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Abstract

In this paper, we provide a systematic methodology for calculating multi-order asymptotic
expansion of blow-up solutions near blow-up for autonomous ordinary differential equations
(ODEs). Under the specific form of the principal term of blow-up solutions for a class of
vector fields, we extract algebraic objects determining all possible orders in the asymptotic
expansions. Examples for calculating concrete multi-order asymptotic expansions of blow-up
solutions are finally collected.
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1 Introduction

Asymptotic expansion is an important and useful tool for analyzing concrete behavior of functions
or solutions of differential equations at infinity and/or near given points (e.g. [4]). Its importance
is widely understood in physical and mathematical problems in analyzing functions. A famous
investigation involving calculations of asymptotic expansion around given points, including singu-
larities, in the field of differential equations is the Painlevé test (e.g. [14, 25, 26]), which roughly
aims at verifying whether all solutions of differential equations of the form

du

dz
= f(z, u), z ∈ C (1.1)
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are single valued and all possible (movable) singularities z are poles. Note that the differential
equation whose solutions satisfy the above properties is often said to possess the Painlevé property.
In wide investigations for the criterion of the Painlevé property, a concept of resonance (e.g. [26])
has successfully played a key role in determining asymptotic expansion of solutions with their
dependence on initial points. The presence of resonance is algebraically verified and is applicable
even when solutions possess movable singularities. Conceptually, multi-order asymptotic expansion
of solutions is systematically determined once all resonances (around a given singularity z0, possibly
at infinity z0 = ∞) are determined.

Our main interest in the present paper is blow-up solutions of (autonomous) ordinary differential
equations (ODEs for short) depending on the real-time variable t:

dy

dt
= f(y), y(t0) = y0 ∈ Rn, (1.2)

where f : Rn → Rn is a smooth function. A solution y(t) is said to blow up at tmax < ∞ if its
modulus diverges as t → tmax − 0. The finite value tmax is known as the blow-up time. Properties
of blow-up solutions such as the existence and asymptotic behavior are of great importance in
the field of (ordinary, partial, delay, etc.) differential equations, and are widely investigated in
decades from many aspects (e.g. [5, 6, 8, 13, 15]). Asymptotic behavior of blow-up solutions is
often referred to as determination of blow-up rates, which is characterized as the following form:

y(t) ∼ u(θ(t)) as t → tmax,

for a function u, where
θ(t) = tmax − t

and tmax is assumed to be a finite value and to be known a priori. In many studies, however, the
function u is assumed to consist of a single term, and investigations of the concrete form of u as
a function with multiple terms are limited. One of the reasons could be the difficulty even for
deriving the principal term, namely the first term, of u except special cases (e.g. [9]). One would
expect that the similar approach to the Painlevé test can be applied to determining multi-order
asymptotic expansion of blow-ups. It should be mentioned here that the Painlevé test typically
begins with the anzatz of solutions being the Frobenius series1, namely

u(z) = (z − z0)
−ρ

∞∑

m=0

am(z − z0)
m, am ∈ C, (1.3)

when z0 is a regular singular point (cf. [4]). On the other hand, there is no guarantee that blow-up
solutions always admit the similar form to (1.3), namely

y(t) = θ(t)−ρ
∞∑

m=0

amθ(t)m, am ∈ R. (1.4)

In particular, no information about the successive terms of blow-up solutions is provided a priori in
general. Nevertheless, the blow-up time tmax is interpreted as a movable singularity in C because,

1In the linear homogeneous system, it is proved by Fuchs that the system admits solutions expressed by the
Frobenius series around regular singular points. This ansatz is typically applied to linear inhomogeneous equations
or nonlinear equations (cf. [14, 25, 26]). There is also a technique for calculating asymptotic expansions of solutions
around irregular singular points (e.g. [4]), which is omitted here since it is beyond our scope in the present study.

3



as far as the (complex) analytic continuation is admitted, the system (1.2) is also considered as
the system depending on complex time variable z restricted to {t ≡ Re z > 0}, and tmax depends
on initial points y0, and the multi-order asymptotic expansion of blow-up solutions contributes to
understanding the blow-up behavior itself in detail, and the classification of tmax as singularities,
as investigated in the Painlevé test.

In recent years, the third author and his collaborators have developed a framework to character-
ize blow-up solutions from the viewpoint of dynamics at infinity (e.g. [28, 29]) based on preceding
works (e.g. [12]) and have derived machineries of computer-assisted proofs for the existence of
blow-up solutions as well as their qualitative and quantitative features (e.g. [27, 30, 31, 33]). As
in the present paper, finite-dimensional vector fields with scale invariance in an asymptotic sense,
asymptotic quasi-homogeneity defined precisely in Definition 2.2, are mainly concerned. In this
framework, dynamics at infinity is appropriately characterized, and blow-up solutions are shown
to be characterized by dynamical properties of invariant sets, such as equilibria, “at infinity”. In
particular, hyperbolicity of such invariant sets induces the leading asymptotic approximation of
blow-up solutions of the form a0(tmax− t)−ρ as in (1.4) uniquely determined by the original vector
field. By means of the terminology in the field of (partial) differential equations, such blow-ups
are said to be type-I.

One would then expect that multi-order asymptotics of blow-up solutions can be clarified by
the dynamical property of invariant sets “at infinity”. In particular, some characteristics deter-
mining multi-order asymptotics, like the resonance in the Painlevé test, can be extracted from the
dynamical property of blow-up solutions.

The present subject, consisting of two papers, aims at providing a systematic methodology
to calculate multi-order asymptotic expansions of blow-up solutions for autonomous ODEs with
their justifications (Part I), and investigating the correspondence of the characterization of these
asymptotic expansions to dynamical properties of blow-up solutions (Part II). We pay attention to
multi-order asymptotics of type-I blow-ups and, with general asymptotic series of blow-up solutions
under an appropriate assumption, derive the associated system of differential equations which all
asymptotic terms are inductively solved.

The main result in the present paper is, under the above setting, to observe that the following
algebraic objects essentially determine all terms appeared in asymptotic expansions of blow-up
solutions:

• The balance law determining coefficients of the leading terms of blow-up solutions (Definition
3.2).

• The blow-up power-determining matrix determined by the quasi-homogeneous part of vector
fields and blow-up solutions (Definition 3.3).

• The blow-up power eigenvalues defined by eigenvalues of the blow-up power-determining
matrix (Definition 3.3).

The combination of standard integration of ODEs with the above algebraic objects, lower order
terms if exist, and typical assumptions in asymptotic expansions provide a systematic algorithm
to calculate asymptotic expansions of blow-up solutions of an arbitrary order. In particular, all
possible terms and parameter dependence of blow-up solutions are essentially determined by blow-
up power eigenvalues, and hence these eigenvalues play a role like resonance in the Painlevé test.
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The rest of this paper is organized as follows. In Section 2, the precise definition of the class of
vector fields we mainly treat is presented. We then introduce a function measuring the asymptotic
degree of functions with respect to θ(t), which plays a role in estimating asymptotic relations
among terms appeared in our asymptotic expansions of blow-up solutions.

In Section 3, we derive a systematic methodology to calculate multi-order asymptotic expansion
of (type-I) blow-up solutions under a mild assumption. Quasi-homogeneity of vector fields in an
asymptotic sense extracts algebraic objects essential to determine asymptotic expansions, which
shall be called blow-up power eigenvalues associated with blow-up solutions. More precisely, we
show that the vector fields along type-I blow-up solutions induce the matrices determined by the
quasi-homogeneous part of vector fields and coefficients of principal terms of blow-up solutions,
which are called blow-up power-determining matrices. Eigenvalues of such matrices, which are
exactly blow-up power eigenvalues in our terminology, and lower order terms of vector fields are
then shown to determine all possible terms in asymptotic expansion of blow-up solutions. Once
these objects are determined, standard integrator of linear ODEs yields asymptotic expansions of
blow-up solutions of an arbitrary order with the extraction of their parameter dependence in a
formal sense. Justification of such formal expansions as the asymptotic expansion of the original
blow-up solutions is also discussed under mild assumptions.

In Section 4, examples of multi-order asymptotic expansions of blow-up solutions are presented
for showing the applicability of our present methodology. Examples below aim at demonstrating
the following significance, respectively:

• Section 4.1 collects the simplest cases: the one-dimensional ODEs. We shall provide the basic
strategy based on the presented approach to determine multi-order asymptotic expansions
of blow-up solutions.

• Section 4.2 demonstrates the asymptotic expansion of blow-up solutions for a rational vector
field containing a component independent of scaling. In particular, an asymptotically quasi-
homogeneous vector field is treated.

• Sections 4.3 and 4.4 demonstrate blow-up solutions such that parameters in coefficients of
vector fields can affect the order of θ(t) in asymptotic expansions. In Section 4.3, a rational
vector field is treated. In Section 4.4, the third order asymptotic expansion is also calculated.

• Section 4.5 treats asymptotically quasi-homogeneous vector fields possessing two different
blow-up solutions whose orders of θ(t) in the first terms are identical.

• Section 4.6 treats asymptotically quasi-homogeneous vector fields possessing the similar type
of blow-ups to Section 4.5, while blow-up power-determining matrix admits a nontrivial Jor-
dan normal form. This section also exhibits an example of the presence of qualitatively
different asymptotic behavior of solutions among components. In the field of partial differ-
ential equations, this phenomenon is recognized as nonsimultaneous blow-up (e.g. [17, 18]).

Note that the first terms of all blow-up solutions listed here are already calculated in [28, 29] or
their references, while a criterion for determining the first terms of blow-ups is briefly reviewed in
Part II [23].

In Appendix, proofs of several statements in Section 3 are provided, where advanced machineries
in the theory of dynamical systems, such as time-variable compactifications for asymptotically
autonomous systems (e.g. [34]), are applied.
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Finally, several examples showing multi-order asymptotic expansions of blow-up solutions are
revisited in Part II [23], where the correspondence to dynamical properties obtained through desin-
gularized vector fields are also described.

2 Setting and the asymptotic degree of functions

Our main concern is the Cauchy problem of an autonomous system of ODEs

y′ =
dy(t)

dt
= f(y(t)), y(t0) = y0, (2.1)

where t ∈ [t0, T ) with t0 < T ≤ ∞, f : Rn → Rn is a Cr function with r ≥ 2 and y0 ∈ Rn. In
this section, we introduce a class of ODEs which we mainly treat, and a function measuring the
asymptotic degree of functions as t → tmax with respect to θ(t). We also provide several estimates of
such degrees we mainly use later to obtain multi-order asymptotic expansions of blow-up solutions.

Remark 2.1. In what follows, we shall use the following notations for describing asymptotic
relations based on [11]. Consider two real continuous functions f(ǫ), g(ǫ) defined on a small interval
(0, ǫ0] and asymptotic behavior as ǫ → +0.

• f = O(g) iff there are constant ǭ0 ∈ (0, ǫ0] and C > 0 such that |f(ǫ)| ≤ C|g(ǫ)| for all
ǫ ∈ (0, ǭ0].

• f = o(g), or f ≪ g iff limǫ→+0(f(ǫ)/g(ǫ)) exists and is 0.

• f ∼ g iff limǫ→+0(f(ǫ)/g(ǫ)) exists and is 1.

• f = Os(g) iff f = O(g) and f 6= o(g).

2.1 Asymptotically quasi-homogeneous vector fields

First of all, we review a class of vector fields in our present discussions.

Definition 2.2 (Asymptotically quasi-homogeneous vector fields, cf. [10, 28]). Let f0 : Rn → R

be a function. Let α1, . . . , αn be nonnegative integers with (α1, . . . , αn) 6= (0, . . . , 0) and k > 0.
We say that f0 is a quasi-homogeneous function2 of type α =(α1, . . . , αn) and order k if

f0(s
Λαx) = skf0(x) for all x = (x1, . . . , xn)

T ∈ Rn and s > 0,

where3

Λα = diag (α1, . . . , αn) , sΛαx = (sα1x1, . . . , s
αnxn)

T .

Next, let X =
∑n

i=1 fi(x)
∂

∂xi
be a continuous vector field on Rn. We say that X , or simply

f = (f1, . . . , fn)
T is a quasi-homogeneous vector field of type α =(α1, . . . , αn) and order k + 1 if

each component fi is a quasi-homogeneous function of type α and order k + αi.

2In preceding studies, all αi’s and k are typically assumed to be natural numbers. In the present study, on the
other hand, the above generalization is valid.

3Throughout the rest of this paper, real positive numbers or functions to the matrices are denoted in the similar
manner.
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Finally, we say that X =
∑n

i=1 fi(x)
∂

∂xi
, or simply f is an asymptotically quasi-homogeneous

vector field of type α =(α1, . . . , αn) and order k + 1 at infinity if there is a quasi-homogeneous
vector field fα,k = (fi;α,k)

n
i=1 of type α and order k + 1 such that

fi(s
Λαx)− sk+αifi;α,k(x) = o(sk+αi )

as s → +∞ uniformly for x = (x1, . . . , xn) ∈ Sn−1 ≡ {x ∈ Rn |∑n
i=1 x

2
i = 1}.

A fundamental property of quasi-homogeneous functions and vector fields is reviewed here.

Lemma 2.3. A C1 quasi-homogenous function f0 of type (α1, . . . , αn) and order k satisfies the
following differential equation:

n∑

l=1

αlyl
∂f0
∂yl

(y) = kf0(y). (2.2)

This equation is rephrased as
(∇yf0(y))

TΛαy = kf0(y).

Proof. Differentiating the identity
f0(s

Λαy) = skf0(y)

in s and put s = 1, we obtain the desired equation (2.2).

The same argument yields that, for any quasi-homogenenous function f0 of type α = (α1, . . . , αn)
and order k,

n∑

l=1

αls
αlyl

∂f0
∂yl

(sΛαy) = kskf0(y)

and

n∑

l=1

αl(αl − 1)sαlyl
∂f0
∂yl

(sΛαy) +

n∑

j,l=1

αjαl(s
αjyj)(s

αlyl)
∂2f0
∂yj∂yl

(sΛαy) = k(k − 1)skf0(y)

for any y ∈ Rn. In particular, each partial derivative satisfies

∂f0
∂yl

(sΛαy) = O
(
sk−αl

)
,

∂2f0
∂yj∂yl

(sΛαy) = O
(
sk−αj−αl

)
(2.3)

as s → 0,∞ for any y ∈ Rn, as long as f0 is C2 in the latter case. In particular, for any fixed
y ∈ Rn, both derivatives are O(1) as s → 1. In other words, we have quasi-homogeneous relations
for partial derivatives in the above sense.

Lemma 2.4. A quasi-homogeneous vector field f = (f1, . . . , fn) of type α =(α1, . . . , αn) and order
k + 1 satisfies the following differential equation:

n∑

l=1

αlyl
∂fi
∂yl

(y) = (k + αi)fi(y) (i = 1, . . . , n). (2.4)

This equation can be rephrased as

(Df)(y)Λαy = (kI + Λα) f(y). (2.5)
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Proof. By Lemma 2.3, we obtain (2.4). For (2.5), we recall that Df = (∂fi∂yl
) is Jacobian matrix,

while kI +Λα is the diagonal matrix with diagonal entries k+αi. Finally y = (y1, . . . , yn)
T is the

column vector, so that the left-hand side of (2.5) is the product of two matrices and one column
vector.

Throughout successive sections, consider an (autonomous) Cr vector field (2.1) with r ≥ 2,
where f : Rn → Rn is asymptotically quasi-homogeneous of type α = (α1, . . . , αn) and order k+1
at infinity.

2.2 The asymptotic degree of functions as t → tmax

Our concern here is to introduce a quantity to measure the asymptotic behavior of functions as
t → tmax−0 so that a given series of functions, in particular describing blow-up solutions, is verified
to be an asymptotic series as t → tmax − 0. To this end, we shall introduce the asymptotic degree
of continuous scalar- and vector-valued functions as t → tmax − 0. It should be a generalization
of degree of polynomials and rational functions. The following notion indeed generalizes such
well-known degree only in a neighborhood of tmax with t < tmax.

Definition 2.5 (Asymptotic degree degθ). For a given scalar-valued function h = h(t), let

Ih := {γ ∈ R | h(t) = o(θ(t)γ) as t → tmax − 0} (2.6)

and
degθ(h) := sup Ih. (2.7)

For a given n-vector-valued function h = h(t) ≡ (h1(t), . . . , hn(t))
T , define

degθ(h) := min
i=1,...,n

degθ(hi).

The value degθ measures the behavior of functions with respect to the power function θ(t)γ as
t → tmax − 0, and generalizes the degree of polynomial functions of θ(t). Indeed, degθ is defined
as suprema of γ satisfying the corresponding asymptotic estimates because various elementary
functions such as logarithmic ones are also taken into account. For example, as s → +0, f0(s) = ln s
is o(sa) for any a < 0, whereas f0(s) 6= O(1). On the other hand, the above definition is consistent
with the asymptotic relation of the identically zero function4. Indeed, if h(t) ≡ 0, the definition
implies that degθ(h) = ∞ and is consistent with the asymptotic relation limt→tmax−0 h(t)θ(t)

−γ = 0
for any γ ∈ R.

2.2.1 Fundamental properties

Fundamental properties of degθ used in the successive arguments are summarized here. First, we
have the following properties by definition.

Lemma 2.6. Let Ih be the set given in (2.6) for a scalar function h(t).

1. If Ih 6= R, it is the interval of the form (−∞, γh) or (−∞, γh) for some γh ∈ R.

4This consistency is also valid for exponentially decaying functions, which can be applied to extending the present
results in future works.
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2. If f(t) ≤ g(t) holds for all t near and less than tmax, then degθ(g) ≤ degθ(f).

Proof. 1. γ ∈ Ih and γ′ < γ imply γ′ ∈ Ih.

2. The assumption implies Ig ⊂ If , and hence the statement holds.

The degree of several elementary functions are collected below, which are fully applied to
estimating the orders of functions in asymptotic expansions of blow-up solutions.

Example 2.7. The results below follow from the definition.

• degθ(c) = 0 for any constant c 6= 0.

• degθ(0) = +∞.

• degθ(θ(t)
γ) = γ.

• ln θ(t) = o(θ(t)γ) for any γ < 0, while limt→tmax−0 ln θ(t) = −∞. Therefore degθ(ln θ(t)) = 0.

• cos(λ ln θ(t)) = Os(1) and hence degθ(cos(λ ln θ(t))) = 0.

• sin(λ ln θ(t)) = Os(1) and hence degθ(sin(λ ln θ(t))) = 0.

Next, we summarize basic several asymptotic relations based on the l’Hôpital’s theorem so
that readers who are not familiar with asymptotic relations can easily understand the subsequent
arguments.

Lemma 2.8 (cf. [4]). For a given x0 ∈ R and a real-valued function f = f(x) continuous
in (x0 − δ, x0) for some δ > 0, let Ff (x) be a primitive function of f(x). Then the following
asymptotic relations hold as x → x0 − 0; if f(x) ∼ a(x0 − x)−b(ln(x0 − x))M with M ∈ Z≥0,

1. Ff (x) ∼ [−a/(1− b)](x0 − x)1−b(ln(x0 − x))M if b > 1.

2. assuming b < 1 and if Ff (x) of f(x) is chosen to vanish as x → x0 − 0, then Ff (x) ∼
[−a/(1− b)](x0−x)1−b(ln(x0−x))M , otherwise Ff (x) ∼ C, where C is a non-zero constant.

In the former case, we further obtain Ff (x) = o((x0 −x)1−b−ǫ) for any ǫ > 0 as x → x0 − 0.

3.
∫ x0

x f(η)dη ≡
(

lim
x→x0−0

Ff (x)

)

− Ff (x) ∼ [a/(1− b)](x0 − x)1−b(ln(x0 − x))M if b < 1.

4. Ff (x) ∼ a
M+1 (ln(x0 − x))M+1 if b = 1.

Proof. The l’Hôpital’s theorem and the assumption yield

Ff (x) ∼ a

∫ x

(x0 − η)−b(ln(x0 − η))Mdη as x → x0 − 0,

provided that both sides diverge, or converge to 0. The right-hand side is given as

a

{
M∑

l=0

M !

(M − l)!

( −1

1− b

)l+1

(ln(x0 − x))M−l

}

(x0 − x)1−b + C

9



with the integral constant C, provided b 6= 1. In particular, we have

a

∫ x

(x0 − η)−b(ln(x0 − η))Mdη ∼ −a

1− b
(x0 − x)1−b(ln(x0 − x))M + C.

Note that the right-hand side converges to C as x → x0 − 0 if b < 1.
Now we prove our statements. If b > 1, the function (x0 − x)1−b(ln(x0 − x))M diverges as

x → x0 − 0 and hence

a

∫ x

(x0 − η)−b(ln(x0 − η))Mdη ∼ −a

1− b
(x0 − x)1−b(ln(x0 − x))M ,

which shows the first statement. On the other hand, if b < 1, then

a

∫ x

(x0 − η)−b(ln(x0 − η))Mdη ∼ C

provided C 6= 0, because (x0 − x)1−b(ln(x0 − x))M converges to 0 as x → x0 − 0 and hence the
constant C is dominant as x → x0 − 0, while (x0 − x)1−b(ln(x0 − x))M becomes dominant when
Ff (x) → 0 as x → x0 − 0. Moreover, we have

lim
x→x0−0

(x0 − x)1−b(ln(x0 − x))M

(x − x0)1−b−ǫ
= lim

x→x0−0

(ln(x0 − x))M

(x0 − x)−ǫ
= 0

for any ǫ > 0. As a summary, we have the second statement.

Consider the integral
∫ x0

x f(η)dη instead, assuming b < 1. By the l’Hôpital’s theorem, we have
∫ x0

x

f(η)dη ∼ a

∫ x0

x

(x0 − η)−b(ln(x0 − η))Mdη as x → x0 − 0.

The integral of the right-hand side is

a

∫ x0

x

(x0 − η)−b(ln(x0 − η))Mdη = −a

{
M∑

l=0

M !

(M − l)!

( −1

1− b

)l+1

(ln(x0 − x))M−l

}

(x0 − x)1−b,

because b < 1. Substituting this identity into the asymptotic relation, we have
∫ x0

x

f(η)dη ∼ a

1− b
(x0 − x)1−b(ln(x0 − x))M as x → x0 − 0,

namely, we have the third statement.

We go back to the primitive function Ff (x). When b = 1, direct calculation yields

a

∫ x

(x0 − η)−1(ln(x0 − η))Mdη =
−a

M + 1
(ln(x0 − x))M+1 + C

with a constant C. Therefore we have

a

∫ x

(x0 − η)−1(ln(x0 − η))Mdη ∼ −a

M + 1
(ln(x0 − x))M+1 as x → x0 − 0

and hence the last statement is proved.
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Based on the above arguments, we have the following basic estimates of degθ involving integrals,
depending on powers.

Lemma 2.9. For any t0 < tmax, the following results hold.

1. If γ ≤ −1,

degθ

(∫ t

t0

θ(η)γdη

)

= γ + 1.

2. If γ > −1,

degθ

(∫ tmax

t

θ(η)γdη

)

= γ + 1.

3. If γ > −1, there is a constant C ∈ R such that

degθ

(∫ t

t0

θ(η)γdη + C

)

≥ γ + 1.

Proof. 1. If γ < −1,

1

θ(t)γ+1

∫ t

t0

θ(η)γdη =
1

θ(t)γ+1

−1

γ + 1
(θ(t)γ+1 − θ(t0)

γ+1)

=
−1

γ + 1
(1− (θ(t)/θ(t0))

−(γ+1))

→ −1

γ + 1
as t → tmax − 0.

If γ = −1,
∫ t

t0

θ(η)γdη = ln
θ(t0)

θ(t)
,

which implies, for any γ̃ > 0,

θ(t)γ̃
∫ t

t0

θ(η)γdη = θ(t)γ̃ ln
θ(t0)

θ(t)
→ 0

holds as t → tmax − 0.

2. If γ > −1,

1

θ(t)γ+1

∫ tmax

t

θ(η)γdη =
1

θ(t)γ+1

1

γ + 1
(θ(t)γ+1 − θ(tmax)

γ+1) =
1

γ + 1
.

3. Similar to the previous arguments, we have

∫ t

t0

θ(η)γdη =
1

γ + 1
(θ(t0)

γ+1 − θ(t)γ+1) → θ(t0)
γ+1

γ + 1

11



as t → tmax − 0, which yields

degθ

(∫ t

t0

θ(η)γdη

)

=

{

γ + 1 if θ(t0) = 0,

0 otherwise.

