−3 1.30 Increased
Cytoplasmic aconitate

hydratase P21399 5.35 × 10−3 0.78 Decreased

Transgelin Q01995 5.50 × 10−3 0.75 Decreased
Carboxypeptidase B2 Q96IY4 5.82 × 10−3 1.35 Increased

2.3. Metabolomic Analysis: Key Metabolites Altered by Glucocorticoid Treatment

The initial data frame of metabolites measured in participants was subjected to path-
way analysis. The most statistically significant pathway when controlled for false discovery
was steroid hormone biosynthesis (Table 4). Several amino acid pathways also showed sta-
tistically significant differences, including lysine, phenylalanine, tyrosine and tryptophan.

Table 4. Metabolomics: pathways identified as differentially expressed between COVID-19-positive
participants treated with glucocorticoids and those not treated with glucocorticoids.

Pathway Name # Entities
Identified p-Value p-Value

FDR Corrected

Steroid hormone
biosynthesis 2 5.45 × 10−9 2.29 × 10−7

Phenylalanine,
tyrosine and
tryptophan
biosynthesis

2 6.89 × 10−4 9.65 × 10−3

Phenylalanine
metabolism 2 6.89 × 10−4 9.65 × 10−3

Tyrosine metabolism 1 3.80 × 10−3 3.19 × 10−2

Ubiquinone and other
terpenoid-quinone

biosynthesis
1 3.80 × 10−3 3.19 × 10−2

Aminoacyl-tRNA
biosynthesis 20 6.62 × 10−3 4.63 × 10−2

Arginine biosynthesis 3 1.20 × 10−2 5.70 × 10−2

Valine, leucine and
isoleucine

biosynthesis
4 1.20 × 10−2 5.70 × 10−2

Sphingolipid
metabolism 1 1.22 × 10−2 5.70 × 10−2

Valine, leucine and
isoleucine

degradation
4 1.43 × 10−2 6.00 × 10−2
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Univariate analyses by boxplot for cortisol, bile acids and amino acids (selected for
their relevance to the statistically significant pathways in Table 4 or their prior literature
identification relevant to COVID-19 infections) are also shown in Figure 1. Fewer lipids
were given categorical identifiers in the pathway analysis described above due to assay
and database limitations. Statistically significant triglycerides are also shown in Figure 1.
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Figure 1. Boxplots of significantly altered metabolites. Plots show a control group for comparison
(COVID-19 negative, not treated with glucocorticoids), COVID-19 positive (not treated with glucocor-
ticoids) and COVID-19 positive (treated with glucocorticoids). GLCAS = glycolithocholic acid sulfate,
TG = triglyceride, SDMA = symmetric dimethylarginine, Cer = ceramide. Statistical significance is
shown between treated and untreated cohorts.** indicates p ≤ 0.01, *** indicates p ≤ 0.001.

2.4. Proteomic Analysis: Investigation of Pathway Changes Due to Glucocorticoid Treatment

Next, differentially expressed proteins were used for pathway analysis. The results
of the pathway analysis as performed in ClueGO are summarised in Table 5. The most
statistically significant set of pathways when controlled for false discovery were neutrophil
degranulation and the innate immune system, followed by exocytosis of platelets, platelet
activation, signalling and degranulation. A summary of the affected pathways is also
presented in network form in Figure 2.
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Table 5. Proteomics: pathways identified as differentially expressed between COVID-19-positive
participants treated with glucocorticoids and those not treated with glucocorticoids.

Pathway Name # Entities Identified p-Value p-Value
FDR Corrected

Neutrophil degranulation 17 1.34 × 10−8 1.75 × 10−7

Innate immune system 23 1.34 × 10−8 1.75 × 10−7

Exocytosis of platelet alpha granule contents 6 2.75 × 10−6 3.30 × 10−5

Platelet activation, signalling and aggregation 10 2.75 × 10−6 3.30 × 10−5

Binding and uptake of ligands by scavenger receptors 5 4.32 × 10−6 4.75 × 10−5

Regulation of complement cascade 5 2.16 × 10−5 1.95 × 10−4

Platelet degranulation 7 2.75 × 10−6 3.30 × 10−5

Exocytosis of azurophil granule lumen proteins 6 1.29 × 10−5 1.29 × 10−4

Response to elevated platelet cytosolic Ca2+ 7 2.75 × 10−6 3.30 × 10−5

Complement cascade 5 2.16 × 10−5 1.95 × 10−4
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of pathways differentiated between COVID-19-positive participants treated with glucocorticoids and
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ClueGO. Links between nodes are presented for readability and are not proportional to significance
or impact.
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Univariate analyses by boxplot for significantly altered proteins are also shown in
Figure 3, showing the treated and untreated groups, as well as the control group (COVID-19
negative, no glucocorticoid treatment) for comparison.
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p ≤ 0.001.

2.5. Relevance Network Analysis of Glucocorticoid Treatment

Finally, a relevance network analysis base was performed on the proteomic and
metabolomic datasets, using a bipartite implementation applied to identify related features.
Figure 4 shows these related features as nodes (proteins and metabolites) together with the
links between them (similarity scores of greater than 0.65). Eight proteins and 20 metabolites
were identified in this relevance network.
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Lipids incorporating the fatty acid arachidonic acid (denoted 20.4 equalling 20:4n6)
were over-represented in the relevance network, comprising 8 of the 20 metabolites identi-
fied. In the overall feature set, lipids incorporating arachidonic acid comprised 13 of the
483 metabolites measured by the targeted LC-MS/MS method used in this work.

