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Abstract

Automated facial expression recognition has received in-

creased attention over the past two decades. Existing works

in the field usually do not encode either the temporal evolu-

tion or the intensity of the observed facial displays. They

also fail to jointly model multidimensional (multi-class)

continuous facial behaviour data; binary classifiers - one

for each target basic-emotion class - are used instead. In

this paper, intrinsic topology of multidimensional continu-

ous facial affect data is first modeled by an ordinal man-

ifold. This topology is then incorporated into the Hidden

Conditional Ordinal Random Field (H-CORF) framework

for dynamic ordinal regression by constraining H-CORF

parameters to lie on the ordinal manifold. The resulting

model attains simultaneous dynamic recognition and inten-

sity estimation of facial expressions of multiple emotions.

To the best of our knowledge, the proposed method is the

first one to achieve this on both deliberate as well as spon-

taneous facial affect data.

1. Introduction

Facial behavior is believed to be the most important

source of information when it comes to affect, attitude, in-

tentions, and social signals interpretation [2]. Automatic

facial expression recognition has therefore been an active

topic of research for more than two decades [17, 25]. Most

systems developed so far attempt automatic recognition of

prototypic facial expressions of six basic emotions (anger,

happiness, fear, surprise, sadness, and disgust). The main

criticism that these works received from both cognitive and

computer scientists is that the methods are not applicable in

real-world situations, where subtle changes in both appear-

ance and temporal evolution of facial expressions typify the

displayed facial behavior [2, 1]. Current works in the field

usually do not encode either the intensity of the observed

facial appearance changes or the evolution of these changes

in time [25]. Instead, current approaches usually apply six

binary classifiers - one for each target prototypic facial ex-

pression of emotion - that code input face imagery as either

belonging to the target class or not.

Exceptions to this trend include a small number of works

on automatic coding of facial imagery in terms of either

temporal segments of facial actions (e.g., [22, 11, 14, 18]),

or temporal segments of prototypic expressions of emotions

(e.g., [7, 10]), or a small number of prototypic facial ex-

pression intensity levels (e.g., [5]). Some of the past works

in the field have proposed methods that could be used for

recognition of facial expression temporal segments and/or

intensity levels (e.g., [23, 20]), but did not actually report

any quantitative results for that task. Most of these works

use temporal graphical models being either generative (e.g.,

Hidden Markov Models (HMM), [7, 22, 11]) or discrimi-

native (e.g., CRFs [10]) trained for recognition of temporal

segments of a target facial expression. However, most of

these approaches fail to jointly model different emotions,

making the models suboptimal for the emotion modeling

task.

A method that does not conform to this rule is the H-

CORF model [9], which has been successfully used for

simultaneous recognition of multiple emotion-related ex-

pressions and their intensities. Yet, despite improvements

over other dynamic models (e.g., HMM or standard CRF),

H-CORF relies on linear feature models. Such ‘simple’

feature representation is usually not discriminative enough

for recognition and intensity estimation of facial behaviour

due to the large variation in expressions and their intensity

among different subjects.

In this paper, we propose to model topology of the in-

put data by a low-dimensional manifold that preserves dis-

criminative information about various facial expressions of
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emotions and ordinal relationships between their intensi-

ties while being largely invariant to intra- and inter-subject

variations. We incorporate this topology into the H-CORF

framework for dynamic ordinal regression by constraining

H-CORF parameters to lie on this nonlinear manifold. To

keep the model computationally tractable we adopt a locally

linear approximation of the otherwise nonlinear parameter

manifold. This manifold approximation is then coupled to

and jointly estimated with the H-CORF. In this manner we

directly find the most discriminative features for dynamic

recognition of emotions and their intensities. To the best

of our knowledge, this is the first method that performs

simultaneous recognition of multiple facial expressions of

emotions and their intensities by modeling all: (i) tempo-

ral dynamics of facial expressions, (ii) ordinal relationships

between their intensities, and (iii) intrinsic topology of mul-

tidimensional continuous facial affect data, encoded by an

ordinal manifold structure.