Let Θγ(t) be a primitive function of θ(t)γ . Note that, for any constant C ∈ R, Θγ(t) + C is
also a primitive function of θ(t)γ , and that C can be chosen so that the corresponding primitive
function Θ0

γ(t) converges to 0 as t → tmax − 0. In the present case, we see that

degθ
(
Θ0

γ(t)
)
= γ + 1 letting Θ0

γ(t) = −(γ + 1)−1θ(t)γ+1. (2.8)

The fundamental properties of degθ are stated below.

Proposition 2.10. Consider real-valued continuous functions f0(t), g0(t) defined in [t0, tmax) with
tmax < ∞. Let γf0 = degθ(f0(t)) and γg0 = degθ(g0(t)).

1. If f0(t) ∼ aθ(t)−b(ln θ(t))M with a 6= 0 as t → tmax − 0, we have

degθ

(∫ t

f0(η)dη

)

=

{

0 if b < 1 and the integral constant C is not 0,

1− b otherwise.

2. degθ(f0(t) + g0(t)) ≥ min{γf0 , γg0}.

3. degθ(f0(t)g0(t)) ≥ γf0 + γg0 .

4. If γf0 ≤ −1, then degθ

(∫ t

t0
f0(η)dη

)

≥ γf0 + 1.

5. If γf0 > −1, then degθ

(∫ tmax

t f0(η)dη
)

≥ γf0 + 1.

6. If γf0 > −1, for the primitive function Ff0(t) of f0(t) satisfying5 lim
t→tmax−0

Ff0(t) = 0, we

have degθ (Ff0(t)) ≥ γf0 + 1.

Remark 2.11. When γf0 > −1 we have

degθ

(∫ t

t0

f0(η)dη

)

= 0

unless integral constants are chosen appropriately (cf. Lemmas 2.8-2 and 2.9-3).

5If γf0 > −1, the improper integral converges to a finite value. In particular, the limit lim
t→tmax−0

Ff0 (t) exists.
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Proof. Statement 1 is just the paraphrase of Lemma 2.8.
Next we prove Statement 2. If γ ∈ If0 ∩ Ig0 , then

lim
t→tmax

f0(t) + g0(t)

θ(t)γ
= lim

t→tmax

f0(t)

θ(t)γ
+ lim

t→tmax

g0(t)

θ(t)γ
= 0 + 0 = 0,

which implies that γ ∈ If0+g0 . In other words, If0 ∩ Ig0 ⊂ If0+g0 . The statement then follows by
taking the supremum on both sides.

Next we prove Statement 3. Let γf0 ∈ If0 and γg0 ∈ Ig0 . Our claim is to prove γf0 +γg0 ∈ If0g0 ,
which follows from the relation

lim
t→tmax

f0(t)g0(t)

θ(t)γf0
+γg0

= lim
t→tmax

f0(t)

θ(t)γf0
lim

t→tmax

g0(t)

θ(t)γg0
= 0 · 0 = 0,

which implies that
If0 + Ig0 ≡ {γ1 + γ2 | γ1 ∈ If0 , γ2 ∈ Ig0} ⊂ If0g0 .

The statement then follows by taking the supremum on both sides.

Next, we prove Statement 4. For all γ < γf0 , the relation

lim
t→tmax−0

f0(t)

θ(t)γ
= 0

implies that
|f0(t)| ≤ θ(t)γ near t = tmax.

Then it follows from Lemma 2.6 that

degθ

(∫ t

t0

f0(η)dη

)

≥ degθ

(∫ t

t0

|f0(η)|dη
)

≥ degθ

(∫ t

t0

θ(t)γdη

)

= γ + 1,

which proves the statement. Note that the rightmost equality follows from Lemma 2.9.

Next, we prove Statement 5. For all γ ∈ (−1, γf0), the relation

lim
t→tmax−0

f0(t)

θ(t)γ
= 0

implies that

degθ

(∫ tmax

t

f0(η)dη

)

≥ degθ

(∫ tmax

t

|f0(η)|dη
)

≥ degθ

(∫ tmax

t

θ(t)γdη

)

= γ + 1,

which proves the statement.

Finally, we prove the statement 6. Consider γ < γf0 . Let Θ0
γ(t) be the primitive function of

θ(t)γ given in (2.8). By assumption, the l’Hôpital’s theorem can be applied to Ff0 and Θ0
γ(t),

indicating

lim
t→tmax−0

Ff0(t)

Θ0
γ(t)

= lim
t→tmax−0

f0(t)

θ(t)γ
= 0.

Because γ < γf0 can be chosen arbitrarily, we have degθ(Ff0(t)) ≥ γf0 + 1.
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2.2.2 Degree and the fundamental matrices of Euler-type homogeneous ODEs

As seen in Section 3, the fundamental matrix of the following homogeneous system is fully applied
to asymptotic expansions of blow-up solutions:

dv

dt
= θ(t)−1Av, A ∈ Mn(R).

The fundamental matrix is given by θ(t)−A = exp(−A ln θ(t)) = (θ(t)A)−1. Any matrix A ∈
Mn(R) and the associated fundamental matrix θ(t)A has the following real Jordan normal forms,
respectively:

P−1AP = J1(λ1)⊕ · · · ⊕ Jdr
(λdr

)⊕K1(λre,1, λim,1)⊕ · · · ⊕Kdc
(λre,dc

, λim,dc
),

P−1θ(t)AP = θ(t)J1(λ1) ⊕ · · · ⊕ θ(t)Jdr (λdr ) ⊕ θ(t)K1(λre,1,λim,1) ⊕ · · · ⊕ θ(t)Kdc (λre,dc ,λim,dc ),
(2.9)

where

B1 ⊕B2 ⊕ · · · ⊕Bm ≡








B1 O
B2

. . .

O Bm








, B⊕s = B ⊕ · · · ⊕B
︸ ︷︷ ︸

s

for any real squared matrices B,B1, . . . , Bm, and the above real Jordan blocks are expressed by

Jl(λ) = λIml
+Nml

, Nml
=











0 1 O
0 1

0
. . .

. . . 1
O 0











∈ Mml
(R), (2.10)

Kl(λre, λim) = R(λre, λim)⊕sl +N2
2sl

, R(λre, λim) =

(
λre λim

−λim λre

)

. (2.11)

Here Im denotes the m-dimensional identity matrix. The scalar function θ(t) to the above matrices
are given as follows:

θ(t)Jl(λ) = θ(t)λ
(

Iml
+ ℓ(t)Nml

+
ℓ(t)2

2!
N2

ml
+ · · ·+ ℓ(t)ml−1

(ml − 1)!
Nml−1

ml

)

,

θ(t)Kl(λre,λim) = θ(t)λreR(cos(λimℓ(t)), sin(λimℓ(t)))⊕sl

·
(

I2sl + ℓ(t)N2
2sl

+
ℓ(t)2

2!
N4

2sl
+ · · ·+ ℓ(t)sl−1

(sl − 1)!
N

2(sl−1)
2sl

)

,

ℓ(t) = ln(θ(t)).

This Jordan normal form shows that the matrix θ(t)A, as well as θ(t)−A, consists of functions
θ(t)γ , ln θ(t), cos(λ ln θ(t)) and sin(λ ln θ(t)). The degree degθ of functions appeared in the above
fundamental matrix are collected in Example 2.7. Combining with Proposition 2.10, we obtain the
following inequalities.
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Proposition 2.12. For any real m-dimensional and 2m-dimensional vector-valued continuous
functions am(t) and b2m(t) defined in (t0, tmax) with tmax < ∞ and any constant matrix P ∈
Mm(R), we have

degθ (Pam(t)) ≥ degθ (am(t)) , (2.12)

degθ

(

θ(t)J(λ)am(t)
)

≥ λ+ degθ (am(t)) , (2.13)

degθ

(

θ(t)K(λre,λim)b2m(t)
)

≥ λre + degθ (b2m(t)) , (2.14)

where J(λ) and K(λre, λim) are m-dimensional and 2m-dimensional Jordan matrices of the form
(2.10) and (2.11), respectively.

Proof. By Example 2.7, the values of degθ for each entry of the constant matrix P is either +∞
or 0. The first statement then follows from the combination of statements in Proposition 2.10.
Similarly, the values of degθ for each entry in θ(t)J(λ) are identically either +∞ or λ, while those
for each entry in θ(t)K(λre,λim) are identically either +∞ or λre. The conclusion then follows from
the combination of statements in Proposition 2.10.

We further consider the asymptotic degree of the fundamental matrix on invariant subspaces
of A. In general, eigenvalues of A with positive (resp. negative) real parts associate the invariant
projector P+ (resp. P−) such that AP− = P−A (resp. AP+ = P+A) and that Image (P+) (resp.
Image (P−)) is generated by (generalized) eigenvectors A associated with eigenvalues with (resp.
negative) real parts6. Now Rn possesses the following decomposition into the invariant subspaces
associated with {λ ∈ Spec(A) | Reλ > 0}, {λ ∈ Spec(A) | Reλ = 0} and {λ ∈ Spec(A) | Reλ < 0},
respectively (e.g. [7, 32]):

Rn = Eu
A ⊕ Ec

A ⊕ Es
A. (2.15)

Let P+ be the invariant projector onto Eu
A and P− be the invariant projector onto Es

A. In particular,
we have

AP± = P±A, θ(t)AP± = P±θ(t)
A

for any t < tmax under our considerations.
Our interest here is the asymptotic degree of vector-valued functions of the form θ(t)−AP±h(t).

The following estimates are mainly used to construct asymptotic expansions of blow-ups.

Proposition 2.13. Let h(t) be a continuous n-vector-valued function with degθ(h(t)) = γ > −1.
Then the following inequalities hold:

degθ

(

P−

(

C+

∫ t

t0

(
θ(η)

θ(t)

)A

h(η)dη

))

≥ min






min

λ∈Spec(A),
Reλ<0

(−Reλ), γ + 1






, (2.16)

degθ

(
∫ tmax

t

(
θ(η)

θ(t)

)A

P+h(η)dη

)

≥ γ + 1, (2.17)

6The invariant projector onto the invariant subspace associated with purely imaginary eigenvalues is also provided
in general, but it is out of our interest in the present argument.
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where C ∈ Rn is a constant vector. Finally, let P−1AP = Λ be the Jordan normal form of the

matrix A and Hh(t) be the primitive function of
(

θ(t)
θ(t0)

)Λ

P−1P−h(t) such that

lim
t→tmax−0

(Hh(t))i = 0 whenever degθ

({(
θ(t)

θ(t0)

)Λ

P−1P−h(t)

}

i

)

> −1. (2.18)

Then we have

degθ

(

P

(
θ(t)

θ(t0)

)−Λ

P−Hh(t)

)

≥ γ + 1. (2.19)

Proof. First, for fixed η ∈ [t0, t], apply the normalization to (θ(η)/θ(t))A following (2.9):

P−1

(
θ(η)

θ(t)

)A

P =

(
θ(η)

θ(t)

)J1(λ1)

⊕ · · · ⊕
(
θ(η)

θ(t)

)Jdr (λdr )

⊕
(
θ(η)

θ(t)

)K1(λre,1,λim,1)

⊕ · · · ⊕
(
θ(η)

θ(t)

)Kdc (λre,dc ,λim,dc )

.

Letting P
(r)
l be the invariant projector onto the invariant subspace associated with the real eigen-

value λl, we have

(
θ(η)

θ(t)

)A

P
(r)
l h(η) = P

(

0⊕ · · · ⊕ 0⊕
(
θ(η)

θ(t)

)Jl(λl)

⊕ 0⊕ · · · ⊕ 0

)

P−1P
(r)
l h(η)

≡ P

(
θ(η)

θ(t)

)Jl(λl)

P−1P
(r)
l h(η). (2.20)

Similarly, letting P
(c)
l be the invariant projector onto the invariant subspace associated with the

complex conjugate eigenvalues {λre,l ±
√
−1λim,l}, we have

(
θ(η)

θ(t)

)A

P
(c)
l h(η) = P

(

0⊕ · · · ⊕ 0⊕
(
θ(η)

θ(t)

)Kl(λre,l,λim,l)

⊕ 0⊕ · · · ⊕ 0

)

P−1P
(c)
l h(η)

≡ P

(
θ(η)

θ(t)

)Kl(λre,l,λim,l)

P−1P
(c)
l h(η).

Now consider the integral
∫ t

t0

(
θ(η)

θ(t)

)A

P
(r)
l h(η)dη. (2.21)

The integral is also written as

∫ t

t0

(
θ(η)

θ(t)

)A

P
(r)
l h(η)dη =

∫ t

t0

P

(
θ(η)

θ(t)

)Jl(λl)

P−1P
(r)
l h(η)dη

= Pθ(t)−Jl(λl)

∫ t

t0

θ(η)Jl(λl)P−1P
(r)
l h(η)dη. (2.22)
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Moreover, if the improper integral

I1 =

∫ tmax

t0

θ(η)Jl(λl)P−1P
(r)
l h(η)dη

converges, then the integral is also written as

∫ t

t0

(
θ(η)

θ(t)

)A

P
(r)
l h(η)dη

= Pθ(t)−Jl(λl)

∫ tmax

t0

θ(η)Jl(λl)P−1P
(r)
l h(η)dη − Pθ(t)−Jl(λl)

∫ tmax

t

θ(η)Jl(λl)P−1P
(r)
l h(η)dη

≡ Pθ(t)−Jl(λl)(I1 + I2(t)). (2.23)

Now we have

degθ

(

θ(t)ΛP−1P
(r)
l h(t)

)

≥ λl + γ, degθ

(

θ(t)ΛP−1P
(c)
l h(t)

)

≥ Reλre,l + γ. (2.24)

by using Proposition 2.12. There are two cases depending on the value

νl := degθ

(

θ(t)Jl(λl)P−1P
(r)
l h(t)

)

. (2.25)

From (2.24), we have νl ≥ λl + γ.

Case 1. νl ≤ −1.

In this case, the integral (2.21) with the equivalent form (2.22) is directly estimated through
Proposition 2.10-4 to obtain

degθ

(∫ t

t0

θ(η)Jl(λl)P−1P
(r)
l h(η)dη

)

≥ νl + 1

≥ λl + γ + 1.

Therefore

degθ

(

Pθ(t)−Jl(λl)

{∫ t

t0

θ(η)Jl(λl)P−1P
(r)
l h(η)dη

})

≥ γ + 1 (2.26)

by Proposition 2.12. In particular, for any constant vector C, we have

degθ

(

Pθ(t)−Jl(λl)

{

C+

∫ t

t0

θ(η)Jl(λl)P−1P
(r)
l h(η)dη

})

≥ min{−λl, γ + 1}

from Proposition 2.10-2.

Case 2. νl > −1.
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In this case, the improper integral I1 converges and the integral (2.21) with the equivalent form
(2.23) is considered, instead of (2.22). Proposition 2.10 yields

degθ

(

Pθ(t)−Jl(λl)(I1 + I2(t))
)

≥ min
{

degθ

(

Pθ(t)−Jl(λl)I1

)

, degθ

(

Pθ(t)−Jl(λl)I2(t)
)}

,

degθ

(

Pθ(t)−Jl(λl)I1

)

≥ −λl,

degθ (I2(t)) ≥ νl + 1 (from Proposition 2.10-5)

≥ λl + γ + 1,

degθ

(

Pθ(t)−Jl(λl)I2(t)
)

≥ γ + 1. (2.27)

Combining two cases, we have
(

θ(t)

θ(t0)

)−A

P
(r)
l

(

C+

∫ t

t0

(
θ(η)

θ(t0)

)A

h(η)dη

)

≥ min{−λl, γ + 1}

for any constant vector C ∈ Rn, where we have used the commutativity

P
(r)
l

(
θ(η)

θ(t0)

)A

=

(
θ(η)

θ(t0)

)A

P
(r)
l

for any η ∈ [t0, t], thank to the fact that P
(r)
l is an invariant projector. The similar estimates follow

replacing λl and P
(r)
l by λre,l and P

(c)
l , respectively, for the case of complex conjugate eigenvalues.

The inequality (2.16) then follows from the property of projections

P− =
∑

l;λl<0

P
(r)
l +

∑

l;Reλre,l<0

P
(c)
l .

As for P+, the inequality (2.17) follows from (2.27) and

P+ =
∑

l;λl>0

P
(r)
l +

∑

l;Reλre,l>0

P
(c)
l .

Finally consider the last inequality (2.19). Our main interest here is (2.20) replacing θ(t) by
θ(t)/θ(t0). Let νl be the asymptotic degree defined in (2.25). If νl < −1, our statement is exactly
(2.26). Note that we have used the fact that Re (−λl) > 0 ≥ νl + 1 in the present setting.

Now consider the case when νl > −1. In this case, the improper integral

lim
t→tmax−0

∫ t

t0

(
θ(η)

θ(t0)

)Jl(λl)

P−1P
(r)
l h(η)dη

converges. Let Hh;l(t) be the primitive function of (θ(t)/θ(t0))
Jl(λl) P−1P

(r)
l h(t) such that (2.18)

holds, which is n-vector-valued. Proposition 2.10-6 yields that

degθ
(
Hh;l(t)

)
≥ νl + 1

and hence

degθ

(

P

(
θ(t)

θ(t0)

)−Jl(λl)

P−Hh;l(t)

)

≥ νl − λl + 1 ≥ γ + 1,

which completes our proof through the composition of the projection P−.
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3 Asymptotic expansion of type-I blow-ups

Now we move to provide a systematic methodology for deriving asymptotic expansions of blow-up
solutions. When blow-up solutions are supposed to be given a priori, one of the main issues in
blow-up studies is to characterize rough asymptotic behavior of blow-up solutions, well-known as
the blow-up rates. Our aim here is to obtain successive terms of such blow-up solutions towards
the precise description of blow-up behavior.

3.1 The fundamental setting

In the present study, we only pay attention to blow-up solutions y(t) of (2.1) possessing the
following asymptotic behavior.

Assumption 3.1. The asymptotically quasi-homogeneous system (2.1) of type α and the order
k + 1 admits a solution

y(t) = (y1(t), . . . , yn(t))
T

which blows up at t = tmax < ∞ with the asymptotic behavior

yi(t)∼ ciθ(t)
−αi/k, t → tmax − 0, i = 1, . . . , n, (3.1)

for some constants ci ∈ R.

Under Assumption 3.1, we shall write the blow-up solution y(t) as y(t) = θ(t)−
1
k
ΛαY(t),

equivalently
yi(t) = θ(t)−αi/kYi(t), Y(t) = (Y1(t), . . . , Yn(t))

T , (3.2)

and determine the concrete form of the factor Y(t).
As the first step, decompose the vector field f into two terms as follows:

f(y) = fα,k(y) + fres(y),

where fα,k is the quasi-homogeneous component of f and fres is the residual (i.e., lower-order)
terms. The componentwise expressions are

fα,k(y) = (f1;α,k(y), . . . , fn;α,k(y))
T , fres(y) = (f1;res(y), . . . , fn;res(y))

T ,

respectively. Substituting (3.2) into (2.1), we have

αi

k
θ(t)−αi/k−1Yi + θ(t)−αi/kY ′

i = fi;α,k(y) + fi;res(y)

= θ(t)−(k+αi)/kfi;α,k(Y) + fi;res(y),

where we have used the quasi-homogeneity of fα,k(y) in the last equality. Multiplying (tmax−t)
αi
k
+1

for each i, we finally have

θ(t)
d

dt
Yi = −αi

k
Yi + fi;α,k(Y) + θ(t)

αi
k

+1fi;res(θ(t)
− 1

k
ΛαY)
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with the vector form

θ(t)
d

dt
Y = − 1

k
ΛαY + fα,k(Y) + θ(t)

1
k
Λα+Ifres(θ(t)

− 1
k
ΛαY), (3.3)

θ(t)
1
k
Λα ≡ diag

(

θ(t)α1/k, . . . , θ(t)αn/k
)

.

Another form equivalent to (3.3) is

d

dt
Y = θ(t)−1

{

− 1

k
ΛαY + fα,k(Y)

}

+ θ(t)
1
k
Λαfres(θ(t)

− 1
k
ΛαY). (3.4)

While the residual term fi;res(θ(t)
− 1

k
ΛαY) can diverge as t → tmax−0, the product θ(t)

1
k
Λα+Ifres(θ(t)

− 1
k
ΛαY)

goes to zero as t → tmax − 0 from the asymptotic quasi-homogeneity of f .
The system (3.4) is actually nonautonomous, but the most singular term θ(t)−1

{
− 1

kΛαY + fα,k(Y)
}

as t → tmax − 0 has the common t-dependence θ(t)−1. We thus focus on this singular term and
consider the expansion of vector fields so that the linearization at an appropriate point and nor-
malization of the system at the point can be applied to deriving the function Y(t) step by step.

3.2 Balance law

First note that the asymptotic behavior (3.1) indicates the fact that the function Y(t) is as smooth
as f in t < tmax and there is a non-zero vector Y0 ∈ Rn satisfying

Y(t) = Y0 + Ỹ(t), Y0 = (Y0,1, . . . , Y0,n)
T , lim

t→tmax−0
Ỹ(t) = 0 ∈ Rn. (3.5)

The constant term Y0 determines the complete form of the lowest order term of Y(t). This term
can be determined as a root of the time-independent system associated with (3.3). Taking the
limit t → tmax − 0 in (3.3), we observe with continuity of the vector field and Y = Y(t) that the
system must satisfy

1

k
ΛαY0 = fα,k(Y0), (3.6)

provided that θ(t)dYdt = o(θ(t)) holds as t → tmax, which have to be justified later7.

Definition 3.2. We call the equation (3.6) a balance law for the blow-up solution y(t).

Note that (nonzero) roots of the balance law are not always uniquely determined. In other
words, the equation (3.6) can have multiple different solutions.

3.3 Multi-order asymptotic expansions

We shall determine the non-constant term Ỹ(t). Assume that a nonzero root Y0 of the balance
law (3.6) is obtained. We do not know the concrete form of Ỹ(t) at present8. We then expand

7By Theorem 3.8, this asymptotic relation is proved to be valid. See Remark 3.9.
8We would try to express Ỹ(t) as an asymptotic power series, but there is no guarantee that Ỹ(t) can be

expressed as power series, as mentioned in Introduction.
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Ỹ(t) as the general asymptotic series

Y(t) = Y0 + Ỹ(t),

Ỹ(t) =

∞∑

j=1

Yj(t), Yj(t) ≪ Yj−1(t) (t → tmax − 0), j = 1, 2, . . . , (3.7)

Yj(t) = (Yj,1(t), . . . , Yj,n(t))
T , j = 1, 2, . . .

and solve Yj(t) through the balance law for each j inductively as the general framework of local
asymptotic analysis for ordinary differential equations (cf. [4]), where the asymptotic relation
Yj(t) ≪ Yj−1(t) for vector-valued functions are considered componentwise. Note that all the
arguments below are valid only near t = tmax with t < tmax.

3.3.1 The blow-up power-determining matrix and the blow-up power eigenvalues

Apply the Taylor’s theorem to the right-hand side of (3.4) at Y = Y0:

d

dt
Ỹ = θ(t)−1

[(

− 1

k
Λα +Dfα,k(Y0)

)

Ỹ +Rα,k(Y)

]

+ θ(t)
1
k
Λαfres

(

θ(t)−
1
k
ΛαY

)

, (3.8)

Rα,k(Y) = fα,k(Y) −
{

fα,k(Y0) +Dfα,k(Y0)Ỹ
}

,

where all terms involving the balance law (3.6) are cancelled. The remainder of the Taylor expan-
sion of fα,k is expressed as Rα,k and note that Rα,k(Y0) = 0.