3. Discussion

We have employed a quantitative multiomics approach combined with use of clinical
data to investigate glucocorticoid action in patients with COVID-19 across metabolomic
and proteomic features. Metabolomic pathway analysis shows that the largest difference
between the glucocorticoid-treated and -untreated groups was in steroid hormone biosyn-
thesis, as would be expected. Cortisol levels in the treated group were below those seen
in either the untreated group, or the control group. The remaining pathways influenced
were predominantly related to amino acids. Amino acid dysregulation was greater in
glucocorticoid-treated participants than in -untreated participants. Consequently, these
data show no evidence of glucocorticoids modulating COVID-19-driven amino acid dys-
regulation. Furthermore, glucocorticoid treatment did not alleviate increased serum con-
centrations of triglycerides. This result is consistent with dexamethasone previously being
identified as potentially causing hypertriglyceridemia in non-COVID-19 settings [7], and
suggests that in part, the effect of COVID-19 and glucocorticoid treatment on dyslipidemia
may be additive. These data illustrate the complexity of drug/disease interactions.

For the proteomic dataset, the most statistically significant pathway change caused by
glucocorticoid treatment was that for neutrophil degranulation. This pathway is related
to platelet activation and degranulation in an inflammatory response. The importance
of neutrophil- and platelet-associated pathways described here is consistent with the
COVID-19 proteomics literature, especially Sinha et al. and Panda et al. [19,21], and
reveals the molecular mechanisms for synthetic glucocorticoids alleviating COVID-19
symptoms. Of interest is the fact that within these protein pathway alterations, the impact
of glucocorticoids was not consistent, with some proteins moderated towards the levels
seen in the control group whilst others were not, or indeed showed amplified changes.

The relevance network presented in this work (Figure 4) also shows relationships that
have previously been related to COVID-19 infections, albeit care is required in interpreting
relevance networks as they cannot show causation. For example, P04196 has a role in
immune complex and pathogen clearance, cell chemotaxis, cell adhesion, angiogenesis,
coagulation and fibrinolysis. Its modulated expression and relationship to cortisol fits with
a dampening of the innate and acquired immune system. P35542 or Serum Amyloid A4
Protein is critical in the acute phase response to infection and/or injury and, as such, it is not
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a surprise to see it is modulated by dexamethasone. Q96IY4 inhibits thrombolytic response
via specific proteolytic catalysis. Again, this is in keeping with glucocorticoids moderating
the innate and acquired response to infection. Furthermore neutrophil activation can be
caused by elevated free fatty acids and triglycerides [30], as well as GM-CSF (a cytokine
elevated in COVID-19). GM-CSF expression is abrogated by dexamethasone [31,32]. Addi-
tionally, triglycerides incorporating arachidonic acid were related to the proteins P25311,
Q96IY4, P22532 and P10909. Arachidonic acid has been identified as a potential marker of
severe COVID-19 infection, acting as a substrate for the lipoxygenase and cyclooxygenase
pathways, which contribute to increased levels of eicosanoids [33,34]. Whilst the dispropor-
tionate presence of arachidonic acid in differentiating lipids cannot be causatively linked to
leukotriene or prostaglandin expression, arachidonic acid-derived oxylipins are generally
viewed as pro-inflammatory [35], and have been associated with the immune response
to COVID-19 [36]. Furthermore, patients with hypertriglyceridemia also demonstrate
increased platelet activation [37]. Thus, there may well be a relationship between increased
triglycerides and platelet activation in COVID-19 which is not being alleviated by treatment
with glucocorticoids.

It should further be noted that the World Health Organization recommends the use of
dexamethasone only in severe/critical patients, and not routinely, as do the UK’s NICE
guidelines. More recently, clinical data have shown that treatment with dexamethasone
in patients that do not require intensive respiratory support is not associated with any
improvement in outcomes, and that there is evidence of potential harm in such cases [38].
We now provide ‘omics-driven evidence of the potential pleiotropic actions of synthetic
glucocorticoids.

This study does include clear limitations. As a retrospective observational study,
results will naturally be less robust than those that would be obtained from a prospective
randomized and controlled trial. Furthermore, dexamethasone became standard of care in
the UK in June 2020, albeit the implementation was not uniform [39], which meant that
the cohort not treated by glucocorticoids had a time difference to the treated group. As
discussed previously, whilst all participants were recruited in an in-patient hospital setting
and there were no differences in admittance to ICU, there was a difference in treatment
with CPAP and MADU admittance, strongly suggestive of the glucocorticoid-treated cohort
having more severe symptoms. Other standards of care (ventilation, anti-clotting drugs)
were also changing over the recruitment period. In addition, participants were partially
recruited at a time when new variants were beginning to emerge, specifically the Alpha
variant, which was present in the UK from January to April 2021, and the Delta variant,
which was present in the UK from April to December 2021 [40]. This may have led to
differences in underlying severity or clinical presentation. Furthermore, samples in this
work were not sequenced so cannot be directly mapped to their variants. It should be noted
that multi-omics can include the full range of genomics, transcriptomics, proteomics and
metabolomics, but in this work, proteomics and metabolomics were employed. Finally,
these analyses were conducted in a pandemic setting, where the circulation of competing
respiratory viruses was limited. The specificity of the findings here to COVID-19 (as
opposed to other respiratory diseases) has not been tested.

In conclusion, these results provide the first multi-omics investigation into the action
of synthetic glucocorticoids in COVID-19 treatment, and are concordant with previous
findings that glucocorticoids modulate the neutrophil response [19]. The findings are
also consistent with clinical observations of reduced hyperinflammatory reactions [41],
potentially limiting immune system-related harm to the respiratory system. The data do,
however, illustrate that in many cases, glucocorticoid treatment will not fully alleviate the
impact of COVID-19. In some instances, it is possible that the previously described use
of dexamethasone causing hypertriglyceridemia may also play a role in this observation,
albeit it is not possible in this work to separate the impact of glucocorticoids from the higher
severity of COVID-19 in the treated cohort. Whilst glucocorticoids have been demonstrated
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to be effective in the treatment of severe cases of COVID-19, as with any class of drugs,
caution is needed in deeming any treatment regimen as suitable for universal use.

