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a  b  s  t  r a  c t

Nowadays,  it becomes the  head  of concern for many  modern  power girds and energy  management  sys-

tems to derive  an optimal  operational planning  with  regard to  energy  costs minimization, pollutant

emissions  reduction  and better  utilization  of renewable resources of energy  such as  wind  and solar.  Con-

sidering  all  the  above  objectives in a unified  problem provides  the  desired  optimal solution.  In  this  paper,

a  Fuzzy Self Adaptive Particle Swarm Optimization (FSAPSO) algorithm  is proposed and  implemented

to  dispatch  the  generations  in a typical  micro-grid  considering  economy and  emission  as competitive

objectives.  The  problem  is formulated as  a nonlinear  constraint  multi-objective  optimization  problem

with  different  equality and inequality  constraints  to minimize the  total  operating  cost  of the  micro-grid

considering  environmental  issues  at the  same time. The superior performance of the  proposed  algorithm

is  shown in  comparison with  those of  other  evolutionary  optimization  methods such  as  conventional

PSO and genetic  algorithm  (GA) and  its  efficiency  is verified over  the  test cases  consequently.

© 2011 Elsevier Ltd. All rights reserved.
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Nomenclature

ECS energy conversion system

DER distributed energy resource

T total number of hours

Ng total number of generation units

Ns total number of storage units

Nk total number of load levels

ui(t) status of unit i at hour t

PGi(t) active power output of ith generator at time t

Psj(t) active power output of jth storage at time t

PGrid(t) active power bought/sold from/to the utility at time

t

BGi(t) bid of the ith  DG source at hour t

Bsj(t) bid of the jth  storage options at hour t

BGrid(t) bid of utility at hour t

SGi start up/shut-down costs for ith DG unit

Ssj start up/shut-down costs for jth storage device

EGi(t) emissions in  kg/MWh  for ith DG  unit at hour t

Esj(t) emissions in  kg/MWh  for jth storage device at hour

t

EGrid(t)  emissions in  kg/MWh  for utility at hour t

CO2DGi
(t) carbon dioxide pollutants of ith DG unit at hour t

SO2DGi
(t) sulphur dioxide pollutants of ith DG unit at hour t

NOxDGi
(t) nitrogen oxide pollutants of ith  DG  unit at hour t

CO2Storagej
(t)  carbon dioxide pollutants of jth storage device

at hour t

SO2Storagej
(t) sulphur dioxide pollutants of jth storage device

at hour t

NO2Storagej
(t) nitrogen oxide pollutants of jth storage device

at hour t

CO2Grid
(t) carbon dioxide pollutants of utility at hour t

SO2Grid
(t) sulphur dioxide pollutants of utility at hour t

NOxGrid(t) nitrogen oxide  pollutants of utility at hour t

PLk the  amount of kth load level

PG,min(t) minimum active power production of ith DG  at hour

t

Ps,min(t)  minimum active power production of jth storage at

hour t

Pgrid,min(t) minimum active power production of the utility

at hour t

PG,max(t) maximum active power production of ith DG at

hour t

Ps,max(t) maximum active power production of jth storage at

hour t

Pgrid,max(t) maximum active power production of the utility

at hour t

Wess,t battery energy storage at time t

Pcharge/Pdischarge permitted rate of charge/discharge through

a definite period of time

�charge/�discharge charge/discharge efficiency of the battery

Wess,min/Wess,max lower/upper bounds on battery energy

storage

Pcharge,max/Pdischarge,max maximum rate of charge/discharge

during each time interval

ω inertia weight

c1 and c2 weighting factors of the stochastic acceleration

terms (learning factors)

rand (·) random function in  the range of [0,1]

Pbest,i best  previous experience of the ith particle that is

recorded

Gbest best particle among the entire population

F vector of objective functions

X vector of the optimization variables

fi (X) ith objective function

gi (X) equality constraints of ith objective function

hi (X) inequality constraints of ith  objective function

�v
k+1
i updated velocity vector of ith particle

�xk+1
i

updated position of ith particle

�ω weight correction value

NBF normalized best fitness

BFmin minimum fitness value

BFmax maximum fitness value

1. Introduction

In  recent times new trends in  power systems are conducted

towards distributed generation (DG), which means that energy

conversion systems (ECSs) are  situated close to energy consumers

and large units are  substituted by smaller ones. On the other hand,

for the consumer the potential lower cost, higher service reliabil-

ity, higher power quality, increased energy efficiency, and energy

independence are all reasons for interest in DGs. The use of renew-

able resources of energy or green powers such as wind and solar

can also provide significant environmental benefits [1–3].  In  this

regard, micro-grid (MG) is  a  concept which provides an effective

means to integrating small-scale DGs into the bulk electric grid

and provides the needs of future power grids [4–6]. As  a  whole, a

micro power grid is defined as an aggregation of electrical loads

and DGs (mainly renewable resources such as wind and solar)

along with the storage options operating as a  single system pro-

viding both power and heat. It  seems that energy management

systems and power system optimizers accompanied by integra-

tion of new generation resources which form a  whole micro-grid

vision, have the capability of serving as a  basic tool to reach energy

independence and climate changes objectives. Additionally, with

low incorporation of renewable energy sources the total effect

on grid operation is confined, but as their penetrations are aug-

mented their mutual effects increase too [7].  Considering all the

points mentioned before, it can be  easily concluded that there is

an urgent need for more precise scheduling of energy sources in

a  micro-grid that is helpful for improvement of a power system

operation and its behavior both in economy and emission which

in  turn necessitates the development of more trusted methods of

optimization.

Generally, most previous optimization algorithms and optimal

power dispatch programs dealt with the case of single objective.

These algorithms were faced with the problem of deciding the most

economical units to dispatch. For example Boqiang and Chuan-

wen  [8] proposed a hierarchical approach for economic dispatch

while considering risk management in  the power market. Farag

et al. [9] proposed a linear programming based optimization pro-

cedure where one objective was considered at any time. Park et al.

[10] implemented neural networks and used a  Hopfield algorithm

to treat the economic dispatch problems with PQCF. Lee et al.