In what follows, we consider a K-class classification

problem, where we let c ∈ {1, ...,K} be the nominal cat-

egory (i.e., emotion class). Each nominal category c is as-

sumed to have R different ordinal scales (i.e., emotions in-

tensities), denoted as consecutive integers hr ∈ {1, . . . , R}
that keep the ordering information. The observations, de-

noted by x = x1 . . .xT and where the sequence length T

can vary from instance to instance, serve as input covari-

ates for predicting both c and h. If not stated otherwise,

we assume a fully supervised setting: we are given a train-

ing set of N data triplets D = {(ci, hi,xi)}Ni=1, which are

i.i.d. samples from an underlying but unknown distribution.

The remainder of the paper is organized as follows. We

give a short overview of of the models for dynamic ordinal

regression in Sec. 2. We describe the manifold learning ap-

proach employed in the proposed model in Sec. 3. The pro-

posed model for dynamic ordinal regression is described in

Sec. 4. Sec. 5 shows the experimental results. Sec. 6 con-

cludes the paper.

2. Dynamic Ordinal Regression

The goal of ordinal regression is to predict the label h

of an item represented by a feature vector1
x ∈ R

p where

the output indicates the preference or order of this item:

h = 1 ≺ h = 2 ≺ . . . ≺ h = R. Modeling of the

item orders can be accomplished by means of standard static

ordinal regression models (e.g [21, 4, 3]), which, in con-

trast to multi-class classification models, preserve ordering

relationships between different labels. Nevertheless, static

models for ordinal regression ignore temporal correlations

between the labels, which is of essence when dealing with

sequential data. In what follows, we describe two recently

proposed dynamic models for ordinal regression [10, 9].

1We use the notation x interchangeably for both a sequence observation

x = {xr} and a vector, which is clearly distinguished by context.

2.1. Conditional Ordinal Random Field (CORF)

CORF [10] is an extension of standard CRF [12] to

structured output ordinal regression setting. It models the

distribution of a set (sequence) of ordinal variables h =
{hr}, hr ∈ {1, . . . , R}, conditioned on inputs x. As in

standard CRF, the distribution P (h|x) has a Gibbs form

clamped on the observation x:

P (h|x,θ) =
1

Z(x;θ)
es(x,h;θ), (1)

where Z(x;θ) =
∑

h∈H
es(x,h;θ) is the normalizing par-

tition function (H is a set of all possible output configura-

tions), and θ are the parameters2 of the score function s(·),
defined as

s(x,h;θ) =
∑

r∈V

Γ
(V )
r (x, hr; {a,b, σ}) (2)

+
∑

e=(k,l)∈E

u
⊤
k,lΨ

(E)
e (x, hr = k, hs = l),

thus, summing up the influence of the node features (Ψr)

and the edge features (Ψe) on the model output. However,

in contrast to standard CRF, CORF employs the model-

ing strategy of static ordinal regression methods (see [3])

to define the node features Ψr. Specifically, the proba-

bilistic ranking likelihood, P (h = c|f(x)) = P (f(x) ∈
[bc−1, bc)), is used, where f(x) = a

⊤φ(x) is the linear

model in the induced feature space φ(x). Thus, a projects

the features φ(x) on a single line divided into R bins, with

the binning parameters b = [−∞ = b0, . . . , bR = +∞]⊤,

which satisfy the ordinal constraints (bi < bi+1, ∀i). Un-

der the Gaussian noise assumption, the ranking likelihood

becomes

P (h = c|f(x)) = Φ

(

bc − f(x)

σ

)

− Φ

(

bc−1 − f(x)

σ

)

,

(3)

where Φ(·) is the standard normal cdf, and σ is the param-

eter that controls the steepness of the likelihood function

[3]. The ranking likelihood in (3) is used to set the node

potential at node r in the CORF model as Ψ
(V )
r (x, hr =

c) = logP (h = c|f(x)), while the edge features,

Ψ
(E)
e (x, hr, hs), are set as

[

I(hr = k ∧ hs = l)
]

R×R
⊗
∣

∣φ(xr)− φ(xs)
∣

∣. (4)

I(·) is the indicator function that returns 1 (0) if the argu-

ment is true (false), and ⊗ denotes the Kronecker product.