4. Materials and Methods
4.1. Participant Recruitment and Ethics

All participants for this study were recruited as part of an observational cohort study.
Ethical approval (IRAS project ID 155921) was obtained via the NHS Health Research
Authority (REC reference: 14/LO/1221). The participants were recruited consecutively
at Frimley Park NHS Trust, UK, between May 2020 and March 2021. Participants were
identified by clinical staff to ensure that they had the capacity to consent to the study and
were asked to sign an Informed Consent Form based on the International Severe Acute Res-
piratory and emerging Infection Consortium/World Health Organisation (ISARIC/WHO)
Clinical Characterisation Protocol for Severe Emerging Infections. Those patients that
did not have this capacity were not sampled. Signatures were witnessed by University of
Surrey researchers. At the time of recruitment, participants were categorised by the hospital
as either “query COVID” (meaning there was clinical suspicion of COVID-19 infection,
but a negative positive RT-PCR SARS-CoV-2 test result had been recorded during their
admission) or “COVID positive” (meaning that a positive test result had been recorded).
All participants were provided with a Patient Information Sheet explaining the goals of
the study. All methods part of this study were performed in accordance with the relevant
guidelines and regulations.

4.2. Sample Collection and Extraction

Collection of the samples was performed by researchers from the University of Surrey
at Frimley Park NHS Foundation Trust hospitals; collection took place on admission or in
some cases shortly afterwards. Alongside the collection of blood samples, metadata for
all participants were also collected, covering the inter alia medication regime (specifically
including dexamethasone treatment or other glucocorticoids), sex, age, comorbidities
(based on whether the participant was receiving treatment), the results and dates of COVID-
19 PCR (polymerase chain reaction) tests, bilateral chest X-Ray changes, smoking status
and whether the participant presented with clinical symptoms of COVID-19. Values for
lymphocytes, CRP and eosinophils were also taken—here, values within five days of
biofluid sampling were recorded.

Serum collection and extraction followed the protocols set out by the COVID-19
Coalition for metabolomics [42] and proteomics [43]. In brief, venous blood was collected
in 3 mL serum tubes, transported to the University of Surrey by courier whilst stored on
ice, and centrifuged on arrival at 1600× g for 10 min at 4 ◦C. All samples with a sampling
time interval greater than four hours were rejected. Serum was then decanted into 100 µL
aliquots and stored at −80 ◦C until processing. Prior to analysis, the serum was sterilised
using 200 µL of ethanol into 100 µL of serum (2:1 v/v solvent/sample ratio).

4.3. Participant Selection

From the initial population of 115 recruited participants, a number of exclusions were
made to remove participants where incomplete metadata were provided, where the gap
between the initial positive COVID-19 test and sampling exceeded 14 days or where the
participants were already being medicated with glucocorticoids prior to COVID-19 treatment.
The remaining population of 98 was then segmented into a COVID-19-negative control group
for comparison purposes (n = 25), a group of COVID-19-positive patients treated with a
glucocorticoid in the 48 h prior to sampling (n = 37), and a group of COVID-19-positive
patients not treated with a glucocorticoid in in the 48 h prior to sampling (n = 36).

4.4. Serum Instrumentation and Analysis: Metabolomics

Serum samples were analysed using the Biocrates MxP Quant 500 system using a
Xevo TQ-S Triple Quadrupole Mass Spectrometer coupled to an Acquity UPLC system
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(Waters Corporation, Milford, MA, USA). The MxP Quant 500 system provides targeted
quantification of metabolites including amino acids and derivatives, bile acids, biogenic
amines, acylcarnitines, carbohydrates and other small molecule metabolites, plus a wide
array of lipids. Analysis took place via a single assay, and two analytical procedures. The
first of these procedures operated by liquid chromatography (operated in both positive
and negative ion mode) and the second by flow injection analysis (positive ion mode),
both coupled to tandem mass spectrometry with isotopically labelled internal standards
for quantification. The sample order was randomised across 96-well plates, and 3 levels
of quality controls (QC) were run on each plate. Blank PBS (phosphate-buffered saline)
samples (three technical replicates) were used for the calculation of the limits of detection
(LOD). Biogenic amines and amino acids were quantified for each plate using a seven-point
calibration curve, with other analytes semi-quantitated with a single point standard (i.e.,
assuming concentration linearity in the range measured). The levels of metabolites present
in each QC were compared to the expected values and the CV% calculated. Data were
normalised between the three batches using the results of quality control level 2 (QC2)
repeats across the plate (n = 5) and between plates (n = 3) using Biocrates METIDQ software
(QC2 correction). Metabolites where >25% concentrations were at or below the limit of
detection (�LOD), above the limit of quantification (>LOQ), or where the blank was out
of range were excluded (total n excluded in serum = 150). The remaining 474 quantified
metabolites comprised of 8 acylcarnitines, 20 amino acids, 26 biogenic amines, 11 bile
acids, 53 ceramides, 15 cholesteryl esters, 1 cresol, 9 diglycerides, 4 carboxylic and fatty
acids, 85 phosphatidyl cholines, 14 sphingolipids, 222 triglycerides, 2 hormones, 2 indoles,
1 nucleobase and 1 vitamin.