[11] also developed a Revised Adaptive Hopfield Neural Network

(RAHNN) scheme to deal with this problem. A  model for economic

dispatch of combined cycle cogeneration units based on nonlinear

programming was  developed in  [12] with regard to  environmen-

tal  constraints. Likewise, evolutionary programming techniques

were also applied to  solve such kind of problems [13,14]. Later

on, researchers tried to  minimize or maximize a  single objective

function using evolutionary optimization models e.g.,  a Particle

Swarm Optimization (PSO) approach was  deployed by Gaing [15]

to implement the economic dispatch of units considering their

related constraints. Recently, combined economic/environmental
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dispatch (CEED) is  proposed as a  practical solution to opera-

tion management problem because a  multi-objective optimizer

is able to reduce the pollutant emissions with lower operating

cost. From this point of view, an optimized power system with

respect to several criteria under a  group of unavoidable constraints

can behave in an economic manner while incurring less envi-

ronmental footprints. Nowadays, various optimization techniques

are implemented to  handle the optimal operation management

problem in a more efficient way [16–20].  As examples, optimal

design methodologies under the carbon emission using meta-

heuristic techniques were proposed by Sadegheih [17]. Similarly,

Song et al. [20] developed an adaptive genetic algorithm in  which

parameters are adjusted during fuzzy logic operations. Besides,

an improved decision making tree  was used in [21] to solve an

EED problem. Afterwards, Dhillon et al. [22] proposed a  stochastic

approach to deal with the EED problem considering uncertainties.

Venkatesh et al. [23] did a  comprehensive study about evolution-

ary programming such as GA and Ant Colony Optimization (ACO)

in solving EED and related results were compared regarding best

solutions. Different multi-objective evolutionary approaches for

electric power dispatching were also reported in [24,25].  Hota

and Dash [26] take advantage of neural-fuzzy techniques for

finding a solution to multi-objective generation dispatch prob-

lem.

Among the previously mentioned optimization methods, PSO

has been significantly used in optimal operation management

problem mainly due to its population-based search capability as

well as simplicity, convergence speed, and robustness [27–29],

although it’s worthy of note that the performance of a  con-

ventional PSO algorithm greatly depends upon its learning and

weighting factors and it may  face the problem of being trapped

in local optima. In this paper an expert PSO algorithm is pro-

posed and implemented to solve the multi-operation management

problem. In this regard, it’s tried to find an optimal schedul-

ing for multi-operation of a micro-grid considering minimum

levels of operating cost and emission inside the grid simul-

taneously. To overcome the local optima problem from one

side and to improve the approach performance form the other

side a Fuzzy Self Adaptive (FSA) approach is adopted subse-

quently.

The rest of the paper is  organized as follows: Section 2 for-

mulates the multi-objective operation management problem. The

whole vision of a micro-grid along with the bunch of micro sources

is presented in Section 3. Section 4 describes the fundamentals

of multi-objective optimization as well as a  PSO algorithm. The

proposed FSAPSO algorithm is discussed in Section 5. Section 6

deals with the implementation of the proposed FSAPSO algorithm

to the optimal operation management problem. Finally, in Sec-

tion 7, superior performance of the proposed method and its great

feasibility is demonstrated and compared to those from other

evolutionary-based optimization approaches such as GA and stan-

dard PSO.

2. Operation management of a micro-grid considering

environmental/economic objectives

The optimal environmental/economic power dispatch and

operation management problem in a  typical micro-grid can be

formulated as a multi-objective optimization model. During the

procedure, the two opposing objectives which are the total oper-

ating cost of the micro-grid and the pollutants emission should be

minimized at the same time while satisfying system constraints.

The mathematical model of such problem can be expressed as fol-

lows.

2.1. Objective functions

2.1.1. Objective 1: minimization of the total operating cost in the

micro-grid

The total operating cost of the micro-grid includes the fuel costs

of the units as well as their start-up/shut-down costs. The output of

this section is a set of optimal power flows for a definite period of

time from energy sources to load centers in an economical manner.

In addition to DGs, storage options are also used to  offset expensive

energy purchases from utility or to store energy during off-peak

hours for an anticipated price spike. The first objective function

can be formulated as below:

Min  f1(X) =

T
∑

t=1

Costt

=

T
∑

t=1

⎧

⎨

⎩

Ng
∑

i=1

[ui(t)PGi(t)BGi(t) + SGi|ui(t) − ui(t  − 1)|]

+

Ns
∑

j=1

[uj(t)Psj(t)Bsj(t) + Ssj|uj(t) −  uj(t −  1)|]  + PGrid(t)BGrid(t)

⎫

⎬

⎭

(1)

where BGi(t) and Bsj(t) are  the bids of the DG sources and storage

options at hour t,  SGi and Ssj are the start-up or shut-down costs

for ith DG and jth storage device respectively, PGrid(t) is the active

power which is  bought or sold from or  to  the utility at time t  and

BGrid(t) is  the bid of utility at t.  X  is the vector of state variables

which includes active powers of units and their related states and

is described as follows:

X =  [ Pg,  Ug]1×2nT

Pg = [PG, Ps]

n = Ng + Ns + 1

(2)

where T  is the total number of hours in  the examined period of time,

n is the number of state variables, Ng is the total number of  DGs, Ns

is the total number of storage units, Pg is  the active power of all DG

units and Ug is  the state vector denoting the on or  off states for all

units during each hour of the day. These variables can be described

as follows:

PG = [PG1,  PG2, . . . , PG,Ng ]

PGi = [PGi(1), PGi(2), . . . , PGi(t), . . . , PGi(T)]; i  =  1, 2, . . . , Ng +  1

Ps = [Ps1,  Ps2, . . . , Ps,Ns ]

Psj = [Psj(1),  Psj(2),  . . . , Psj(t), . . . , Psj(T)]; j = 1, 2, . . . , Ns

(3)

where, PGi(t)  and Psj(t) are  the power outputs of ith generator and

jth storage at time t respectively.

Ug =  [u1, u2,  . . . , un] = {ui}1×n ∈ {0, 1};

uk = [uk(1), uk(2),  . . . , uk(t),  . . . , uk(T)]; k  = 1, 2, . . . , n
(4)

where uk(t)  is the status of unit k  at hour t.

