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Abstract. The interpretation of medical images benefits from anatomical and 
physiological priors to optimize computer-aided diagnosis (CAD) applications. 
Diagnosis also relies on the comprehensive analysis of multiple organs and 
quantitative measures of soft tissue. An automated method optimized for medi-
cal image data is presented for the simultaneous segmentation of four abdomi-
nal organs from 4D CT data using graph cuts. Contrast-enhanced CT scans 
were obtained at two phases: non-contrast and portal venous. Intra-patient data 
were spatially normalized by non-linear registration. Then 4D erosion using 
population historic information of contrast-enhanced liver, spleen, and kidneys 
was applied to multi-phase data to initialize the 4D graph and adapt to patient 
specific data. CT enhancement information and constraints on shape, from Par-
zen windows, and location, from a probabilistic atlas, were input into a new 
formulation of a 4D graph. Comparative results demonstrate the effects of ap-
pearance and enhancement, and shape and location on organ segmentation. 
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1   Introduction 

In current CT-based clinical abdominal diagnosis, radiologists rely on analyzing 
multi-phase CT data, as soft tissue enhancement can be an indicator of abnormality. 
This makes multi-phase data (with/without contrast) readily available. Diagnosis also 
relies on the comprehensive analysis of groups of organs and quantitative measures of 
soft tissue, as the volumes and shapes of organs can be indicators of disorders.  

Computer-aided diagnosis (CAD) and medical image analysis traditionally focus on 
organ- or disease-based applications. However there is a strong incentive to migrate 
toward the automated simultaneous segmentation and analysis of multiple organs for 
comprehensive diagnosis or pre-operative planning and guidance. Additionally, the 
interpretation of medical images should benefit from anatomical and physiological 
priors, such as shape and appearance; synergistic combinations of priors were seldom 
incorporated in the optimization of CAD. 
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The segmentation of abdominal organs was initialized from probabilistic atlases in 
[10] using relationships between organs and manual landmarks. Alternatively, multi-
dimensional contrast-enhanced CT data were employed in [5,7,13]. In [5,13] the seg-
mentation used independent component analysis in a Bayesian framework. A 4D 
convolution was proposed in [7] constrained by a historic model of abdominal soft 
tissue enhancement. These intensity-based methods are hampered by the high vari-
ability of abdominal intensity and texture. More recently, a hierarchical multi-organ 
statistical atlas was developed [9]; the analysis was restricted to the liver area due to 
large variations to be statistically modeled for inter-organ relationships. 

On a different note, graph cuts [2] have become popular for image segmentation, 
due to their ability to handle highly textured data via a numerically robust global 
optimization. A major drawback remains the manual initialization of such applica-
tions [4,8,16]. In [1,6] model-based information was included for the heart and kid-
ney; however the models were aligned using markers. Compact shape priors were 
used in [4], but medical data often involves complex shapes. A shape model was also 
integrated in [15] as a density estimation for shape priors, initially proposed for level 
sets in [3], but a symmetric shape distance can be biased if shape initialization is poor. 

We propose a new formulation of a 4D directional graph to automatically segment 
abdominal organs, at this stage the liver, spleen, and left and right kidneys using 
graph cuts. The approach is optimized to medical images through the use of location 
probabilistic priors that are intrinsic to medical data, an enhancement constraint char-
acteristic to the clinical protocols using abdominal CT, and an asymmetric shape 
distance that avoids shape bias to build Parzen windows. The method is optimized 
globally and starts with historic (entire patient population) 4D intensity data to auto-
matically initialize the graph, then migrating to patient specific information for better 
specificity. Comparative results at different stages of the algorithm show the effects of 
appearance, shape and location on the accuracy of organ segmentation. 

2   Methods and Materials  

2.1   Data, Preprocessing and Model Initialization 

Eight random abdominal CT studies (normal and abnormal) were obtained with two 
temporal acquisitions. The first image was obtained at non-contrast phase (NCP) and 
a second at portal venous phase (PVP) using fixed delays. The CT data were collected 
on LightSpeed Ultra and QX/I scanners [GE Healthcare] at multiple time points. 
Image resolution ranged from 0.62 to 0.82 mm in the axial view with a slice thickness 
of 5 mm. The algorithm was trained and tested with a leave-one-out strategy. 