4.5. Plasma Instrumentation and Analysis: Proteomics

Mass spectrometry of clinical specimens using the SWATH-MS technique implements
a Data-Independent Acquisition (DIA) approach for precision identification and accurate
quantification of proteins. Samples were quality-checked, assigned a unique in-ternal
study ID and groups were randomized. Immunodepletion was performed by using Top14
Abundant Protein Depletion Resin (ThermoFisher Scientific, Macclesfield, UK) in a 96-well
format. Samples were reduced, alkylated and digested with trypsin (Promega, Macclesfield,
UK) using S-trap columns (Protifi, New York, NY, USA) prior to lyophylisation. Digitized
proteomic maps were generated by using 100 variable window SWATH-MS (68 min) with a
micro-flow LC-MS system. SWATH-MS analysis was performed on a 6600 TripleTOF mass
spectrometer with DuoSpray Ion Source (AB Sciex Limited, Alderley Park, Macclesfield,
UK) coupled to an Eksigent 425 LC (AB Sciex Limited) with specific mass spectrometric
conditions (including isolation window size and overlap and total cycle time), as previously
described. All study samples were run in duplicate and CV percentages were calculated
across the two injections. Only samples with median CV’s across all proteins quantified
with less than 20% were taken forward for analysis, with the best injection for each sample
included in the final protein quantification. To ensure instrument performance remained
consistent throughout the study and to control for batch-related effects, both commercially
available plasma (Human K2EDTA gender pooled plasma, Sera Laboratories International
Ltd. trading as BioIVT, Burgess Hill, UK) and a total pool of all study samples (TOTs) were
processed, digested and run alongside each batch of samples.

4.6. Feature Identification

Serum metabolites were identified and quantified using isotopically labelled internal
standards, retention times and multiple reaction monitoring. In this study, identifica-
tions were made in accordance with the Metabolomics Standards Initiative for metabolite
identification [44], using both accurate m/z values referenced to library values as well
as orthogonal information in the form of MS/MS fragmentation spectra and retention
time matching against isotopically labelled internal standards. The mass spectrometry
conditions were used as optimised and provided by Biocrates.
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For the proteomic workflow, extraction and processing followed the method de-
scribed in Salie et al. [45]. Briefly, SWATH-MS data files were searched using openSWATH
(version 2.0.0) against a published plasma spectral library [46]. Spectral library matches
were scored and filtered for quality using pyProphet (version 0.18.1) then aligned across
runs using the TRIC alignment algorithm from MSproteomicstools. The transition-level
quantification contained within the aligned data was then normalised and summarised
to protein-level quantification in R (version 3.4.1) using the Bioconductor (version 3.5)
packages SWATH2stats and MSstats, with the equalized medians and top 3 features per
peptide parameters. Proteins quantified in at least 30% of samples were retained in the
following biomarker analysis.

The two approaches described generated two data frames, each comprising a matrix
of n participants by p features, with matched n of 98 participants. These data frames are
provided in Tables S3 (metabolomics) and S4 (proteomics) within Supplementary Materials.

4.7. Statistical Analysis

Both the metabolomic and proteomic data frames were log2 transformed to stabilize
variance and reduce heteroscedasticity. In order to identify proteins and metabolites dif-
ferentially expressed between the two conditions (COVID-19-positive participants treated
with glucocorticoids, and not treated), the difference between the two populations for each
feature was measured by p-value. Specifically, a p-value threshold of 0.05 was used for
significance by Wilcoxon rank-sum test.

Pathway analysis for the proteomic differences between the two classes of participants
was conducted using the ClueGo application (version 2.5.9) within Cytoscape (version
3.9.1) [47,48], matching Uniprot identifiers for differentiating proteins to Reactome pathway
databases. Pathway analysis for the metabolomic differences between the two classes of
participants was conducted using MetaboAnalyst (version 5.0) [49], using the Pathway
Analysis module, matching HMDB identifiers to the MetaboAnalyst database. Partici-
pant metadata characteristics for the two main cohorts (COVID-19 positive split between
glucocorticoid-treated and -untreated patients) were assessed by two-tailed Student t-tests
for continuous variables, and by two-tailed z-score tests for population proportions.

The relevance network was constructed using the R package MixOmics [50]. This
approach uses the two data frames (metabolomic and proteomic) to construct a multiblock
partial least squares discriminant analysis (PLS-DA) model. This model was then used
to generate a relevance network for the variables selected by the multiblock PLS-DA,
to highlight differential relationships between the treated cohort and the untreated (by
glucocorticoid) cohort. Rather than a matched-pairs correlation network, a bipartite model
was constructed, showing protein-to-metabolite relationships and excluding protein-to-
protein/metabolite-to-metabolite relationships, using a similarity matrix to capture the
relationships between the features and components of the predictive multiblock PLS-DA
model [51]. The relevance network output file was then processed in Cytoscape to produce
the visual summary.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms232012079/s1, Table S1: Full list of proteins showing statistical
significance in differentiating the glucocorticoid-treated and -untreated cohort; Table S2: Full list
of metabolites showing statistical significance in differentiating the glucocorticoid-treated and -
untreated cohort; Table S3: Feature by participant data frame for proteomics; Table S4: Feature by
participant data frame for metabolomics.

Author Contributions: Conceptualization, M.S., N.G., A.D.W. and M.J.B.; Data curation, A.C.,
H.-M.L., A.S. and D.D.-W.; Formal analysis, M.S.; Funding acquisition, D.J.S., A.D.W. and M.J.B.;
Investigation, M.S., A.C. and J.v.G.; Methodology, M.S. and M.J.B.; Project administration, I.B.-J.,
A.D.W. and M.J.B.; Resources, H.-M.L., C.F.F., K.L., A.S., D.D.-W., D.J.S. and A.D.W.; Software, M.S.;
Supervision, M.J.B.; Visualization, M.S.; Writing—original draft, M.S.; Writing—review and editing,
I.B.-J., J.v.G., D.J.S., N.G. and A.D.W.. All authors have read and agreed to the published version of
the manuscript.

https://www.mdpi.com/article/10.3390/ijms232012079/s1
https://www.mdpi.com/article/10.3390/ijms232012079/s1


Int. J. Mol. Sci. 2022, 23, 12079 14 of 16

Funding: The authors would like to acknowledge funding from the EPSRC Impact Acceleration
Account for sample collection, as well as EPSRC Fellowship Funding EP/R031118/1. Mass spectrom-
etry at the University of Surrey was funded under EP/P001440/1; Equipment used in the Stoller
Biomarker Discovery Centre was funded by a donation received from the Stoller Charitable Trust and
a research grant was awarded by the Medical Research Council (MR/M008959/1). Sample collection
and processing was funded by the University of Surrey and the BBSRC BB/T002212/1.