2.1.2. Objective 2: minimization of the total pollutants emissions

in the micro-grid

To consider the environmental effect of pollutants emissions as

the second objective three of the most important emissions are

involved in  the optimization problem: carbon dioxide (CO2), sul-

phur dioxide (SO2) and nitrogen oxides (NOx). Besides, to present

a model shows such effects, mathematical functions that asso-

ciate emissions with power production of different DG units can
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be applied; similar to  those used for economic dispatch. As a  whole

the second objective can be described as follows:

Min f2(X) =

T
∑

t=1

Emissiont =

T
∑

t=1

⎧

⎨

⎩

Ng
∑

i=1

[ui(t)PGi(t)EGi(t)]

+

Ns
∑

j=1

[uj(t)Psj(t)Esj(t)] +  PGrid(t)EGrid(t)

⎫

⎬

⎭

(5)

where all the above parameters are defined as before and EGi(t),

Esj(t) and EGrid(t) are described as the amount of emissions in

kg/MWh  for each DG, storage unit and the utility at hour t respec-

tively. These variables are expressed as follows:

EGi(t) = CO2DGi
+ SO2DGi

(t) + NOxDGi
(t)  (6)

where CO2DGi
(t), SO2DGi

(t) and NOxDGi
(t) are the amounts of carbon

dioxide, sulphur dioxide and nitrogen oxides emissions from ith DG

unit at hour t, respectively.

Esj(t) = CO2ndoragej
(t) + SO2ndoragej

(t) + NOxStoragej
(t) (7)

where CO2Storagej
(t), SO2Storagej

(t) and NOx(t)  are the amounts of car-

bon dioxide, sulphur dioxide and nitrogen oxides emissions from

jth storage unit during tth hours of the day, respectively.

EGrid(t) = CO2Grid(t) + SO2Grid(t) + NOxGrid(t) (8)

where CO2Grid
(t), SO2Grid

(t) and NOxGrid(t) are the amounts of carbon

dioxide, sulphur dioxide and nitrogen oxides emissions from the

utility or the macro grid in hour t,  respectively.

2.2. Constraints

2.2.1. Load balance

To manage a power system operation the basic constraint is  to

satisfy the load using available generations. Therefore the active

power balance of the micro-grid is formulated as below:

Ng
∑

i = 1

PGi(t) +

Ns
∑

j = 1

Psj(t) +  PGrid(t)  =

Nk
∑

k =  1

PLk(t) (9)

where PLk is the amount of kth load and Nk is the total number of

load levels.

2.2.2. Active power constraints of units

PGi,min(t) ≤ PGi(t) ≤  PGi,max(t)

Psj,min(t)  ≤ Psj(t) ≤ Psj,max(t)

Pgrid,min(t) ≤ PGrid(t) ≤  Pgrid,max(t)

(10)

where PG,min(t), Ps,min(t) and Pgrid,min(t) are the minimum active

powers of ith DG, jth storage and the utility at time  t.  In a similar

manner, PG,max(t), Ps,max(t) and Pgrid,max(t) are  the maximum power

productions of corresponding units at hour t.

2.2.3. Charge and discharge rate limits of storage devices

Due to limitation on charge and discharge rate of storage devices

during each time interval the following equation and constraint can

be written:

Wess,t = Wess,t−1 + �chargePcharge�t  −
1

�discharge
Pdischarge�t (11)

{

Wess,min ≤ Wess,t ≤ Wess,max

Pcharge,t ≤ Pcharge,max; Pdischarge,t ≤ Pdischarge,max
(12)

where Wess,t and Wess,t−1 are the amounts of energy storage

inside the battery at hour t and t − 1 respectively, Pcharge and

Pdischarge are the permitted rates of charge and discharge through

a definite period of time (�t), �charge and �discharge are the charge

and discharge efficiency of the battery. Wess,min and Wess,max are the

minimum and maximum limits on battery energy storage while

Pcharge,max and  Pdischarge,max are the maximum rates of  charge or

discharge during each interval �t.

3.  Micro-grid modeling

Application of individual DGs can create many problems as it

may solve, so a  better way to  realize the emerging potential of DGs

is to take a system approach which views generation and associ-

ated loads as a subsystem or a  micro-grid. On the other hand, by

aggregation of DGs in a  micro-grid and exploitation of renewable

energies in  bulk amount related issues on economy, technology

and environment can be studied carefully within the target sys-

tem and appropriate decisions can be made for better management

of its operation. Moreover, distributed generation encompasses a

wide range of prime mover technologies, such as internal combus-

tion (IC) engines, gas turbines, micro turbines, photovoltaic, fuel

cells and wind power. These emerging technologies have lower

emissions and the potential to have lower cost negating traditional

economies of scale [30].  For example Fuel cells, which produce elec-

tricity from hydrogen and oxygen, emit only water vapor, although

during the reformation of natural gas or other fuels, some NOx and

CO2 emissions are produced. Generally, fuel cells are more efficient

than micro turbines with low emissions but are  currently expen-

sive. In this paper a  typical LV micro-grid has been considered as

shown in Fig. 1 including various DGs such as micro turbine (MT),

a  low temperature fuel cell (PAFC), photovoltaic (PV), wind turbine

(WT) and storage devices like lead acid batteries. It  is assumed that

all DG sources produce active power at unity power factor, neither

requesting nor producing reactive power. There is also a power

exchange link between the mentioned micro-grid and the utility

(LV network) used for energy trading during different hours of  a  day

based on decisions made by micro-grid central controller (MGCC).

4. Principles of multi-objective optimization and PSO

algorithm

Many real-world search and optimization problems include sev-

eral objectives required to be optimized at the same time; a  set of

objectives that may  carry conflicting goals or  even incomparable

applications. To address such problems towards optimal situations

and goals, multi-objective optimization can be applied usefully to

result a  set of optimal answers [31,32].  Generally, a multi-objective

optimization problem includes a set of objectives along with a  num-

ber of equality and inequality constraints that should be optimized

concurrently as stated in Eq. (13):

Minimize F =  [f1(X), f2(X), ..., fm(X)]T

Subject to :

{

gi(X) < 0 i = 1, 2, ..., Nueq

hi(X) =  0 i = 1,  2, ..., Neq

(13)

where, F is a vector of objective functions and X is  the vector of the

optimization variables, fi (X) is the ith objective function, gi (X) and

hi (X) are  the equality and inequality constraints, respectively and

m is  the number of objective functions.

