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Clinical morphological analysis of histopathology samples is an effective method in

cancer diagnosis. Computational pathology methods can be employed to automate this

analysis, providing improved objectivity and scalability. More specifically, computational

techniques can be used in segmenting glands, which is an essential factor in cancer

diagnosis. Automatic delineation of glands is a challenging task considering a large

variability in glandular morphology across tissues and pathological subtypes. A deep

learning based gland segmentation method can be developed to address the above

task, but it requires a large number of accurate gland annotations from several tissue

slides. Such a large dataset need to be generated manually by experienced pathologists,

which is laborious, time-consuming, expensive, and suffers from the subjectivity of the

annotator. So far, deep learning techniques have produced promising results on a few

organ-specific gland segmentation tasks, however, the demand for organ-specific gland

annotations hinder the extensibility of these techniques to other organs. This work

investigates the idea of cross-domain (-organ type) approximation that aims at reducing

the need for organ-specific annotations. Unlike parenchyma, the stromal component

of tissues, that lies between the glands, is more consistent across several organs. It

is hypothesized that an automatic method, that can precisely segment the stroma,

would pave the way for a cross-organ gland segmentation. Two proposed Dense-U-Nets

are trained on H&E strained colon adenocarcinoma samples focusing on the gland

and stroma segmentation. The trained networks are evaluated on two independent

datasets, they are, a H&E stained colon adenocarcinoma dataset and a H&E stained

breast invasive cancer dataset. The trained network targeting the stroma segmentation

performs similar to the network targeting the gland segmentation on the colon dataset.

Whereas, the former approach performs significantly better compared to the latter

approach on the breast dataset, showcasing the higher generalization capacity of the

stroma segmentation approach. The networks are evaluated using Dice coefficient and

Hausdorff distance computed between the ground truth gland masks and the predicted

gland masks. The conducted experiments validate the efficacy of the proposed stoma

segmentation approach toward multi-organ gland segmentation.
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diagnosis
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1. INTRODUCTION

Recent developments in computational pathology have enabled
a transformation in the field where most of the workflow of the
pathology routine has been digitized. A key factor has been the
development of cost and time efficiency of whole slide imaging
(WSI) scanners as successors of microscope combined with
cameras. This process is analogous to the digitization of radiology
images. Similar trends have been occurring in other biomedical
fields, such as genome analysis, metabolism, proteomics, etc. All
of which builds toward the grand vision of computer-assisted
precision medicine. Currently, the amount of data available is
exceptionally large and far exceeds the rate at which it can
be analyzed efficiently. Namely, in pathology, dozens of biopsy
samples may need to be collected from patients to characterize
a tumor, each leading to gigapixel-sized images. Hence, it is not
practical for pathologists and researchers to analyze all of them
through visual examination of the specimens.

Therefore, efficient computer aided diagnosis (CAD) in the
domain of histopathology to support and improve the decision-
making process of experts is necessitated. CAD and image
analysis have been developed to assist pathologists and clinicians
in cancer diagnosis, prognosis, and treatment recommendation.
These systems aim at significantly reducing the labor and
subjectivity of traditional manual interventions. The manual
analysis of histology tissues remains the primary standard
method for cancer diagnosis and depends heavily on the
expertise and experience of histopathologists. Compared to other
diagnostic technologies, tissue analysis is more invasive, but in
most cases provides a better insight on the potential disease and
health of the patient.

The process of cancer grading relies almost exclusively on
the morphology of the tissues. In clinical practice, One of the
important factors toward tissue analysis is the segmentation
of glands, which is among the primary criteria to assess the
cancer and plan the treatment for individual patient (1, 2).
Manual segmentation of glands is time-consuming, laborious,
furthermore it remains difficult to reduce variability among
experts. Experts currently need to individually highlight all
the different glands in a slice. Achieving acceptable levels of
reproducibility and robustness remains as an important challenge
in the pathology practice (3, 4). Since the success of a team
using deep learning at ImageNet Large Scale Visual Recognition
Competition (ILSVRC) 2012 (5) an increasing number of
the image recognition techniques in CAD development are
leveraging the best of deep learning technologies. Similar
adoptions have been made in digital pathology. However, the
development of deep learning solutions in digital pathology suffer
from the unavailability of large annotated training sets, which
is essential for the success of deep learning techniques. Several
imposing challenges need to be addressed for the development of
effective computer-based histology analysis systems:

• Systems need to analyze a large diversity of pathological tissues
with any complexity.