Finally, the parameters of the CORF model are stored in

θ = {a,b, σ,u}, and φ(x) = [1, xT ]T , as in [10] .

2For brevity, we often drop the dependency on θ in our notation.



2.2. Multioutput CORF (MCORF)

The output of the CORF model introduced in the previ-

ous section comprises ordinal variables hr ∈ {1 . . . R} cor-

responding to a single class. To deal with multiple classes,

c = {1, ...,K}, H-CORF [9] combines K independent

CORF models by employing the modeling strategy of Hid-

den CRF (H-CRF) [16], resulting in a new score function

s(c,x,h;Ω) =

K
∑

k=1

I(c = k) · s(x,h;θk) (5)

where s(x,h;θk) is defined by (2), and Ω = {θk}
K
k=1,

where θk = {ak,bk, σk,uk} for k = 1 . . .K, are the pa-

rameters of H-CORF. With the new score function, the joint

and class conditional distributions are given by

P (c,h|x) =
exp(s(c,x,h))

Z(x)
. (6)

P (c|x) =
∑

h

P (c,h|x) =

∑

h
exp(s(c,x,h))

Z(x)
(7)

Evaluation of the class-conditional P (c|x) depends on the

partition function Z(x) =
∑

c,h exp(s(c,x,h)) and the

class-latent joint posteriors P (c, hr, hs|x). Both can be

computed from independent consideration of K individual

CORFs. Note that the H-CORF model treats ordinal

variables h as latent variables, and, thus, does not employ

the corresponding labels during training. In what follows,

we also consider a fully supervised setting in which labels

for both classes c and ordinal variables h are known. To

distinguish this setting from standard H-CORF, we call it

Multi-output CORF (M-CORF).

Shared-paramater M-CORF: SM-CORF

In M-CORF, each CORF component is assigned an

independent set of parameters (θk). However, since our

classes are related3 , it seems natural to use some shared

parameters that ’couple‘ individual CORF components so

that similarities across them can be exploited. Furthermore,

the parameter sharing should constrain the parameters to

a more plausible region of the parameter space. This is

achieved by modeling intensities of different emotions on

a common real line, divided by the binning parameters b,

which are shared among all classes (emotions). We call this

model the Shared-parameter M-CORF (SM-CORF) model,

where a set of parameters {b, σ} is shared among all CORF

components, while ordinal projections ak and transition

matrix uk are emotion-specific. In the same way, we define

the Shared parameter H-CORF (SH-CORF) model.

3This comes from the fact that temporal segments of each emotion class

can be labeled as neutral, onset and apex, where, e.g. neutral should be the

same for all emotions

3. Manifold for Ordinal Regression

The goal of standard manifold learning is to discover

a latent space in which topology of the input features x,

sometimes also informed by labels of x, is preserved. Such

data representation may be more discriminative and better

suited for modeling of dynamic ordinal regression. In what

follows, we first describe an unsupervised method for mani-

fold learning. We then extend this method to obtain a mani-

fold that satisfies ordinal constraints. Finally, we show how

this ordinal manifold can be incorporated into the HCORF

framework for dynamic ordinal regression.