Among the optimization methods mentioned earlier, PSO has

been significantly used in  multi-objective problems mainly due

to its population-based search capability as well as simplicity,

convergence speed, and robustness. It was  first introduced by

Kennedy and Eberhart [33,34] and was  based upon the imitation

of animals’ social behaviors using tools and ideas taken from

computer graphics and social psychology research. Usually, PSO

simulates the behaviors of a  flock of bird called “swarm” in  which
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Fig. 1. A typical LV micro-grid model.

any single and feasible solution is a  bird and is called “particle”

within the search space. Each particle has its own fitness value

evaluated by the fitness function to  be optimized, and has a

velocity vector which addresses the flying of the particle. All the

particles fly through the problem domain by  following the current

optimum particles i.e., to reach the optimal point, particles must

update their next displacements according to their own velocities,

their best performances or  the best performance of their best

informant as shown in Fig.  2. The mathematical behavior of each

particle can be also formulated by Eqs. (14) and (15):

Vk+1
i

= ω · Vk
i

+ C1 ×  rand1(·) × (Pk
best,i

− Xk
i
)

+ C2 × rand2(·) × (Gk
best,i

− Xk
i
) (14)

Xk+1
i

= Xk
i

+ Vk+1
i

(15)

where Vk+1
i

is the updated velocity vector of ith particle based on

the three displacement fundamentals, Xk+1
i

is the updated position

of ith particle, rand1(·) and rand2(·) are random numbers in  the

range of [0,1] C1 and C2 are the learning factors and ω is  the inertia

or momentum weight factor.

5. Fuzzy Self Adaptive PSO (FSAPSO)

It was observed from Eq.  (14) that the performance of a  PSO

algorithm depends greatly on three influential parameters usually

stated as the exploration–exploitation trade off: learning factors

Fig. 2. Fundamental elements for displacement calculation of a particle.

(C1,  C2) and momentum weight factor (ω). The ability of an opti-

mization algorithm in searching the problem space and finding

the optimum point (especially the global one) is  called exploration

while exploitation refers to  the ability of an optimization algorithm

in finding the optimum point accurately through concentration on

a promising candidate solution.

The momentum weight factor ω is widely used both for con-

trolling the scope of the search more easily and reducing the

importance of maximum velocity, i.e., larger values of ω  promotes

global exploration while smaller ones facilitate local exploration

for fine tuning of the current search area. In simple words, a wise

selection of ω provides not only a good trade off between local and

global exploration but also a  better means of convergence. As an

example, linearly decreasing ω-strategy is  a  method which allows

the swarm to  explore the problem domain and moves towards a

local search when fine-tuning is  needed [35].

The learning factors C1 and C2 provide an insight from a soci-

ological point of view. Since C1 has a  contribution towards the

self-exploration of a particle, it’s  regarded as the particle’s self-

confidence. On the other hand, because C2 has a contribution

towards motion of the particles in global direction considering the

motions of all the particles in  the preceding program iterations, it’s

defined as swarm confidence. As  a  rule of thumb, if learning fac-

tor C1 is chosen larger than C2, the self-confidence outweighs the

swarm confidence which means that the particle will be attracted

towards the best position found by itself (Pbest) and vice versa. It

should be noted that  the performance of a PSO algorithm is also

affected by some other parameters such as the number of  particles

and the size  of the swarm e.g., using few particles in  optimization

problem may  increase the possibility of being trapped in local min-

imum while choosing a  large number of particles may  slow down

the optimization process. To put all the above statements in a  nut-

shell, it’s concluded that finding a  definite set of parameters that

work well in all cases may be impossible but it is practical to reach

such an objective by applying a Fuzzy Self Adaptive mechanism. It’s

known by experience that lower values of inertia weight and larger

values of learning factors work better in optimization process when

the best fitness value is low at the end of each iteration. Likewise,

higher values of inertia weight and lower amounts of learning fac-

tors are required when the system faces a  local minimum and the

best fitness value remains unchanged for a  long period of  time. To
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Fig. 3.  Membership functions for learning factors fuzzification.

overcome all the deficiencies associated with a  conventional PSO

algorithm a Fuzzy Self Adaptive PSO (FSAPSO) approach is devel-

oped to adjust the inertia weight and learning factors when they are

needed. During the work two membership functions are proposed;

one for the learning factors adjustment with the input parameters

of best fitness (BF) and number of generations for unchanged best

fitness (NU) and the other for weight inertia tuning whose input

factors are best fitness (BF) and inertia weight (ω). The output vari-

ables of these two functions are  learning factors (C1, C2)  and weight

correction value (�ω) respectively. Since either a positive or  neg-

ative value may  be assigned to �ω, a  range of (−1, +1) has been

preferred for the inertia weight correction factor as sated in Eq.

(16).

ωk+1 = ωk + �ω (16)

Furthermore, to make a  robust FSAPSO, BF and NU values can be

normalized into [0,1] as shown in  Eq. (17):

NBF =
(BF − BFmin)

(BFmax −  BFmin)
(17)

where BFmin is the minimum fitness value and BFmax is the fit-

ness value which is  greater or equal to the maximum fitness value.

Additionally, values of ω, C1 and C2 are limited as follow:

0.4 ≤ ω ≤ 1; 1 ≤ C1 ≤ 2; 1 ≤ C2 ≤ 2 (18)

To complete the proposed fuzzy-based PSO algorithm the main

characteristics of the fuzzy system are described as follows.

5.1. Fuzzification

The membership functions used in  this study are triangu-

lar types in which the input/output relations are depicted in

Figs. 3 and 4. In the first membership function linguist variables

for a set of inputs including NBF and NU  and a  set of outputs (C1, C2)

are as following: positive small (PS),  positive medium (PM), posi-

tive big (PB) and positive bigger (PR). For the second membership

function similar literature can be defined: small (S), medium (M)

and large (L) for the input set (NBF, ω) and negative (NE),  zero (ZE)

and positive (PE)  for the output variable (�ω).

5.2. Fuzzy rules

To express the conditional statements which represent a  map-

ping from the input space to  output space the Mamdani fuzzy

rule is adopted and the corresponding conditions are tabulated in

Tables 1–3.

5.3. Defuzzification

To achieve a deterministic control action, a defuzzification strat-

egy based on centroid (center-of-sums) is  adopted as shown in  Eq.

Table 1

Fuzzy rules for learning factor C1 .

C1 NU

PS PM PB PR

NBF

PS PR PB PB PM

PM PB PM PM PS

PB PB PM PS PS

PR  PM PM PS PS

Table 2

Fuzzy rules for learning factor C2 .