• Ability to deal with low amounts of labeled images.

• Address the staining variation and staining artifacts in digital
slides, which may appear due to variability in the staining
reagents, thickness of tissue sections, staining conditions,
scanner models etc.

Developing deep learning techniques toward accurate gland
segmentation will enable computer-assisted grading systems to
improve the reproducibility and reliability in cancer grading.
Gland instance segmentation has been intensively studied over
the last few years. Several methods have been investigated
and explored such as morphology-based methods (6–9) and
graph-based methods (10, 11). With the advent of computer
vision and semantic segmentation, it is now possible to
design fully convolutional neural networks (FCN) that are able
to segment different objects in an image (12, 13). Studies
have already shown that some networks are performing well
on gland segmentation with Dice scores above 0.85 (12–
16). Namely, during the 2015 MICCAI Gland Segmentation
(GlaS) Challenge (17), a challenge dedicated to increasing the
researchers’ interest in gland segmentation, the DCAN (13)
displayed the best results on a public single organ dataset
of 165 H&E stained colon adenocarcinoma histopathology
slides, released for this challenge, using transfer learning and
contour computation to separate glands precisely. In addition,
a framework proposed by Xu et al. (18) fused complex multi-
channel regional and boundary patterns with side supervision
for enhanced performances. More recently the MILD-net (14)
exhibited the current state-of-the-art results on the same dataset,
leveraging U-net architecture (16), contour computation and
a pyramidal block aimed at extracting multi-scale features
without information loss. Even though these networks show
impressive capabilities in term of gland segmentation they rely
on single-organ training sets. Glands, or more generally speaking
parenchyma tissue, is very different from one organ to the
other. It is therefore challenging to design networks able to
segment parenchyma from different organs. On the other hand,
the stromal component of tissue around the glands is similar
in across different organs. This work investigates the interest
of focusing on connective tissues, i.e., the stroma, to compute
the morphology of glands and support histopathologists in
their workflow.

This paper proposes the following approach to address
the aforementioned task. It begins with minimizing the
staining variability among the H&E images acquired from
various sources. Subsequently, deep learning based Dense-
U-Net architecture is proposed to segment the glandular
structures in the images via two approaches; first, aiming
to directly segment the glands, and second, aiming to
segment the stroma and then producing the glands from
the segmented stroma. Two segmentation networks are trained,
following the two approaches, on colon adenocarcinoma
H&E images. The predicted gland segmentations are post-
processed to improve the segmentation performance.
Finally, the trained models are evaluated on two hold-
out test datasets from colon adenocarcinoma and breast
invasive cancer.
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2. DATASET DESCRIPTION

Two Hematoxylin and Eosin (H&E) stained datasets were used
for training and evaluating our proposed methodology. The
first dataset contains 165 images derived from 16 H&E stained
histological sections of stage T3 or T4 colorectal adenocarcinoma.
The T in TNM cancer grading usually refers to the spreading of
the primary tumor. Thus, a higher T number implies large tumors
that have grown into nearby tissues. In the case of colorectal
cancer, the stage T3 implies the tumor has grown into the outer
lining of the bowel wall and the stage T4 implies the tumor that
has grown through the outer lining of the bowel wall. Notably,
the cancer stage is different from the cancer histologic grade as
the later indicates the aggressiveness of the tumor (17). The N
and M of the TNM grading system describe the state of nearby
lymph Nodes and distant Metastasis. Each section belongs to a
different patient and sections were processed in the laboratory
on different occasions, resulting in high inter-subject variability
in both stain distribution and tissue architecture. The images are
obtained from 20x magnification of whole-slide images that are
digitized by scanning histological sections using a Zeiss MIRAX
MIDI Slide Scanner with a pixel resolution of 0.465 µm. The
colon dataset is acquired from Gland segmentation challenge
(GlaS) 2015 (17). The challenge aimed at precisely segmenting
glands in H&E stained slides using image processing techniques.
For creating the dataset, 52 visual fields from both malignant
and benign areas across the entire set of the whole-slide images
were selected to cover as wide a variety of tissue architectures.
Each of the visual fields was annotated as benign or malignant
by an expert pathologist and the visual fields were further
separated into smaller non-overlapping images. Subsequently,
the pathologist delineated the boundaries of individual glands
in each image. Manual annotations of gland morphologies are
used as ground truth for the automatic segmentation. Figure 1A
presents a few example images from the colon dataset.