Institutional Review Board Statement: The study was reviewed and approved by UK London REC
14/LO/1221 for COVID-19 patient samples.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data frames for proteomics and metabolomics relating to this work are
included within Supplementary Materials.

Acknowledgments: The authors acknowledge the support of the COVID-19 International Mass
Spectrometry (MS) Coalition [52]. In addition, the authors are grateful to Samiksha Ghimire from
Groningen Medical School for translation of participant information sheets and consent forms into
Nepalese; to Thanuja Weerasinge (Jay), Manjula Meda, Chris Orchard, Joanne Zamani Danni Greener
and George Evetts of Frimley Park NHS Foundation Trust for their help with ethics approvals and
access to hospital patients; and to Emma Sinclair and Nora Kasar of the University of Surrey for their
assistance in cataloguing, processing and storing samples analysed in this work. Graphical Abstract
was made using BioRender (Biorender.com).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bechman, K.; Yates, M.; Mann, K.; Nagra, D.; Smith, L.J.; Rutherford, A.I.; Patel, A.; Periselneris, J.; Walder, D.; Dobson, R.J.B.; et al.

Inpatient COVID-19 Mortality Has Reduced over Time: Results from an Observational Cohort. PLoS ONE 2022, 17, e0261142.
[CrossRef] [PubMed]

2. Dexamethasone in Hospitalized Patients with Covid-19. N. Engl. J. Med. 2021, 384, 693–704. [CrossRef] [PubMed]
3. National Institute for Health and Care Excellence COVID-19 Rapid Guideline: Managing COVID-19. Available online: https:

//www.nice.org.uk/guidance/NG191 (accessed on 7 August 2022).
4. Hox, V.; Lourijsen, E.; Jordens, A.; Aasbjerg, K.; Agache, I.; Alobid, I.; Bachert, C.; Boussery, K.; Campo, P.; Fokkens, W.; et al.

Benefits and Harm of Systemic Steroids for Short- And Long-Term Use in Rhinitis and Rhinosinusitis: An EAACI Position Paper.
Clin. Transl. Allergy 2020, 10, 1. [CrossRef] [PubMed]

5. Polderman, J.A.W.; Farhang-Razi, V.; van Dieren, S.; Kranke, P.; DeVries, J.H.; Hollmann, M.W.; Preckel, B.; Hermanides, J.
Adverse Side-Effects of Dexamethasone in Surgical Patients—An Abridged Cochrane Systematic Review. Anaesthesia 2019, 74,
929–939. [CrossRef]

6. Wallen, N.; Kita, H.; Weiler, D.; Gleich, G.J. Glucocorticoids Inhibit Cytokine-Mediated Eosinophil Survival. J. Immunol. 1991, 147,
3490–3495.

7. Alessi, J.; De Oliveira, G.B.; Schaan, B.D.; Telo, G.H. Dexamethasone in the Era of COVID-19: Friend or Foe? An Essay on the
Effects of Dexamethasone and the Potential Risks of Its Inadvertent Use in Patients with Diabetes. Diabetol. Metab. Syndr. 2020, 12,
80. [CrossRef]

8. Harasim-Symbor, E.; Konstantynowicz-Nowicka, K.; Chabowski, A. Additive Effects of Dexamethasone and Palmitate on Hepatic
Lipid Accumulation and Secretion. J. Mol. Endocrinol. 2016, 57, 261–273. [CrossRef]

9. Bordag, N.; Klie, S.; Jürchott, K.; Vierheller, J.; Schiewe, H.; Albrecht, V.; Tonn, J.C.; Schwartz, C.; Schichor, C.; Selbig, J.
Glucocorticoid (Dexamethasone)-Induced Metabolome Changes in Healthy Males Suggest Prediction of Response and Side
Effects. Sci. Rep. 2015, 5, 15954. [CrossRef]

10. Caterino, M.; Gelzo, M.; Sol, S.; Fedele, R.; Annunziata, A.; Calabrese, C.; Fiorentino, G.; D’Abbraccio, M.; Dell’Isola, C.; Fusco,
F.M.; et al. Dysregulation of Lipid Metabolism and Pathological Inflammation in Patients with COVID-19. Sci. Rep. 2021, 11, 2941.
[CrossRef]

11. Thomas, T.; Stefanoni, D.; Reisz, J.A.; Nemkov, T.; Bertolone, L.; Francis, R.O.; Hudson, K.E.; Zimring, J.C.; Hansen, K.C.; Hod,
E.A.; et al. COVID-19 Infection Alters Kynurenine and Fatty Acid Metabolism, Correlating with IL-6 Levels and Renal Status. JCI
Insight 2020, 5, e140327. [CrossRef]

12. Wu, D.; Shu, T.; Yang, X.; Song, J.-X.; Zhang, M.; Yao, C.; Liu, W.; Huang, M.; Yu, Y.; Yang, Q.; et al. Plasma Metabolomic and
Lipidomic Alterations Associated with COVID-19. Natl. Sci. Rev. 2020, 7, 1157–1168. [CrossRef]