C2 NU

PS PM PB PR

NBF

PS PR PB PM PM

PM PB PM PS PS

PB PM PM PS PS

PR  PM PS PS PS

(19). The output values of this section are directly used as substi-

tutes of PSO parameters.

y =

∫

y

∑n

i=1
y.�Bi(y)dy

∫

y

∑n

i=1
�Bi(y)dy

(19)

6. Implementation of FSAPSO to multi-operation

management problem

As said beforehand the optimal operation management problem

in a typical micro-grid can be formulated as a multi-objective opti-

mization model which can be solved easily by applying an efficient

step-by-step procedure. In this section, first the proposed FSAPSO

algorithm is presented in detail, and then its application to  the

mentioned problem is  investigated. To implement the FSAPSO algo-

rithm a hierarchical structure must be followed as shown in Fig. 5

while considering the top-down instructions as mentioned below:

Step 1: input data definition

At the beginning of the program required input data must

be provided precisely. This information includes: micro-grid

Table 3

Fuzzy rules for inertia weight correction factor.

�ω  ω

S M L

NBF

S ZE NE NE

M  PE ZE  NE

L PE  ZE  NE
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Fig. 4. Membership functions for weight correction factor fuzzification.

configuration, operational characteristics of DG units and the util-

ity, maximum predicted output powers of WT  and PV for a day

ahead, hourly bids of DGs and the utility, emission coefficients

of mentioned units, objective functions and the micro-grid load

profile.

Step 2: program initialization

At the second step the program must be initialized by  a  set of

random populations and their corresponding velocities as follows:

Initial population = [ X1 X1 .  . . XN ]
T

Xi = [xi]1×2nT ; for i =  1, 2, 3, . . . N; n =  Ng + Ns = 1

xi = rand(·) × (xmax
i

−  xmin
i

) + xmin
i

(20)

Initial velocity = [ V1 V1 · · ·  VN ]

Vi = [vi]1×2nT ; for i = 1, 2, 3, . . . N; n = Ng + Ns + 1

vi = rand(·) × (vmax
i

− v
min
i

) + v
min
i

(21)

Step 3: calculate the objective function for each individual

Step 4: sort the initial population

In the fourth step the initial populations are sorted in an ascend-

ing manner according to  their values obtained from multi-objective

function.

Step 5: define the best global position

The individual which has the best performance in  terms of best

fitness among the whole is  selected as the best global position

(Gbest).

Step 7: select ith individual

Step 8: define the best local position for the ith individual (Pbest,i)

Step 9: update FSAPSO parameters

Step 10: calculate the next position for each individual using

updated parameters and Eq.  (15).

Step 11: redo steps 7–11 for the entire population.

Step 12: examine the stop condition

If the maximum number of iterations executed by  the FSAPSO

is met  or the minimum desired error is reached, the optimization

procedures is stopped, otherwise the population is  replaced with

the new generation and the algorithm is  repeated from step 4.

Step 13: the Gbest obtained at the last iteration is the optimal

solution of the problem.

7. Simulation results

In this part of the work the proposed Fuzzy Self Adaptive

Particle Swarm Optimization algorithm (FSAPSO) is  imple-

mented to solve the multi-operation management problem

and its performance is compared to  those of conventional

techniques such as PSO and GA. In the suggested model

the objective function considers both the total cost of the

micro-grid which includes power generation costs and start-

up/shut-down costs of units and the net emission of pollu-

tants.

The mentioned problem is solved in three different scenar-

ios including the main case, where all the units are dispatched

regarding their real constraints, the second case in which the both

wind turbine (WT) and photovoltaic (PV) operate at their maxi-

mum output powers (Max-Ren.) and the third case in which the

utility is considered as an unconstraint unit that can exchange

energy with the micro-grid without any limitation (WLE). The total

load demand within the micro-grid for a typical day comprises

a  primarily residential area, one industrial feeder serving a small

workshop and one feeder with light commercial consumers as

shown in Fig.  6. The total energy demand for this day is  1695 kWh.

Additionally, the real time market energy price variation for the

mentioned day is considered as Fig. 7.  For the flexible operation

of the micro-grid three DG units including MT,  PV and WT  are

assigned with suitable “on” or “off” states during the power dis-

patch problem by the optimization algorithm considering both

objectives. In a  similar manner, since the micro-grid operates at

grid-connected mode the on/off state for the utility is consid-

ered 1 in all cases. To investigate the total effect of battery and

PAFC on the grid operation and to  get the highest benefit of such

resources the “on” state is  chosen intentionally for correspond-

ing units. The minimum and maximum generation limits of  the
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Fig. 5. FSAPSO flowchart.

DG sources are given in  Table 4.  The bid coefficients in  cents of

Euro (Ect) per kWh  as well as emissions in kilogram per MWh

assumed by the DG  sources are  given in Table 5. In the same

table, start up costs where applicable are presented. To simplify

Table 4

Installed DG sources.

ID Type Min  power (kW) Max  power (kW)

1 MT  6 30

2  PAFC 3 30

3  PV  0 25

4 WT  0 15

5  Bat  −30 30

6 Utility −30 30

our analysis, all units in this paper are assumed to  be  operating

in  electricity mode only and no heat is required for the examined

period.

It’s worthy of note that the ability to  better integrate renewable

energies is  one of the driving factors in micro-grid installations. For

the actual operation of a micro-grid forecasts of future require-

ments are essential to be able to prepare the flexible systems

to behave in  the appropriate manner. While renewable energy

cannot necessarily be operated in  a  conventional manner, its behav-

ior can be predicted and the forecast information is exactly the

kind of information that the micro-grid must use to improve sys-

tem efficiency. In this work the power output of PV and WT

are  also estimated using an expert prediction model which is

out of the scope of this paper and will be presented in future
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Fig. 6. Load demand in a  typical day inside the micro-grid.

Fig. 7. Real-time market energy prices.

Table 5

Bids and emissions of the DG sources.

ID Type Bid (Ect/kWh) Start-up/shut-down cost (Ect) CO2 (kg/MWh) SO2 (kg/MWh) NOx (kg/MWh)

1 MT  0.457  0.96 720 0.0036 0.1

2 PAFC  0.294  1.65 460 0.003 0.0075

3  PV 2.584 0  0  0 0

4  WT  1.073 0  0  0 0

5  Batt 0.38 0  10 0.0002 0.001

works. Table 6 shows the amount of forecasting output of these

units.