3.1. Locality Preserving Projection (LPP)

Locality Preserving Projection (LPP) [8] is the optimal

linear approximation to the eigenfunctions of the Laplace

Beltrami operator on the manifold, which is capable of dis-

covering nonlinear manifold structure. It uses the notion of

the Laplacian of the graph to compute a transformation ma-

trix which maps the data points to a subspace. Formally,

it first constructs an undirected graph G = (V,E), where

each edge is associated with a weight Wij . The elements of

the weight matrix can, for instance, be computed by means

of the heat kernel [8]

Wij = exp(−σ−2
w ‖xi − xj‖

2
), (8)

where σw is the width of the kernel. Based on the weight

matrix W , it computes the graph Laplacian as L = D−W ,

where D is a diagonal matrix with Dii =
∑

j Wij . To

obtain the embeddings, the relationship between latent and

observed variables is modeled as z = Fx, where F is the

projection matrix. By imposing the orthonormal constraints

(xDxT = I), F is found in a closed form as a solution to

the generalized eigenvalue problem:

xTLxF = λxTDxF, (9)

where the column vectors Fi, i = 1, ..., Dz , with Dz being

the dimension of the manifold, are the eigenvectors corre-

sponding to the minimum eigenvalue solutions (λi) of (9).

Thus, the projection F defines the manifold on which inputs

x vary more smoothly.

3.2. Supervised Ordinal LPP (SOLPP)

To obtain a manifold that is better adjusted to emo-

tion classification, [19] proposed a Supervised Locality Pre-

serving Projections (S-LPP) algorithm, which also encodes

class information when computing the weight matrix in (8).

We extend this algorithm by also encoding the ordering of

the class labels, so as to preserve the smooth transitions be-

tween different emotion intensities on the manifold. We call

this algorithm Supervised Ordinal LPP (SO-LPP) since its

proximity matrix W is defined as an ordinal weight matrix



W or, with elements (i, j) ∈ {1 . . . N} computed as

Wij + βWmax

R
∑

k=1

I(hi > k) I(hj > k) I(ci, cj), (10)

where Wij is given in (8), Wmax = max
∀ij

Wij , β is the pa-

rameter that quantifies the degree of supervised learning,

and I(·) is the indicator function defined in Sec. 2.1. In con-

trast to the similarity measure in (8), the similarity measure

in (10) is augmented by the label information, thus increas-

ing similarity between the samples belonging to the same

emotion class and similarity within samples of the same

emotion class based on their intensity levels. Note also that

samples from different emotion classes, but with ‘neutral’

intensity will be all grouped together, where the samples

with higher intensities will be ‘shifted away’ by the factor

βWmax - which is exactly what we need for emotion classi-

fication and modeling of ordinal relationships between their

intensities.

In the unsupervised setting, i.e. when the intensity levels

are treated as latent variables, the elements of the ordinal

weight matrix W or
ij have the same form as in the supervised

setting (10), with the only difference being that the indicator

functions are replaced by the model estimates of the inten-

sity levels h ∈ {1, ..., R}. Accordingly, the elements of this

ordinal weight matrix W or
ij have the following form:

Wi,j + βWmax

R
∑

k=1

p(hi > k) p(hj > k) I(ci, cj) (11)

p(hl > k) = 1−
∑k

m=1
p(hl = m), l = i, j,

where the probability p(hl = m) for the input xl is esti-

mated as explained in Alg.1 in Sec.4.1. Once the ordinal

weight matrix W or is constructed, it is used to compute the

graph Laplacian L and projection matrix F.

4. Laplacian SM-CORF (LSM-CORF)

In this section, we incorporate topology of our input data

x into the SM-CORF model by constraining its parameters

to lie on the ordinal manifold. This is achieved by enforc-

ing the latent variables u ≡ φ(x) = Fx to be a Gaussian

Markov Random Field (GMRF) w.r.t. graph L (see [26] for

details). Based on the GMRF representation, we obtain a

prior over the latent variables U = [u1u2...uN ] as

p(U) =

n
∏

i=1

p(ui) =
1

Zu

exp
(

−
α

2
tr(ULUT )

)

(12)

where ZU is a normalization constant and α > 0 is a scale

parameter. Furthermore, since z = Fx, the prior in (12) can

be used to obtain a prior over the projection matrix F as

p(F|x) =
1

ZF

exp
(

−
α

2
FxLxT

F
T
)

(13)

The role of this prior is to enforce smoothness constraints

on the manifold in which we intend to model ordinal regres-

sion. Note that these constraints are different from temporal

constraints imposed by dynamic features in the SM-CORF

model, since the former aim at preserving the topology of

our input data.