13. Castañé, H.; Iftimie, S.; Baiges-Gaya, G.; Rodríguez-Tomàs, E.; Jiménez-Franco, A.; López-Azcona, A.F.; Garrido, P.; Castro, A.;
Camps, J.; Joven, J. Machine Learning and Semi-Targeted Lipidomics Identify Distinct Serum Lipid Signatures in Hospitalized
COVID-19-Positive and COVID-19-Negative Patients. Metabolism 2022, 131, 155197. [CrossRef]

Biorender.com
http://doi.org/10.1371/journal.pone.0261142
http://www.ncbi.nlm.nih.gov/pubmed/35025917
http://doi.org/10.1056/NEJMoa2021436
http://www.ncbi.nlm.nih.gov/pubmed/32678530
https://www.nice.org.uk/guidance/NG191
https://www.nice.org.uk/guidance/NG191
http://doi.org/10.1186/s13601-019-0303-6
http://www.ncbi.nlm.nih.gov/pubmed/31908763
http://doi.org/10.1111/anae.14610
http://doi.org/10.1186/s13098-020-00583-7
http://doi.org/10.1530/JME-16-0108
http://doi.org/10.1038/srep15954
http://doi.org/10.1038/s41598-021-82426-7
http://doi.org/10.1172/jci.insight.140327
http://doi.org/10.1093/nsr/nwaa086
http://doi.org/10.1016/j.metabol.2022.155197


Int. J. Mol. Sci. 2022, 23, 12079 15 of 16

14. Villar, M.; Urra, J.M.; Rodríguez-del-Río, F.J.; Artigas-Jerónimo, S.; Jiménez-Collados, N.; Ferreras-Colino, E.; Contreras, M.;
de Mera, I.G.F.; Estrada-Peña, A.; Gortázar, C.; et al. Characterization by Quantitative Serum Proteomics of Immune-Related
Prognostic Biomarkers for COVID-19 Symptomatology. Front. Immunol. 2021, 12, 730710. [CrossRef]

15. Salamanna, F.; Maglio, M.; Landini, M.P.; Fini, M. Platelet Functions and Activities as Potential Hematologic Parameters Related
to Coronavirus Disease 2019 (Covid-19). Platelets 2020, 31, 627–632. [CrossRef]

16. Battaglini, D.; Lopes-Pacheco, M.; Castro-Faria-Neto, H.C.; Pelosi, P.; Rocco, P.R.M. Laboratory Biomarkers for Diagnosis and
Prognosis in COVID-19. Front. Immunol. 2022, 13, 857573. [CrossRef]

17. Spick, M.; Lewis, H.M.; Wilde, M.J.; Hopley, C.; Huggett, J.; Bailey, M.J. Systematic Review with Meta-Analysis of Diagnostic Test
Accuracy for COVID-19 by Mass Spectrometry. Metabolism 2021, 126, 154922. [CrossRef]

18. Lewis, H.-M.; Liu, Y.; Frampas, C.F.; Longman, K.; Spick, M.; Stewart, A.; Sinclair, E.; Kasar, N.; Greener, D.; Whetton, A.D.; et al.
Metabolomics Markers of COVID-19 Are Dependent on Collection Wave. Metabolites 2022, 12, 713. [CrossRef]

19. Sinha, S.; Rosin, N.L.; Arora, R.; Labit, E.; Jaffer, A.; Cao, L.; Farias, R.; Nguyen, A.P.; de Almeida, L.G.N.; Dufour, A.; et al.
Dexamethasone Modulates Immature Neutrophils and Interferon Programming in Severe COVID-19. Nat. Med. 2022, 28, 201–211.
[CrossRef]

20. Lacy, P. Mechanisms of Degranulation in Neutrophils. Allergy Asthma Clin. Immunol. 2006, 2, 301-e1. [CrossRef]
21. Panda, R.; Castanheira, F.V.S.; Schlechte, J.M.; Surewaard, B.G.J.; Shim, H.B.; Zucoloto, A.Z.; Slavikova, Z.; Yipp, B.G.; Kubes,

P.; McDonald, B. A Functionally Distinct Neutrophil Landscape in Severe COVID-19 Reveals Opportunities for Adjunctive
Therapies. JCI Insight 2022, 7, 152291. [CrossRef]

22. Sharma, A. Inferring Molecular Mechanisms of Dexamethasone Therapy in Severe COVID-19 from Existing Transcriptomic Data.
Gene 2021, 788, 145665. [CrossRef]

23. Karczewski, K.J.; Snyder, M.P. Integrative Omics for Health and Disease. Nat. Rev. Genet. 2018, 19, 299–310. [CrossRef]
24. Spick, M.; Lewis, H.-M.; Frampas, C.; Longman, K.; Bailey, M.J. An Integrated Analysis and Comparison of Serum, Saliva and

Sebum for COVID-19 Metabolomics. Res. Sq. 2022, 12, 1187. [CrossRef] [PubMed]
25. Harvey, W.T.; Carabelli, A.M.; Jackson, B.; Gupta, R.K.; Thomson, E.C.; Harrison, E.M.; Ludden, C.; Reeve, R.; Rambaut, A.;

Peacock, S.J.; et al. SARS-CoV-2 Variants, Spike Mutations and Immune Escape. Nat. Rev. Microbiol. 2021, 19, 409–424. [CrossRef]
[PubMed]

26. Yurkovetskiy, L.; Wang, X.; Pascal, K.E.; Tomkins-Tinch, C.; Nyalile, T.P.; Wang, Y.; Baum, A.; Diehl, W.E.; Dauphin, A.; Carbone,
C.; et al. Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant. Cell 2020, 183, 739–751. [CrossRef]
[PubMed]

27. Tian, F.; Tong, B.; Sun, L.; Shi, S.; Zheng, B.; Wang, Z.; Dong, X.; Zheng, P. N501y Mutation of Spike Protein in Sars-Cov-2
Strengthens Its Binding to Receptor Ace2. Elife 2021, 10, e69091. [CrossRef]