The second dataset is acquired from H&E stained invasive
breast cancer WSIs from The Cancer Genome Atlas that are
available for the 2016 MICCAI TUPAC challenge (19). The
whole-slide images are stored in the Aperio. svs file format as
multi-resolution pyramid structures. The files contain multiple
downsampled versions of the original image. Each image in the
pyramid is stored as a series of tiles, to facilitate rapid retrieval
of subregions of the image. The dataset consists of 25 images
derived from 25 WSIs across different proliferation scores. An
expert histologist annotated the individual gland boundaries on
these images. Figure 1B presents a few example images from the
breast dataset.

3. METHODS

The aim is to segment glands in H&E stained tissue images
across multiple organs. For this purpose, we propose to build
a generic gland segmentation methodology that utilizes gland
annotations from only one organ. In this work, we propose
to train a deep segmentation network using a gland-annotated
colorectal adenocarcinoma dataset and use the trained network
for segmenting glands in breast invasive cancer dataset. First,

we pre-process the images to get rid of the variation in staining
appearance. Second, two approaches are proposed to segment
the glands, (a) Gland-approach and (b) Stroma-approach. The
same network architecture is used in both the approaches. The
Gland-approach is trained with ground truth gland annotations,
whereas the Stroma-approach is trained with ground truth
stroma annotations, that are derived from the original gland
annotations. Third, the trained networks are used to produce
gland segmentation masks. The produced gland masks are post-
processed using Conditional Random Fields, a class of statistical
modeling method. This method uses the predicted labels for
the neighboring pixels as context to refine the prediction map.
Finally, very small connected component objects are removed
and holes are filled in remaining connected components. The
individual networks are evaluated on hold-out test datasets from
multiple organs.

3.1. Pre-processing
The images in the datasets are acquired from multiple sources
and they are captured under different staining conditions.
The images possess various staining appearances due to the
differences in raw materials, manufacturing techniques of stain
vendors, staining protocols of labs, and color responses of
digital scanners. To reduce the staining appearance variability,
we employ the staining normalization method proposed by
Vahadane et al. (20). The method begins with decomposing the
images in an unsupervised manner into sparse and non-negative
stain density maps. Subsequently, for each image, the method
combines its respective stain density map with stain color basis
of a pathologist-preferred target image, which results in altering
the color of the image while preserving its structure described by
the map. Figure 2 presents some examples of the unnormalized
and normalized images across all the datasets.

Subsequently, we extract the ground truths for training the
deep segmentation network. The networks follow a single-input-
multiple-output structure, that requires two ground truths for
every input image, they are the gland mask and the contour
mask. The contour mask is used to delineate the close-by glands.
For the Gland-approach, we use the annotated gland masks. The
contours were computed from a graph based method consisting
in saving the optimal amount of points on the boundary of
each glandular object. For the Stroma-approach, we threshold the
gray-scale input images to remove the white pixels and then we
do pixel-wise intersection with the inverted gland annotations
to produce the stroma masks, more details are provided in the
next section. For the stroma contour masks, we follow the same
approach as the gland contour masks. Figure 3 displays the gland
mask, gland-contour mask, stroma mask and stroma-contour
mask extracted from an input image and its corresponding
gland annotation.

Following this, the training colorectal images and their
corresponding ground truth masks are resized to 480×480
pixels. Pixel-wise mean and standard deviation are computed
across all the training images. While training, randomly
selected images and their corresponding ground truth masks
are augmented simultaneously using various on-the-fly
augmentation techniques, namely flipping, rotation, elastic
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FIGURE 1 | Histopathological slices of (A Colon and B Breast) tissues and their respective annotated gland segmentation masks.

FIGURE 2 | First row presents unnormalized (A Colon and B Breast) images. Second row presents stain normalized (A Colon and B Breast) images.

transformation, perspective transformation, Gaussian Noise.
The augmented images are pixel-wise normalized using
the previously computed mean and standard deviation.
Due to the diversity of gland morphologies across the
training images, perspective transformation results in realistic
augmented images.