By using the prior in (12), the likelihood function of the

SM-CORF model given by (6) and by assuming a Gaussian

prior over the model parameters Ω, P (Ω) = N (Ω|0, γI),
we obtain the posterior distribution

P (F,Ω|c, h, x) ∝ P (c, h|x,F,Ω)P (F|x)P (Ω). (14)

If we use the maximum a posteriori (MAP) strategy to es-

timate the projection matrix F and the model parameters

Ω, the topology of our input data will be seamlessly inte-

grated into the model [26]. We call this model the Lapla-

cian SM-CORF (LSM-CORF) model. The importance of

the GMRF-based prior in (13) can best be seen in terms of

the graphical structure of the resulting model. Namely, this

prior introduces an additional graphical structure into the

SM-CORF model. Specifically, the graphical structure of

the SM-CORF model alone has the form of a chain repre-

senting the explicit dependencies only between the labels

of the neighbouring nodes. On the other hand, the graphical

structure of the GMRF is richer in the sense that it captures

dependencies between the labels over the whole dataset.

The MAP estimate of (F,Ω) can be obtained by mini-

mizing the following objective function:

argmin
F,Ω

n
∑

i=1

− lnP (ci, hi|xi,F,Ω) (15)

+
λ

2
FXLXT

F
T +

γ

2
‖Ω‖2 + const.

The penalty term FXLXT
F

T has the role of manifold reg-

ularization in the LSM-CORF model, while λ and γ control

the complexity of the projection matrix F and the ordinal

regression model learned in the latent space, respectively.

The Laplacian SH-CORF (LSH-CORF) model is obtained

by replacing the likelihood term in (15) with (7) and by us-

ing the same analogy as before.

4.1. Model Learning

Parameter learning in the proposed model is performed

by minimizing the objective function in (15) w.r.t. (F,Ω)
using the quasi-Newton limited-BFGS method (see [9] for

the gradient derivation). In LSM-CORF, parameter learn-

ing is straightforward: first, we find an initial projection



(a) (b)
Figure 1. BU-4DFE dataset. The performance of the compared

approaches w.r.t. the ordinal manifold dimensionality. (a) Mean

error rates (in %) for facial expression recognition and (b) mean

abs. loss for its intensity estimation.

matrix F0 via the SO-LPP algorithm, and set the param-

eters Ω as in [9]. We then alternate between steps 1-2 in

Alg.1 until convergence. Model learning in LSH-CORF re-

quires some additional steps and this is described in Alg.1.

The initial projection matrix F0 (i.e., the graph Laplacian)

is obtained by dividing each training sequence xr into R

segments with approximately equal length, and by labeling

each segment with the corresponding intensity level (i.e. the

segment number). After one iteration of BFGS (step 2 in

Alg.1), we use the new parameters (F,Ω) to compute the

likelihood of each intensity level hi, where i = 1, ..., R.

These likelihoods are then used to update graph Laplacian

in (11). The steps 1-4 in Alg.1 are repeated until conver-

gence of the evidence function.

Algorithm 1 Model Learning in LSH-CORF

Require: {ci, hi
0,x

i}ni=1 and (F0,Ω0)
1. Evaluate the evidence in (15) and calculate the gradients

w.r.t. (F,Ω).
2. Feed the evidence and gradients to the BFGS method.

3. Calculate P (h = i|F, x,Ω) =
∑

c P (c, h = i|F, x,Ω),
where i = 1, ..., R.