28. Siskos, A.P.; Jain, P.; Römisch-Margl, W.; Bennett, M.; Achaintre, D.; Asad, Y.; Marney, L.; Richardson, L.; Koulman, A.; Griffin,
J.L.; et al. Interlaboratory Reproducibility of a Targeted Metabolomics Platform for Analysis of Human Serum and Plasma. Anal.
Chem. 2017, 89, 656–665. [CrossRef] [PubMed]

29. Gillet, L.C.; Navarro, P.; Tate, S.; Röst, H.; Selevsek, N.; Reiter, L.; Bonner, R.; Aebersold, R. Targeted Data Extraction of the
MS/MS Spectra Generated by Data-Independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis.
Mol. Cell. Proteom. 2012, 11, O111.016717. [CrossRef]

30. Alipour, A.; Van Oostrom, A.J.H.H.M.; Izraeljan, A.; Verseyden, C.; Collins, J.M.; Frayn, K.N.; Plokker, T.W.M.; Elte, J.W.F.;
Cabezas, M.C. Leukocyte Activation by Triglyceride-Rich Lipoproteins. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 792–797.
[CrossRef]

31. Tobler, A.; Meier, R.; Seitz, M.; Dewald, B.; Baggiolini, M.; Fey, M.F. Glucocorticoids Downregulate Gene Expression of GM-CSF,
NAP-1/IL-8, and IL-6, but Not of M-CSF in Human Fibroblasts. Blood 1992, 79, 45–51. [CrossRef]

32. Smith, P.J.; Cousins, D.J.; Jee, Y.-K.; Staynov, D.Z.; Lee, T.H.; Lavender, P. Suppression of Granulocyte-Macrophage Colony-
Stimulating Factor Expression by Glucocorticoids Involves Inhibition of Enhancer Function by the Glucocorticoid Receptor
Binding to Composite NF-AT/Activator Protein-1 Elements. J. Immunol. 2001, 167, 2502–2510. [CrossRef]

33. Schwarz, B.; Sharma, L.; Roberts, L.; Peng, X.; Bermejo, S.; Leighton, I.; Massana, A.C.; Farhadian, S.; Ko, A.I.; Team, Y.I.; et al.
Severe SARS-CoV-2 Infection in Humans Is Defined by a Shift in the Serum Lipidome Resulting in Dysregulation of Eicosanoid
Immune Mediators. Res. Sq. 2020, rs.3.rs-42999. [CrossRef]

34. Arnardottir, H.; Pawelzik, S.C.; Öhlund Wistbacka, U.; Artiach, G.; Hofmann, R.; Reinholdsson, I.; Braunschweig, F.; Tornvall, P.;
Religa, D.; Bäck, M. Stimulating the Resolution of Inflammation Through Omega-3 Polyunsaturated Fatty Acids in COVID-19:
Rationale for the COVID-Omega-F Trial. Front. Physiol. 2021, 11, 1–7. [CrossRef]

35. Calde, P.C. Eicosanoids. Essays Biochem. 2020, 64, 423–441. [CrossRef]
36. Karu, N.; Kindt, A.; Lamont, L.; van Gammeren, A.J.; Ermens, A.A.M.; Harms, A.C.; Portengen, L.; Vermeulen, R.C.H.; Dik,

W.A.; Langerak, A.W.; et al. Plasma Oxylipins and Their Precursors Are Strongly Associated with COVID-19 Severity and with
Immune Response Markers. Metabolites 2022, 12, 619. [CrossRef]

37. De Man, F.H.; Nieuwland, R.; Van Der Laarse, A.; Romijn, F.; Smelt, A.H.M.; Gevers Leuven, J.A.; Sturk, A. Activated Platelets
in Patients with Severe Hypertriglyceridemia: Effects of Triglyceride-Lowering Therapy. Atherosclerosis 2000, 152, 407–414.
[CrossRef]

http://doi.org/10.3389/fimmu.2021.730710
http://doi.org/10.1080/09537104.2020.1762852
http://doi.org/10.3389/fimmu.2022.857573
http://doi.org/10.1016/j.metabol.2021.154922
http://doi.org/10.3390/metabo12080713
http://doi.org/10.1038/s41591-021-01576-3
http://doi.org/10.1186/1710-1492-2-3-98
http://doi.org/10.1172/jci.insight.152291
http://doi.org/10.1016/j.gene.2021.145665
http://doi.org/10.1038/nrg.2018.4
http://doi.org/10.1038/s41598-022-16123-4
http://www.ncbi.nlm.nih.gov/pubmed/35831456
http://doi.org/10.1038/s41579-021-00573-0
http://www.ncbi.nlm.nih.gov/pubmed/34075212
http://doi.org/10.1016/j.cell.2020.09.032
http://www.ncbi.nlm.nih.gov/pubmed/32991842
http://doi.org/10.7554/eLife.69091
http://doi.org/10.1021/acs.analchem.6b02930
http://www.ncbi.nlm.nih.gov/pubmed/27959516
http://doi.org/10.1074/mcp.O111.016717
http://doi.org/10.1161/ATVBAHA.107.159749
http://doi.org/10.1182/blood.V79.1.45.45
http://doi.org/10.4049/jimmunol.167.5.2502
http://doi.org/10.4049/jimmunol.2001025
http://doi.org/10.3389/fphys.2020.624657
http://doi.org/10.1042/EBC20190083
http://doi.org/10.3390/metabo12070619
http://doi.org/10.1016/S0021-9150(99)00485-2