The liver, spleen, and left and right kidneys were manually segmented (by two re-
search fellows supervised by a board-certified radiologist) in the 8 CT cases using the 
PVP CT volumes to provide a gold standard for testing the method. Histograms of the 
segmented organs (objects) and background in NCP and PVP were computed and 
modeled as sums of Gaussians, as in Figure 1. While there are partial overlaps be-
tween the object and background distributions (especially at NCP), the combination 
of multi-phase data ensures a better separation. 

Although images were acquired during the same session and intra-patient, there 
was small, but noticeable abdominal inter-phase motion, especially associated with 
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breathing. The preprocessing follows the work in [7]. Data were smoothed using 
anisotropic diffusion [12]. NCP data were registered to the PVP images. The demons 
non-linear registration algorithm was employed [14], as the limited range of motion 
ensures partial overlaps between organs over multiple phases. The deformation field 
F of image I to match image J is governed by the optical flow equation  
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Fig. 1. Fitted sums of Gaussians to historic data of organs/objects (top row) and background 
(bottom row). NCP data is shown on the left column and PVP data on the right. Historic data 
we refer to the training cases in the leave-one-out strategy.   

A probabilistic atlas (PA) was constructed from a different set of 10 non–contrast 
CT from healthy cases, independent from the data above, with manually segmented 
liver, spleen and kidneys. Organ locations were normalized to an anatomical land-
mark (xiphoid) to preserve spatial relationships and model organs in the anatomical 
space. The tip of the xiphoid (an ossified cartilaginous extension below the sternal 
notch) was extracted manually in the data used in the location model. A random im-
age set was used as reference and the remaining images registered to it. Structural 
variability including the size of organs was conserved by a size-preserving affine 
registration. The location bias was minimized by the normalization by the xiphoid. 
The 10 unprocessed CT data were further used to build shape constraints via a Parzen 
window distribution, as explained in the construction of the 4D graph. 

4D Convolution 

From smoothed historic data of contrast-enhanced CT, the min and max intensities for 
the organs were estimated: mini,t = µi,t - 3σi,t and maxi.t = µi,t + 3σi,t, where i=1..3 for 
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liver, spleen and kidneys, µp,t and σp,t represent the mean and standard deviation, and 
t=1,2 for NCP and PVP. As in [7], a 4D array K(x,y,z,t)=It(x,y,z) was created from 
multi-phase data. A convolution with a 4D filter f labeled only regions for which all 
voxels in the convolution kernel satisfied the intensity constraints. L represents the 
labeled image and lj the labels (j=1..4 for liver, spleen, left kidney and right kidney). 
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The labeled organs in L appear eroded as a result of the 4D convolution. In our 
method, L provided seeds for objects (Io) in the 4D graph and was used to estimate the 
patient-specific histograms. The eroded inverted L provided the background (Ib) seeds 
and the related histograms. To report the segmentation results by 4D convolution (see 
Results), L was dilated to compensate for the undersegmentation of organs. 

4D Graph 

Graph cuts (GC) were chosen for the inherent capability to provide a globally optimal 
solution [2]. The input to our problem is two sets of registered abdominal CT scans 
per patient: the NCP and PVP sequences. Hence every voxel p in the graph has two 
intensity values p

ncpI  and p
pcpI . Let A = (A1, A2, …, Ap, …, AP) be a binary vector with 

components Ap that can be either objects of interest (i.e. liver, spleen and kidneys) 
denoted by O or background B, where B∩O= Ø. Typical graphs perform data labeling 
(t-links), via log-likelihoods based solely on 2D or 3D interactive histogram fitting, 
and penalize neighborhood changes (n-links) through likelihoods from the image 
contrast [2]. We first extend the formulation to analyze 4D data, and then incorporate 
penalties from the contrast enhancement of CT soft tissue, Parzen shape windows, 
and location from a priori probabilities. While location knowledge was incorporated 
in the labeling of objects, shape information penalized boundaries not resembling the 
references. The cost function E to minimize becomes 
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The first three terms define the objects (t-links) and the last two energies find the 
cuts (n-links) with i=1..4 for liver, spleen, left kidney and right kidney. In this applica-
tion, dataE is a regional term that computes penalties based on 4D histograms of O and 

B; the probabilities P of a voxel to belong to O or B are computed from patient spe-
cific histograms of NCP and PVP data. 