4. Update graph Laplacian based on (11).

5. Repeat (1-4) until convergence of the evidence in (15).

5. Experiments

In this section we demonstrate the performance of the

proposed method on the task of facial expression recogni-

tion and its intensity estimation from the frontal view fa-

cial images. We use image sequences from two publicly

available datasets: the BU-4DFE dataset [24] and the Cohn-

Kanade (CK) dataset [13]. Both datasets contain image se-

quences of different subjects displaying facial expressions

of six prototypic emotions: Anger, Disgust, Fear, Happi-

ness, Sadness and Surprise. We select 120 image sequences

that come from 30 subjects from BU-4DFE, and 167 im-

age sequences from 98 subjects from CK. All image se-

quences start with a neutral face evolving to the apex of

(a) (b)
Figure 2. BU-4DFE dataset. Confusion matrices for facial ex-

pression recognition performed by (a) H-CORF and (b) LSH-

CORF.

the target display. Image sequences from the BU-4DFE

dataset are sub-sampled so that the sequence lengths in both

datasets are about 20-frame long on average. Each image

sequence is annotated as one of six prototypic emotions

(c = {1, ..., 6}), and each frame is manually labeled into

three ordinal categories: neutral (h = 1) ≺ onset (h = 2) ≺
apex (h = 3).

In this study, we use the locations of a set of character-

istic facial points as the input features. In the case of BU-

4DFE, we use 39 facial points extracted using the appear-

ance based tracker [6]. For CK, we use 20 facial points ex-

tracted using the particle-filter-based tracker [15]. Fig. 6 de-

picts examples of the tracked sequences. The tracked points

are later registered to a reference face and normalized w.r.t.

the first frame in each image sequence. Finally, the PCA re-

duction preserving 95% of the total energy is applied to the

input features, giving rise to the 16-dimensional inputs, for

BU-4FE, and to the 24-dimensional inputs, for CK, which

are denoted by x.

We perform two sets of experiments. In the fully su-

pervised setting, we compare the performance of our LSM-

CORF model with: (1) Multi-output Hidden Markov Model

(M-HMM), used as the baseline, (2) M-CORF and (3)

SM-CORF. In the unsupervised setting, we perform the

same experiments using the ‘hidden’ models (H-HMM/H-

CORF/SH-CORF/LSH-CORF), all of which treat the inten-

sity levels as latent variable. The M-HMM model is ob-

tained by combining the outputs of standard HMM models

trained independently for each emotion category using one-

shot learning with h hidden states. In the unsupervised case

(H-HMM), the initial estimates of the hidden states h are

set as in LSH-CORF (Sec. 4.1). The emotion/level predic-

tion for a given test sequence is accomplished using Viterbi

decoding. Note that in this paper we do not include compar-

ison with regular CRFs and static ordinal regression, since

the state-of-the-art H-CORF [9] model has been shown to

outperform those models in the target task.

In all our experiments, we apply 10-fold cross valida-

tion procedure, where each fold contains image sequences

of different subjects. We report the accuracy using the mean



Table 1. BU-4DFE dataset. The performance of the compared approaches per emotion category. The ordinal manifold dimensionality

which resulted in the best performance of the approach in question is used for the training/testing. Here we also include the results

obtained by standard H/M-CORF models, which use an independent set of parameters for each emotion class, and are trained/tested using

the original PCA-based feature vectors.

Method
Mean Error Rate for Facial Expression Recognition Mean Absolute Loss for Facial Expression Intensity Prediction

Angry Disgust Fear Happy Sad Surprise Ave. Angry Disgust Fear Happy Sad Surprise Ave.