Now we derive a governing system for the second term Y1 eliminating all possible negligible
terms. From (3.7), the principal term of the left-hand side will be dY1/dt, which have to be
verified later (see the sentence before Remark 3.6). On the other hand, the principal terms in

the right-hand side will involve the linear part (− 1
kΛα +Dfα,k(Y0))Ỹ and fres

(

θ(t)−
1
k
ΛαY0

)

. In

other words, the other parts are negligible as t → tmax, compared with the above terms9. As a
summary, the asymptotically governing system for Y1 as t → tmax − 0 we consider is

d

dt
Y1 = θ(t)−1

{

− 1

k
Λα +Dfα,k(Y0)

}

Y1 + θ(t)
1
k
Λαfres(θ(t)

− 1
k
ΛαY0), (3.9)

which is inhomogeneous and linear. Moreover, the coefficient of the homogeneous part is the
product of θ(t)−1 and a constant matrix. We can therefore apply the fundamental matrix of linear
homogeneous systems with constant coefficient matrix to obtaining the general form of solutions.
In concrete problems, we can transform this constant matrix to a canonical form through a constant
matrix and reduce the problem to n inhomogeneous differential equations of the first order. The
constant matrix − 1

kΛα +Dfα,k(Y0) plays a key role in our asymptotic analysis.

Definition 3.3 (Blow-up power eigenvalues). Suppose that a nonzero root Y0 of the balance law
(3.6) is given. We call the constant matrix

A = − 1

k
Λα +Dfα,k(Y0) (3.10)

9If our interests are only several lower terms, the governing part from the remaining term can be eliminated.
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the blow-up power-determining matrix for the blow-up solution y(t), and call the eigenvalues
{λi}ni=1 ≡ Spec(A) the blow-up power eigenvalues, where eigenvalues with nontrivial multiplic-
ity are distinguished in this expression, except specifically noted.

Using the matrix A, (3.8) is simply rewritten as follows:

d

dt
Ỹ = θ(t)−1

[

AỸ +Rα,k(Y)
]

+ θ(t)
1
k
Λαfres

(

θ(t)−
1
k
ΛαY

)

.

Similarly, the linear system (3.9) is rewritten as follows:

d

dt
Y1 = θ(t)−1AY1 + g1(t), g1(t) = θ(t)

1
k
Λαfres(θ(t)

− 1
k
ΛαY0). (3.11)

3.3.2 Multi-order asymptotic expansions

Let Ψ(t) ≡ θ(t)−A be the fundamental matrix of the homogeneous system

d

dt
Y1 = θ(t)−1AY1.

Also, let Rn = Eu
A ⊕ Ec

A ⊕ Es
A be the decomposition of Rn into the invariant subspaces associated

with Spec(A) mentioned in (2.15). The following proposition provides a simple form of Y1(t)
satisfying the asymptotic relation (3.7) with j = 1 which is convergent under a mild assumption
to A and a suitable choice of initial points.

Proposition 3.4. Fix tmax> t0, assuming finite, and let Y0 be a nonzero root of the balance law
(3.6) for (3.4). Assume that the associated blow-up power-determining matrix A is hyperbolic:

Spec(A) ∩
√
−1R = ∅.

Then the inhomogeneous system (3.11) admits a global-in-time solution (3.13) with

lim
t→tmax−0

Y1(t) = 0 ∈ Rn. (3.12)

This solution can be written as

Y1(t) =

(
θ(t)

θ(t0)

)−A
{

P−

(

Y0
1 +

∫ t

t0

(
θ(η)

θ(t0)

)A

g1(η)dη

)

− P+

∫ tmax

t

(
θ(η)

θ(t0)

)A

g1(η)dη

}

, Y0
1 ∈ Rn

(3.13)
for t ∈ (t0, tmax) with the initial time t = t0, whenever ‖P−Y0

1‖ is sufficiently small. In particular,
(3.11) locally generates a Cr mA-parameter family of solutions Y1(t) satisfying (3.12), where

mA = ♯{λ ∈ Spec(A) | Reλ < 0} ≡ dimEs
A. (3.14)

The proof is left to Appendix B.1. The key point of the expression (3.13) is that free parameters
describing the solution Y1(t) are chosen only from Es

A. We see in examples in Part II [23] that
integral constants stemming from Eu

A vanish in all cases, from asymptotic quasi-homogeneity of f
and hyperbolicity of A.
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Multi-order asymptotic expansion of Y(t) can be derived inductively. In other words, the
higher-order terms Yj(t), j ≥ 2, can be also determined in the similar way to Y1(t), while one
attention mentioned below is needed. Now assume that, for given j ≥ 2, the preceding terms
{Yl(t)}j−1

l=0 are calculated. Neglecting possible higher-order terms, the governing system for Yj(t)
is given as follows:

d

dt
Yj = θ(t)−1AYj + gj(t), (3.15)

gj(t) = θ(t)−1 {Rα,k(Sj−1(Y)(t)) −Rα,k(Sj−2(Y)(t))}
+ θ(t)

1
k
Λα
{
fres(S

θ
j−1(Y)(t)) − fres(S

θ
j−2(Y)(t))

}
, (3.16)

where

Sj(Y)(t) ≡
j
∑

j̃=0

Yj̃(t), Sθ
j(Y)(t) ≡ θ(t)−

1
k
ΛαSj(Y)(t), j = 0, 1, . . . , (3.17)

Sj(Y)(t) ≡ Sθ
j (Y)(t) ≡ 0, j < 0.

The system (3.15) is inhomogeneous and linear, like (3.11). In the similar way to solving (3.11),
we obtain a general form of solutions Yj(t). However, we have to pay attention to asymptotic

relations (3.7). Although the validity of (3.7) depends on f and {Yl(t)}j−1
l=0 , one can construct

a solution of (3.15) such that free parameters describing Yj(t) are not newly generated except
those included in Y1(t), which is uniquely determined. As shown in the proof of the following
proposition, such a choice of solutions indicates the elimination of exponential terms generated by
the homogeneous part of (3.15), namely dYj/dt = θ(t)−1AYj , in solutions Yj(t), which would
yield a necessary condition of the asymptotic relation (3.7).

Proposition 3.5. Fix tmax> t0, assuming finite, and let Y0 be a nonzero root of the balance law
(3.6) for (3.4). Assume that the associated blow-up power-determining matrix A is hyperbolic and
that, for given j ≥ 2, the preceding terms {Yl(t)}j−1

l=0 are calculated. Then the integral

Yj(t) =

(
θ(t)

θ(t0)

)−A
{

P−

(

Y0
j +

∫ t

t0

(
θ(η)

θ(t0)

)A

gj(η)dη

)

− P+

∫ tmax

t

(
θ(η)

θ(t0)

)A

gj(η)dη

}

(3.18)
for t ∈ (t0, tmax) with the initial time t = t0 solves the inhomogeneous system (3.15). The constant
vector Y0

j ∈ Rn can be chosen to satisfy

P−Y
0
j = P−PHj(t0), (3.19)

where the matrix A has the Jordan structure through a nonsingular matrix P : P−1AP = Λ, and
Hj = Hj(t) denotes the primitive function of (θ(t)/θ(t0))

Λ
P−1P−gj(t) satisfying

lim
t→tmax−0

(Hj(t))i = 0 whenever degθ

(((
θ(t)

θ(t0)

)Λ

P−1P−gj(t)

)

i

)

> −1. (3.20)

The initial point

Yj(t0) = P−Y
0
j − P+

∫ tmax

t0

(
θ(η)

θ(t0)

)A

gj(η)dη

at t = t0 is then uniquely determined once free parameters in Y1(t) constructing gj(t) are fixed.
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The proof is left to Appendix B.2. The choice of Y0
j in the proposition plays a key role

in justification of multi-order asymptotic expansions: Proposition 3.13 and Theorem 3.15 stated
below. Under this arrangement, we see in (3.18) that general solutions of the homogeneous part
make no contributions to Yj with j ≥ 2. In such a case, it turns out that our choice in (3.11) that
the governing term in the left-hand side of (3.8) being dY1/dt is valid.

Remark 3.6. For j ≥ 2, the leading terms of the function gj(t) are essentially Yj−1(t) and
Dfres(S

θ
j−2(Y)(t))Yj−1(t) by the Taylor’s theorem. The integral in (3.18) would therefore increase

the order of θ(t) in Yj(t), which would provide the asymptotic relation (3.7). As seen in Section
3.5, this expectation is justified under mild assumptions.

The above arguments are summarized as the following theorem. Obviously, the formal sum of
systems (3.6), (3.11) and (3.15) for j ≥ 2 recovers (3.4).

Theorem 3.7 (Formal asymptotic expansion of blow-up solutions). Let y(t) be a blow-up solution
of (2.1) satisfying Assumption 3.1. Assume that a nonzero root Y0 of the balance law (3.6) is
given and that the associated blow-up power-determining matrix A is hyperbolic. Then y(t) with
the initial time t = t0 is formally expanded as follows10:

y(t) =

(
θ(t)

θ(t0)

)− 1
k
Λα

Y0

+

(
θ(t)

θ(t0)

)−( 1
k
Λα+A) ∞∑

j=1

{

P−

(

Y0
j +

∫ t

t0

(
θ(η)

θ(t0)

)A

gj(η)dη

)

− P+

∫ tmax

t

(
θ(η)

θ(t0)

)A

gj(η)dη

}

,

(3.21)

where g1(t) is given in (3.11), while gj(t) for j ≥ 2 are given in (3.16). The constant vector
Y0

1 ∈ Rn is arbitrarily chosen so that ‖P−Y0
1‖ is sufficiently small, while Y0

j ∈ Rn with j ≥ 2 are
chosen so that (3.19) holds. In particular, (3.11) and (3.15) for j ≥ 2 generate an mA-parameter
family of formal expansions of y(t) with fixed tmax.

This is a systematic procedure of a candidate of asymptotic expansion of y(t) in an arbitrary
order. On the other hand, the asymptotic relation

y(t)− θ(t)−
1
k
Λα

N∑

j=0

Yj(t) ≪ θ(t)−
1
k
ΛαYN (t) (t → tmax)

has to be independently investigated to claim that (3.21) is indeed an asymptotic expansion of
y(t). In fact, Proposition 3.5 does not refer to the decay order of Yj(t) so that asymptotic relation
Yj(t) ≪ Yj−1(t) as t → tmax− 0 is satisfied for all j ∈ Z≥1. Nevertheless, we see later that, under
mild assumptions, the above solution satisfies (3.7) in an appropriate sense.

On the other hand, there is a nontrivial problem whether the (formal) series Y(t) is analytically
meaningful, that is, convergent. The following theorem shows that the full system (3.4) possesses
a global-in-time solution converging to a root Y0 of the balance law (3.6) and locally generates an
mA-parameter family of such a solution, indicating that the consideration of asymptotic expansion
of the form (3.21) as an mA-parameter family is consistent.

10The terminology formal in this sentence means that neither the convergence of the infinite series (3.21) nor the
asymptotic relation (3.7) are considered in detail.
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Theorem 3.8 (Convergence and parameter dependence of Y(t)). For a blow-up solution associat-
ing Y(t), fix tmax, assuming finite, and let Y0 be a nonzero root of the balance law (3.6) for (3.4).
Assume that the associated blow-up power-determining matrix A is hyperbolic. Then the system
(3.4) has a solution Y(t) converging to Y0 as t → tmax− 0 and generates an mA-parameter family
of solutions

Y(t) = Y(t; tmax, C1, . . . , CmA
)

satisfying (3.7), where mA is given in (3.14), and free parameters C1, . . . , CmA
are chosen in a

small neighborhood of 0 ∈ RmA . Moreover, the parameter family Y(t; tmax, C1, . . . , CmA
) is Cr

with respect to t with t < tmax and C1, . . . , CmA
.

The right-sided compactification of time variable introduced in [34] is applied to the proof,
which is left to Appendix B.3.

Remark 3.9 (Validity of the balance law (3.6)). Using the convergence stated in Theorem 3.8,
our choice of terms in (3.3) for deriving the balance law (3.6) is confirmed to be valid. That is, all
possible dominant terms in (3.3) as t → tmax appears in (3.6). Indeed, the proof of Theorem 3.8,
shown in Appendix B.3, implies that θ(t)dYdt = O(θ(t)µ) for some µ > 0, whenever A is hyperbolic.

We can also prove that, for eachN ∈ N, the remainderYc
N (t) ≡ Y(t)−SN (Y)(t) also converges

as t → tmax whenever free parameters are small. The precise statement is below, which is proved
in Appendix B.4.

Proposition 3.10 (Convergence of the remainder of Y(t)). Under the same assumptions as The-
orem 3.8, for each N ∈ N, assume that vector-valued functions {Yj(t)}Nj=0 are constructed as Y0

when j = 0, (3.13) when j = 1 and (3.18) for j ≥ 2.
Then, for each N ∈ N, the remainder Yc

N (t) ≡ Y(t) − SN (Y)(t) of the formal asymptotic
expansion of Y(t) converges to 0 ∈ Rn as t → tmax − 0 whenever free parameters C1, . . . , CmA

are
small.

3.4 Complete determination of asymptotic expansion: a case study

In the above setting, the function gj contained in the integrand consists of nonlinearities depending
on Sj−1(Y)(t). Powers of asymptotic series are then determined by blow-up power eigenvalues
{λi}, the quasi-homogeneous part fα,k and the lower term fres. In case that f has a special form,
the complete form of asymptotic expansions can be determined. For example, assume that the
vector field f is quasi-homogeneous polynomial. Then we know that fres ≡ 0 and the equations
for all Yj become much simpler. When we further assume that A is diagonalizable and that
Spec(A) ⊂ R, (3.11) becomes linear and homogeneous, and hence the solution Y1 is written as the
linear combination of {θ(t)−λi}ni=1. In the next step for solving Y2, the powers of θ(t) appeared
in (3.15) with j = 2 are determined as the following form:








∑

β∈Z
n
≥0

|β|=l

n∑

i=1

βiλi








− 1, l = 1, 2, . . . ,
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because fres ≡ 0. Through the integration, we see that the powers of θ(t) in Y2 have the following
form:

∑

β∈Z
n
≥0

|β|=l

n∑

i=1

βiλi, l = 1, 2, . . . . (3.22)

The same conclusion holds for Yj with j ≥ 3. We therefore expect that all possible powers of θ(t)
appeared in Y(t) are restricted to the form (3.22), and hence the true powers of θ(t) in yi(t) are the
sum of the above exponents and the principal exponent −αi/k. The similar argument yields the
complete form of (formal) asymptotic expansions, even though A admits nontrivial Jordan blocks.

Theorem 3.11. Consider (2.1) with a polynomial vector field f which is quasi-homogeneous. Let
y(t) = (y1(t), . . . , yn(t))

T be a blow-up solution for f satisfying Assumption 3.1. Suppose that a
nonzero root Y0 of the balance law is associated and that the induced blow-up power-determining
matrix A satisfies Spec(A) ⊂ R. Then y(t) has the form

yi(t) = θ(t)−αi/k
∞∑

j=0







Mj,k,α,A∑

M=0

∑

β∈Z
n
≥0

|β|=j

Yβ,M,iθ(t)
−β·Aλ(ln θ(t))M







, (3.23)

where Yβ,M = (Yβ,M,1, . . . , Yβ,M,n)
T ∈ Rn and

β ·A λ ≡
n∑

l=1

βl(λl)−, (µ)− ≡ min{0, µ}

for β ∈ Zn
≥0 and λ = (λ1, . . . , λn)

T with {λi}ni=1 = Spec(A) counting the multiplicity. The integer
Mj,k,α,A determined by j, k, α, geometric multiplicity of elements in Spec(A) and size of associated
Jordan blocks.

The proof is left in Appendix B. The similar conclusion will be obtained when f is polynomial
which is not necessarily quasi-homogeneous. In this case, exponents of θ(t) and ln θ(t) (3.23)
depend on fres.

Remark 3.12. When a pair of complex conjugate eigenvalues is contained in Spec(A), the function
Y(t) includes terms of the following form:

θ(t)η cosm1(λim ln θ(t)) sinm2(λim ln θ(t))(ln θ(t))m3

for some η ∈ R, λim ∈ R \ {0} and m1,m2,m3 ∈ Z≥0. If such a term is included in YN (t) for
some N ≥ 1, the next term YN+1(t) needs lengthy calculations because the integral of the above
term is required.

3.5 Justification of asymptotic expansions

We have observed that, in the construction of multi-order asymptotic expansions of blow-ups, free
parameters corresponding to blow-up power eigenvalues with negative real parts appear. Next we
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consider if the formal asymptotic expansion (3.21) of y(t) is certainly an asymptotic expansion
in the original sense. It should be noted that, in our construction (3.21), the asymptotic relation
Yl(t) ≪ Yl−1(t) in (3.7) is applied as the necessary condition to asymptotic expansions, which is
not always sufficient to prove the requirement of asymptotic expansions

θ(t)αi/kyi(t)−
∑N

j=0 Yj,i(t)

YN,i(t)
=

∑∞
j=N+1 Yj,i(t)

YN,i(t)
= o(1) as t → tmax (3.24)

for all N ∈ N and each i = 1, . . . , n, while the residual series
∑∞

j=N+1 Yj,i(t) converges to 0 as
t → tmax from Proposition 3.10 and the uniqueness of solutions. To verify the asymptotic relation
(3.24) for (3.21), it requires concrete forms of f as well as the blow-up power-determining matrix A
and a nonsingular matrix P inducing the Jordan canonical form of A. Indeed, there can be a case
that YN,i(t) goes to zero much faster than YN+1,i(t) as t → tmax for some N , due to the situation
that coefficients of low powers of θ(t) accidentally become zero11. Nevertheless, the lowest orders of
θ(t) in the sequence {Yj(t)}∞j=0 are expected to increase monotonously under a mild assumption,
and hence the asymptotic series in the sense of (3.24) can be constructed by arranging several
terms so that an asymptotic series in the original sense is obtained. In what follows, we prove that
this presumption is true, at least, under several restrictions of fres and its derivatives. The degree
function degθ introduced in Section 2.2 plays a key role in estimating the degree of Yj(t) for each
j ∈ Z≥0 a priori, which yields the justification of our asymptotic expansions.

Proposition 3.13. Let (3.21) be the formal asymptotic expansion of y(t) obtained in Theorem 3.8
for an asymptotically quasi-homogeneous vector field f of type α = (α1, . . . , αn) and order k + 1,
and Y0 be the corresponding non-zero root of the balance law. For i = 1, . . . , n, define γi ∈ R by

γi := inf
x̃∈Rn

degθ

(

fi;res

(

θ(·)− 1
k
Λα x̃

))

. (3.25)

Assume that

• for i = 1, . . . , n,

γi ≤ inf
x̃∈Rn

inf
ṽ∈Rn

degθ

([

Dfres

(

θ(·)− 1
k
Λα x̃

)

θ(·)− 1
k
Λα ṽ

]

i

)

, (3.26)

• the following inequality holds:

αi

k
+ γi > −1 for all i = 1, . . . , n.

Then we have
degθ(YN ) ≥ Nδ for all N ∈ Z≥0, (3.27)

where

δ := min






min

l=1,...,n

{αl

k
+ γl

}

+ 1, min
i=1,...,n
Reλi<0

(−Reλi)






> 0. (3.28)

11This situation includes the case that YN,i(t) ≡ 0.
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The proof is left to Appendix B.

Remark 3.14. The asymptotic quasi-homogeneity of f implies

γi ≥ −k + αi

k

and hence the quantity δ in (3.28) is always nonnegative. In particular, δ becomes positive under
our assumption. When f is polynomial, we have the following sharper estimate:

γi ≥ −k + αi − 1

k
,

indicating δ ≥ 1/k if Spec(A) ⊂ {λ ∈ C | Reλ ≥ 0}. Note that the statement itself also holds for
the case that each αi is nonnegative real numbers (namely, not always integers) except αi ≡ 0 for
all i, by generalizing the quasi-homogeneity of f in Definition 2.2 to the n-tuple α = (α1, . . . , αn) ∈
(R≥0)

n \ {0} as the type of f .

The proposition shows that the magnitude of θ(t) in the series {Yj(t)}∞j=0 eventually increases
in the sense of (3.27). Therefore, arranging {Yj(t)}∞j=0 componentwise, we can show that, for any

finite sequence {Yj(t)}Nj=0, the arranged sequence includes the finite order asymptotic expansion
of Y(t). The precise statement is shown below.

Theorem 3.15 (Justification of asymptotic expansion). Consider an asymptotically quasi-homogeneous
vector field f of type α and order k + 1. Let (3.21) be the formal asymptotic expansion of y(t)
obtained in Theorem 3.8. Suppose that all assumptions in Proposition 3.13 are satisfied. Then, for
any N ∈ N, there exist a natural number N1 = N1(N) satisfying

lim
N→∞

N1(N) = ∞

and an arranged sequence {Ȳj(t)}Nj=1 of the finite sequence {Yj}Nj=1 obtained by the permutation
of indices {1, . . . , N} such that the finite sum

θ(t)−
1
k
Λα

N1∑

j=1

Ȳj(t)

is the N1-th order asymptotic expansion of y(t) as t → tmax in the sense that (3.24) holds with
N = N1.

Proof. Let N1 := min{⌈Nδ⌉, N}, where δ > 0 is the number given in (3.28). Obviously N1 → ∞
holds as N → ∞. Proposition 3.13 indicates that all terms Yj with degθ(Yj) ≤ N1 must be
included in the sequence {Yj}Nj=1. The sequence {Yj}Nj=1 can be arranged componentwise to

{Ȳj}Nj=1 so that degθ(Ȳj) is monotonously increasing in j. It follows by construction that

lim
t→tmax

Ȳj+1,i(t)

Ȳj,i(t)
= 0, j = 0, · · · , N1 − 1,

where the case j = 0 is excluded when Yj,i(t) = Ȳj,i(t) = 0. Proposition 3.13 also indicates that
degθ(Yj) ≥ N1 for j ≥ N + 1. Moreover, Proposition 3.10 shows

∑∞
j=N+1 Yj(t) → 0 as t → tmax.

In particular,

lim
t→tmax

∑∞
j=N+1 Yj,i(t)

ȲN1,i(t)
= 0
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holds and consequently we have

lim
t→tmax

∑N
j=N1+1 Ȳj,i(t) +

∑∞
j=N+1 Yj,i(t)

ȲN1,i(t)
= 0

holds for each i = 1, · · · , n.

Consequently, our formal asymptotic expansion (3.21) provides the true asymptotic expansion
of the blow-up solution y(t) in the sense of Theorem 3.15 under mild assumptions to the asymptotic
degree of the residual term fres.

4 Examples

Examples of asymptotic expansions of blow-up solutions are collected. In some examples, corre-
spondence of algebraic information for describing asymptotic expansions to dynamics at infinity is
also revealed.

4.1 One-dimensional ODEs

First we demonstrate our methodology to one-dimensional ODEs to see effectiveness of the method-
ology and interpretations of results.

4.1.1 A simple example

The first example is

y′ = −y + y3, ′ =
d

dt
. (4.1)

If the initial point y(0) > 0 is sufficiently large, the corresponding solution would blow up in
a finite time. To describe a blow-up solution precisely, we apply the (homogeneous) parabolic
compactification and the time-scale desingularization to (4.1). First note that the ODE (4.1) is
asymptotically homogeneous (namely α = (1)) of order k + 1 = 3, in particular k = 2.

Our concern here is the asymptotic behavior of blow-up solutions of the following form:

y(t) = θ(t)−1/2Y (t),

which yields the following equation solving Y (t):

Y ′ = −Y + θ(t)−1

{

−1

2
Y + Y 3

}

. (4.2)

Note that the existence of such blow-up solutions is discussed in [23]. Under the asymptotic
expansion of the positive blow-up solution:

Y (t) =

∞∑

n=0

Yn(t) with lim
t→tmax

Y (t) = Y0 > 0,
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the balance law requires Y0 = 1/
√
2, which is the coefficient of the principal term of y(t). The

blow-up power-determining matrix at Y0, coinciding with the blow-up power eigenvalue, is

{

−1

2
+ 3Y 2

}

Y=Y0

= 1.

This eigenvalue has no contributions to Yn(t) with n ≥ 1. Next we shall calculate the second term
Y1(t). Using the Taylor expansion at Y0, the system (4.2) is written by

∞∑

n=1

Y ′
n = −

∞∑

n=0

Yn + θ(t)−1
∞∑

m=1

1

m!

{
dm

dY m

(

−1

2
Y + Y 3

)}

Y =Y0

( ∞∑

n=1

Yn

)m

,

where the balance law is applied to cancel the principal terms. The governing equation for Y1 near
t = tmax is then

Y ′
1 = −Y0 + θ(t)−1Y1 = − 1√

2
+ θ(t)−1Y1,

which is solved to obtain a bounded solution by (3.13):

Y1(t) = θ(t)−1

[

−
∫ tmax

t

θ(s)

(

− 1√
2

)

ds

]

=
1

2
√
2
θ(t).