7.1. First scenario (main case)

Performance assessment of the proposed FSAPSO algorithm

begins with the main case in  which a typical micro-grid is

considered as shown in Fig. 1.  Five DG sources with related char-

acteristics mentioned in  Tables 4 and 5 produce electricity in the

micro-grid and additional demand or surplus of energy inside the

grid is  exchanged with the utility from the point of common cou-

pling. All  the units including the macro gird (utility) can operate

just within their power limits while satisfying the needed con-

straints. The results of optimization algorithms as well as a  brief

comparison of their performances for the main case are presented

in Tables 7 and 8. To get a better insight into the FSAPSO per-

formance, the convergence characteristics of the FSAPSO and PSO

algorithms for the best solution and in  the case of each single

Table 6

Forecasting output of WT and PV.

Hour WT  (kW)/installed (kW) PV (kW)/installed (kW) Hour WT (kW)/installed (kW) PV  (kW)/installed (kW)

1 0.119 0 13 0.261 0.956

2  0.119 0 14 0.158 0.842

3  0.119 0 15 0.119 0.315

4  0.119 0 16 0.087 0.169

5  0.119 0 17 0.119 0.022

6  0.061 0 18 0.119 0

7  0.119 0 19 0.0868 0

8  0.087 0.008 20 0.119 0

9 0.119  0.150 21 0.0867 0

10  0.206 0.301 22 0.0867 0

11 0.585  0.418 23 0.061 0

12  0.694 0.478 24 0.041 0
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Table  7

Comparison of performance results in the case of cost objective for 50 trials.

Type Average (Dct) Standard deviation (Dct) Worst solution (Dct) Best solution (Dct)

FSAPSO 125.913 0.0060 125.921 125.909

PSO 145.185 26.848 164.170 126.201

GA 151.886 36.228 210.457 125.911

Table 8

Comparison of performance results in the case of emission objective for 50 trials.

Type Average (kg)  Standard deviation (kg) Worst solution (kg) Best solution (kg)

FSAPSO 422.021 0.0050 422.025 422.015

PSO 449.448 32.635 490.890 422.013

GA 506.776 89.251 680.330 422.015

Table 9

Emission/economic dispatch using FSAPSO algorithm (main case: total cost = 191.0416 Dct;  total emission = 721.0757 kg).

Time (hour) DG sources States

MT PAFC PV WT Battery Utility MT  PAFC PV WT Battery Utility

1 0  29.9829 0 0 −7.9827 29.9998 0 1 0 0 1 1

2  0  28.8507 0 0 −8.8507 30 0 1 0 0 1 1

3  0  28.1546 0 0 −8.1536 29.999 0 1 0 0 1 1

4 0 29.6293  0 0 −8.6293 29.9999 0 1 0 0 1 1

5  6 29.776 0 0 −9.776 30 1 1 0 0 1 1

6 6  27.3954 0 0 −0.3953 29.9999 1 1 0 0 1 1

7  6 19.427 0 0 14.5729 30 1 1 0 0 1 1

8  6 30 0 0 29.5719 9.4281 1 1 0 0 1 1

9  30 30 0 1.7855 30 −15.7856 1 1 0 1 1 1

10  30 30 7.5279 3.0854 30 −20.6133 1 1 1 1 1 1

11 30 30  9.2276 8.7723 30 −30 1 1 1 1 1 1

12  29.9999 30 3.5868 10.4133 30 −30 1 1 1 1 1 1

13 30  30 0 3.9224 30 −21.9225 1 1 0 1 1 1

14  30 30 9.6235 2.3765 30 −30 1 1 1 1 1 1

15  30 30 0 1.7855 30 −15.7857 1 1 0 1 1 1

16 30 30 0 1.3017  30 −11.3016 1 1 0 1 1 1

17  29.9993 30 0 0 29.9999 −4.9992 1 1 0 0 1 1

18 0  30 0 0 29.9991 28.0007 0 1 0 0 1 1

19  6 30 0 0 29.9998 24.0002 1 1 0 0 1 1

20  6.0007 29.9999 0 0 30 20.9995 1 1 0 0 1 1

21  30 30 0 1.2974 30 −13.2974 1 1 0 1 1 1

22  29.9964 30 0 0 30 −18.9966 1 1 0 0 1 1

23 0 30 0 0  18.0108 16.9892 0 1 0 0 1 1

24  0  19.1864 0 0 6.8135 30 0 1 0 0 1 1

objective are shown in  Figs. 8 and 9 separately. Likewise, the best

performances of all mentioned algorithms are shown in  Fig. 10 tak-

ing into account the both objectives. Table 9 is  also demonstrates

the best optimal power dispatch among DG units and the utility

within the micro-grid using FSAPSO algorithm.

Comparison of performances in the case of best and worst solu-

tions for cost and emission objectives reveals that the proposed

optimization algorithm not  only gives a  better response but also

presents a faster convergence characteristic. Moreover, the statis-

tical  indices of average and standard deviation confirm another

benefit of the algorithm in optimization process. As  it is observed

from Tables 7 and 8 the values of standard deviations in terms

of cost and emission objectives for FSAPSO algorithm are lim-

ited to 0.006 and 0.005 respectively which verify the excellent

performance of the proposed model. Since a  Fuzzy Self Adaptive

(FSA) mechanism is  applied during the optimization process by the

proposed algorithm, further improvement is  investigated both in

performance characteristic and optimal solutions. It  can be seen

from Figs. 8 and 9 that the value of cost objective function reaches to

minimum after about 784 iterations with FSAPSO method and does

not vary thereafter while the PSO algorithm converges in about 865

iterations. Similarly the value of emission objective function settles

at the minimum in  about 500 iterations with FSAPSO method, while

the PSO algorithm converges in about 782 iterations.

It’s also observed from Table 9 that according to  FSAPSO, in the

first hours of the day a major part of the load is supplied by FC within

the grid and the utility through the point of common coupling

because the bids of corresponding units are lower in  comparison

with those of others during this period of time. Due to growth of

demand and bids of utility during the next hours of the day, DG

units increase their output powers according to priority in lower

cost and emission correspondingly. In this regard, units start up  in

sequence on the micro-grid regulatory controller request and the

act of energy import from the macro grid is replaced by the export

Table 10

Comparison of performance results in the case of cost objective for 50 trials.