M-HMM 27.0 51.4 48.6 29.2 53.1 17.5 34.0 0.74 0.67 0.95 0.34 1.15 0.27 0.69

M-CORF 33.3 33.3 55.5 16.6 38.5 5.26 26.0 1.06 0.58 1.33 0.27 1.00 0.21 0.74

SM-CORF 58.3 15.8 44.4 11.1 30.7 6.67 24.0 1.17 0.32 1.00 0.28 0.92 0.27 0.66

LSM-CORF 31.6 15.7 33.3 5.55 26.1 0.00 19.0 0.75 0.21 0.66 0.11 0.46 0.00 0.36

H-HMM 27.0 40.3 51.4 28.1 60.8 12.5 36.7 1.00 0.90 1.40 0.76 2.09 0.51 1.11

H-CORF 36.1 37.7 35.2 21.1 40.3 14.0 30.1 1.2 0.79 1.40 0.45 1.6 0.35 0.96

SH-CORF 40.0 41.6 33.3 15.7 30.7 5.55 27.8 1.2 0.75 0.77 0.26 0.84 0.16 0.66

LSH-CORF 26.6 16.6 44.4 15.7 23.1 11.1 22.9 0.81 0.11 1.06 0.21 0.64 0.22 0.50

(a) it=80, 20.9% (0.14) (b) it=40, 21.5% (0.14) (c) it=80, 13.0% (0.12)
Figure 3. BU-4DFE dataset. Facial expression recognition and its intensity estimation achieved by (a) SM-CORF and (b-c) LSM-CORF,

in the 3D ordinal manifold learned by the proposed OS-LPP. In SM-CORF, the embeddings remain unchanged during optimization of

Ω = {ac,b, σ,uc}, while in LSM-CORF, Ω and the embedding matrix F are jointly optimized. Both algorithms converged in less than

80 iterations. Below each image, the error rates for facial expression recognition (in %) and mean abs. loss for the intensity estimation

(obtained after the number of iterations (it)) are shown. Different colors in the images depict the embeddings of facial expressions of

different emotion categories, and (·, ∗, ◦) correspond to their intensity levels (i.e., neutral, onset and apex), respectively.

error rate ( 1
N

∑

n I(cn 6= cn)) for facial expression recog-

nition, and mean absolute loss ( 1
NT

∑

n

∑

t |hnt−hnt|) for

its intensity estimation. Here, (cn, hnt) and (cn, hnt) are

predicted and ground-truth emotion/intensity labels, respec-

tively. The width of the heat kernel in (8) is set to the mean

squared distance between the training inputs, and β = 2.

5.1. Experiments on the BU4DFE dataset

To select an optimal manifold for ordinal regression, we

test the performance of the compared approaches w.r.t. the

size of the ordinal manifold obtained as explained in Sec. 3.

The average test errors for facial expression recognition and

its intensity estimation are shown in Fig. 1. Here we only

report results for SH/SM-CORF models since the regular

H/M-CORF models were prone to severe overfitting on the

manifold data. As can be seen from Fig. 1, all CORF-based

models exhibit superior performance compared to that of

H/M-HMM, with the proposed LSH/LSM-CORF perform-

ing the best. Table. 1 shows the performance of the tested

models per each emotion category, trained/tested using op-

timal dimensionality of the ordinal manifold. The pro-

posed approach outperforms other approaches in the tasks

of facial expression recognition and its intensity estimation.

The SH/SM-CORF models exhibit superior performance to

that attained by standard H/M-CORF models, which can

be attributed to their (1) effective parameter sharing and

(2) modeling on the non-linear manifold specifically built

for ordinal regression. However, the SH/SM-CORF mod-

els fail to further ‘adapt’ the ordinal manifold for model-

ing of dynamic ordinal regression. This is accomplished

in LSH/LSM-CORF, leading to more accurate predictions.

Confusion matrices for the H-CORF model [9] and the pro-

posed LSH-CORF model are given in Fig. 2. The latter

leads to better performance in all cases but the Fear class.

A plausible explanation is that examples of Fear in BU-4FE

often contain Smiles (of embarrassment) and acted Screams

which are sources of confusion with Happiness and Sur-

prise.

