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Abstract 

Evolutionary programming (EP) has been 
demonstrated to be an effective method of system 
identification of single-input-single-output (SISO) 
systems. This paper investigates the use of EP in 
system identification of single-input-multi-output 
(SIMO) systems. EP is used to identify parameters 
of a linear, time-invariant system. Specifically, this 
paper examines the identification of SIMO systems 
whose measurements can contain different amounts of 
noise. A cost function is proposed to take into 
account disparate noisy observations. 

I. Introduction 

System identification is the process of 
developing an accurate model of a dynamic system. 
This involves selecting the appropriate model 
structure and choosing the model parameters which 
optimize an objective function. The usual approach 
taken in system identification is to assume a model 
structure based on the process physics and then to 
determine the model parameters. Oftentimes, 
nonlinear models are linearized so that an appropriate 
state space formulation may be used. 

Typically, methods of system identification 
involve minimizing the objective function using 
gradient descent techniques. Use of the gradient may 
result in the identified parameters being only locally 
optimal. Continuity constraints are another limitation 
associated with pure gradient search techniques. A 
Kalman filter approach is given in [ l ]  along with 
cautions on its application to system identification. 
Many algorithms have been proposed which attempt 
to alleviate the inherent problems associated with 
gradient methods. Recent approaches have included 
simulated annealing, genetic algorithms, neural 
networks and evolutionary programming. The latter 
method has proven extremely successful for function 
optimization. 

Evolutionary programming (EP) has been 
successfully applied to the problem of system 
identification. Fogel [2] has proposed the use of EP 

in system identification for evolving ARMAX process 
coefficients. His investigations extend to 
simultaneous parameter and model structure 
estimation. This paper extends the work on SISO 
systems to SIMO systems. The extension to multi- 
input, multi-output (MIMO) systems is obvious. 

Identification of a SIMO system could be 
divided into identifying a set of SISO system transfer 
functions between the input and each of the outputs. 
However, each of these transfer functions would be 
identified using only the measurements of its output 
and not the full set of observations which contains 
more information. Also, it is not clear how one 
might combine these individual transfer functions 
with parameter estimates of varying degrees of 
uncertainty into one combined system model that 
would be required to control all the states of the 
system. 

The remainder of this paper is organized as 
follows. Section I1 contains an overview of the EP 
paradigm. Section 111 formulates EP for SIMO 
system identification and describes the model 
structure. Section IV presents a linear, time-invariant 
system that is used for computer experiments. 
Section V discusses the results and Section VI 
provides a summary of the results and conclusions. 

XI. Evolutionary Programming 

EP is a parallel stochastic search technique 
that maps natural evolution to an effective multi-agent 
search strategy. This search technique is not based 
on gradient methods and is therefore not susceptible 
to entrapment in local minima. Search by simulated 
evolution was first described by Fogel [3]. This 
investigation follows the search strategy outlined in 
Fogel [2] and described by the sequence below 

1. 

2. 

3. 

Create the initial population P consisting of 
N parents. 
Assess the fitness of each parent pi in the 
population. 
Mutate each element in the population by a 
N(0,u) random variable, where U is 
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'igure 1. Evolutionaly programming 
parameter estimation block diagram. 

proportional to the fitness. 
4. Assign a new fitness score to each element 

of the population. 
5. Hold a stochastic competition between the 

members of the population. 
6. Rank the members of the population 

according to the results (number of "wins") 
of step 5. 
Repeat step 3 with the highest ranked N 
members from the population. 

7. 

This algorithm is applied to system identification in 
the following section. 

m. EP for System Identification 

The linear time-invariant SIMO structure is 
assumed to be of the form 

x(k+ 1) = F x ( ~ )  +Gu(k) 

where x(k) is the state vector of length n,  U@) is the 
input, y(k) is the vector of measurements of length 1, 
v(k) is the vector of N(0,uJ measurement noise. F is 
the system matrix, G is the input weighting matrix 

and H i s  the measurement scaling matrix. The block 
diagram for estimating parameters using EP is shown 
in Figure 1. 

The vectors to be evolved will consist of the 
elements of the F and G matrices. The H 
(measurement) matrix will not be evolved because 
finding all three of the matrices is an underdefined 
problem since an infinite number of combinations of 
F, G and H matrices apply to the same system 
dynamics. For this reason, the measurements will be 
assigned to the first 1 states of the system. llus 
results in an H matrix of the form 

Given this formulation, the method of 
applying EP to the identification problem is 
straightforward. The remaining issues to be resolved 
are the mutation strategy and the objective function. 

Two mutation strategies were investigated. 
The first incorporates a standard deviation of the 
mutation for each vector that is linearly proportional 
to the fitness score as suggested by Fogel [2]. This 
results in the size of the mutations decreasing as the 
population approaches the optimum value. In 
addition to ensuring convergence, this strategy also 
assures an effective search by allowing larger 
mutations for elements that have poor fitness scores. 
Atmar [4] suggests a variety of mechanisms to 
accelerate the search process. 

The second mutation strategy investigated is 
based on the number of iterations. The mutation of 
any element in the vector can be described by the 
perturbation 

where p is a N(0,u) random variable (r.v.), T is a 
U[O,I] r.v., CY is a constant and k is the generation 
number. This mutation is a function of the number 
of iterations only. A random walk is maintained over 
a high number of generations while still preserving 
the capability of infinitesimal perturbations to achieve 
optimum values as k increases. Reasonable results 
were obtained using this mutation strategy for 
optimizing mobile manipulator configurations [ 5 ] .  