3.2. Deep Architectures
Dense-U-Net, a single-input-multiple-output deep segmentation
network architecture, was employed as presented in Figure 4

for both the Gland-approach and the Stroma-approach. The
network follows the U-Net (16) type architecture considering
its popularity in image segmentation tasks. Unlike U-Net, our
network uses asymmetric encoder and decoder. The encoder is
designed to automatically and adaptively learn spatial hierarchies
of features from low to high level patterns coded within
the image. The encoder uses transition layer and dense-
convolution blocks consecutively to extract the compressed

encoded feature representation. The transition layer down-
samples the spatial dimensions of its input by using average-
pooling with stride 2, thereby increasing the spatial field-of-
view as the network grows deeper. The dense-convolution blocks
from DenseNet (21) are used to strengthen feature propagation,
encourage feature reuse and substantially reduce the number
of parameters as compared to deep residual networks (22).
Within a dense-convolution block, direct connections from
any layer to any subsequent layers are introduced to ease
the information sharing process. This process has two direct
consequences. Firstly, the feature-maps learned by any of the
DenseNet layers can be accessed by any layer at training
time which encourages feature reuse throughout the network
and leads to more compact models. Secondly, as individual
layers receive additional supervision from shorter connections,
dense architectures perform a sort of deep supervision that
leads to smoother gradient descent and higher accuracy while
retaining a low computational cost. For our network, we
use a Dense-169 architecture with [6, 12, 32, 32] numbers
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FIGURE 3 | Input and outputs of our deep gland segmentation network. (A) Input stain normalized image, (B) annotated gland ground truth, (C) binarized gland

mask, (D) binarize gland contour mask, (E) binarized stroma mask, and (F) binarized stroma contour mask.

of building blocks for the four dense layers with a growth
rate of 32.

The decoder is composed of consecutive reverse-transition
layers and convolution blocks. The reverse-transition layer up-
samples the spatial dimensions of its input using bilinear
upsampling. Several reverse-transition layers are included in
the decoder to up-sample the encoded features back to the
original input image shape. At equal spatial resolution, the output
feature maps from a dense-convolution block, from encoder
side, is concatenated with the output feature maps from a
reverse-transition layer, from decoder side. The concatenated
feature maps passes through a convolution operation. The skip
connection between the encoder and the decoder side allows
for feature reuse and information flow. The architecture has
two decoders, one to predict the relevant gland locations, and
a second to predicts the gland contours. Thus, the decoders
output a gland probability map and a contour probability map.
The proposed Dense-U-Net architecture follows an end-to-end
training process. The network is trained to jointly optimize the
prediction of gland locations and gland contours.

3.3. Post-processing
In the Gland-approach, the output gland probability map and
the output contour probability map are combined to produce
an intermediate gland segmentation mask. Both the output
probability maps are thresholded using two preset threshold
values to identify the gland pixels and the contour pixels,
resulting two binarized masks. The binarized contour mask
undergoes two concurrent dilations. Then the dilated contour
mask is multiplied with the binarized gland mask to delineate the
overlapping glands, thereby accurately identifying the individual
glands. Afterwards, the gland mask is dilated by the same
factor to recover the boundary information removed by the
dilated contourmask. In the Stroma-approach, the output stroma
probability map is thresholded by a preset threshold value and
the binarized stroma mask is inverted. The inverted stroma mask

indicates the gland components similar to the binarized gland
mask from above, thus the inverted stroma mask is processed in
the similar way as described above.

To produce a better quality gland segmentation, the gland
mask was processed through three post-processing steps. (i)
Small connected components with an area lesser than a
threshold are removed. (ii) Holes inside remaining connected
components are filled. (iii) Finally, a conditional random field
(CRF) layer, (23, 24) a probabilistic graphical model used in
semantic segmentation, is implemented to sharpen and smooth
the predictions.