Int. J. Mol. Sci. 2022, 23, 12079 16 of 16

38. Crothers, K.; DeFaccio, R.; Tate, J.; Alba, P.R.; Goetz, M.B.; Jones, B.; King, J.T.; Marconi, V.; Ohl, M.E.; Rentsch, C.T.; et al.
Dexamethasone in Hospitalised Coronavirus-19 Patients Not on Intensive Respiratory Support. Eur. Respir. J. 2021, 60, 2102532.
[CrossRef]

39. Närhi, F.; Moonesinghe, S.R.; Shenkin, S.D.; Drake, T.M.; Mulholland, R.H.; Donegan, C.; Dunning, J.; Fairfield, C.J.; Girvan, M.;
Hardwick, H.E.; et al. Implementation of Corticosteroids in Treatment of COVID-19 in the ISARIC WHO Clinical Characterisation
Protocol UK: Prospective, Cohort Study. Lancet Digit. Health 2022, 4, e220–e234. [CrossRef]

40. Whitaker, M.; Elliott, J.; Bodinier, B.; Barclay, W.; Ward, H.; Cooke, G.; Donnelly, C.A.; Chadeau-Hyam, M.; Elliott, P. Variant-
Specific Symptoms of COVID-19 among 1,542,510 People in England. medRxiv 2022. [CrossRef]

41. Ahmed, M.H.; Hassan, A. Dexamethasone for the Treatment of Coronavirus Disease (COVID-19): A Review. SN Compr. Clin.
Med. 2020, 2, 2637–2646. [CrossRef]

42. COVID-19 Mass Spectrometry Coalition COVID-19 Metabolomics and Lipidomics Protocol. Available online: https://covid19-
msc.org/metabolomics-and-lipidomics-protocol/ (accessed on 25 May 2021).

43. COVID-19 Mass Spectrometry Coalition COVID-19 Proteomics Protocol. Available online: https://covid19-msc.org/proteomics-
protocol/ (accessed on 7 August 2022).

44. Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al.
Proposed Minimum Reporting Standards for Chemical Analysis: Chemical Analysis Working Group (CAWG) Metabolomics
Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [CrossRef]

45. Salie, M.T.; Yang, J.; Ramírez Medina, C.R.; Zühlke, L.J.; Chishala, C.; Ntsekhe, M.; Gitura, B.; Ogendo, S.; Okello, E.; Lwabi,
P.; et al. Data-Independent Acquisition Mass Spectrometry in Severe Rheumatic Heart Disease (RHD) Identifies a Proteomic
Signature Showing Ongoing Inflammation and Effectively Classifying RHD Cases. Clin. Proteom. 2022, 19, 7. [CrossRef]

46. Liu, Y.; Buil, A.; Collins, B.C.; Gillet, L.C.; Blum, L.C.; Cheng, L.; Vitek, O.; Mouritsen, J.; Lachance, G.; Spector, T.D.; et al.
Quantitative Variability of 342 Plasma Proteins in a Human Twin Population. Mol. Syst. Biol. 2015, 11, 786. [CrossRef]

47. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A
Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [CrossRef]

48. Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.; Fridman, W.H.; Pagès, F.; Trajanoski, Z.;
Galon, J. ClueGO: A Cytoscape Plug-in to Decipher Functionally Grouped Gene Ontology and Pathway Annotation Networks.
Bioinformatics 2009, 25, 1091–1093. [CrossRef]

49. Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr.
Protoc. Bioinform. 2019, 68, e86. [CrossRef]

50. Rohart, F.; Gautier, B.; Singh, A.; Lê Cao, K.A. MixOmics: An R Package for ‘omics Feature Selection and Multiple Data Integration.
PLoS Comput. Biol. 2017, 13, 11. [CrossRef]

51. González, I.; Cao, K.A.L.; Davis, M.J.; Déjean, S. Visualising Associations between Paired “omics” Data Sets. BioData Min. 2012, 5, 19.
[CrossRef]

52. Struwe, W.; Emmott, E.; Bailey, M.; Sharon, M.; Sinz, A.; Corrales, F.J.; Thalassinos, K.; Braybrook, J.; Mills, C.; Barran, P. The
COVID-19 MS Coalition—Accelerating Diagnostics, Prognostics, and Treatment. Lancet 2020, 395, 1761–1762. [CrossRef]

http://doi.org/10.1183/13993003.02532-2021
http://doi.org/10.1016/S2589-7500(22)00018-8
http://doi.org/10.1101/2022.05.21.22275368
http://doi.org/10.1007/s42399-020-00610-8
https://covid19-msc.org/metabolomics-and-lipidomics-protocol/
https://covid19-msc.org/metabolomics-and-lipidomics-protocol/
https://covid19-msc.org/proteomics-protocol/
https://covid19-msc.org/proteomics-protocol/
http://doi.org/10.1007/s11306-007-0082-2
http://doi.org/10.1186/s12014-022-09345-1
http://doi.org/10.15252/msb.20145728
http://doi.org/10.1101/gr.1239303
http://doi.org/10.1093/bioinformatics/btp101
http://doi.org/10.1002/cpbi.86
http://doi.org/10.1371/journal.pcbi.1005752
http://doi.org/10.1186/1756-0381-5-19
http://doi.org/10.1016/S0140-6736(20)31211-3

	Introduction 
	Results 
	Population Metadata Overview 
	Feature Identification 
	Metabolomic Analysis: Key Metabolites Altered by Glucocorticoid Treatment 
	Proteomic Analysis: Investigation of Pathway Changes Due to Glucocorticoid Treatment 
	Relevance Network Analysis of Glucocorticoid Treatment 

	Discussion 
	Materials and Methods 
	Participant Recruitment and Ethics 
	Sample Collection and Extraction 
	Participant Selection 
	Serum Instrumentation and Analysis: Metabolomics 
	Plasma Instrumentation and Analysis: Proteomics 
	Feature Identification 
	Statistical Analysis 

	References