This is consistent with the asymptotic relation Y1(t) ≪ Y0 as t → tmax. The third term Y2(t) is
also calculated. The governing equation for Y2 obtained by the similar way to Y1 is

Y ′
2 = −Y1 + θ(t)−1

{

Y2 +
3
√
2

2
Y 2
1 + Y 3

1

}

= − 1

2
√
2
θ(t) + θ(t)−1Y2 +

3
√
2

16
θ(t) +

1

16
√
2
θ(t)2, (4.3)

where we have used the fact that

dm

dY m

(

−1

2
Y + Y 3

)

≡ 0 for m ≥ 4,

and all terms involving Y ′
1 are cancelled. Standard theory of ODEs yields that the general solution

of the homogeneous equation Y ′
2 = θ(t)−1Y2 is c2θ(t)

−1 with a constant c2, which is already
appeared in calculations of Y1. The bounded solution of (4.3) is then obtained by (3.18) with j = 2
as follows:

Y2(t) = θ(t)−1

[

−
∫ tmax

t

θ(s)

{

−
√
2

16
θ(s) +

1

16
√
2
θ(s)2

}

ds

]

=

√
2

48
θ(t)2 − 1

64
√
2
θ(t)3, (4.4)

which is consistent with the asymptotic assumption Y2(t) ≪ Y1(t) as t → tmax. Remark that the
above form does not directly determine the corresponding term in Y (t). In particular, coefficients
of θ(t)m with m ≥ 3 can change depending on Yn(t), n ≥ 3. On the other hand, the similar
calculations yield that there is no terms of θ(t)2 in Yn(t), n ≥ 3, by the asymptotic assumption.
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Indeed, the constant δ defined in (3.28) is estimated as follows. First, α = 1 and k = 2, and hence
γ1 = −1/2 in (3.25). Because there are no negative blow-up power eigenvalues, δ is evaluated as

δ =
1

2
+ 1− 1

2
= 1.

Proposition 3.13 indicates that ordθ(Y3) ≥ 3 and hence there is no term θ(t)m with m < 3 in Yn(t),
n ≥ 3. In other words, the coefficient of θ(t)2 is determined as

√
2/48. Summarizing the above

arguments, we have the following result.

Theorem 4.1. The system (4.1) admits a blow-up solution with the following third order asymp-
totic expansion as t → tmax:

y(t) ∼ 1√
2
θ(t)−1/2 +

1

2
√
2
θ(t)1/2 +

√
2

48
θ(t)3/2 as t → tmax.

The higher-order asymptotic expansion of y(t) is also obtained by calculating Yn(t), n ≥ 3, in
the similar way to the above arguments. In the above expression, the parameter dependence of
solutions appears in tmax, which admits a various choice of initial points inducing blow-up solutions.

Remark 4.2 (Analyticity of Y (t) at t = tmax). The solution Y (t) of (4.2) is actually real-analytic
at t = tmax. Indeed, (4.1) is formally transformed into

2y−3y′ = 2(−y−2 + 1).

Using the identity
(−1 + y−2)′ = (y−2)′ = −2y−3y′,

the above equation becomes
(1− y−2)′ = 2(1− y−2).

The standard method of variable separation is thus applied to obtain

y(t) =

(

1−
(

1− 1

y20

)

e2t
)−1/2

for blow-up solutions with y(0) = y0 > 1. Letting

1− 1

y20
= e−2tmax ,

the above solution is rewritten by

y(t) =
(

1− e−2θ(t)
)−1/2

. (4.5)

The above function is also written by y(t) = (2θ(t)h(t))
−1/2

, where

h(t) ≡ 1− e−2θ(t)

2θ(t)

is real-analytic at t = tmax with limt→tmax h(t) = 1. It is concluded that y(t) = θ(t)−1/2Y (t), where
Y (t) = 1√

2
h(t)−1/2 is real analytic at t = tmax.
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Remark 4.3. The function h(t) appeared in Remark 4.2 is expressed as the generating function
of the Bernoulli numbers (e.g. [3]). Indeed, the generating function is

B(t) =
t

1− e−t
=
∑

l≥0

Bl

l!
tl,

where {Bl}l≥0 are the Bernoulli numbers. Using the function B(t), the exact solution y(t) in (4.5)
is rewritten as

y(t) =
1√
2
θ(t)−1/2B(2θ(t))1/2 =

1√
2
θ(t)−1/2{1 + (B(2θ(t)) − 1)}1/2

=
1√
2
θ(t)−1/2

∑

l≥0

(
1/2
l

)

(B(2θ(t)) − 1)l.

From the binomial expansion and

(B(2θ(t)) − 1)m =




∑

l≥1

Bl

l!
(2θ(t))l





m

,

we have the expression

y(t) =
1√
2

∑

n≥0

anθ(t)
− 1

2+n,

where a0 = 1 and

an =

n∑

l=1

∑

I=(i1,...,in)
|I|=l,w(I)=n

(
1/2
l

)
1

l!

2i1+2i2+···+nin

(1!)i1(2!)i2 · · · (n!)in
l!

i1! · · · in!
Bi1

1 · · ·Bin
n

=

n∑

l=1

∑

I=(i1,...,in)
|I|=l,w(I)=n

(
1/2
l

)
1

l!

2n

(1!)i1(2!)i2 · · · (n!)in
l!

i1! · · · in!
Bi1

1 · · ·Bin
n ,

where the multi-index I = (i1, . . . , in) in the above sum runs over Zn
≥0 satisfying

|I| ≡ i1 + · · ·+ in = l, w(I) ≡ i1 + 2i2 + · · ·+ nin = n.

The first three coefficients are

a0 = 1, a1 = B1 =
1

2
,

a2 =
1

2

22

2!
B2 +

1

2

(

−1

2

)
22

2!
B2

1 = B2 −
1

2
B2

1 =
1

24
,

which yield the coincidence of coefficients with y(t) which we have obtained in Theorem 4.1. The
above observation shows the validity of our expansion methodology. On the other hand, the coeffi-
cient a3 is calculated as

a3 =

(
1/2
1

)
23

(3!)3
1!

1!
B3

3 +

(
1/2
2

)
23

(1!)1(2!)1
2!

1!1!
B1

1B
1
2 +

(
1/2
3

)
23

(1!)3
3!

3!
B3

1

= 0−B1B2 +
1

2
B3

1 = − 1

48
,

32



which indicates that we require calculating Y3(t) to obtain the correct coefficient of θ(t)3, which is
different from that obtained in (4.4).

4.1.2 Ishiwata-Yazaki’s example

The next example concerns with blow-up solutions of the following system:

u′ = au
a+1
a v, v′ = av

a+1
a u, (4.6)

where a ∈ (0, 1) is a parameter. In (4.6), the following results are obtained in preceding works,
which are originally obtained in [20] and revisited in [29].

Remark 4.4 (cf. [20, 29]). Consider initial points u(0), v(0) > 0. If u(0) 6= v(0), then the
solution (u(t), v(t)) blows up at t = tmax < ∞ with the blow-up rate O(θ(t)−a). On the other
hand, if u(0) = v(0), the solution (u(t), v(t)) blows up at t = tmax < ∞ with the blow-up rate
O(θ(t)−a/(a+1)).

The above blow-up mechanism based on dynamics at infinity is discussed in [29]. The main
interest here is the multi-order asymptotic expansion of blow-up solutions for (4.6) mentioned in
Remark 4.4.

First note that the system (4.6) has the first integral

I = I(u, v) := v1−
1
a − u1− 1

a .

In other words, the time-differential of the functional I along solutions of (4.6) is always zero,
equivalently the level set {I(t) = C} is invariant for (4.6). Indeed,

d

dt
I(t) =

(

1− 1

a

){

v−1/av′ − u−1/au′
}

= (a− 1)
{

v−1/av
a+1
a u− u−1/au

a+1
a v
}

= (a− 1) {vu− uv} = 0.

Using this functional,

v =
(

I + u
a−1
a

) a
a−1

and the system (4.6) is then reduced to a one-dimensional ODE

u′ = au
a+1
a

(

u1− 1
a + I

) a
a−1

. (4.7)

Blow-up solutions of the rate O(θ(t)−a) correspond to I 6= 0, while those of the rate O(θ(t)−a/(a+1))
correspond to I = 0. We pay attention to the case u(0) > v(0) when I 6= 0, in which case I > 0
holds12.

12Our assumption 0 < a < 1 is essential for this correspondence.
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First consider the case I > 0, where the vector field (4.7) is asymptotically homogeneous of the
order 1 + a−1. Using the asymptotic expansion

u(t) = θ(t)−aU(t) = θ(t)−a

( ∞∑

n=0

Un(t)

)

, lim
t→tmax

U(t) = U0,

the system becomes

U ′ = aθ(t)−1

{

−U + U
a+1
a

(

θ(t)−(a−1)U1− 1
a + I

) a
a−1

}

= aθ(t)−1

{

−U + I
a

a−1U
a+1
a

(

I−1θ(t)−(a−1)U1− 1
a + 1

) a
a−1

}

. (4.8)

The principal component in the above vector field is extracted as follows. Let

f(t;U):=
(

I−1θ(t)1−aU1− 1
a + 1

) a
a−1

following (4.7). Because θ(t)1−aU1− 1
a ≪ I as t → tmax holds by a < 1, I > 0 fixed and U → U0 as

t → tmax, then the nonlinear term f(t;U) itself converges to 1 as t → tmax. We therefore know that

the principal component of the vector field (4.8) is aθ(t)−1
{

−U + I
a

a−1U
a+1
a

}

, provided I > 0.

Using the binomial series,

(

I−1θ(t)1−aU1− 1
a + 1

) a
a−1

=

∞∑

k=0

(
a

a−1

k

)(

I−1θ(t)1−aU
a−1
a

)k

, (4.9)

where

(
a

a−1

k

)

=

(
a

a−1

)

k

k!
,

(
a

a− 1

)

k

=
a

a− 1

(
a

a− 1
− 1

)(
a

a− 1
− 2

)

· · ·
(

a

a− 1
− k + 1

)

.

The latter is the well-known Pochhammer symbol. The balance law then yields

−U0 + I
a

a−1U
a+1
a

0 = 0 ⇒ U0 = I−a2/(a−1).

The corresponding blow-up power-determining matrix is

d

dU

(

a
{

−U + U
a+1
a I

a
a−1

})

U=U0

= a

{

−1 +
a+ 1

a
U

1
a

0 I
a

a−1

}

= 1.

With the binomial series (4.9), the governing equation for the second term U1(t) is

U ′
1 = θ(t)−1U1 + aθ(t)−1U

a+1
a

0 I
a

a−1

∞∑

k=1

(
a

a−1

k

)(

I−1θ(t)1−aU
a−1
a

0

)k

= θ(t)−1U1 + aθ(t)−1I−
a2

a−1

∞∑

k=1

(
a

a−1

k

)(

I−1θ(t)1−aU
a−1
a

0

)k

.
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The bounded solution is

U1(t) = θ(t)−1

[

−a

∫ tmax

t

I−
a2

a−1

∞∑

k=1

(
a

a−1

k

)(

I−1θ(s)1−aU
1− 1

a

0

)k

ds

]

= θ(t)−1

[

−aI−
a2

a−1

∞∑

k=1

(
a

a−1

k

)(

I−1U
1− 1

a

0

)k θ(t)k(1−a)+1

k(1 − a) + 1

]

.

Note that all series appeared in the above equalities have positive convergence radii. Therefore

U1(t) = I
−2a2+1

a−1
a2

(1− a)(2− a)
θ(t)1−a − aI−

a2

a−1

∞∑

k=2

(
a

a−1

k

)(

I−1U
1− 1

a

0

)k θ(t)k(1−a)

k(1 − a) + 1
.

As in the case of (4.1), coefficients of θ(t)k(1−a) also depend on Un(t) with n ≥ 2, while the
coefficient of θ(t)1−a is determined here from the asymptotic assumption. Indeed, the constant δ
defined in (3.28) is estimated as follows. First, α = 1 and k = 1/a. Next, we shall extract the
residual term fres so that γ1 in (3.25) is evaluated. Note that k is not always an integer, but the
concept of quasi-homogeneity is generalized to any positive numbers. In (4.7), the vector field is
written as

f(u) ≡ au
a+1
a

(

u1− 1
a + I

) a
a−1

= aI
a

a−1 u
a+1
a + a

(

u
a+1
a

(

u1− 1
a + I

) a
a−1 − I

a
a−1 u

a+1
a

)

,

and hence the residual term fres(u) is

fres(u) = a

(

u
a+1
a

(

u1− 1
a + I

) a
a−1 − I

a
a−1 u

a+1
a

)

.

Therefore, using α/k = a, we have

fres(θ(t)
−au) = a

(

θ(t)−(a+1)u
a+1
a

(

θ(t)−a+1u1− 1
a + I

) a
a−1 − I

a
a−1 θ(t)−(a+1)u

a+1
a

)

= O(θ(t)−2a)

as t → tmax, and hence γ1 = −2a. Because there are no negative blow-up power eigenvalues, δ is
evaluated as

δ =
α

k
+ 1 + γ1 = a+ 1− 2a = 1− a.

Proposition 3.13 (with the assertion right after the proposition) indicates that ordθ(Um) ≥ m(1−a)
for m ≥ 2 and hence there is no term θ(t)1−a in Un(t), n ≥ 2. As a summary, we have the second
order asymptotic expansion

U(t) ∼ I−a2/(a−1) + I
−2a2+1

a−1
a2

(1− a)(2 − a)
θ(t)1−a

as t → tmax. Back to the original coordinate, we have the second order asymptotic expansion of
blow-up solution

u(t) ∼ I−a2/(a−1)θ(t)−a + I
−2a2+1

a−1
a2

(1− a)(2 − a)
θ(t)1−2a,

v(t) ≡
(

u(t)(a−1)/a + I
)a/(a−1)

= Ia/(a−1)
(

I−1u(t)(a−1)/a + 1
)a/(a−1)

∼ I
a

a−1 − I
1

a−1−a a

1− a
θ(t)1−a
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as t → tmax. The higher-order asymptotic expansion is derived in the similar way.
Our asymptotic expansion has two parameters: tmax and I ≡ v(0)1−

1
a − u(0)1−

1
a , whose dy-

namical interpretation is mentioned in Part II [23].

Next consider the case I = 0:
u′ = au2+ 1

a , (4.10)

which is homogeneous of the order 2 + a−1. Note that the order is different from that for I > 0.
Using the asymptotic expansion

u(t) = θ(t)−a/(a+1)U(t) = θ(t)−a/(a+1)

( ∞∑

n=0

Un(t)

)

, lim
t→tmax

U(t) = U0,

the system becomes

U ′ = aθ(t)−1

(

− 1

a+ 1
U + U2+ 1

a

)

. (4.11)

The balance law yields

U0 =

(
1

a+ 1

) a
a+1

.

Letting

f0(U) := a

(

− 1

a+ 1
U + U2+ 1

a

)

,

the equation (4.11) is rewritten by

U ′ = θ(t)−1

{

(U − U0) +

∞∑

m=2

1

m!

(
dm

dUm
U2+ 1

a

)

U=U0

(U − U0)
m

}

by using the Taylor expansion of f0 at U0. The governing equation of the second term U1 is thus

U ′
1 = θ(t)−1U1

whose general solution is U1(t) = c1θ(t)
−1. In the above equation we have used the fact that

df0
dU (U0) = 1. The asymptotic assumption requires c1 = 0, and hence U1(t) ≡ 0. The same
arguments yield Un(t) ≡ 0 for all n ≥ 1. Consequently, the asymptotic expansion of the blow-up
solution is

u(t) ∼
(

1

a+ 1

) a
a+1

θ(t)−a/(a+1), (4.12)

which is in fact the exact solution of (4.10). As a summary, we obtain the following result for
asymptotic expansions of blow-up solutions.

Theorem 4.5. The system (4.6) with fixed a ∈ (0, 1) admits blow-up solutions with the following
second-order asymptotic expansions as t → tmax:

u(t) ∼ I−a2/(a−1)θ(t)−a + I
−2a2+1

a−1
a2

(1 − a)(2− a)
θ(t)1−2a, v(t) ∼ I

a
a−1 − I

1
a−1−a a

1− a
θ(t)1−a

with I > 0, where I is a free parameter. When I = 0, (4.6) admits a blow-up solution

u(t) = v(t) =

(
1

a+ 1

) a
a+1

θ(t)−a/(a+1).
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Note that the solution through the above argument coincides with that obtained by the method
of separation of variables in (4.10).

4.2 Two-phase flow model

We move to multi-dimensional examples. In this example, the following system is concerned (see
e.g. [21, 28] for the details of the system):

{

β′ = vB1(β)− cβ − c1,

v′ = v2B2(β)− cv − c2,
′ =

d

dt
, (4.13)

where

B1(β) =
(β − ρ1)(β − ρ2)

β
, B2(β) =

β2 − ρ1ρ2
2β2

with ρ2 > ρ1 > 0,

c =
vRB1(βR)− vLB1(βL)

βR − βL

and (c1, c2) = (c1L, c2L) or (c1R, c2R), where

{

c1L = vLB1(βL)− cβL,

c2L = v2LB2(βL)− cvL,

{

c1R = vRB1(βR)− cβR,

c2R = v2RB2(βR)− cvR.

Points (βL, vL) and (βR, vR) are given in advance. The following property immediately holds by
simple calculations.

Proposition 4.6 ([28]). The system (4.13) is asymptotically quasi-homogeneous of type (0, 1) and
order 2.

Following arguments in [28], we observe that there is a blow-up solution with the asymptotic
behavior

β(t) ∼ ρ2, v(t) ∼ V0θ(t)
−1 as t → tmax − 0, (4.14)

which is consistent with arguments in [21]. In particular, type-I blow-up solutions are observed.
Our main concern here is to derive multi-order asymptotic expansion of the blow-up solution

(4.14) for (4.13). To this end, write the blow-up solution (β(t), v(t)) as follows:

β(t) = b(t), v(t) = θ(t)−1V (t),

b(t) =
∞∑

n=0

bn(t) ≡ b0 + b̃(t), b0 = ρ2, bn(t) ≪ bn−1(t) (t → tmax − 0), n ≥ 1, (4.15)

V (t) =

∞∑

n=0

Vn(t) ≡ V0 + Ṽ (t), Vn(t) ≪ Vn−1(t) (t → tmax − 0), n ≥ 1.
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The balance law which (b0, V0) satisfies can be easily derived. Substituting the form (4.15) into
(4.13), we have

β′ = b′

= θ(t)−1V B1(b)− cb− c1,

v′ = θ(t)−2V + θ(t)−1V ′

= θ(t)−2V 2B2(b)− cθ(t)−1V − c2.

Dividing the first equation by θ(t)0 ≡ 1 and the second equation by θ(t)−1, we have

d

dt

(
b
V

)

= θ(t)−1

(
V B1(b)

−V + V 2B2(b)

)

−
(

cb+ c1
cV + θ(t)c2

)

(4.16)

The balance law is then (
V0B1(b0)

−V0 + V 2
0 B2(b0)

)

=

(
0
0

)

.

that is,

V0
(b0 − ρ1)(b0 − ρ2)

β
= 0, −V0 + V 2

0

b20 − ρ1ρ2
2b20

= 0.

In the present case, b0 = ρ2 is already determined as the principal term of b(t), which satisfies the
first equation. Substituting b0 = ρ2 into the second equation, we have V0 = 2ρ2/(ρ2−ρ1), provided
V0 6= 0. As a summary, the root of the balance law (under (4.14)) is uniquely determined by

(b0, V0) =

(

ρ2,
2ρ2

ρ2 − ρ1

)

. (4.17)

Then the evolutionary system for the residual terms (b̃, Ṽ ) is given below:

d

dt

(
b̃

Ṽ

)

= θ(t)−1

(
V0{B1(b0 + b̃)−B1(b0)}+ Ṽ B1(b0 + b̃)

−Ṽ + V 2
0 {B2(b0 + b̃)−B2(b0)}+ (2V0Ṽ + Ṽ 2)B2(b0 + b̃)

)

−
(

c(b0 + b̃) + c1
c(V0 + Ṽ ) + θ(t)c2

)

Next consider the second term (b1(t), V1(t)). The strategy is essentially the same as the previous
example, while the vector field is rational. Direct calculations yield

d

dβ
B1(β) = 1− ρ1ρ2β

−2,
d

dβ
B2(β) = ρ1ρ2β

−3.

Letting

f̄(b0 + b̃, V0 + Ṽ ) :=

(
V0{B1(b0 + b̃)−B1(b0)}+ Ṽ B1(b0 + b̃)

−Ṽ + V 2
0 {B2(b0 + b̃)−B2(b0)}+ (2V0Ṽ + Ṽ 2)B2(b0 + b̃)

)

≡ −Λα

(
b
V

)

+ fα,k(b, V ) (with k = 1)

with the aid of the balance law, we have

Df̄(b0, V0) =

(

V0
d
db̃
B1(β)|β=b0 B1(b0)

V 2
0

d
dβB2(β)|β=b0 −1 + 2V0B2(b0)

)

=

(

V0(1− ρ1ρ2b
−2
0 ) (b0−ρ1)(b0−ρ2)

b0

V 2
0 ρ1ρ2b

−3
0 −1 + 2V0

b20−ρ1ρ2

2b20

)

,
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which is the blow-up power determining matrix associated with the blow-up solution (4.14). Using
(4.17), we have

A ≡ Df̄(b0, V0) =

(
2ρ2

ρ2−ρ1
(1− ρ1ρ

−1
2 ) 0

( 2ρ2

ρ2−ρ1
)2ρ1ρ2b

−3
0 −1 + 2 2ρ2

ρ2−ρ1

ρ2−ρ1

2ρ2

)

=

(
2 0
4ρ1

(ρ2−ρ1)2
1

)

.

We immediately know that eigenvalues are 2, 1, which are independent of ρ1, ρ2 and make no
contributions to asymptotic behavior of the blow-up solution. Associated eigenvectors are

(
2 0
4ρ1

(ρ2−ρ1)2
1

)(
x1

x2

)

= 2

(
x1

x2

)

⇒
(
x1

x2

)

=

(
1
4ρ1

(ρ2−ρ1)2

)

,

(
2 0
4ρ1

(ρ2−ρ1)2
1

)(
x1

x2

)

=

(
x1

x2

)

⇒
(
x1

x2

)

=

(
0
1

)

.

Define

P :=

(
1 0

4ρ1

(ρ2−ρ1)2
1

)

⇔ P−1 =

(
1 0

− 4ρ1

(ρ2−ρ1)2
1

)

and multiply P−1 to (4.16) from the left:

d

dt
P−1

(
b
V

)

= θ(t)−1

[(
2 0
0 1

)

P−1

(
b
V

)

+ P−1f̄R(b, V )

]

− cP−1

(
b
V

)

− P−1

(
c1

θ(t)c2

)

, (4.18)

where

f̄R(b, V ) = f̄(b, V )−Df̄(b0, V0)

(
b̃

Ṽ

)

(4.19)

is the second order residual term of f̄ whose details are shown in Remark 4.7 below, and we have
used (

2 0
0 1

)

P−1

(
b0
V0

)

+ P−1f̄R(b0, V0) =

(
0
0

)

.