3.4. Training Details
The deep segmentation network architecture and the training
procedure is identical in both the Gland-approach and the
Stroma-approach. The colon gland dataset consists of 165 images
from the GlaS challenge. This dataset is split into a training set of
135 images and a test set of 30 images retaining a balance between
the number of benign and malignant cases in both training and
testing. The training dataset is further split as 80 and 20% into
training set and validation set, respectively. The Gland-approach
is provided with the ground truth gland masks and contour
masks, whereas the Stroma-approach is providedwith the ground
truth stroma masks and stroma contour masks. Randomly
selected images from the training set and their corresponding
ground truth masks are augmented on-the-fly at training time.
The augmentation increases the number of training samples and
enhances the generalization potential of the network.

The dense convolutional blocks and transitional layers in the
encoder of the Dense-U-Net is initialized by the DenseNet-169
weights, pre-trained on the ImageNet challenge. The bilinear
up-sampling layers and convolution filters in the decoder are
initialized by He-normal initialization. The loss constitutes of
three terms; a binary cross-entropy gland loss, a binary cross-
entropy contour loss and L2 regularization loss, as given in
Equation (1). In the Stroma-approach, the binary cross-entropy
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FIGURE 4 | Architecture of our proposed Dense-U-Net segmentation network.

losses in 1 are computed with respect to ground truth stroma
and ground truth stroma contour. The augmented ground truth
gland masks and ground truth contours are compared with the
sigmoid layer outputs of the network to compute the binary
cross-entropy losses. The gland loss and the contour loss are
weighted using a hyperparameter α, which is optimized through
cross-validation and is set to 0.5. The loss function is optimized
using Adam, an adaptive learning rate optimization technique,
and backpropagation. We train our Dense-U-Net with Adam
parameter update and a learning rate of 1e−3. The learning rate
is divided by 2 when the validation loss does not improve for 5
epochs. The first and second momentum decay rates are set to
0.90 and 0.99, respectively. The batch sizes is set to 4 and training
is regularized by L2 weight decay of λ = 1e−4. The networks
are trained for 40 epochs and each epoch consists of 200 mini-
batches. Validation loss is considered as the metric for selecting
the final trained model. Our implementations are derived from
Python based Keras framework and are trained onNVIDIA Tesla
P100 GPU machine.

Ltotal = α Lgland + (1− α)Lcontour + λ ‖ w ‖2 (1)

4. EVALUATION METRIC

The performance of the segmentation algorithm is evaluated
based on two criteria: (1) volume-based accuracy of the

segmentation of glands; and (2) boundary-based similarity
between glands and their corresponding segmentation. The
volume-based metric for segmentation accuracy is calculated
using the label that the algorithm assigns to each pixel, and
the boundary-based metric uses the position assigned by the
algorithm to the boundary of each gland.

The volume-based accuracy is computed using the Dice
coefficient. It measures the segmentation accuracy at the pixel
level. It is a statistical gauge of the similarity between two sets
of samples. Given G, a set of pixels belonging to a ground truth
object, and S, a set of pixels belonging to a segmented object, the
Dice coefficient is defined as in Equation (2), where |.| denotes
set cardinality. It ranges from 0 (no overlap between G and S) to
1 (perfect overlap between G and S).

Dice(G, S) =
2|G ∩ S|

|G| + |S|
(2)

The boundary-based segmentation accuracy between the
segmented objects in S and the ground truth objects in G are
measured using the Hausdorff distance. It measures how far two
subsets of a metric space are from each other. Considering the
two sets S and G, the Hausdorff distance is defined as in Equation
(3), where d(x, y) denotes the distance between pixels x ∈ G and
y ∈ S. In this work, we use the Euclidean distance. The Hausdorff
distance represents the longest distance from S (respectively G)
to its closest point in G (respectively S). It is the most extreme
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FIGURE 5 | Segmentation results for colon adenocarcinoma dataset. (A) Original colon image, (B) annotated ground truth gland mask, (C) predicted gland probability

mask, gland contour mask, and final gland segmentation results with Gland-approach, and (D) predicted stroma probability mask, stroma contour mask, and final

gland segmentation results with Stroma-approach.

value from all distances between the pairs of nearest pixels on the
boundaries of S and G. Two sets display a low Hausdorff distance
if each point of either set is close to another of the second set, i.e.,
Hausdorff distance= 0 iff S = G.

dH(S,G) = max[sup
x∈G

inf
y∈S

d(x, y), sup
y∈S

inf
x∈G

d(x, y)] (3)

In this work, the ground truth binary gland masks are compared
with the predicted gland segmentation masks via Dice coefficient
and directed Hausdorff distance. A higher Dice coefficient and
a lower Hausdorff distance indicate the efficacy of the gland
segmentation method.