( )∑∑
∈∈

−+=
Bp

p
Op

pdata BRORAE )(1)()( λλ ;                                     (4) 

( )( ))|()|()|()|()|()|(ln)( BIPBIPOIPOIPOIPOIPOR p
pvppvp

p
ncpncp

p
pvppvp

p
ncpncp

p
pvppvp

p
ncpncpp +−= ;  

enhanceE penalizes regions that do not enhance rapidly during the acquisition of 

NCP-PVP CT data (i.e. muscles, ligaments and marrow). σncp and σpvp are the standard 
deviations of noise associated with NCP and PVP. 

( )∑
∈

+=
Pp

penhance EAE 211)( , with ( )
pvpncp

p
ncp

p
pvp

p

II
E

σσ2

2−
= .   (5) 



 Multi-organ Segmentation from Multi-phase Abdominal CT via 4D Graphs 93 

Similarly, location constraints from a normalized probabilistic atlas (PA) were im-
plemented in ( )( )∑

∈
−=

Pp
plocation OpSAE |ln)( , where Sp represents the probability of p to 

belong to O. Sp was obtained by registering PA to the test images by a sequence of 
coarse-to-fine affine registrations. 

boundaryE assigns penalties for 4D heterogeneity between two voxels p and q, with 

q∈Np a small neighborhood of p. λ, μ and δ are constants and weigh the contribution 
from object/background, and the directionality of the graph at boundaries/shape, re-
spectively (all set to value 0.5 for equal contributions). dist(p, q) is the Euclidean 
distance between p and q. 
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The last condition in (6) penalizes transitions from dark (less enhanced) to brighter 
(more enhanced) regions considering image noise, to correct the edges of O. This is 
an intrinsic attribute of medical data (e.g. the abdominal muscles are darker than O). 
Additional penalties were implemented from the seeds for O and B from Io and Ib. 

Shape constraints were introduced using Parzen windows [11] estimated from the 
reference liver shapes from the 10 non-contrast CT data. First, the result of the 4D 
convolution (L) was used to align the shape references using scaling, rotation and the 
location of the centroids. An asymmetric normalized dissimilarity measure D was 
used to avoid the bias introduced by L; H is the Heaviside step function  
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The Parzen shape probability PS of s given n shape references was calculated [3] to 
encourage cuts that minimize the shape dissimilarity  
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We compared results obtained after the 4D convolution to those achieved using in-
tensity-based 4D GC, and after including shape and location correction. The influence 
of patient specific versus population (historic) statistics on the accuracy of organ 
segmentation was also analyzed. We computed the Dice coefficient, volume error, 
root mean square error, and average surface distance. Non-parametric statistical tests 
(Wilcoxon paired test) were performed to assess the significance of segmentation 
improvement at different steps of the algorithm at 95% confidence interval. 
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3   Results 

Quantitative results from applying our method to the segmentation of liver, spleen and 
kidneys are shown in Table 1 at different stages of the algorithm. Figure 2 presents a 
typical example of liver, spleen and kidneys segmentation. Another example is shown 
in 3D in Figure 3 along with the errors between manual and automated segmentations.  

The use of 4D graph-cuts (GC) improved the results significantly over those of the 
4D convolution for all organs, as seen in Table 1. Employing shape and location in-
formation brought a further significant improvement for the segmentation of the 
spleen and liver. Significantly better segmentations by using patient specific data over 
historic data were noted for both kidneys (not shown in Table 1). 

Table 1. Statistics (mean±std) for the liver, spleen, left kidney and right kidney segmentation 
results from data of low resolution (5mm slice thickness). Columns present the Dice coefficient 
(DC), volume estimation error (VER), root mean square (RMSE) error and average surface 
distance (ASD). 4D C represents the convolution, GCI is GC based solely on image intensity 
(including 4D appearance and enhancement) and 4D GCSL includes shape and location con-
straints. Highlighted cells mark the organs where a significant improvement was obtained 
relative to the previous step of the segmentation algorithm (p<0.05). 