Remark 4.7. The detailed expression of f̄R(b, V ) around the root (b, V ) = (b0, V0) is derived by
the Taylor’s expansion at (b, V ) = (b0, V0):

V B1(b) =
(

V0b̃+ Ṽ b̃2
) (2b0V

−1
0 + b̃)

b0 + b̃
(from (4.17))

= V0b̃

[

2V −1
0 +

1− 2V −1
0

b0
b̃− (1 − 2V −1

0 )

b0(b0 + b̃)
b̃2
]

+ Ṽ b̃

[

2V −1
0 +

1− 2V −1
0

b0(b0 + b̃)
b̃

]

≡ 2b̃+ f̄R,1(b, V ),
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−V + V 2B2(b) = −(V0 + Ṽ ) +
1

2
V 2
0

[

1− ρ1ρ2
b20

+ 2
ρ1ρ2
b30

b̃+ ρ1ρ2

{

−3b0b̃
2 − 2b̃3

b30(b0 + b̃)2

}]

+ V0Ṽ

[

1− ρ1ρ2
b20

+ ρ1ρ2

{

2b0b̃+ b̃2

b20(b0 + b̃)2

}]

+
1

2
Ṽ 2

{

1− ρ1ρ2

(b0 + b̃)2

}

≡ −(V0 + Ṽ ) +
1

2
V 2
0

(

1− ρ1ρ2
b20

+ 2
ρ1ρ2
b30

b̃

)

+ V0Ṽ

(

1− ρ1ρ2
b20

)

+ f̄R,2(b, V )

=
ρ1ρ2
b30

V 2
0 b̃+

[

−1 + V0

{

1− ρ1ρ2
b20

}]

Ṽ + f̄R,2(b, V ) (from (4.17))

=
4ρ1

(ρ2 − ρ1)2
b̃+ Ṽ + f̄R,2(b, V ),

where we have used the following identities:

− ρ1ρ2

(b0 + b̃)2
= −ρ1ρ2

b20
+ ρ1ρ2

{

2b0b̃+ b̃2

b20(b0 + b̃)2

}

= −ρ1ρ2
b20

+ 2
ρ1ρ2
b30

b̃+ ρ1ρ2

{

−3b0b̃
2 − 2b̃3

b30(b0 + b̃)2

}

.

Therefore we obtain the expansion

(
V B1(b)

−V + V 2B2(b)

)

=

(
2 0
4ρ1

(ρ2−ρ1)2
1

)(
b̃

Ṽ

)

+ f̄R(b, V )

around (b0, V0)
T , where

f̄R(b, V ) = (f̄R,1(b, V ), f̄R,2(b, V ))T ,

f̄R,1(b, V ) =
V0 − 2

b0
b̃2 − V0 − 2

b0(b0 + b̃)
b̃3 +

2

V0
Ṽ b̃+

(1 − 2V −1
0 )

b0(b0 + b̃)
Ṽ b̃2,

f̄R,2(b, V ) =
1

2
V 2
0 ρ1ρ2

{

−3b0 − 2b̃

b30(b0 + b̃)2

}

b̃2 + V0ρ1ρ2

{

2b0 + b̃

b20(b0 + b̃)2

}

b̃Ṽ +
1

2
Ṽ 2

{

1− ρ1ρ2

(b0 + b̃)2

}

.

Let (
e1
W1

)

:= P−1

(
b̃

Ṽ

)

and the governing terms are collected to form the equation for (e1,W1)
T :

d

dt

(
e1
W1

)

= θ(t)−1

(
2 0
0 1

)(
e1
W1

)

−
(

1 0

− 4ρ1

(ρ2−ρ1)2
1

)(
cb0 + c1
cV0

)

,

where the remaining term θ(t)c2 in the second component is omitted because, in the inhomogeneous
term, it is obviously negligible compared with the constant term cV0 as t → tmax. This system is
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easily solved to obtain the bounded solution as follows:

e′1 = 2θ(t)−1e1 − (cρ2 + c1)

⇔ e1 = θ(t)−2

{

(cρ2 + c1)

∫ tmax

t

θ(s)2ds

}

,

W ′
1 = θ(t)−1W1 +

4ρ1
(ρ2 − ρ1)2

(cρ2 + c1)−
(

2cρ2
ρ2 − ρ1

)

⇔ W1 = θ(t)−1

[

−
{

4ρ1
(ρ2 − ρ1)2

(cρ2 + c1)−
2cρ2

ρ2 − ρ1

}∫ tmax

t

θ(s)ds

]

.

In particular, the bounded solution (e1(t),W1(t)) is

e1(t) =
1

3
(cρ2 + c1)θ(t), W1(t) = −1

2

{
4ρ1

(ρ2 − ρ1)2
(cρ2 + c1)−

2cρ2
ρ2 − ρ1

}

θ(t).

In the original coordinate, we have
(
b1
V1

)

=

(
1 0
4ρ1

(ρ2−ρ1)2
1

)(
e1
W1

)

= θ(t)

(
1 0

4ρ1

(ρ2−ρ1)2
1

)( 1
3 (cρ2 + c1)

− 1
2

{
4ρ1

(ρ2−ρ1)2
(cρ2 + c1)− 2cρ2

ρ2−ρ1

}

)

,

b1 =
1

3
(cρ2 + c1)θ(t),

V1 =

[

− 2ρ1
3(ρ2 − ρ1)2

(cρ2 + c1) +

(
cρ2

ρ2 − ρ1

)]

θ(t).

Now the constant δ defined in (3.28) is estimated as follows. As already observed, we know that
α = (0, 1) and k = 1. We know that (γ1, γ2) = (0,−1). Because there are no negative blow-up
power eigenvalues, δ is evaluated as

δ = min

{
0

1
+ 0,

1

1
− 1

}

+ 1 = 1.

Proposition 3.13 indicates that ordθ(Ym) ≥ m for m ≥ 2 and hence there is no term θ(t)m with
m ≤ 1 in Yn(t) = (bn(t), Vn(t)), n ≥ 2. As a summary, we obtain the following result.

Theorem 4.8. The system (4.13) with (c1, c2) = (c1L, c2L) admits a blow-up solution with the
following second order asymptotic expansion as t → tmax:

β(t) ∼ ρ2 +
1

3
(cρ2 + c1)θ(t), v(t) ∼ 2ρ2

ρ2 − ρ1
θ(t)−1 +

[

− 2ρ1
3(ρ2 − ρ1)2

(cρ2 + c1) +
cρ2

ρ2 − ρ1

]

.

We omit further calculations to obtain the third term (b2(t), V2(t)), but it should be mentioned
that the neglected term θ(t)c2 in the above calculations should be added because it is nontrivial
whether θ(t)c2 is negligible compared with inhomogeneous terms in the system solving (b2, V2). In
the present problem, θ(t)c2 must be included in the (b2, V2)-system because cV1 has the same order
as θ(t)c2. The inhomogeneous term g2 in the equation for (b2(t), V2(t)) can be the calculated from
f̄R extracting appropriate terms (cf. Remark 4.7) and remaining terms mentioned above.
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Remark 4.9. Because b0 = ρ2 > 0, the function f̄R(b, V ) in (4.19) is real analytic in a neighbor-
hood of (b̃, Ṽ ) = (0, 0).

4.3 Andrews’ system I

Consider the following system (cf. [2, 29])13:







du

dt
=

1

sin θ
vu2 − 2a cos θ

sin θ
u3,

dv

dt
=

a

sin θ
uv2 +

1− a

sin θ

uv3

v + 2 cos θu
,

(4.20)

where a ∈ (0, 1) and θ ∈ (0, π/2) are constant parameters.

Remark 4.10. The following results are known for (4.20) with initial points (u(0), v(0)) such that
both components are positive (cf. [2, 29]).

1. When a < 1/2, all solutions with sufficiently large initial points blow up at t = tmax < ∞
with the blow-up rate O(θ(t)−1/2) as t → tmax.

2. When a ∈ (1/2, 1), there is a blow-up solution admitting the asymptotic behavior O({θ(t)−1 log θ(t)−1}1/2)
as t → tmax.

3. When a = 1/2, there is a blow-up solution admitting the asymptotic behavior O({θ(t)−1(log θ(t)−1)1/2}1/2)
as t → tmax.

Our interest here is the blow-up behavior for a ∈ (0, 1/2). We easily see that the system (4.20)
is homogeneous of the order 3, and arguments in [29] show that the first term of stationary blow-up
solutions has the form

u(t) = O(θ(t)−1/2), v(t) = O(θ(t)−1/2).

Before expanding (u(t), v(t)) directly, introduce

w = u cos θ, s =
t

sin θ cos θ
, (4.21)

in which case we have

du

ds
=

du

dt

dt

ds
= sin θ cos θ

du

dt
,

dw

ds
= cos θ

du

ds
= sin θ cos2 θ

du

dt
.

13There is a typo of the system in [29] (Equation (4.7)). The correct form is (4.20) below. The rest of arguments
in [29] is developed for the correct system (4.20).
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The vector field (4.20) is then transformed into

dw

ds
= sin θ cos2 θ

du

dt

= sin θ cos2 θ

(
1

sin θ
vu2 − 2a cos θ

sin θ
u3

)

= sin θ cos2 θ

(
1

sin θ
v
( w

cos θ

)2

− 2a cos θ

sin θ

( w

cos θ

)3
)

= vw2 − 2aw3,

dv

ds
= sin θ cos θ

dv

dt

= sin θ cos θ

(

a

sin θ

( w

cos θ

)

v2 +
1− a

sin θ

(
w

cos θ

)
v3

v + 2w

)

= awv2 + (1− a)
wv3

v + 2w
.

As a summary, the system (4.20) is transformed into the following rational vector field independent
of θ:

dw

ds
= w2(v − 2aw),

dv

ds
= wv2

v + 2aw

v + 2w
. (4.22)

Because θ ∈ (0, π/2), then sin θ > 0 and cos θ > 0, and hence dynamics of (u, v) in t-timescale and
(w, v) in s-variable are mutually smoothly equivalent.

In what follows we shall consider the blow-up solution with the following blow-up rate

w(t) = O(θ̃(s)−1/2), v(t) = O(θ̃(s)−1/2), θ̃(s) = smax − s =
2

sin(2θ)
θ(t).

Expand the solution (w(s), v(s)) as the asymptotic series

w(s) = θ̃(s)−1/2W (s) ≡ θ̃(s)−1/2
∞∑

n=0

Wn(s), Wn(s) ≪ Wn−1(s), lim
t→tmax

Wn(s) = W0,

v(s) = θ̃(s)−1/2V (s) ≡ θ̃(s)−1/2
∞∑

n=0

Vn(s), Vn(s) ≪ Vn−1(s), lim
t→tmax

Vn(s) = V0. (4.23)

The balance law for the solution under the assumption W0, V0 6= 0 is

1

2
= W0V0 − 2aW 2

0 ,
1

2
= W0V0

V0 + 2aW0

V0 + 2W0
. (4.24)

We further assume V0 + 2W0 6= 0 at a moment. Then we have

V0 − 2aW0 = V0
V0 + 2aW0

V0 + 2W0

⇔ (V0 + 2W0)(V0 − 2aW0) = V0(V0 + 2aW0)

⇔ V 2
0 − 2aV0W0 + 2V0W0 − 4aW 2

0 = V 2
0 + 2aV0W0

⇔ 2(1− 2a)V0 = 4aW0.
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From this identity, we have the constraint among U0 and V0 so that the balance law must be
satisfied:

V0 =
2a

1− 2a
W0. (4.25)

Substituting (4.25) into, say the first component of the balance law, we have

1

2
=

2a− 2a(1− 2a)

1− 2a
W 2

0 =
4a2

1− 2a
W 2

0 .

We therefore have

W0 = ±
√

1− 2a

8a2
, V0 =

2a

1− 2a
W0 = ±

√

1

2(1− 2a)
.

We shall choose the positive root according to the setting mentioned in Remark 4.10. Moreover,
the root V0 can be achieved as a real value by the assumption of a.

Next we derive the equation for the residual terms W (s)−W0 and V (s)−V0. First, substituting
(4.23) into (4.20), we have

∞∑

n=1

dWn

ds
= θ̃(s)−1



−1

2

∞∑

n=0

Wn +

( ∞∑

n=0

Wn

)2{ ∞∑

n=0

Vn − 2a

∞∑

n=0

Wn

}

 ,

∞∑

n=1

dVn

ds
= θ̃(s)−1






−1

2

∞∑

n=0

Vn +

( ∞∑

n=0

Wn

)( ∞∑

n=0

Vn

)2 ∑∞
n=0 Vn + 2a

∑∞
n=0 Wn

∑∞
n=0 Vn + 2

∑∞
n=0 Wn






.

In the next step, we derive the governing equation for (W1(t), V1(t)). Because the original system
is homogeneous, we have the following governing system for (W1(t), V1(t)), which is exactly the
linearized system of (4.20) at (W0, V0):

d

ds

(
W1

V1

)

= θ̃(s)−1

{

−1

2

(
W1

V1

)

+

(

2V0W0 − 6aW 2
0 W 2

0

V 2
0

V0+2aW0

V0+2W0
+W0V

2
0

2a(V0+2W0)−2(V0+2aW0)
(V0+2W0)2

2V0W0
V0+2aW0

V0+2W0
+W0V

2
0

(V0+2W0)−(V0+2aW0)
(V0+2W0)2

)(
W1

V1

)}

≡ θ̃(s)−1

{

−1

2
I2 + C(W0, V0; a)

}(
W1

V1

)

, (4.26)

where

C(W0, V0; a) =

(
2V0W0 − 6aW 2

0 W 2
0

V 2
0

{
V0+2aW0

V0+2W0
−W0

2(1−a)V0

(V0+2W0)2

}

V0W0

{

2V0+2aW0

V0+2W0
+ V0

2(1−a)W0

(V0+2W0)2

}

)

.

Calculation of blow-up power eigenvalues is reduced to that of the matrix C(W0, V0; a), which
still looks complicating. Using the balance law, we derive the simpler form.
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Remark 4.11. We derive several identities among V0 and W0 so that eigenpairs of C(W0, V0; a)
are easily calculated. First, using the identity (4.25), we have

V0 + 2W0 =

(

1 +
1− 2a

a

)

V0 =
1− a

a
V0 (4.27)

and
V0 + 2aW0 = (1 + 1− 2a)V0 = 2(1− a)V0. (4.28)

Using these identities, we have

V0 + 2aW0

V0 + 2W0
=

2(1− a)V0
1−a
a V0

= 2a (4.29)

and

2(1− a)V0W0

(V0 + 2W0)2
=

a

1− a

2(1− a)W0

V0 + 2W0
(by (4.27))

=
2aW0

V0 + 2W0
=

(1− 2a)V0

V0 + 2W0
(by (4.25))

=
(1 − 2a)V0

1−a
a V0

(by (4.27))

=
a(1− 2a)

1− a
. (4.30)

The balance law (4.25) and identities obtained in Remark 4.11 yield

2V0W0 − 6aW 2
0 = (6a− 1)V0W0,

V 2
0

{
V0 + 2aW0

V0 + 2W0
− 2(1− a)V0W0

(V0 + 2W0)2

}

= V 2
0

{

2a− a(1− 2a)

1− a

}

(by (4.29) and (4.30))

=
a

1− a
V 2
0 ,

V0W0

{

2
V0 + 2aW0

V0 + 2W0
+

2(1− a)V0W0

(V0 + 2W0)2

}

= V0W0

{

4a+
a(1− 2a)

1− a

}

(by (4.29) and (4.30))

=
a(5− 6a)

1− a
V0W0.

Next, from the first identity of (4.24), we have

1

2
= V0W0 − 2aW 2

0

= V0W0 − (1− 2a)V0W0 (by (4.25))

= 2aV0W0,

which yields

V0W0 =
1

4a
. (4.31)
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We use this identity to obtain

(6a− 1)V0W0 =
3

2
− 1

4a
(by (4.31)),

a(5− 6a)

1− a
V0W0 =

3

2
− 1

4(1− a)
.

Therefore the matrix C(W0, V0; a) is simplified as follows:

C(W0, V0; a) =

( 3
2 − 1

4a W 2
0

a
1−aV

2
0

3
2 − 1

4(1−a)

)

.

In particular, we obtain

A− I2 ≡ C(W0, V0; a)−
3

2
I2 =

( − 1
4a W 2

0
a

1−aV
2
0 − 1

4(1−a)

)

.

Using the identity (4.31) again, we know that the matrix A − I2 has the eigenvalue 0 associating
the eigenvector (W0, V0). In this case, another eigenvalue is easily calculated through the trace:

trace(A− I2) = − 1

4a(1− a)
.

From

− 1

4a(1− a)
I2 −

( − 1
4a W 2

0
a

1−aV
2
0 − 1

4(1−a)

)

=

( a
1−aV0W0 −W 2

0

− a
1−aV

2
0 V0W0

)

,

the associated eigenvector is
(

W0,
a

1− a
V0

)T

.

As a consequence, eigenpairs of A are calculated as follows:





1,





√
1−2a
8a2

√
1

2(1−2a)










,






1− 1

4a(1− a)
,





√
1−2a
8a2

a
1−a

√
1

2(1−2a)










.

Introducing a matrix

P =





√
1−2a
8a2

√
1−2a
8a2

√
1

2(1−2a)
a

1−a

√
1

2(1−2a)



 ,

the blow-up power-determining matrix A is diagonalized. Note that only the eigenvalue λ ≡
1 − 1

4a(1−a) contributes the second term of asymptotic expansion, because it is always negative

whenever a ∈ (0, 1/2). Therefore we know that the second term (W1(s), V1(s)) consists only of a
multiple of θ̃(s)−λ, namely

W1(s) = C1w θ̃(s)
−1+ 1

4a(1−a) , V1(s) = C1v θ̃(s)
−1+ 1

4a(1−a)

with constants C1w, C1v.
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Remark 4.12. The concrete form of the matrix P is not necessary to obtain (W1(s), V1(s)) itself
as the solution of linear homogeneous system of ODEs. The concrete calculation of P is necessary
for solving (Wn, Vn) with n ≥ 2 because (W1, V1) and other lower-order terms are included as
inhomogeneous terms.

The remaining issue is to determine coefficients C1w, C1v. Rewriting the system (4.26),

d

ds

(
W1

V1

)

= θ̃(s)−1

[

−
(

1
2 0
0 1

2

)

+

( 3
2 − 1

4a
1−2a
8a2

a
1−a

1
2(1−2a)

3
2 − 1

4(1−a)

)](
W1

V1

)

(4.32)

is our interest. In the previous arguments we have shown that

W1(s) = C1w θ̃(s)
−λ, V1(s) = C1v θ̃(s)

−λ

Substituting this form into (4.32), we have
{

λC1w =
{
1− 1

4a

}
C1w + 1−2a

8a2 C1v,

λC1v = a
2(1−a)(1−2a)C1w +

{

1− 1
4(1−a)

}

C1v.
(4.33)

Using λ = 1− 1
4a(1−a) , we have the constraint

C1v =
2a2

(1− a)(2a− 1)
C1w.

Letting C1w be an arbitrary parameter, we have the complete form of (W1(s), V1(s)):

W1(s) = C1w θ̃(s)
−1+ 1

4a(1−a) , V1(s) =
2a2 cos θ

(1− a)(2a− 1)
C1w θ̃(s)

−1+ 1
4a(1−a) .

Because fres ≡ 0 and f is analytic at (U0, V0) =
(

W0

cos θ , V0

)
, the Taylor expansion of f for deriving

equations for Yn ≡ (Wn, Vn) with n ≥ 2 yields that all possible terms appeared in Yn are the
linear combination of powers of θ(t)−mλ with m ≥ 1, where λ = 1 − 1

4a(1−a) . Summarizing the

above arguments, we have the second order asymptotic expansion of blow-up solutions:

w(s) ∼
√

1− 2a

8a2
θ̃(s)−1/2 + C1w θ̃(s)

− 3
2+

1
4a(1−a) ,

v(s) ∼
√

1

2(1− 2a)
θ̃(s)−1/2 +

2a2

(1− a)(2a− 1)
C1w θ̃(s)

− 3
2+

1
4a(1−a)

(4.34)

as s → smax. Interestingly, the exponent of the second term − 3
2 +

1
4a(1−a) can be both positive and

negative, indicating that the divergent behavior can be enhanced depending on a. Nevertheless,
the exponent is always larger than −1/2, because the quantity 1 − 1

4a(1−a) is always negative.

Reverting to the original t-timescale via (4.21), we obtain the following result.

Theorem 4.13. The system (4.20) with a ∈ (0, 1/2) admits a blow-up solution with the following
second-order asymptotic expansion as t → tmax:

u(t) ∼
√

(1− 2a) tan θ

8a2
θ(t)−1/2 + Cθ(t)−

3
2+

1
4a(1−a) ,

v(t) ∼ 1

2

√

sin(2θ)

1 − 2a
θ(t)−1/2 +

2a2 cos θ

(1− a)(2a− 1)
Cθ(t)−

3
2+

1
4a(1−a)

(4.35)
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with a constant C = C(θ) with θ ∈ (0, π/2).

4.4 Andrews’ system II

The next example is the following system:
{

u′ = u2(2av − bu),

v′ = buv2
(4.36)

with parameters a, b with a > 0 and 2a > b > 0. Our interest here is the asymptotic expansion of
blow-up solutions with u(0), v(0) > 0.

The system (4.36) comes from the following three dimensional system of ODEs expressing the
motion of crystalline curvature flow for triangles (cf. [2]):







u′
1 = u2

1(a2u2 + a3u3 − a1u1),

u′
2 = u2

2(a3u3 + a1u1 − a2u2),

u′
3 = u2

3(a1u1 + a2u2 − a3u3),

(4.37)

where a1, a2, a3 are positive constants. In [29], the parameter dependence of blow-up behavior is
investigated under the additional assumption a2 = a3 ≡ a > 0. In this case, it is proved in [29]
that {u2 = u3} is invariant under (4.37) and that, if 2a > a1 > 0, the solutions with initial points
satisfying u2(0) = u3(0) > 0 blow up at t = tmax < ∞ with the blow-up rate

u1(t) = O(θ(t)−1/2), u2(t) = u3(t) = O(θ(t)−1/2)

as t → tmax − 0.

Remark 4.14. In prior works (e.g. [1, 2]), it is also observed that, if a1 = a2 + a3, u1(0) > 0
and u2(0) = u3(0) > 0, then the solution blows up in a finite time tmax with the blow-up rate
(θ(t)−1 log θ(t)−1)1/2. Notice that the parameter constraint is different from our present setting.

As in previous examples, we introduce

ũ =
u√
b
, ṽ =

v√
b
, s = b2t, 2a = b(1 + σ) (4.38)

with an auxiliary parameter σ, which transform (4.36) into

dũ

ds
= ũ2 {(1 + σ)ṽ − ũ} , dṽ

ds
= ũṽ2.

In particular, the system becomes a one-parameter family. Our interest here is then the blow-up
solution (ũ(s), ṽ(s)) with the following blow-up rate

ũ(t) = O(θ̃(s)−1/2), ṽ(t) = O(θ̃(s)−1/2), θ̃(s) = smax − s = b2θ(t).

Expand the solution (ũ(s), ṽ(s)) as the asymptotic series

ũ(s) = θ̃(s)−1/2U(s) ≡ θ̃(s)−1/2
∞∑

n=0

Un(s), Un(s) ≪ Un−1(s), lim
s→smax

Un(s) = U0,

ṽ(s) = θ̃(s)−1/2V (s) ≡ θ̃(s)−1/2
∞∑

n=0

Vn(s), Vn(s) ≪ Vn−1(s), lim
s→smax

Vn(s) = V0. (4.39)

48



Substituting (4.39) into (4.36), we have

dU

ds
= θ̃(s)−1

{

−1

2
U + U2{(1 + σ)V − U}

}

,
dV

ds
= θ̃(s)−1

{

−1

2
V + UV 2

}

. (4.40)

The balance law under (U0, V0) 6= (0, 0) requires

−1

2
+ U0{(1 + σ)V0 − U0} = 0, −1

2
+ U0V0 = 0,

and hence
1 = 2U0{(1 + σ)V0 − U0}, 1 = 2U0V0, (4.41)

which are used below. These identities yield the following consequence:

U0 =

√
σ

2
, V0 =

1√
2σ

,

and we have the first order asymptotic expansion of blow-up solutions:

ũ(s) ∼
√

σ

2
θ̃(s)−1/2, ṽ(s) ∼ 1√

2σ
θ̃(s)−1/2

as s → smax.

Next the second term (U1(s), V1(s)) is calculated. From the linearization of the vector field
(4.40) at (U0, V0), the governing system for (U1(s), V1(s)) is

d

ds

(
U1

V1

)

= θ̃(s)−1

{

−1

2
I2 +D(U0, V0;σ)

}(
U1

V1

)

(4.42)

where

D(U0, V0;σ) =

(
2(1 + σ)UV − 3U2 (1 + σ)U2

V 2 2UV

)

(U,V )=(U0,V0)

=

(

1− σ
2

σ(1+σ)
2

1
2σ 1

)

under the identity (4.41). In this example, the blow-up power-determining matrix A is

A = −1

2
I2 +D(U0, V0;σ)

and blow-up power eigenvalues are easily calculated through eigenvalues of D(U0, V0;σ), which
solve

(

µ− 1 +
σ

2

)

(µ− 1)− 1 + σ

4
= µ2 +

(σ

2
− 2
)

µ+
3

4
(1− σ) = 0.