We also observed the manifold learning during the model

estimation phase. For visualization purpose, we model the

ordinal manifolds in 3D. Fig. 3 depicts adaptation of the

LSM/SM-CORF models to the corresponding manifolds.

Fig. 3(a) shows the SM-CORF model estimated on the

‘fixed’ manifold, while Fig. 3(b)-(c) show how this mani-

fold changes during estimation of the proposed LSM-CORF

model, which jointly estimates the manifold and the CORF



(a) (b)
Figure 4. CK dataset. The performance of the compared ap-

proaches w.r.t. the ordinal manifold dimensionality. (a) Mean er-

ror rates (in %) for facial expression recognition, and (b) mean abs.

loss for its intensity estimation.

(a) (b)
Figure 5. CK dataset. Confusion matrices for facial expression

recognition performed by (a) H-CORF and (b) LSH-CORF.

parameters. As can be seen from Fig. 3(a), the SM-CORF

model is unable to handle overlap in examples of Disgust

(a2) and Happiness (a4), since it uses linear projections a

for each emotion class. On the other hand, the proposed

LSM-CORF model handles this by simultaneously refining

the ordinal manifold and estimating the ordinal regression

parameters. Fig. 3 indicates parameter sharing among dif-

ferent CORF components (due to the similarity of ‘neutral’

and ‘onset’ of target emotions), which, in turn, leads to hav-

ing a more discriminative model than is the case with the

regular M-CORF model.

5.2. Experiments on the CohnKanade dataset

Fig.4 shows the performance of the compared ap-

proaches w.r.t. the size of the ordinal manifold, while Ta-

ble 2 shows the performance per emotion category obtained

by using optimal ordinal manifolds to train/test the meth-

ods. The LSM-CORF model consistently outperforms other

models, both in supervised and unsupervised setting. In-

terestingly, the proposed LSH-CORF model still accurately

predicts emotion intensities, which is, in part, contributed to

its modeling of the data topology. The confusion matrices

in Fig. 5 similarly reflect superior performance of our LSH-

CORF model compared to H-CORF [9], which we found to

be prone to data overfitting.

5.3. Experiments on spontaneous data

We also test the applicability of the proposed approach

on naturalistic data. To this end, we recorded a person while

watching a funny video. We tracked the video obtained us-

ing the both trackers (i.e., [6, 15]), as in the experiments

above. We then trained two separate LSM-CORF models

using data from BU-4FE and CK. Fig.6 shows the track-

ing results as well as the quantitative results for continuous

recognition of facial expressions of various emotions and

their intensity estimation. Note that both models discrimi-

nate well between different emotions and give smooth pre-

dictions of their intensity levels. However, although both

models classify the test sequence as a joyful display over-

all, the model trained on BU-4FE encodes high levels of

Disgust. As can be seen from the bottom row in Fig. 6,

which depicts the imagery from BU-4FE most similar to

that tested, expressions similar to those depicted in the test

video were labeled as Disgust in this dataset. On the other

hand, the model trained on CK encodes Surprise in addition

to Happiness, which is in agreement with manual annota-

tion of the test video that we obtained by asking three lay

experts to score the video in terms of six basic emotion cat-

egories.

6. Conclusions

Modeling the intrinsic topology of the facial affect data

is important for educing discriminative features for dynamic

recognition of emotions and their intensity. Standard gen-

erative models like HMMs and discriminative models like

H-CORF [9] use simple linear feature representation that is

unable to capture such topology. In contrast, the proposed

LSM-CORF model incorporates this topology into the H-

CORF framework, giving rise to a linear approximation of

the otherwise non-linear model for dynamic ordinal regres-

sion. As evidenced by the results, the proposed method at-

tains effective simultaneous dynamic recognition and inten-

sity estimation of multiple emotions on both deliberately

and spontaneously displayed facial expressions.
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