 ORGAN DC (%) VER (%) RMS (mm) ASD (mm) 

LKidney 88.7±3.7 10.9±8.9 2.3±0.4 1.1±0.3 
RKidney 89.6±3.4 13.6±6.8 2.1±0.5 1.1±0.3 

Spleen 79.9±10.1 14.9±16.9 4.5±1.9 2.7±1.7 

4D C  
(Historic Data) 

Liver 89.1±3.7 7.3±4.6 6.7±1.5 3.4±1.0 

LKidney 92.6±2.4 5.4±6.9 1.8±1.2 0.8±0.6 
RKidney 92.8±1.9 5.6±5.8 1.8±0.8 0.8±0.4 

Spleen 89.6±2.7 11.4±6.9 3.0±1.4 1.5±0.9 

4D GCI 
(Patient Data) 

Liver 94.0±1.2 6.2±2.8 4.4±2.0 1.8±0.7 

LKidney 91.9±2.4 4.5±4.6 1.7±0.5 0.8±0.3 
RKidney 92.6±1.3 5.2±2.9 1.7±0.4 0.8±0.3 

Spleen 90.7±1.4 8.2±5.0 2.2±1.0 1.2±0.5 

4D GCSL  
(Patient Data) 

Liver 94.9±0.8 4.1±2.0 3.4±1.8 1.4±0.4 

4   Discussion 

We proposed a new formulation for a 4D graph-based method to segment abdominal 
organs from multi-phase CT data. The method extends basic graph cuts by using: 1) 
temporal acquisitions at two phases and enhancement modeling; 2) shape priors from 
Parzen windows; and 3) location constraints from a probabilistic atlas. Enhancement 
information allowed improving regional bias within tissues, thereby better modeling 
the biological properties. Location probabilistic priors, intrinsic to medical data, and 
shape information from the asymmetric computation of Parzen shape windows (to 
avoid shape bias) supplied additional constraints for the global optimization of the 
graph. A Parzen distribution was preferred as a non-parametric probability model that 
converges to the true density with increasing number of samples.  
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Fig. 2. A typical example of liver (blue), spleen (green), right kidney (yellow) and left kidney 
(red) automated segmentation on 2D axial views of the CT data 

 
Fig. 3. 3D images of the automatically segmented abdominal organs; (a) is a posterior view and 
(b) an anterior view. The liver ground truth is blue with segmentation errors in white; spleen is 
green with errors in yellow; right kidney is yellow with errors in green; left kidney is red with 
errors in white. The pixilation is due to image low resolution (5mm slice thickness). 

Livers, spleens and kidneys were segmented from multi-phase clinical data follow-
ing the typical acquisition protocol of abdominal CT images. An automated initializa-
tion of the graph was employed. Historic data from a patient population were used to 
initialize the graph based on an adaptive 4D convolution. Then patient specific image 
characteristics were estimated for improved specificity and input into the directional 
graph. Results from image data with low spatial resolution showed overlaps over 90% 
and average surface distances less than 1.5mm for all organs. 

The method avoided the inclusion of heart segments in the segmentation of liver, 
but had the tendency to underestimate organ volumes, in particular that of the spleen. 
Parts of the inferior vena cava may be erroneously segmented in the mid-
cephalocaudal liver region, especially when contrast enhancement is low, and 
represent one of the sources of error in the liver segmentation (Figure 3). Partial 
volume effects (low image resolution), small registration errors, and the estimation of 
object and background distributions may also contribute to undersegmentation. 
Results are expected to be superior on data with high spatial resolution. 

As expected, using graph cuts based only on intensity significantly improved the 
segmentation of all four abdominal organs over the 4D convolution. However, 
moving from historic to patients specific statistics only improved the segmentation of 
kidneys, probably due to the prevalence of liver and spleen statistics in the object (O) 
histogram. Optimizing the graph with shape and location contraints brought a 

a b
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significant improvement only in the segmentation of spleen and liver, as kidneys, 
already well segmented at the previous step of the algorithm due to strong image 
contrast at edges from fast enhancement, vary less in shape. In the future we will 
include more shape/location references and variation to improve the segmentation. 
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