The roots of this equation are

µ =
3

2
,

1

2
(1− σ)
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and hence the blow-up power eigenvalues are

λ ≡ µ− 1

2
= 1, −σ

2
.

The value 1 is an eigenvalue of A. By our assumption 2a > b > 0, σ > 0 always holds, and hence
another blow-up power eigenvalue is always negative. Therefore the second term (U1(s), V1(s)) has
the following form:

U1(s) = C1uθ̃(s)
σ/2, V1(s) = C1v θ̃(s)

σ/2,

while the constraint among constants are determined by (4.42):

−ρC1u = −1

2
C1u +

(

1− σ

2

)

C1u +
σ(1 + σ)

2
C1v,

−ρC1v = −1

2
C1v +

1

2σ
C1u + C1v,

where ρ = σ/2 > 0. We thus have

C1v = − 1

σ(1 + σ)
C1u

and the second order asymptotic expansion of the blow-up solution (ũ(s), ṽ(s)) is obtained as
follows:

ũ(s) ∼
√

σ

2
θ̃(s)−1/2 + C1uθ̃(s)

σ
2 − 1

2 ,

ṽ(s) ∼ 1√
2σ

θ̃(s)−1/2 − 1

σ(1 + σ)
C1uθ̃(s)

σ
2 − 1

2

as s → smax.

Finally, we shall derive the third term (U2(s), V2(s)) to derive an interesting observation (Re-
mark 4.16). From the balance law and (4.42), the governing equation for (U2(t), V2(t)) is

d

ds

(
U2

V2

)

= θ̃(s)−1

{

−1

2
I2 +D(U0, V0;σ)

}(
U2

V2

)

+ θ̃(s)−1

(
2(1 + σ)U0U1V1 + ((1 + σ)V0 − 3U0)U

2
1 + (1 + σ)U2

1V1 − U3
1

U0V
2
1 + 2V0U1V1 + U1V

2
1

)

, (4.43)

according to (3.15) for j = 3 with fres ≡ 0. Here the inhomogeneous term consists of terms of
order θ̃(s)2ρ−1 and θ̃(s)3ρ−1 with ρ = σ/2. Because ρ > 0 under our assumption, the terms of
order θ̃(s)3ρ−1 is negligible compared with those of the order θ̃(s)2ρ−1, which indicates that the
governing equation determining the third order term is essentially

d

ds

(
U2

V2

)

≈ θ̃(s)−1

[{

−1

2
I2 +D(U0, V0;σ)

}(
U2

V2

)

+

(
2(1 + σ)U0U1V1 + ((1 + σ)V0 − 3U0)U

2
1

U0V
2
1 + 2V0U1V1

)]

.

(4.44)
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Integration of the system (4.43) yields that the essential terms in (U2(s), V2(s)) are of order θ̃(s)
2ρ

and hence these possess the following forms, respectively:

C2uθ̃(s)
2ρ, C2v θ̃(s)

2ρ.

Substituting them into (4.43) and comparing coefficients of θ̃(s)2ρ, equivalent to coefficient balance
for (4.44), we have the following constraint:

−2ρ

(
C2u

C2v

)

=

[

−1

2
I2 +

(

1− σ
2

σ(1+σ)
2

1
2σ 1

)](
C2u

C2v

)

+

({− 2
σU0 + (1 + σ)V0 − 3U0)

}
C2

1u

{U0 − 2σ(1 + σ)V0} 1
σ2(1+σ)2C

2
1u

)

,

equivalently

[(

2ρ− 1

2

)

I2 +

(

1− σ
2

σ(1+σ)
2

1
2σ 1

)](
C2u

C2v

)

= −
({− 2

σU0 + (1 + σ)V0 − 3U0)
}
C2

1u

{U0 − 2σ(1 + σ)V0} 1
σ2(1+σ)2C

2
1u

)

.

The inverse of the coefficient matrix in the left hand side is

1

(2ρ+ 1
2 − σ

2 )(2ρ+
1
2 )− 1+σ

4

(

2ρ+ 1
2 −σ(1+σ)

2
− 1

2σ 2ρ+ 1
2 − σ

2

)

=
1

σ(σ + 1)

(
2σ + 1 −σ(1 + σ)
− 1

σ 1 + σ

)

. (from ρ = σ/2)

Using U0 = σV0 and U0 =
√

σ/2, we have

(
C2u

C2v

)

= − 1

σ(σ + 1)

(
2σ + 1 −σ(1 + σ)
− 1

σ 1 + σ

)({− 2
σU0 + (1 + σ)V0 − 3U0)

}
C2

1u

{U0 − 2σ(1 + σ)V0} 1
σ2(1+σ)2C

2
1u

)

= − 1

σ(σ + 1)

(
2σ + 1 −σ(1 + σ)
− 1

σ 1 + σ

)({− 2
σ + (1 + σ) 1σ − 3)

}

{1− 2(1 + σ)} 1
σ2(1+σ)2

)

U0C
2
1u

=
1 + 2σ

σ2(σ + 1)

√
σ

2

(
2σ + 1 −σ(1 + σ)
− 1

σ 1 + σ

)(
1
1

σ(1+σ)2

)

C2
1u

=
1 + 2σ

σ2(σ + 1)2

√
σ

2

(
σ(2σ + 3)

−1

)

C2
1u.

As a summary, the third order asymptotic expansion of the blow-up solution (ũ(s), ṽ(s)) is
calculated as follows:

ũ(s) ∼
√

σ

2
θ̃(s)−1/2 + C1uθ̃(s)

σ
2 − 1

2 +
1 + 2σ

σ2(σ + 1)2

√
σ

2
σ(2σ + 3)C2

1uθ̃(s)
σ−1/2,

ṽ(s) ∼ 1√
2σ

θ̃(s)−1/2 − 1

σ(1 + σ)
C1uθ̃(s)

σ
2 − 1

2 − 1 + 2σ

σ2(σ + 1)2

√
σ

2
C2

1uθ̃(s)
σ−1/2

as s → smax. Now the constant δ defined in (3.28) is estimated as follows. First, α = (1, 1) and
k = 2. Because fres ≡ 0, we have γ1 = γ2 = +∞ and hence

δ = min

{

min
i=1,2

{αi

k
+ γi

}

+ 1,
σ

2

}

=
a

b
− 1

2
.
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Proposition 3.13 indicates that ordθ(Ym) ≥ m
(
a
b − 1

2

)
for m ≥ 2 and hence there is no term

θ(t)mσ/2 with m ≤ 2 in Yn(t), n ≥ 3. Finally we obtain the third order asymptotic expansion of
the blow-up solution in the original timescale (u(t), v(t)) through (4.38).

Theorem 4.15. The system (4.36) with 0 < b < 2a admits a blow-up solution with the following
third order asymptotic expansion with t → tmax:

u(t) ∼
√
2a− b√
2b

θ(t)−1/2 + Cθ(t)
a
b
−1 +

b(4a− b)(4a+ b)

4
√
2a2

√
2a− b

C2θ(t)
2a
b
− 3

2 ,

v(t) ∼ 1
√

2(2a− b)
θ(t)−1/2 − b2

2a(2a− b)
Cθ(t)

a
b
−1 − b3(4a− b)

4
√
2a2 (2a− b)

3/2
C2θ(t)

2a
b
− 3

2 (4.45)

with C = b(4a−3b)/2bC1 and a constant C1 ∈ R.

Notice that the power of tmax − t in the second term is ρ − 1
2 and that in the third term is

2ρ− 1
2 , where ρ = σ

2 = a
b − 1

2 > 0.

Remark 4.16. Similar to multi-order asymptotics of blow-up solutions for (4.20), powers of θ(t)
can be both positive and negative, depending of the quantity ρ = a

b − 1
2 , which itself is positive.

Observe that the second terms in (4.45) have the negative power of θ(t) if and only if

a

b
− 1 < 0 ⇔ a < b < 2a.

Similarly, the third terms in (4.45) have the negative power of θ(t) if and only if

2a

b
− 3

2
< 0 ⇔ a <

3

4
b <

3

2
a.

We know that the n-th terms of blow-up solutions have the negative power of θ(t) if and only if

(n− 1)

(
a

b
− 1

2

)

− 1

2
< 0 ⇔ a <

n

2(n− 1)
b <

n

n− 1
a.

As the parameter b(< 2a) approaches to 2a, the number

♯

{

n ∈ N | nρ <
1

2

}

determining blow-up solutions of the form

u(t) = θ(t)−1/2
∞∑

n=0

unθ(t)
ρn, v(t) = θ(t)−1/2

∞∑

n=0

vnθ(t)
ρn

for (4.36) increases and the expansion would “converge” to the blow-up solution with the blow-up
rate O(θ−1/2(log θ(t)−1)−1/2) mentioned in Remark 4.14. This expectation imply that multi-order
asymptotic expansion of blow-up solutions through the present methodology could contribute to
investigate the parameter dependence of blow-up rates.
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4.5 Keyfitz-Kranser-type system

The next example is a 2-dimensional system

u′ = u2 − v, v′ =
1

3
u3 − u, (4.46)

originated from the Keyfitz-Kranser system [24] which is a system of conservation laws admitting a
singular shock. Blow-up solutions of (4.46) are studied in [28] by means of dynamics at infinity14.
Observe that the system is asymptotically quasi-homogeneous of type α = (α1, α2) = (1, 2) and
order k+ 1 = 2, consisting of the quasi-homogeneous part fα,k and the lower-order part fres given
as follows:

fα,k(u, v) =

(
u2 − v
1
3u

3

)

, fres(u, v) =

(
0
−u

)

. (4.47)

It is proved in [28] that the system (4.46) admits the following solutions blowing up as t → tmax−0
associated with two different equilibria at infinity:

u(t) = O(θ(t)−1), v(t) = O(θ(t)−2), as t → tmax − 0. (4.48)

4.5.1 Blow-up asymptotics for the quasi-homogeneous part

Before treating the system (4.46), we consider a simpler system

u′ = u2 − v, v′ =
1

3
u3, (4.49)

namely the quasi-homogeneous part of (4.46). As in previous examples, expand the solution
(u(t), v(t)) as the asymptotic series

u(t) = θ(t)−1U(t) ≡ θ(t)−1
∞∑

n=0

Un(t), Un(t) ≪ Un−1(t), lim
t→tmax

Un(t) = U0,

v(t) = θ(t)−2V (t) ≡ θ(t)−2
∞∑

n=0

Vn(t), Vn(t) ≪ Vn−1(t), lim
t→tmax

Vn(t) = V0. (4.50)

Note that the quasi-homogeneity induces the different rate of blow-ups among components. The
balance law for (4.49), and hence for (4.46) is

U0 = U2
0 − V0, 2V0 =

1

3
U3
0 ,

which yields

U0 = 3±
√
3, V0 =

1

6
U3
0 . (4.51)

In particular, we have two different solutions of the balance law.

14Detailed treatments are also reviewed in [23].
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Next we consider the second term (U1(t), V1(t)). Substituting (4.50) into (4.49) and using the
balance law, we have

d

dt

( ∞∑

n=1

Un

)

= θ(t)−1






−
( ∞∑

n=1

Un

)

+ 2U0

( ∞∑

n=1

Un

)

+

( ∞∑

n=1

Un

)2

−
( ∞∑

n=1

Vn

)





,

d

dt

( ∞∑

n=1

Vn

)

= θ(t)−1






−2

( ∞∑

n=1

Vn

)

+ U2
0

( ∞∑

n=1

Un

)

+ U0

( ∞∑

n=1

Un

)2

+
1

3

( ∞∑

n=1

Un

)3





.

(4.52)

The governing system for (U1(t), V1(t)) is

d

dt

(
U1

V1

)

= θ(t)−1

{(
−1 0
0 −2

)

+

(
2U0 −1
U2
0 0

)}(
U1

V1

)

. (4.53)

Depending on the choice of U0, the eigenstructure of the blow-up power-determining matrix
changes.

Case 1. U0 = 3−
√
3.

In this case, the blow-up power-determining matrix A is

A =

(
2(3−

√
3)− 1 −1

(3−
√
3)2 −2

)

=

(
5− 2

√
3 −1

12− 6
√
3 −2

)

and the eigenvalues solve

(λ− 5 + 2
√
3)(λ+ 2) + (12− 6

√
3) = λ2 + (−3 + 2

√
3)λ+ 2− 2

√
3 = 0.

The eigenvalues are
λ = 1, 2− 2

√
3

and associating eigenvectors are
(
5− 2

√
3 −1

12− 6
√
3 −2

)(
a
b

)

=

(
a
b

)

⇒
(
a
b

)

=

(
1

4− 2
√
3

)

,

(
5− 2

√
3 −1

12− 6
√
3 −2

)(
a
b

)

= (2− 2
√
3)

(
a
b

)

⇒
(
a
b

)

=

(
1
3

)

.

Because 2 − 2
√
3 < 0, this eigenvalue contributes the power of θ(t) in the asymptotic expansion,

while λ = 1 makes no contribution to asymptotic expansions. Introducing the nonsingular matrix

P =

(
1 1

4− 2
√
3 3

)

⇔ P−1 ≡
(
p11 p12

p21 p22

)

=
1

−1 + 2
√
3

(
3 −1

−4 + 2
√
3 1

)

, (4.54)

the second term (U1(t), V1(t)) is calculated as

(
U1(t)
V1(t)

)

= P

(
0

Cθ(t)−2+2
√
3

)

=

(

Cθ(t)−2+2
√
3

3Cθ(t)−2+2
√
3

)
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as t → tmax. Letting C1u ≡ C, we have the second order asymptotic expansion of blow-up solutions
(u(t), v(t)) with U0 = 3−

√
3 as follows:

u(t) ∼ (3−
√
3)θ(t)−1 + C1uθ(t)

−3+2
√
3,

v(t) ∼ (9− 5
√
3)θ(t)−2 + 3C1uθ(t)

−4+2
√
3

as t → tmax.
Next the third term (U2(t), V2(t)) is considered with U0 = 3−

√
3. From (4.52) and (4.53), the

governing equation for (U2(t), V2(t)) is

d

dt

(
U2

V2

)

= θ(t)−1

{

A

(
U2

V2

)

+

(
U2
1

U0U
2
1 + 1

3U
3
1

)}

. (4.55)

From the asymptotic assumption U1(t) ≪ U0, the essential term of (U2(t), V2(t)) is approximately
governed by

d

dt

(
U2

V2

)

≈ θ(t)−1

{

A

(
U2

V2

)

+

(
U2
1

U0U
2
1

)}

.

The general solution of this approximate system is

(
U2(t)
V2(t)

)

≈ P




θ(t)−1

{

−
∫ tmax

t θ(s)1−1(p11U1(s)
2 + p12U0U1(s)

2)ds
}

θ(t)−2+2
√
3
{

c̃2 +
∫ t

0
θ(s)2−2

√
3−1(p21U1(s)

2 + p22U0U1(s)
2)ds

}





Letting r = 2
√
3− 2(> 0), we calculate the integrals. First,

−
∫ tmax

t

(p11U1(s)
2 + p12U0U1(s)

2)ds

= −p11C2
1u

∫ tmax

t

θ(s)2rds−U0p
12C2

1u

∫ tmax

t

θ(s)2rds

=
−1

2r + 1

{
p11 + U0p

12
}
C2

1uθ(t)
2r+1

=
−(9

√
3 + 10)

143
C2

1uθ(t)
2r+1.

Similarly,

∫ t

0

θ(s)−r−1(p21U1(s)
2 + p22U0U1(s)

2)ds

= p21C2
1u

∫ t

0

θ(s)r−1ds+ U0p
22C2

1u

∫ t

0

θ(s)r−1ds

=
−1

r

{
p21 + U0p

22
}
C2

1uθ(t)
r + C̃

= −1 + 2
√
3

22
C2

1uθ(t)
r + C̃,
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where the integral constant C̃ is chosen so that c̃2 + C̃ = 0 (cf. (3.19)). Therefore

(
U2(t)
V2(t)

)

≈ P

(
−(9

√
3+10)

143 C2
1uθ(t)

2r

− 1+2
√
3

22 C2
1uθ(t)

2r

)

=

(

− 3+4
√
3

26 C2
1uθ(t)

2r

− 1+10
√
3

26 C2
1uθ(t)

2r

)

.

As a consequence, we have the third order asymptotic expansion of blow-up solutions (u(t), v(t))
with U0 = 3−

√
3 as follows:

u(t) ∼ (3−
√
3)θ(t)−1 + C1uθ(t)

−3+2
√
3 − 3 + 4

√
3

26
C2

1uθ(t)
−5+4

√
3,

v(t) ∼ (9− 5
√
3)θ(t)−2 + 3C1uθ(t)

−4+2
√
3 − 1 + 10

√
3

26
C2

1uθ(t)
−6+4

√
3

as t → tmax.

Case 2. U0 = 3 +
√
3.

In this case, the blow-up power-determining matrix A is

A =

(
2(3 +

√
3)− 1 −1

(3 +
√
3)2 −2

)

=

(
5 + 2

√
3 −1

12 + 6
√
3 −2

)

and the eigenvalues solve

(λ− 5− 2
√
3)(λ + 2) + (12 + 6

√
3) = λ2 + (−3− 2

√
3)λ− 2(5 + 2

√
3) + 12 + 6

√
3

= λ2 + (−3− 2
√
3)λ+ 2 + 2

√
3 = 0.

The eigenvalues are
λ = 1, 2 + 2

√
3,

both of which are positive. Therefore these eigenvalues make no contributions to multi-order
asymptotic expansions. In particular, we know that Un(t) ≡ 0, Vn(t) ≡ 0 for all n ≥ 1 and hence
the first order asymptotic expansion

u(t) ∼ (3 +
√
3)θ(t)−1, v(t) ∼ (9 + 5

√
3)θ(t)−2

indeed expresses the exact solution of (4.49). As a summary, we obtain the following result.

Theorem 4.17. The quasi-homogeneous system (4.49) admits blow-up solutions with the following
third-order asymptotic expansions as t → tmax:

u(t) ∼ (3−
√
3)θ(t)−1 + Cθ(t)−3+2

√
3 − 3 + 4

√
3

26
C2θ(t)−5+4

√
3,

v(t) ∼ (9− 5
√
3)θ(t)−2 + 3Cθ(t)−4+2

√
3 − 1 + 10

√
3

26
C2θ(t)−6+4

√
3

with a free parameter C, and

u(t) ∼ (3 +
√
3)θ(t)−1, v(t) ∼ (9 + 5

√
3)θ(t)−2.

The latter solution is indeed the exact solution of (4.49).
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4.5.2 Blow-up asymptotics for (4.46)

We go back to the original system (4.46). Notice first that the balance law for (4.46) is identical
with that of (4.49) because the quasi-homogeneous components are identical. Substituting the
asymptotic form (4.50) into (4.46), we have

d

dt

( ∞∑

n=1

Un

)

= θ(t)−1






−
( ∞∑

n=1

Un

)

+ 2U0

( ∞∑

n=1

Un

)

+

( ∞∑

n=1

Un

)2

−
( ∞∑

n=1

Vn

)





,

d

dt

( ∞∑

n=1

Vn

)

= θ(t)−1






−2

( ∞∑

n=1

Vn

)

+ U2
0

( ∞∑

n=1

Un

)

+ U0

( ∞∑

n=1

Un

)2

+
1

3

( ∞∑

n=1

Un

)3






(4.56)

− θ(t)

( ∞∑

n=0

Un

)

,

where the balance law (4.51) is applied to eliminating the principal terms. The governing system
for (U1(t), V1(t)) is

d

dt

(
U1

V1

)

= θ(t)−1

{(
−1 0
0 −2

)

+

(
2U0 −1
U2
0 0

)}(
U1

V1

)

− θ(t)

(
0
U0

)

, (4.57)

where the lower order term −θ(t)(0, U0)
T is added to (4.53). Because the linear (homogeneous) part

is determined by the blow-up power-determining matrix A, the nonsingular matrix P diagonalizing
A can be applied to (4.57). The concrete forms of solutions depend on the choice of U0, like (4.49).

Case 1. U0 = 3−
√
3.

In this case, the matrix P is given in (4.54), and ρ = 2
√
3− 2(> 0) is used to determine the order

of θ(t). The general solution of (4.57) is then

(
U1(t)
V1(t)

)

= P




θ(t)−1

{

−
∫ tmax

t θ(s)1+1(p110 + p12(−U0))ds
}

θ(t)r
{

c̃2 +
∫ t

0
θ(s)−ρ+1(p210 + p22(−U0))ds

}



 .

The integrals are calculated to obtain

−
∫ tmax

t

θ(s)1+1(p110 + p12(−U0))ds = −p12(−U0)

∫ tmax

t

θ(s)2ds

= − 3−
√
3

3(−1 + 2
√
3)

θ(t)3

= −−3 + 5
√
3

33
θ(t)3,
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and
∫ t

0

θ(s)−ρ+1(p210 + p22(−U0))ds = p22(−U0)

∫ t

0

θ(s)−ρ+1ds

=
3−

√
3

(−1 + 2
√
3)(−ρ+ 2)

θ(t)−ρ+2 + C

=
3−

√
3

(−1 + 2
√
3)(4 − 2

√
3)
θ(t)−ρ+2 + C

=
9 + 7

√
3

22
θ(t)−r+2 + C

with the integral constant C. Therefore

(
U1(t)
V1(t)

)

= P




θ(t)−1

{

−−3+5
√
3

33 θ(t)3
}

θ(t)ρ
{

C1u + 9+7
√
3

22 θ(t)−ρ+2
}





with a constant C1u. In particular,

(
U1(t)
V1(t)

)

=

(
1 1

4− 2
√
3 3

)(
3−5

√
3

33 θ(t)2

C1uθ(t)
ρ + 9+7

√
3

22 θ(t)2

)

(4.58)

=

(

C1uθ(t)
ρ + (3−5

√
3

33 + 9+7
√
3

22 )θ(t)2

3C1uθ(t)
ρ + ( (3−5

√
3)(4−2

√
3)

33 + 3(9+7
√
3)

22 )θ(t)2

)

=

(

C1uθ(t)
ρ + (2(3−5

√
3)

66 + 3(9+7
√
3)

66 )θ(t)2

3C1uθ(t)
ρ + (2(42−26

√
3)

66 + 9(9+7
√
3)

66 )θ(t)2

)

=

(

C1uθ(t)
ρ + ( (6−10

√
3)

66 + (27+21
√
3)

66 )θ(t)2

3C1uθ(t)
ρ + ( (84−52

√
3)

66 + (81+63
√
3)

66 )θ(t)2

)

=

(

C1uθ(t)
ρ + 3+

√
3

6 θ(t)2

3C1uθ(t)
ρ + 15+

√
3

6 θ(t)2

)

.