Type Average (Dct) Standard deviation (Dct) Worst solution (Dct) Best solution (Dct)

FSAPSO 599.9968 0.007142 600.0018 599.9917

PSO 610.6537 14.21645 620.7062 600.6011

GA  632.7230 45.36649 664.8019 600.6440
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Fig. 8. Convergence characteristics of FSAPSO and PSO  in the case of cost objective

(main scenario).

action for further revenue and lower net emission during the men-

tioned period. It  should be also noted that the charging process of

the battery is done at the first hours of the day when the prices

are low but the discharge action is postponed to  the midday when

the load curve reaches peak values. It’s also notable that employ-

ing renewable resources of energy such as wind and solar results

less pollution while it causes more operating cost, i.e., from an eco-

nomical aspect, exploitation of energy form such resources must

be limited according to  emission/economic considerations.

7.2. Second scenario (Max-Ren.)

In the second scenario it’s  assumed that renewable energy

sources (WT  and PV) produce their available maximum power dur-

ing each hour of the day and rests of generators including MT,  PAFC,

battery and the utility act normally similar to  their behavior in

the main case. In this regard, the proposed algorithms are imple-

mented again and are applied to  the multi-objective optimization

problem and corresponding results are recorded. Tables 10 and 11

show a brief comparison from the performance of the mentioned

algorithms regarding each single objective for 50 trials. As an exam-

ple the best performance of the proposed algorithms in the case of

Fig. 9. Convergence characteristics of FSAPSO and PSO in the case of emission objec-

tive  (main scenario).

Fig. 10. Convergence characteristics of all optimization models in the case of both

objectives (main scenario).
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Table  11

Comparison of performance results in the case of emission objective for 50 trials.

Type Average (kg)  Standard deviation (kg) Worst solution (kg) Best solution (kg)

FSAPSO 350.5235 0.007778 350.529 350.518

PSO 356.2970 8.068088 362.002 350.592

GA 370.2415 27.81829 389.912 350.571

Table 12

Emission/economic dispatch using FSAPSO algorithm (second case: total cost =  735.1564 Dct;  total emission = 440.4118 kg).

Time (hour) DG sources States

MT PAFC PV  WT  Battery Utility MT  PAFC PV WT Battery Utility

1 6.000848 30 0  1.785415 15 −0.78626 1  1 1 1 1  1

2  6 30 0  1.785542 30 −17.7855 1  1 1 1 1  1

3  0 30 0  1.785542 29.99932 −11.7849 0  1 1 1 1  1

4  6.000256 30 0  1.785542 30 −16.7858 1  1 1 1 1  1

5  6 30 0  1.78486 30 −11.7849 1  1 1 1 1  1

6  6 29.99972 0  0.914197 30 −3.91392 1  1 1 1 1  1

7  0 30 0  1.78553 30 8.21447 0  1 1 1 1  1

8  6.006675 30 0.193748 1.30166 30 7.497917 1  1 1 1 1  1

9 6 30 3.753957 1.779395 29.99965 4.467001 1  1 1 1 1  1

10  6.000621 30 7.527933 3.085416 30 3.386029 1  1 1 1 1  1

11 6  30 10.44118 8.772367 30 −7.21354 1  1 1 1 1  1

12  6 29.99589 11.96401 10.41328 30 −14.3732 1  1 1 1 1  1

13  6 29.99925 23.8934 3.922835 30 −21.8155 1  1 1 1 1  1

14  6.001254 30 21.0493 2.376556 30 −17.4271 1  1 1 1 1  1

15  6 30 7.864028 1.785542 30 0.35043 1  1 1 1 1  1

16 6 30  4.220769 1.300601 30 8.47863 1  1 1 1 1  1

17  6.006595 30 0.538905 1.785542 30 16.66896 1  1 1 1 1  1

18  6 30 0  1.785542 30 20.21446 1  1 1 1 1  1

19  6.002708 30 0  1.30166 30 22.69563 1  1 1 1 1  1

20  6 30 0  1.785542 30 19.21446 1  1 1 1 1  1

21 6 29.99932 0  1.30166 30 10.69902 1  1 1 1 1  1

22  0 30 0  1.300539 30 9.699461 0  1 1 1 1  1

23  0 30 0  0.914197 30 4.09322 0  1 1 1 1  1

24  6 30 0  0.612441 30 −10.6124 1  1 1 1 1  1

multi-objective optimization and allocation of optimal power to the

units is also presented in Table 12. Similarly, the convergence char-

acteristics of all optimization models in  the case of both objectives

considering the second scenario are shown in  Fig. 11.

Regarding the second scenario, it’s  again observed that the

proposed algorithm appropriately performs the multi-operation

management and maintains a  small diversity among its optimal

solutions considering each objective and during different trials

(�cost =  0.007 Dct, �emission = 0.0078 kg). Moreover, it’s found that in

Fig. 11. Convergence characteristics of all  optimization models in the case of both

objectives (second scenario).

the case of cost and emission objectives the difference between the

average of solutions and the best one is  limited to 0.0051 Dct and

0.0055 kg  for the proposed FSAPSO algorithm while these values are

10.53 Dct and 7.705 kg for the conventional PSO and 32.079 Dct and

19.67 kg  for GA, respectively. It’s also observed from Table 12 that

during the second scenario the total operation cost of  the micro-

grid increases greatly compared to  the main case and demonstrates

a growth of %284.81 in corresponding cost, but it should be noted

the net emission decreases %38.92 in  comparison with the first sce-

nario i.e., higher penetration of renewable energies into the grid

environment results lower net emission but imposes higher costs

of operation in a  definite period of time. From the same table it’s

investigated that to  reach emission/economic objectives simulta-

neously, units with higher performance must be utilized suitably.

In this regard units such as PAFC and battery are used extensively

and the rest are used when they are needed. During the first hours

of the day, when the load is light, surplus of energy is  exported to

the macro-grid but in heavy load levels the energy provided by  the

utility plays an important role.

7.3. Third scenario (WLE)

In the last scenario, it’s supposed that all DG units act within

their power limits but the utility behaves as an unconstraint unit

and exchanges energy with the micro-grid without any limitation.

All  the required data for solving the multi-objective optimization

problem including the load curve, technical specifications of the

DG sources and the real-time market prices remain unchanged as

well. Similar to previous scenarios, evolutionary-based optimiza-

tion algorithms are applied to solve the operation management

problem within the micro-grid and the simulation results are gath-

ered correspondingly. Comparisons of performances in terms of
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Table  13

Comparison of performance results in the  case of cost objective for 50 trials.