5. RESULTS

Glands are the most important structures for establishing
the malignant tumor’s TNM classification, thus stromal tissue
segmentation has never been thoroughly investigated. For
this study, two gland segmentation approaches are explored,
namely Gland-approach and Stroma-approach. The Stroma-
approach has two important consequences. First, the pathologists
are more interested in gland morphologies than the stroma
localization, consequently it is important to come up with
a relevant and robust algorithm to compute gland masks
from stroma masks and vice versa. Indeed, the stroma
mask is not an exact match to the complementary mask
of the glands’. Namely, there are several white regions that
are neither gland nor stroma. Second, there is no expert
annotated data for stroma masks. Without stroma masks
at disposal, it is necessary to automatically compute stoma
masks from gland masks. We use an inversion algorithm
based on three distinct types of tissue: parenchyma, white

areas and stromal tissue. Stroma masks are computed and
then validated with an expert histologist to assess their
correctness. It ensures access to a fair amount of annotated
data and the ability to compute the glands location from the
stroma mask. Both the approaches are trained using gland-
annotated colon adenocarcinoma dataset. For the multi-organ
gland segmentation evaluation, the networks are evaluated
on two independent datasets from colon adenocarcinoma
and breast invasive cancer. The results are presented in the
following sections.

5.1. Segmentation Results on the Colon
Dataset
Following the aforementioned workflow, Dense-U-Nets are
trained via the Gland-approach and the Stroma-approach using
the colon GlaS dataset. Then, both approaches are tested on colon
adenocarcinoma slides to assess the performance on a single
organ. Figure 5 displays a visual sample of segmentation results
from an original colon H&E stained slide. Qualitative evaluation
indicate similar performance for both the approaches. It is further
supported by quantitative evaluation via the Dice coefficient
and the Hausdorff distance criteria presented in Table 1. Both
approaches perform similarly in terms of the Dice coefficient.
However, the Stroma-approach performs better in terms of the
boundary segmentation, as indicated by the Hausdorff distance.
The post-processing seemed not to improve the segmentation
results for the Gland-approach, whereas it slightly improves
the results for the Stroma-approach. Since, the stroma masks
are computed automatically it is difficult to exactly reason the
performance gap between the two approaches. Figure 6 presents
two more segmentation results for benign and malignant colon
glands using Gland- and Stroma-approach.
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TABLE 1 | Dice coefficient and Directed Hausdorff distance table for different experiments.

Dice coefficient Hausdorff distance

Gland-app. Stroma-app. Gland-app. Stroma-app.

Colon: before post-processing 0.93 0.92 10.8 10.5

Breast: before post-processing 0.76 0.84 13.9 13.8

Colon: after post-processing 0.92 0.93 11.0 9.7

Breast: after post-processing 0.78 0.87 13.6 11.2

Bold values indicates the best results for the Stroma Approach.

FIGURE 6 | Segmentation results for colon adenocarcinoma dataset. First row and second row presents results for benign and malignant colon images respectively.

(A) Original colon image, (B) annotated ground truth gland mask, (C) final gland segmentation results with Gland-approach, and (D) final gland segmentation results

with Stroma-approach.

5.2. Segmentation Results on the Breast
Dataset
The breast dataset images have a higher spatial dimension
than the previous colon images, i.e., 2000×2000 pixels. The
best performing models of the Gland-approach and Stroma-
approach, trained on the GlaS dataset, are tested on the
breast dataset to assess their generalizing ability toward gland
segmentation in a new organ, that is unknown to the trained
models. We evaluate the approaches on the acquired breast
dataset with 25 annotated images. First, the breast H&E
stained images are mapped to the same color distribution
as of the GlaS dataset (Figure 2). The staining normalization
step is of the utmost importance as it minimizes the staining
variability between both the domains. Second, the pre-trained
Dense-U-Nets on colon dataset are employed to predict the
gland segmentation masks in the breast dataset. Three breast
samples, their corresponding ground truth gland annotations,
the gland predictions via the Gland-approach and Stroma-
approach are presented in Figure 7. Qualitative evaluation via
visual inspection indicate that the Stroma-approach is able to
identify the individual glands and is more consistent with the
ground truth annotations compared to the Gland-approach.
The Gland-approach fails to generalize to new organs owing
to the high variation in the gland morphologies across organs.