As a consequence, we have the second order asymptotic expansion of blow-up solutions (u(t), v(t))
with U0 = 3−

√
3 as follows:

u(t) ∼ (3−
√
3)θ(t)−1 + C1uθ(t)

−3+2
√
3 +

3 +
√
3

6
θ(t),

v(t) ∼ (9− 5
√
3)θ(t)−2 + 3C1uθ(t)

−4+2
√
3 +

15 +
√
3

6
(4.59)

as t → tmax with a constant C1u. In the present case, the additional terms of O(θ(t)) in u and
of O(1) in v, respectively, are added as the contribution of the lower-order term fres. We observe
that ρ and 2 = k + α2 − 1 are exponents of θ(t) determining (U(t), V (t)). The exponent ρ comes
from blow-up power eigenvalues (recall that −ρ is one of such eigenvalues), while 2 comes from
fres. Because ρ and 2 are Z-linearly independent, coefficients of all terms in (4.59) are uniquely
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determined. In fact, when we consider the governing system for the third term (U2(t), V2(t)) given
by

d

dt

(
U2

V2

)

≈ θ(t)−1

{

A

(
U2

V2

)

+

(
U2
1

U0U
2
1

)}

− θ(t)

(
0
U1

)

, (4.60)

we see that the solution has the form

P−1

(
U2(t)
V2(t)

)

=

(

θ(t)−1[−
∫ tmax

t θ(s)1−1(c11θ(s)
2ρ + c12θ(s)

2+ρ + c13θ(s)
4)ds−

∫ tmax

t θ(s)1+1(c14θ(s)
ρ + c15θ(s)

2)ds]

θ(t)ρ[c̃2 +
∫ t

0 θ(s)
−ρ−1(c21θ(s)

2ρ + c22θ(s)
2+ρ + c23θ(s)

4)ds+
∫ t

0 θ(s)
−ρ+1(c24θ(s)

ρ + c25θ(s)
2)ds]

)

=

(
c̃11θ(t)

2ρ + c̃12θ(t)
2+ρ + c̃13θ(t)

4 + c̃14θ(t)
2+ρ + c̃15θ(t)

4

c̃21θ(t)
2ρ + c̃22θ(t)

2+ρ + c̃23θ(t)
4 + c̃24θ(t)

2+ρ + c̃25θ(t)
4

)

,

where the constant c̃2 is chosen so that the constant term vanishes in the second component (cf.
(3.19)). All possible exponents appeared in the above solution does not contain 2 and ρ. In fact,
all components appeared here has the form 2β1 + ρβ2, where β1, β2 ∈ Z≥0 satisfying β1 + β2 = 2.
By induction, we can prove that all possible exponents appeared in Yn(t) ≡ (Un(t), Vn(t)) as
the form 2β1 + ρβ2, where β1, β2 ∈ Z≥0 satisfying β1 + β2 = n. For example, the governing
system determining Y3(t) ≡ (U3(t), V3(t)) is, combining the neglected terms in the derivation of
Y2(t) = (U2(t), V2(t)),

d

dt

(
U3

V3

)

≈ θ(t)−1

{

A

(
U3

V3

)

+

(
2U1U2 + U2

2

U3
1 + 2U0U1U2 + U0U

2
2 + 1

3U
3
1 + U2

1U2 + U1U
2
2

)}

− θ(t)

(
0
U2

)

,

(4.61)

and all integrands appeared in solving Y3(t) consist of θ(t)µ with µ = 2β1 + ρβ2 − 1, where
β1, β2 ∈ Z≥0 with β1 + β2 = 3. Therefore the integration of (4.61) yields our claim with n = 3.
The general case can also be treated in the similar way. By the Z-linear independence of 2 and ρ,
all terms appeared in (Un(t), Vn(t)) are uniquely determined for each n ≥ 0. In particular, (4.59)
is the second order exact asymptotic expansion of (u(t), v(t)) as t → tmax.

Case 2. U0 = 3 +
√
3.

In the similar way to the case U0 = 3−
√
3, the asymptotic expansion of the blow-up solution with

U0 = 3+
√
3 can be calculated. Unlike the fully quasi-homogeneous case, the lower-order part fres

makes a contribution to determine the (nontrivial) asymptotic behavior.
To this end, calculate the nonsingular matrix P+ diagonalizing A with U0 = 3 +

√
3, which is

constructed through calculations of eigenvectors:

(
5 + 2

√
3 −1

12 + 6
√
3 −2

)(
a
b

)

=

(
a
b

)

⇒
(
a
b

)

=

(
1

4 + 2
√
3

)

,

(
5 + 2

√
3 −1

12 + 6
√
3 −2

)(
a
b

)

= (2 + 2
√
3)

(
a
b

)

⇒
(
a
b

)

=

(
1
3

)

.
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Let P+ be then the following matrix:

P+ =

(
1 1

4 + 2
√
3 3

)

⇔ P−1
+ ≡

(
p11+ p12+
p21+ p22+

)

=
−1

1 + 2
√
3

(
3 −1

−(4 + 2
√
3) 1

)

.

The general solution of (4.57) is written by

(
U1(t)
V1(t)

)

= P+




θ(t)−1

{

−
∫ tmax

t θ(s)1+1(p11+ 0 + p12+ (−U0))ds
}

θ(t)−ρ+

{

−
∫ tmax

t
θ(s)ρ++1(p21+ 0 + p22+ (−U0))ds

}



 ,

where ρ+ = 2 + 2
√
3. The integrals are calculated to obtain

−
∫ tmax

t

θ(s)1+1(p11+ 0 + p12+ (−U0))ds = −p12+ (−U0)

∫ tmax

t

θ(s)2ds

=
(3 +

√
3)

3(1 + 2
√
3)

θ(t)3

=
3+ 5

√
3

33
θ(t)3

and

−
∫ tmax

t

θ(s)ρ++1(p21+ 0 + p22+ (−U0))ds = −p22+ (−U0)

∫ tmax

t

θ(s)ρ++1ds

= − 3 +
√
3

(1 + 2
√
3)(ρ+ + 2)

θ(t)ρ++2

= − 3 +
√
3

(1 + 2
√
3)(4 + 2

√
3)

θ(t)ρ++2

=
9− 7

√
3

22
θ(t)ρ++2.

Therefore

(
U1(t)
V1(t)

)

= P+




θ(t)−1

{
3+5

√
3

33 θ(t)3
}

θ(t)−ρ+

{
9−7

√
3

22 θ(t)ρ++2
}





=

(
1 1

4 + 2
√
3 3

)(
3+5

√
3

33 θ(t)2

9−7
√
3

22 θ(t)2

)

=

(

(3+5
√
3

33 + 9−7
√
3

22 )θ(t)2

(− (3+5
√
3)(4+2

√
3)

33 + 3(9−7
√
3)

22 )θ(t)2

)

=

(
3−

√
3

6 θ(t)2

15−
√
3

6 θ(t)2

)

.
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As a consequence, we have the second order asymptotic expansion of blow-up solutions (u(t), v(t))
with U0 = 3 +

√
3 as follows:

u(t) ∼ (3 +
√
3)θ(t)−1 +

3−
√
3

6
θ(t), v(t) ∼ (9 + 5

√
3)θ(t)−2 +

15−
√
3

6

as t → tmax.

Theorem 4.18. The system (4.46) admits the following two families of blow-up solutions as
t → tmax:

u(t) ∼ (3−
√
3)θ(t)−1 + Cθ(t)−3+2

√
3 +

3 +
√
3

6
θ(t),

v(t) ∼ (9− 5
√
3)θ(t)−2 + 3Cθ(t)−4+2

√
3 +

15 +
√
3

6
(4.62)

with a free parameter C ∈ R and

u(t) ∼ (3 +
√
3)θ(t)−1 +

3−
√
3

6
θ(t), v(t) ∼ (9 + 5

√
3)θ(t)−2 +

15−
√
3

6
(4.63)

Remark 4.19. Define ι : Q[
√
3] → Q[

√
3] by

ι(1) = 1, ι(
√
3) = −

√
3

and extend linearly on Q[
√
3] ≡ {a+b

√
3 | a, b ∈ Q}. Then ι2 = id holds. That is, ι is an involution.

We first observe in (4.46) that roots of the balance law (U0, V0) = (3±
√
3, 9± 5

√
3) are mapped to

each other via ι. (4.62) with C = 0 and (4.63) indicate that the second order asymptotic expansions
are also mapped via ι by mapping individual coefficients, which would expect the involution, or more
general symmetry correspondence among different blow-up solutions, possibly with a specific choice
of free parameters.

4.6 An artificial system in the presence of Jordan blocks

The next example concerns with an artificial system such that the blow-up power-determining
matrix has a non-trivial Jordan block. We see through this example that multi-order asymptotic
expansion of blow-ups can be executed regardless of the presence of Jordan blocks.

4.6.1 The presence of terms of order k + αi − 1

First we consider
u′ = u2 + v, v′ = au3 + 3uv − u2, (4.64)

where a ∈ R is a parameter. This system is asymptotically quasi-homogeneous of type α = (1, 2)
and order k + 1 = 2, consisting of the quasi-homogeneous part fα,k and the lower-order part fres
given as follows:

fα,k(u, v) =

(
u2 + v

au3 + 3uv

)

, fres(u, v) =

(
0

−u2

)

. (4.65)
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Assume that the system (4.64) admits a blow-up solution with the following asymptotic behavior:

u(t) = O(θ(t)−1), v(t) = O(θ(t)−2) as t → tmax − 0.

Under this assumption and the associated ansatz

u(t) = θ(t)−1U(t) ≡ θ(t)−1
∞∑

n=0

Un(t), Un(t) ≪ Un−1(t), lim
t→tmax

Un(t) = U0,

v(t) = θ(t)−2V (t) ≡ θ(t)−2
∞∑

n=0

Vn(t), Vn(t) ≪ Vn−1(t), lim
t→tmax

Vn(t) = V0, (4.66)

we solve the balance law and investigate the eigenstructure of the associated blow-up power eigen-
values. The balance law is (

U0

2V0

)

=

(
U2
0 + V0

aU3
0 + 3U0V0

)

.

Our particular interest here is the case a = 0, in which case the root is (U0, V0) = (1, 0). We fix
a = 0 for a while. The blow-up power-determining matrix at (U0, V0) is

A =

(
−1 0
0 −2

)

+

(
2U0 1
3V0 3U0

)

=

(
1 1
0 1

)

,

that is, the matrixA has nontrivial Jordan block. The governing system for determining (U1(t), V1(t))
is therefore

d

dt

(
U1

V1

)

= θ(t)−1

(
1 1
0 1

)(
U1

V1

)

−
(

0
U2
0

)

= θ(t)−1

(
1 1
0 1

)(
U1

V1

)

−
(
0
1

)

. (4.67)

The fundamental matrix of the homogeneous part and its inverse are

Φ2(t; 1) =

(
θ(t)−1 θ(t)−1 ln(θ(t)−1)

0 θ(t)−1

)

, Φ2(t; 1)
−1 =

(
θ(t) −θ(t) ln(θ(t)−1)
0 θ(t)

)

,

respectively. Because all eigenvalues of A are positive, Spec(A) makes no contribution to determine
the order of θ(t), while the combination of Φ2(t; 1) and the inhomogeneous term (0,−1)T induce
the successive terms of (U(t), V (t)). The general solution of (4.67) satisfying the asymptotic
assumption (4.66) is

(
U1(t)
V1(t)

)

= −Φ2(t; 1)

∫ tmax

t

Φ2(s; 1)
−1

(
0
−1

)

ds

= −Φ2(t; 1)

∫ tmax

t

(
θ(s) ln(θ(s)−1)

−θ(s)

)

ds

=

(
θ(t)−1 θ(t)−1 ln(θ(t)−1)

0 θ(t)−1

)(
− 1

4θ(t)
2{2 ln(θ(t)−1) + 1}

1
2θ(t)

2

)

=

(
− 1

4θ(t){2 ln(θ(t)−1) + 1}+ 1
2θ(t) ln(θ(t)

−1)
1
2θ(t)

)

=
1

4

(
−θ(t)
2θ(t)

)

.
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Now the constant δ defined in (3.28) is estimated as follows. First, α = (1, 2) and k = 1. From
(4.65) we know that (γ1, γ2) = (+∞,−2). Because there are no negative blow-up power eigenvalues,
δ is evaluated as

δ = min

{
1

1
+∞,

2

1
− 2

}

+ 1 = 1.

Proposition 3.13 indicates that ordθ(Ym) ≥ m for m ≥ 2 and hence there is no term θ(t)m with
m ≤ 1 in Yn(t) = (Un(t), Vn(t)), n ≥ 2. In particular, we have the second order asymptotic
expansion of (u(t), v(t)) as t → tmax − 0:

u(t) ∼ θ(t)−1 − 1

4
, v(t) ∼ 1

2
θ(t)−1.

The governing equation for the third term (U2(t), V2(t)) is

d

dt

(
U2

V2

)

= θ(t)−1

{(
1 1
0 1

)(
U2

V2

)

+

(
U2
1

3U1V1

)}

−
(

0
2U1

)

= θ(t)−1

{(
1 1
0 1

)(
U2

V2

)

+

(
1
16θ(t)

2

− 3
8θ(t)

2

)}

+
1

2

(
0

θ(t)

)

= θ(t)−1

(
1 1
0 1

)(
U2

V2

)

+
1

16

(
θ(t)
2θ(t)

)

. (4.68)

The solution is therefore
(
U2(t)
V2(t)

)

= − 1

16
Φ2(t; 1)

∫ tmax

t

(
θ(s) −θ(s) ln(θ(s)−1)
0 θ(s)

)(
θ(s)
2θ(s)

)

ds

= − 1

16
Φ2(t; 1)

∫ tmax

t

(
θ(s)2 − 2θ(s)2 ln(θ(s)−1)

2θ(s)2

)

ds

=
1

16

(
θ(t)−1 θ(t)−1 ln(θ(t)−1)

0 θ(t)−1

)(
− 1

3θ(t)
3 − 2

[
− 1

9θ(t)
3{3 ln(θ(t)−1) + 1}

]

− 2
3θ(t)

3

)

=
1

16

(
− 1

3θ(t)
2 − 2

[
− 1

9θ(t)
2{3 ln(θ(t)−1) + 1}

]
− 2

3θ(t)
2 ln(θ(t)−1)

− 2
3θ(t)

2

)

=
−1

144

(
θ(t)2

6θ(t)2

)

.

As a summary, we obtain the following result.

Theorem 4.20. The system (4.64) with a = 0 admits a blow-up solution with the following third-
order asymptotic expansion as t → tmax − 0:

u(t) ∼ θ(t)−1 − 1

4
− 1

144
θ(t), v(t) ∼ 1

2
θ(t)−1− 1

24
.

4.6.2 The absence of terms of order k + αi − 1

Here we consider
u′ = u2 + v, v′ = au3 + 3uv − u (4.69)
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with a real parameter a ∈ R, instead of (4.64). The difference from (4.64) is the replacement of
−u2 by −u in the second component of the vector fields. Because the quasi-homogeneous part is
unchanged, the balance law and blow-up power-determining matrix are the same as those of (4.64).
Now we consider the asymptopic expansion (4.66) for (4.69):

d

dt

(
U1

V1

)

= θ(t)−1

(
1 1
0 1

)(
U1

V1

)

−
(

0
θ(t)

)

. (4.70)

The solution satisfying the asymptotic assumption (4.66) is
(
U1(t)
V1(t)

)

= −Φ2(t; 1)

∫ tmax

t

Φ2(s; 1)
−1

(
0

−θ(s)

)

ds

= −Φ2(t; 1)

∫ tmax

t

(
θ(s)2 ln(θ(s)−1)

−θ(s)2

)

ds

=

(
θ(t)−1 θ(t)−1 ln(θ(t)−1)

0 θ(t)−1

)(
− 1

9θ(t)
3{3 ln(θ(t)−1) + 1}

1
3θ(t)

3

)

=

(
− 1

9θ(t)
2{3 ln(θ(t)−1) + 1}+ 1

3θ(t)
2 ln(θ(t)−1)

1
3θ(t)

2

)

=
1

9

(
−θ(t)2

3θ(t)2

)

.

Similar to (4.64), the constant δ in (3.28) is estimated as

δ = min

{
1

1
+∞,

2

1
− 1

}

+ 1 = 2,

where we have used (γ1, γ2) = (+∞,−1). Proposition 3.13 indicates that ordθ(Ym) ≥ 2m for
m ≥ 2 and hence there is no term θ(t)m with m ≤ 2 in Yn(t) = (Un(t), Vn(t)), n ≥ 2. As a
summary, we have the following result.

Theorem 4.21. The system (4.69) with a = 0 admits a blow-up solution with the following
second-order asymptotic expansion as t → tmax − 0:

u(t) ∼ θ(t)−1 − 1

9
θ(t), v(t) ∼ 1

3
.

In contrast to Theorem 4.20 for (4.64), v(t) remains bounded as t → tmax, while u(t) blows
up15. Another interesting observation here is the absence of logarithmic terms in the asymptotic
expansion, although the fundamental matrix Φ2(t; 1) includes the logarithmic terms. In practical
calculations, there are cancellations of logarithmic terms in integration of inhomogeneous terms,
which can also occur in calculations of higher-order terms (Un(t), Vn(t)), n ≥ 3.

Concluding Remarks

In this paper, we have provided a systematic methodology to derive asymptotic expansions of
blow-up solutions in arbitrary orders for autonomous ODEs possessing quasi-homogeneity in an

15In some context in partial differential equations, this kind of blow-up behavior is referred to as nonsimultaneous

blow-up (cf. [17, 18]).
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asymptotic sense, as well as their with their justification, and parameter dependence under mild
assumptions. Through our proposed methodology with several examples, we see that

• only fundamental solver of linear ODEs is necessary to derive asymptotic expansions of an
arbitrary order, at least in the formal sense;

• all possible powers of θ(t) can be extracted even if the series is not a power series;

• dependence of powers of θ(t) on parameters in systems can be clearly extracted;

• low singular or regular behavior of solutions, corresponding to 0-valued components in roots
of the balance law, can be also extracted through the present methodology, while they have
not been extracted from dynamics at infinity in preceding results (cf. [28] whose details are
briefly reviewed in Part II [23]).

We end this paper by providing several discussions towards the extension of our present arguments
and perspectives of blow-up solutions, as well as a short introduction to Part II [23].

Beyond Type-I Blow-Ups

The present methodology for asymptotic expansions is based on Assumption 3.1, that is, the blow-
up is assumed to be type-I. There are another type of blow-up behavior whose singularity as a
function of θ(t) is stronger than type-I blow-ups, which are often called type-II blow-ups16. In [29],
dynamical aspects of type-II blow-ups and grow-ups; divergence of solutions with tmax = ∞, are
studied, where non-hyperbolic equilibria or invariant sets at infinity play key roles in characteri-
zation of such asymptotic behavior. We have seen in the present arguments that hyperbolicity of
linearized matrices for systems of our interests are essential to determine type-I blow-up behavior
and their asymptotic expansions, indicating that non-hyperbolicity can induce completely differ-
ent situation in the study of asymptotic expansions. Moreover, according to [29], type-II blow-up
mechanism has various aspects and hence studies for individual systems should be collected towards
a comprehensive understandings of asymptotic expansions of blow-ups beyond type-I.

Short Introduction to Part II [23]

We briefly introduce arguments in Part II [23]. As mentioned in Introduction, a dynamical charac-
terization of blow-up solutions in terms of dynamics at infinity is proposed by the third author and
his collaborators. In the present paper, on the other hand, a systematic methodology for calculat-
ing multi-order asymptotic expansions of blow-up solutions is proposed, implying characterization
of blow-up solutions from different viewpoints (e.g., [28]. See Introduction for more references).
Now we have two characterizations for identical blow-up solutions. It is then natural to ask the
correspondence between these two characterizations.

In Part II [23], we address a correspondence of blow-up characterizations. More precisely, we
correspond roots of the balance law (Definition 3.2) and eigenstructures of the blow-up power-
determining matrices (Definition 3.3) to “equilibria at infinity” and the associated eigenstructure
of linearized systems. The correspondence implies that algebraic objects determining asymptotic
expansions characterize dynamical properties of blow-ups, such as existence, persistence under

16This terminology is well known in blow-up studies for partial differential equations (e.g. [19]).
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perturbation of initial points, and blow-up rates. As a corollary, we shall prove that the balance law
and blow-up power-determining matrix themselves provide a criterion of the existence of blow-up
solutions which we are interested in (remark that, throughout our arguments in the present paper,
the existence of blow-ups is assumed). The dynamical interpretation of our present methodology
through arguments in Part II [23] will give a new insight into characterizations of blow-up solutions.
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A Tools

A.1 Right-sided compactifications for asymptotically autonomous sys-
tems

In several results, time-variable compactifications for asymptotically autonomous systems intro-
duced in e.g. [34] are applied to completing our proofs discussed in the next section. These
advanced notions in dynamical systems are briefly summarized in the present section. Note that
simpler proofs can be constructed, which will yield the same statement in more general setting.

Recall that our main issue is (3.4). Now we introduce the new time variable

s = − ln θ(t) ⇔ θ(t) = e−s,
df

dt
=

df

ds

ds

dt
= θ(t)−1 df

ds
. (A.1)

Then the system (3.4) is transformed into

d

ds
Y = − 1

k
ΛαY + fα,k(Y) + e−s(I+ 1

k
Λα)fres(e

s
k
ΛαY). (A.2)
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By the asymptotic quasi-homogeneity of f , the nonautonomous system (A.2) is asymptotically
autonomous as s → +∞ (corresponding to t → tmax − 0) in the sense that (A.2) admits the future
limit system as s → ∞ (cf. [34]):

d

ds
Y = − 1

k
ΛαY + fα,k(Y). (A.3)

In particular, e−s(I+ 1
k
Λα)fres(e

s
k
ΛαY) → 0 as s → +∞, which is locally uniform in Y. The root of

the balance law Y0 is an equilibrium of the future limit system (A.3). Here we briefly summarize
the technique of compactification of for asymptotically autonomous systems in the time variable
introduced in [34]. In particular, right-sided compactification is reviewed.

Assumption A.1 ([34], Assumption 2.2). The general system

dy

ds
= f(y,Γ(s)), Γ : R → V : C1

is considered with an open interval V ⊂ R, where f : U × V → Rn with an open subset U ⊂ Rn

is Cr with r ≥ 1. The function Γ is assumed to be asymptotically constant in the sense that
the future limit lim

t→+∞
Γ(t) = Γ+ ∈ V exists. A coordinate transform s̃ = φ(s) satisfying all the

following properties is chosen:

φ : [s−,∞) → [s̃−, 1), φ ∈ Ck≥2, lim
s→+∞

φ(s) = 1,

dφ

ds
(s) > 0 (s ≥ s−), lim

s→+∞
dφ

ds
(s) = 0,

with the inverse h(s̃) = φ−1(s̃).

The resulting autonomous right-sided compactified system is the following:

dy

ds
= f(y,Γ(h(s̃))),

ds̃

ds
= γ(s̃), (A.4)

where

f(y,Γ(h(s̃))) =

{

f(y,Γ(h(s̃))) s̃ ∈ [s̃−, 1),

f(y,Γ+) s̃ = 1,

γ(s̃) =

{

1/h′(s̃) s̃ ∈ [s̃−, 1),

0 s̃ = 1.

Then it follows from Proposition 2.1 and Theorem 2.2 in [34] that (A.4) is C1-smooth on U×(s̃−, 1]
if and only if the following limits exist:

lim
s→+∞

d
dsΓ(s)
d
dsφ(s)

= lim
s̃→+1−0

d

ds̃
Γ(h(s̃)), lim

s→+∞

d2

ds2φ(s)
d
dsφ(s)

= − lim
s̃→+1−0

d2

ds2h(s̃)
(

d
dsh(s̃)

)2 . (A.5)

In particular, under the existence of the above limits, the system (A.2) is C1-extended to the
future-limit system (A.3) through the compactified system (A.4).
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By assumption of the blow-up power-determining matrix A, we have

♯{λ ∈ Spec(A) | Reλ < 0} = mA

and hence Y0 is a hyperbolic saddle of (A.3) admitting the mA-dimensional stable manifold. Here
we apply the right-sided compactification in s to (A.2). As a simple one, we apply the right-side
exponential compactification (cf. Section 4.2 in [34])

s̃ = φ(s) ≡ φ(ν)(s) = 1− e−νs, s = h(s̃) ≡ φ−1
(ν)(s̃) = − 1

ν
ln(1− s̃) (A.6)

with ν ∈ (0, 1), and let Γ(s) = e−s. In particular, functions Γ, φ and h are C∞-smooth for s < ∞,
equivalently s̃ < 1. Then limits in (A.5) exist and the one-sided compactified autonomous system

d

ds
Y = − 1

k
ΛαY + fα,k(Y) + (1− s̃)ν

−1(I+ 1
k
Λα)fres

(

(1− s̃)−
1
kν

ΛαY
)

, (A.7)

ds̃

ds
= ν(1− s̃)

is C1-smooth on Rn × (−∞, 1] jointly in (Y, s̃) because ν < 1, which is in fact Cr in the present
case by choosing ν sufficiently small, if necessary, where r is the differentiability of f . This trans-
formation can be applied to asymptotically autonomous systems admitting the future limit system,
such as (3.11).

B Proofs of results

Proofs of statements in Section 3 are collected here.

B.1 Proof of Proposition 3.4

Apply the right-sided compactification to (3.11) in the similar way to what we have discussed in
Appendix A.1, which yields

d

ds
Y1 = AY1 + (1 − s̃)ν

−1(I+ 1
k
Λα)fres

(

(1− s̃)−
1
kν

ΛαY0

)

, (B.1)

ds̃

ds
= ν(1 − s̃).