Type Average (Ect) Standard deviation (Ect) Worst solution (Ect) Best solution (Ect)

FSAPSO 100.2170 0.005657 100.221 100.213

PSO 108.2075  11.17158 116.107 100.308

GA 117.1340  23.83374 133.987 100.281

Table 14

Comparison of performance results in the  case of emission objective for 50 trials.

Type Average (kg) Standard deviation (kg) Worst solution (kg) Best solution (kg)

FSAPSO 408.3315 0.006364 408.327 408.336

PSO 413.7145 7.603519 419.091 408.338

GA 423.1640 20.98269 438.001 408.327

Table 15

Emission/economic dispatch using FSAPSO algorithm (third case: total cost =  166.9624 Dct;  total emission = 567.4380 kg).

Time (hour) DG  sources States

MT  PAFC PV  WT  Battery Utility MT PAFC PV WT  Battery Utility

1 6.0118 18.6153 0  0  14.9266 12.44617 1 1  0  0  1  1

2 0 3.701  0 0 29.1897 17.11027 0 1  0  0  1  1

3  6 3  0  0  16.4219 24.57809 1 1  0  0  1  1

4 0  3.0624 0  0.0168 11.9654 35.95519 0 1  1 1  1  1

5  6 3  0  0  12.1335 34.86646 1 1  1 0  1  1

6  0 3  0  0  28.572 31.42766 0 1  0  0  1  1

7  6 19.9798 0  0  29.988 14.03204 1 1  1 0  1  1

8  6 29.8902 0  0  29.984 9.124852 1 1  0  0  1  1

9 29.80453 30 0.1212 1.784 29.9331 −15.64349 1 1  1 1  1  1

10  30 29.9985 7.5279 3.0854 29.9761 −20.58804 1 1  1 1  1  1

11 29.9704 29.999 10.44 8.7606 30 −31.17088 1 1  1 1  1  1

12  29.999 29.999 11.964 10.4118 30 −38.37439 1 1  1 1  1  1

13  29.993 30 0.1398 3.92283 30 −22.05595 1 1  1 1  1  1

14 30 29.9819 21.0493 2.3765 29.962 −41.37002 1 1  1 1  1  1

15  30 30 1.1581 1.78554 29.999 −16.943661 1 1  1 1  1  1

16 29.999  29.9298 0.4798 1.3013 29.9868 −11.697921 1 1  1 1  1  1

17  26.3174 29.999 0  1.7855 30 −3.1029835 1 1  0  1  1  1

18  6 29.825 0  0.296 29.9594 21.919201 1 1  0  1  1  1

19  0 29.779 0  0.3054 30 29.914723 0 1  1 1  1  1

20  6.4606 30 0  0.12515 30 20.414201 1 1  0  1  1  1

21 29.9927 30 0 1.2667 30 −13.2595 1 1  1 1  1  1

22  7.57668 30 0  0  30 3.4233101 1 1  0  0  1  1

23 0  26.434 0  0  30 8.5658216 0 1  0  0  1  1

24  6 28.382 0  0.02049 29.9984 −8.4010003 1 1  0  1  1  1

each single objective are presented in  Tables 13 and 14 for the

mentioned algorithms. Again for the third scenario the conver-

gence characteristics of all optimization models in  the case of both

objectives are depicted in  Fig. 12.  The best optimal power dispatch

Fig. 12. Convergence characteristics of all optimization models in the case of both

objectives (third scenario).

using FSAPSO algorithm is  also tabulated in Table 15, considering

emission/economic objectives.

For the third time it’s observed that the proposed algorithm

solve the optimization problem successfully and the variations of

optimal solutions remain small in terms of both objectives. Simi-

larly, the difference between the average of solutions and the best

answer declines to 0.004 Dct  considering cost objective and reaches

to 0.0045 kg  in  terms of emission objective using FSAPSO. In the

same manner, comparison of results in the case of each objective

using PSO and GA yields much more diversity in performance and

shows the deficiency of these algorithms compared to the pro-

posed approach. It’s also observed from Fig. 12 that in  the third

scenario the normalized best fitness (NBF) get the highest value

among the whole and the performance of the proposed algorithm

completely outweighs of the others. Furthermore, the numerical

results of Table 15 confirm that revoking the limits on the rate of

power exchange between the utility and the micro-grid ends in  a

reduction of %12.6 in operating cost as well as a  reduction of %21.3

in  net emission of the grid in comparison with the main case during

the examined period. Comparison of results in the case of  costs and

emissions among the third scenario and the second one reveals that

although the total cost of operation in the third scenario decreases

about %77.56, the net emission inside the grid increases %30.88

compared to the second one. It’s worthy of note that in  the third

scenario the utility takes the lead in supplying the load inside the
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grid during the first hours of the day while purchasing energy in

bulk amount from the micro-grid during the peak times. Regard-

ing both objectives, WT  and PV start up  when shortage of power

generation occurs inside the grid or  there is  a  need for more energy

export to the macro grid. The other DGs such as FC and battery gen-

erate electricity at their maximum levels during the most hours of

the day while MT  holds the maximum power rate during a  period

of time from 9:00 to  17:00.

8. Conclusion

In this paper, a  developed multi-objective FSAPSO optimiza-

tion algorithm has been proposed and applied to  a  multi-operation

management problem in  a  typical micro-grid. The contribution of

the proposed approach lies in the fact that the modification of

the heuristic parameters inside the model is assigned to a  Fuzzy

Self Adaptive system in  contrast to the conventional methods. To

evaluate the performance of the proposed algorithm against the

other evolutionary optimization techniques, three different scenar-

ios have been introduced and the simulation results in the case of

each scenario have been gathered truly. The findings show that

with high incorporation of renewable energy sources, the total

effect on grid operation is considerable especially in  the case of

emission objective although the total cost of micro-grid increases

correspondingly in  the examined period of time. Moreover, provid-

ing a suitable means of power exchange between the micro-grid

and the utility in grid-connected mode can be beneficial in  terms

of both objectives. Furthermore, it’s investigated that using FSAPSO

in optimization schemes not only could be  the best respondent to

the planning needs but also satisfies emission/economic objectives

with acceptable precision.
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