However, the Stroma-approach display a reasonable performance
in generalizing to new organs, as it targets to delineate the more
consistent stroma across organs. The visual intuitions are further
supported by the computed Dice coefficients and Hausdorff
distance metrics in Table 1.

6. DISCUSSION

Analysis of glandular morphology in H&E stained
histopathology slides is among the primary factors in cancer
staging and thereby selecting the treatment procedure. However,
visual assessment is tedious and time consuming as pathologists
are required to manually examine each specimen to perform
an accurate diagnosis. Moreover, due to its complex behavior,
histopathological diagnosis suffers from inter- and intra-expert
variability. Therefore, designing an automated system enabling
precise assessment of the gland morphologies amongst not only
one but multiple organs of the body will be a considerable
breakthrough in the pathologists’ routines. This would
pave the way for a quicker and bias-free method of cancer
diagnosis as well as supporting the clinicians in prescribing
the treatment procedure. To improve the gland segmentation
and extending to a multi-organ setting, this paper proposes a
stroma segmentation approach, and subsequently presents a
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FIGURE 7 | Segmentation results for breast invasive cancer dataset. (A) Original breast image, (B) annotated ground truth gland mask, (C) final gland segmentation

results with Gland-approach, and (D) final gland segmentation results with Stroma-approach.

stroma to gland delineation method. The proposed methodology
is developed using colon adenocarcinoma tissue samples and
extends to cross-organ gland segmentation. The significance of
the methodology is established by evaluating it on samples from
colon dataset (same organ) and samples from breast invasive
cancer (different organ). The method is compared against a
direct gland segmentation approach, which is developed and
evaluated on the same datasets as of the first approach.

Qualitative evaluation via visual inspection and quantitative
evaluation via Dice coefficient andHausdorff distance on datasets
from two organs support the generalizing ability of the Stroma-
approach compared to the Gland-approach. The model trained
via Gland-approach achieves Dice coefficients of 0.92 and 0.78
on the colon and breast test datasets respectively, whereas
the Stroma-approach is produces Dice coefficients of 0.93 and
0.87 on the same test datasets. The Dice coefficients of the
Gland-approach and Stroma-approach drop by 15.22 and 6.45%,
respectively on changing the test dataset from colon to breast.
The Hausdorff distances for the Gland-approach and Stroma-
approach increases on changing the evaluation from colon
to breast dataset. However, the Stroma-approach has a better
Hausdorff distance compared to the Gland-approach. Visual
analysis of Figure 7 demonstrates that on the breast dataset,
unknown to the trained networks, the Stroma-approach is
able to delineate the glands more precisely compared to the
Gland-approach. The edgy segmentation of the Stroma-approach
occurs due to automatically computed ground truth stroma
masks. The stroma masks are not simple inversions of gland
masks and do not produce the same accuracy after automated

computation. As the ground truth for Stroma-approach do not
benefit from the precise knowledge of experts it is harder for the
network to accurately segment the boundaries between glands
and stroma. This implies that a deep architecture trained on
precise stroma masks would exhibit better performances on
multi-organ segmentation. This paper notes that more efforts
and time should be put into this area to leverage the best
from stroma segmentation, however this preliminary study
conveys very promising results for cancer diagnosis and grading
on a multi-organ scale. The importance and relevance of the
stromal tissue for accurate gland morphology assessment is
confirmed to design a cross-organ automated annotation tool
using deep learning.

This work has the ambition to serve as a proof of concept
that introduces a new cross-organ gland segmentation strategy,
leveraging the consistency of stromal tissue across different
organs. The ability of neural network based on convolutional
layers to isolate and locate this tissue would greatly benefit
any specialist aiming to measure gland morphologies within
the cancer grading workflow. This approach can further
serve higher purposes in the future in the problematic of
classification between benign and malignant tumors after
segmentation. Namely, a second deep architecture could
benefit from the measurements of the first architecture
to establish a classification suggestion. This represents
an incremental advance in the pursuit of supporting the
treatment suggestion decision-making of clinicians. This
first approach for a cross domain application goes into the
right direction.
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