From the asymptotic quasi-homogeneity of f , this system possesses an equilibrium Ỹ1( ≡ (Y1, s̃)) =
(0, 1) on the future limit space {s̃ = 1}, which is the only possible equilibrium so that the asymp-
totic relation (3.7) is satisfied. Moreover, we see from the form of the system that eigenvalues of the
linearized matrix at the equilibrium consists of Spec(A) and {−ν}. By assumption, the equilibrium
Ỹ1 is hyperbolic and hence, by the Stable Manifold Theorem (e.g. [32]), the (mA+1)-dimensional
local stable manifold W s

loc(Ỹ1) for (B.1) is constructed. Now one variable generating W s
loc(Ỹ1) is

s̃, which is identical with the time s in the nonautonomous system

d

ds
Y1 = AY1 + g̃1(s) (B.2)
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before applying the right-sided compactification to obtaining (B.1), where

g̃1(s) = e−s(I+ 1
k
Λα)fres

(
e

s
k
ΛαY0

)
.

Therefore, the remaining mA parameters generate the family of solutions Y1(s).
On the other hand, the solution Y1(s) of (B.2) possesses the expression

Y1(s) = e(s−s0)A

{

Y0
1 +

∫ s

s0

e(s0−η)Ag̃1(η)dη

}

(B.3)

by the variation of constants formula, where s0 = − ln θ(t0). (B.3) is also written as

Y1(s) = e(s−s0)A

{

(P− + P+)Y
0
1 +

∫ s

s0

e−(η−s0)A(P− + P+)g̃1(η)dη

}

= e(s−s0)A

{

(P− + P+)Y
0
1 + (P− + P+)

∫ s

s0

e−(η−s0)Ag̃1(η)dη

}

(B.4)

where we have used the A-invariance of P± and the fact that P± are independent of the time
variable s in the second equality. Note that solutions Y1(s) determining trajectories on W s

loc(Ỹ1)
are bounded on s ∈ [s0,∞). In particular, such solutions Y1(s) of the system (B.2) satisfy all
requirements so that the Lyapunov-Perron’s method (cf. Section III. 6 in [16] or Proposition 6.4 in
[22] for linear inhomogeneous systems) can be applied. Consequently, a bounded solution Y1(s)
on [s0,∞) also admits the form

Y1(s) = e(s−s0)A

{

P−Y
0
1 +

∫ s

s0

e−(η−s0)AP−g̃1(η)dη −
∫ ∞

s

e−(η−s0)AP+g̃1(η)dη

}

for any Y0
1 ∈ Rn. This is also written by

Y1(s) = e(s−s0)A

{

(P− + P+)Y
0
1 +

∫ s

s0

e−(η−s0)Ag̃1(η)dη

−
(

P+Y
0
1 + P+

∫ s

s0

e−(η−s0)Ag̃1(η)dη

)

−
∫ ∞

s

e−(η−s0)AP+g̃1(η)dη

}

,

which follows from (B.3) that

P+Y
0
1 = −

∫ ∞

s0

e−(η−s0)AP+g̃1(η)dη.

Substituting this into (B.4), we have

Y1(s) = e(s−s0)A

{

P−

(

Y0
1 +

∫ s

s0

e−(η−s0)Ag̃1(η)dη

)

− P+

∫ ∞

s

e−(η−s0)Ag̃1(η)dη

}

, Y0
1 ∈ Rn.

Back to the original time-scale t, we have

Y1(t) =

(
θ(t)

θ(t0)

)−A
{

P−

(

Y0
1 +

∫ t

t0

(
θ(η)

θ(t0)

)A

g1(η)dη

)

− P+

∫ tmax

t

(
θ(η)

θ(t0)

)A

g1(η)dη

}

,

where t0 = tmax − e−s0 . By the uniqueness of solutions, this solution corresponds to a solution
trajectory on W s

loc(Ỹ1) for (B.1) we have obtained first, whenever ‖P−Y0
1‖ is sufficiently small.
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B.2 Proof of Proposition 3.5

The basic idea for proving the existence of a solution converging to 0 ∈ Rn is the same as the proof
of Proposition 3.4. That is, the right-sided compactification to the time-transformed system

d

ds
Yj = AYj + g̃j(s). (B.5)

of (3.15) through s = − ln θ(t) is discussed, where

g̃j(s) = {Rα,k(Sj−1(Y)(s)) −Rα,k(Sj−2(Y)(s))}
+ e−s(I+ 1

k
Λα)

{
fres(e

s
k
ΛαSj−1(Y)(s)) − fres(e

s
k
ΛαSj−2(Y)(s)

}
.

The corresponding compactified system becomes

d

ds
Yj = AYj + {Rα,k(Sj−1(Y)(s)) −Rα,k(Sj−2(Y)(s))}

+ (1− s̃)ν
−1(I+ 1

k
Λα)
{

fres

(

(1− s̃)−
1
kν

ΛαSj−1(Y)(s)
)

− fres

(

(1− s̃)−
1
kν

ΛαSj−2(Y)(s)
)}

,

(B.6)

ds̃

ds
= ν(1 − s̃).

In particular, the (mA + 1)-dimensional local stable manifold W s
loc(Ỹj) of the hyperbolic saddle

Ỹj = (Yj , s̃) = (0, 1) for (B.6) is constructed. Here recall that the second term Y1(t) includes mA

free parameters chosen from Es
A and the power decay term θ(θ)−AP−Y0

1 . This power decay term
also appears in Yj(t) through the same arguments in those obtaining Y1(t). In contrast, this term
has to vanish so that the asymptotic relation (3.7) holds.

Now go back to the proof of Proposition 3.5. By the same arguments as Section B.1, we know
that (B.5) possesses the solution

Yj(s) = e(s−s0)A

{

P−

(

Y0
j +

∫ s

s0

e−(η−s0)Ag̃j(η)dη

)

− P+

∫ ∞

s

e−(η−s0)Ag̃j(η)dη

}

, (B.7)

where Y0
j ∈ Rn, but the exponentially decaying terms characterized by Spec(A) ∩ {Reλ < 0}

should be vanished by the asymptotic relation

Yj(s) ≪ Y1(s) as s → ∞,

and hence the constant vector Y0
j should be specified so that this requirement is satisfied. This

constraint is considered below.

Back to the original time-scale t, we have

Yj(t) =

(
θ(t)

θ(t0)

)−A
{

P−

(

Y0
j +

∫ t

t0

(
θ(η)

θ(t0)

)A

gj(η)dη

)

− P+

∫ tmax

t

(
θ(η)

θ(t0)

)A

gj(η)dη

}

,

(B.8)
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where t0 = tmax − e−s0 . We shall determine the appropriate Y0
j = (Y 0

j,1, . . . , Y
0
j,n)

T . To this end,
consider the primitive function Hj(t) satisfying (3.20). Let

νj,i := degθ

({(
θ(t)

θ(t0)

)Λ

P−1P−gj(t)

}

i

)

,

Now our determination of Y0
j consists of two cases.

Case 1. νj,i ≤ −1.

In this case, define Zj,i := (Hj(t0))i.

Case 2. νj,i > −1.

In this case, similar to arguments in the proof of Proposition 2.13, we rewrite the rightmost integral
in (3.20) by

{
∫ tmax

t0

(
θ(η)

θ(t0)

)Λ

P−1P−gj(η)dη −
∫ tmax

t

(
θ(η)

θ(t0)

)Λ

P−1P−gj(η)dη

}

i

(B.9)

≡ I0;j,i −
{
∫ tmax

t

(
θ(η)

θ(t0)

)Λ

P−1P−gj(η)dη

}

i

= I0;j,i + (Hj(t))i,

where we have used the fact that Hj(t) is chosen so that lim
t→tmax−0

(Hj(t)) = 0. By the similar

arguments to Proposition 2.10, the first term converges to a finite value I0;j,i as the improper
integral. By definition of improper integrals and (3.20), we have

I0;j,i = lim
t→tmax−0

(Hj(t))i − (Hj(t0))i = −(Hj(t0))i.

In this case, define Zj,i := −I0;j,i = Hj(t0). Finally, define the vector Zj by Zj := (Zj,1, . . . , Zj,n)
T ≡

Hj(t0).

Because Zj , namely Hj(t0), is uniquely determined once t0, gj(η) is, in particular the lower

terms {Yl(t)}j−1
l=0 are determined, and hence letting Y0

j so that

P−Y
0
j = P−(PHj(t0)),

the Es
A-component of the constant term in (B.8) becomes 0 for all t ∈ (t0, tmax). The initial point

at t = t0 is uniquely determined by

Yj(t0) = P−Y
0
j − P+

∫ tmax

t0

(
θ(η)

θ(t0)

)A

gj(η)dη,

which contains free parameters determined by Y1(t) in gj(t). The proof is therefore completed.
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B.3 Proof of Theorem 3.8

By the same argument as Theorem 3.2 in [34], we know that the point Ỹ0 ≡ (Y0, 1) is a hyperbolic
saddle for the one-sided compactified system (A.7). Then the saddle Ỹ0 admits the (mA + 1)-
dimensional local stable manifold W s

loc(Ỹ0) in Rn× (−∞, 1] by the Stable Manifold Theorem (e.g.
[32]). From the C∞-smoothness of φ(ν), Γ(s) = e−s on R and f on Rn, the smooth dependence
of solutions of (A.2) on initial points and time as well as the uniqueness of solutions yield that
W s

loc(Ỹ0)∩ (Rn× (−∞, 1)) is indeed Cr-smooth in the s-timescale. Moreover, the Stable Manifold
Theorem implies that the convergence of solutions to Y0 is exponential, that is, for each i =
1, . . . , n, we have

Yi(s)− Yi,0 = Cie
−µis(1 + o(1)) as s → +∞ (B.10)

with a constant Ci and an exponent µi with Reµi > 0. Finally we go back to the system in the
original t-timescale. The exponential decay (B.10) implies that

Yi(t)− Yi,0 = C̃i(tmax − t)µi(1 + o(1)) as t → tmax,

which is continuous in t including t → tmax, and Cr-smooth for t < tmax.

B.4 Proof of Proposition 3.10

The basic idea is the same as the proof of Theorem 3.8 except the system we consider is

d

dt
Yc

N = θ(t)−1

[(

− 1

k
Λα +Dfα,k(Y0)

)

Yc
N + {Rα,k(SN (Y) +Yc

N )−Rα,k(SN (Y))}
]

+ θ(t)
1
k
Λα

{

fres

(

θ(t)−
1
k
Λα {SN (Y) +Yc

N}
)

− fres

(

θ(t)−
1
k
ΛαSN (Y)

)}

(B.11)

instead of (3.8). Using (A.1), (B.11) is transformed into

d

ds
Yc

N =

(

− 1

k
Λα +Dfα,k(Y0)

)

Yc
N + {Rα,k(SN (Y) +Yc

N )−Rα,k(SN (Y))}

+ e−s(I+ 1
k
Λα)

{
fres

(
e−

s
k
Λα{SN(Y) +Yc

N}
)
− fres

(
e−

s
k
ΛαSN (Y)

)}
. (B.12)

Applying the right-side exponential compactification (A.6) to (B.12), the following system is ob-
tained:

d

ds
Yc

N =

(

− 1

k
Λα +Dfα,k(Y0)

)

Yc
N + {Rα,k(SN (Y) +Yc

N )−Rα,k(SN (Y))}

+ (1− s̃)ν
−1(I+ 1

k
Λα)

{

fres

(

(1− s̃)
1
kν

Λα{SN(Y) +Yc
N}
)

− fres

(

(1 − s̃)
1
kν

ΛαSN (Y)
)}

,

ds̃

ds
= ν(1 − s̃).

By the definition of Rα,k, Y
c
N = 0 ∈ Rn is an equilibrium of the future limit system

d

ds
Yc

N =

(

− 1

k
Λα +Dfα,k(Y0)

)

Yc
N + {Rα,k(SN (Y) +Yc

N )−Rα,k(SN (Y))}
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whose linearized matrix at Yc
N = 0 is A = − 1

kΛα + Dfα,k(Y0). Now Yj(t) ≪ Y0 ∈ Rn as
t → tmax is required for all j ≥ 1 by our construction of (3.21), which indicates that 0 ∈ Rn is the
only possible limit of the remainder Yc

N . By assumption, (Yc
N , s̃) = (0, 1) is saddle and hence it

admits (mA+1)-dimensional local stable manifold. In particular, any solution Yc
N on the manifold

converges to 0 ∈ Rn as s → ∞, equivalently t → tmax for small free parameters (C1, . . . , CmA
).

B.5 Proof of Theorem 3.11

Note that there is a nonsingular matrix P such that P−1AP = Λ is the Jordan normal form. It
follows from this transformation that

θ(t)A ≡ e(ln θ(t))A = e(ln θ(t))PΛP−1

= Pe(ln θ(t))ΛP−1 = Pθ(t)ΛP−1.

First assume that A is diagonalizable, in which case

θ(t)Λ = diag
(
θ(t)λ1 , . . . , θ(t)λn

)
, {λi}ni=1 = Spec(A).

All possible orders of θ(t) are obviously listed as −β ·A λ when β ∈ Zn
≥0 with |β| = 1. Assume

that, for given N ≥ 1, all possible orders of θ(t) are listed as the collection {−β ·A λ} for β ∈ Zn
≥0.

The system for determining YN+1 is

d

dt
YN+1 = θ(t)−1 [AYN+1 + {Rα,k(SN (Y)(t)) −Rα,k(SN−1(Y)(t))}] .

BecauseRα,k is the remainder of quasi-homogeneous vector field, then the remainderRα,k(SN (Y))−
Rα,k(SN−1(Y)) consists of powers of the form θ(t)−β·Aλ with β ∈ Zn

≥0. The solution YN+1 =
YN+1(t) is

YN+1(t)

= P

(
θ(t)

θ(t0)

)−Λ

P−1

{

P−

(

Y0
N+1 +

∫ t

t0

P

(
θ(η)

θ(t0)

)Λ

P−1gN+1(η)dη

)

− P+

∫ tmax

t

P

(
θ(η)

θ(t0)

)Λ

P−1gN+1(η)dη

}

= P

(
θ(t)

θ(t0)

)−Λ

P−1P−

(

Y0
N+1 +

∫ t

t0

P

(
θ(η)

θ(t0)

)Λ

P−1
{
θ(η)−1 (Rα,k(SN (Y)(η)) −Rα,k(SN−1(Y)(η)))

}
dη

)

− P

(
θ(t)

θ(t0)

)−Λ

P−1

(

P+

∫ tmax

t

P

(
θ(η)

θ(t0)

)Λ

P−1
{
θ(η)−1 (Rα,k(SN (Y)(η)) −Rα,k(SN−1(Y)(η)))

}
dη

)

.

(B.13)

Integrating all terms individually, we know that the resulting functions also consist of powers of
the form θ(t)−β·Aλ with β ∈ Zn

≥0.
Next consider the general case where A admits non-trivial Jordan blocks. From the form of

the fundamental matrix θ(t)A, we know that all components of Y1(t) are linear combinations of
functions of the form θ(t)−β·Aλ(ln θ(t))M with β ∈ Zn

≥0 satisfying |β| = 1 and M ∈ Z≥0 not

greater than
∑d

i=1

∑µi

l=1(mi,l− 1). Recall that {mi,l}µi

l=1 denotes the collection of natural numbers

corresponding to the size of Jordan blocks J∗(λ̃i), for i = 1, . . . , d, associated with mutually
disjoint eigenvalues {λ̃i}di=1 of A, and µi denotes the geometric multiplicity of λ̃i. The exponent
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M is determined by the number of eigenvalues admitting non-trivial Jordan blocks and their
size. Assume that, for N ≥ 1, YN (t) consists of the linear combination of functions of the
form θ(t)−β·Aλ(ln θ(t))M with β ∈ Zn

≥0 and M ∈ Z≥0. Then the remainder Rα,k(SN (Y)) −
Rα,k(SN−1(Y)) also consists of linear combinations of powers of the form

θ(t)−β·Aλ(ln θ(t))M , β ∈ Zn
≥0, M ∈ Z≥0.

Similar to the diagonalizable case, the solution YN+1(t) is written by (B.13) and we see that it is
sufficient to verify integrals of θ(η)−β·Aλ−1(ln θ(η))M in η, which are
∫ t

t0

θ(η)−β·Aλ−1(ln θ(η))Mdη =

[
1

β ·A λ
θ(η)−β·Aλ(ln θ(η))M

]t

t0

− 1

β ·A λ

∫ t

t0

θ(η)−β·Aλ

{
d

dη
(ln θ(η))M

}

dη

+
M(M − 1)

(β ·A λ)2

∫ t

t0

θ(η)−β·Aλ−1(ln θ(η))M−2dη

= · · ·

=

{
M∑

l=0

M !

(M − l)!

(
1

β ·A λ

)l+1

(ln θ(t))M−l

}

θ(t)−β·Aλ + (constant)

and
∫ tmax

t

θ(η)−β·Aλ−1(ln θ(η))Mds =

[
1

β ·A λ
θ(η)−β·Aλ(ln θ(η))M

]tmax

t

− 1

β ·A λ

∫ tmax

t

θ(η)−β·Aλ

{
d

dη
(ln θ(η))M

}

dη

=
−1

β ·A λ
θ(η)−β·Aλ(ln θ(η))M+

M

β ·A λ

∫ tmax

t

θ(η)−β·Aλ−1(ln θ(η))M−1dη

= · · ·

= −
{

M∑

l=0

M !

(M − l)!

(
1

β ·A λ

)l+1

(ln θ(t))M−l

}

θ(t)−β·Aλ

whenever β ·A λ 6= 0, where we have used

lim
t→tmax−0

log(tmax − t)

(tmax − t)a
= 0 for a < 0.

When β ·A λ = 0 with β 6≡ 0, this indicates that Spec(A) ⊂ {Reλ > 0} and only integrals over
[t, tmax) are involved. The integral is then calculated as follows:

∫ tmax

t

θ(η)β·Aλ−1(ln θ(η))Mds =

∫ tmax

t

θ(η)−1(ln θ(η))Mdη

=

∫ tmax

t

− d

dη
(ln θ(η))(ln θ(η))Mdη

=
−1

M + 1
(ln θ(t))M+1.

In every cases, the integral is described by the linear combination of functions of the form θ(η)−β·Aλ(ln θ(η))M

with β ∈ Zn
≥0 and M ∈ Z≥0 and hence all components of YN+1(t) are again linear combinations

of functions of the form θ(t)−β·Aλ(ln θ(η))M with β ∈ Zn
≥0 and M ∈ Z≥0. Exponents of ln θ(t) in

YN+1(t) is determined by N + 1, α, k and {mi,l}µi

l=1, i = 1, . . . , d.
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B.6 Proof of Proposition 3.13

First we have degθ(Y0,i) = 0 for all i = 1, . . . , n when Y0,i 6= 0, otherwise degθ(Y0,i) = +∞, by
Example 2.7. These identities imply (3.27) with N = 0.

Next consider Y1(t). By definition of γi, we have

degθ ({g1(t)}i) ≡ degθ

(

θ(t)αi/kfi;res(θ(t)
− 1

k
ΛαY0)

)

≥ αi

k
+ γi (B.14)

and hence degθ (g1(t)) > −1 by assumption. By (2.16) in Proposition 2.13, we have

degθ

(
∫ t

t0

(
θ(η)

θ(t)

)A

P−g1(η)dη

)

≥ min






min

l=1,...,n

{αl

k
+ γl

}

+ 1, min
λ∈Spec(A)
Reλ<0

(−Reλ)






(B.15)

as the estimate of degθ for vector-valued functions. Therefore we have

degθ

((
θ(t)

θ(t0)

)−A

P−

(

Y0
1 +

∫ t

t0

(
θ(η)

θ(t0)

)A

g1(η)dη

))

≥ min

{

degθ

((
θ(t)

θ(t0)

)−A

P−Y
0
1

)

, degθ

(
∫ t

t0

(
θ(η)

θ(t)

)A

P−g1(η)dη

)}

(from Proposition 2.10-2)

≥ min






min

i=1,...,n

{αi

k
+ γi

}

+ 1, min
i=1,...,n
Reλi<0

Re (−λi)






= δ (from (B.15)), (B.16)

where we have used the commutativity AP− = P−A. Similarly, from (2.17) in Proposition 2.13,
we have

degθ

(
∫ tmax

t

(
θ(η)

θ(t)

)A

P+g1(η)dη

)

≥ min
l=1,...,n

{αl

k
+ γl

}

+ 1 ≥ δ. (B.17)

Combining (B.16) and (B.17), we have

degθ(Y1(t))

≥ min

{

degθ

((
θ(t)

θ(t0)

)−A

P−

(

Y0
1 +

∫ t

t0

(
θ(η)

θ(t0)

)A

g1(η)dη

))

, degθ

(

−
∫ tmax

t

(
θ(η)

θ(t)

)A

P+g1(η)dη

)}

≥ δ

and hence our claim (3.27) is proved when N = 1.

Now we assume that (3.27) holds true for some N ≥ 1. Our next issue is the case N + 1. The
main investigation is the magnitude of θ(t) in the following two vector-valued functions:

gN+1,1(t) = θ(t)−1 {Rα,k(SN (Y)(t)) −Rα,k(SN−1(Y)(t))} ,
gN+1,2(t) = θ(t)

1
k
Λα

{

fres

(

θ(t)−
1
k
ΛαSN (Y)(t)

)

− fres

(

θ(t)−
1
k
ΛαSN−1(Y)(t)

)}

.
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First note that, by the Taylor’s theorem, there are constants η1, η2 ∈ (0, 1) such that

Rα,k(SN (Y)(t)) −Rα,k(SN−1(Y)(t))

= fα,k(SN (Y)(t)) − fα,k(SN−1(Y)(t))−Dfα,k(Y0)YN (t)

= {Dfα,k(SN−1(Y)(t) + η1YN (t))−Dfα,k(Y0)}YN (t)

=

[
1

2
D2fα,k (Y0 + η2 (SN−1(Y)(t) + η1YN (t)−Y0)) {SN−1(Y)(t) + η1YN (t)−Y0}

]

YN (t).

By assertions in (2.3), we observe that D2fα,k(Y0 + η2 (SN−1(Y)(t) + η1YN (t)−Y0)) is O(1) as
t → tmax as a bilinear map. By the assumption of induction and Proposition 2.10-2 and 3, we have

degθ (Rα,k(SN (Y)) −Rα,k(SN−1(Y))) ≥ (N + 1)δ

and hence
degθ (gN+1,1(t)) ≥ (N + 1)δ − 1.

Next consider gN+1,2(t). First we have

fres(θ(t)
− 1

k
ΛαSN (Y)(t)) − fres(θ(t)

− 1
k
ΛαSN−1(Y)(t))

= Dfres

(

θ(t)−
1
k
ΛαSN−1(Y)(t) + η3θ

− 1
k
ΛαYN (t)

)

θ−
1
k
ΛαYN (t)

by the Taylor’s theorem for some constant η3 ∈ (0, 1). Under the constraint (3.26) for fres, we have

degθ

(

fi,res(θ(t)
− 1

k
ΛαSN (Y)) − fi,res(θ(t)

− 1
k
ΛαSN−1(Y))

)

≥ γi +Nδ,

where we have also used the assumption of the induction degθ(YN (t)) ≥ Nδ. In particular, we
have

degθ (gN+1,2(t)) ≥ min
l=1,...,n

{αl

k
+ γl

}

+Nδ

≥ (N + 1)δ − 1.

In particular, we have

degθ (gN+1(t)) ≥ min {degθ (gN+1,1(t)) , degθ (gN+1,2(t))} ≥ (N + 1)δ − 1, (B.18)

which is larger than −1 because δ > 0 by assumption. Now the inequality (2.19) in Proposition
2.13 with gN+1,1(t), gN+1,2(t), and the projector P− yields

degθ

((
θ(t)

θ(t0)

)−A

P−

(

Y0
N+1 +

∫ t

t0

(
θ(η)

θ(t0)

)A

gN+1(η)dη

))

≥ (N + 1)δ,

where we have used the commutativity AP− = P−A. Note that the constant Y0
N+1 is chosen so

that the requirements stated in Proposition 3.5 are satisfied.
Finally, similar to the case N = 1, we have

degθ

((
θ(t)

θ(t0)

)−A ∫ tmax

t

(
θ(η)

θ(t0)

)A

P+gN+1(η)dη

)

≥ (N + 1)δ.

As a summary, we have
degθ(YN+1(t)) ≥ (N + 1)δ

and the proof is completed.
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