The objective function must be carefully 
chosen for this search. Not only will the 
measurements generally be of different units, but the 
amount of confidence in each measurement may 
differ due to sensor characteristics. A cost function 
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has been formulated to take into account disparate 
sensor noise and the difference between state 
estimates and observations. The error vector between 
observation and estimate is given by 

where y is the observation and 9 is the estimate. The 
cost function incorporates sensor uncertainty (noise) 
using the diagonal standard deviation matrix 

Q =  

1 - 0 0 . .  . 
U1 

0 - 0 . .  . 1 
U2 

. . . . .  . 
1 0 o . . . -  
4 

where U, corresponds to the noise characteristics of 
the ih sensor. The cost associated with each 
parameter estimate can be described as 

1 r = -y@- 
n 

where the variances are selected according to sensor 
specifications, n is the length of the error vector and 
R = QTQ or the identity matrix I depending on the 
experiment. Using R = QTQ accomplishes two 
things. First, it allows the cost to be a dimensionless 
quantity. Second, it scales &ch measurement by the 
amount of confidence in its accuracy. If the 
measurement is noisy, its contribution to the cost 
function is reduced since the prediction errors could 
be due primarily to measurement noise. If an 
observation is relatively noise-free, its contribution to 
the cost function will be large since the error is due 
primarily to estimation errors, assuming the model 
structure is correct. For these trials, it is assumed 
that the variances are constant but not necessarily 
equal. If the variances are equal, then the cost 
function is simply scaled by this magnitude. Using 
R = I and scaling the cost function will yield the 
same results. 

IV. Simulated System 

A simple second-order system based on 
spring-mass-damper dynamics was used for computer 
experiments. Parameters were chosen so that the 
system was critically damped. The continuous state 
equations can be written as 

r i  

The equivalent discretized state-space formulation, 
assuming a zero-order-hold and a sample rate of 
T=0.05 sec, is given by 

r 1 r 1 
0.9988 0.0476J + p.0012J u(k) 

x(k)  0.0476 -0.0476 0.9037 
x ( k + l )  = 

r i  

The forcing function is ensured to be persistently 
exciting by defining u(k) as an r.v. with a uniform 
distribution. The system was propagated forward 
100-200 time steps for each simulation from an initial 
state randomly chosen from a U[- l , l ]  distribution. 

V. Results 

Simulations were conducted using both 
mutation strategies. In general, the second mutation 
strategy outperformed the first. The reason for this 
is still under investigation. The state variables had to 
be constrained to prevent numeric overflow. This is 
not unreasonable given that the time integration of an 
unstable system is not bounded. However, it does 
have implications in system identification of unstable 

The first experiment for the second mutation 
strategy used numerically equal measurement noise 
terms with N(0,0.05) statistics and a=0.01. The 
resulting parameters are given in Table I under 
experiment 1. The average percentage error for all 

plants. 
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parameters is approximately 8 % . 
The magnitude of the forcing function was 

increased tenfold in an attempt to obtain better system 
identification. The parameters resulting from this 
experiment are given in Table I in the experiment 2 
columi. As expected, these parameters are have a 
lower overall average error than those obtained in 
experiment 1. For t h s  case, the average overall 
parameter error is roughly 3.14%. 

Figure 2 shows the mean and best population 
scores using the second mutation strategy. The cost 
function is simply the mean sum squared error (MSE) 
of both observations. At roughly 300 iterations the 
identification process converged. This run had a 
signal-to-noise ratio of approximately 20 and 
equivalent noise statistics on each measurement. 
Figure 3 illustrates the convergence of the first 
parameter in the highest ranked F matrix. The 
other parameters converge in a similar fashion. 

An experiment was conducted to compare 
the effect of the two cost functions using the second 
mutation strategy. The standard deviation of the 
position measurement noise was 0.01 and the 
standard deviation of the velocity measurement noise 
was 0.05. In both cases CY was set at 0.05. The best 
values of the parameters are shown in Table I. The 
parameter values under the experiment 3 heading are 
for the cost function that included the variance term 
(R = 0%). The parameter values given under the 
experiment 4 heading are for R equal to the identity 
matrix. The experiment that incorporated a cost 
function without the variance term unexpectedly had 
better results than the experiment which incorporated 
a confidence weighting term. The reasons for this 
result are still being investigated. 

VI. Conclusions 

EP is a powerful search technique that can 
be applied to system identification. This research has 
demonstrated that EP can be extended to identify 
linear SIMO systems of known order. The extension 
to identification of MIMO systems is obvious. It is 
also clear that the scaling of the cost function must be 
chosen carefully to account for disparate sensor data 
and measurement noise. The results given in this 
work have yet to be statistically verified and therefore 
should not be generalized. Investigations on the 
algorithmx properties of EP are being continued for 
validation in further experiments. 

The formulation described here is a general 
one for the identification of state-space models, but 

there are still additional considerations to be 
addressed. First, the model ignored process noise, 
the terms that account for differences from the actual 
dynamic equations. Second, this work assumed that 
the order of the system is known. To identify the 
order of the model as well as the parameters, a multi- 
dimensional equivalent of Akaike's information 
criterion (AIC) or minimum defining length (MDL) 
principle similar to that used by Fogel [6] for neural 
networks must be developed. 

The application of EP for adaptive control is 
readily apparent. Issues to be addressed in using EP 
for adaptive control pertain to the bandwidth of the 
process being controlled. That is, of course, 
assuming a traditional adaptive control architecture. 
EP could be implemented in an arrangement such that 
system identification would not have to be explicit. 
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meon 
best 

- - _ _ _  

3d Experiment 

value %error 

1.0193 2.05 

0.1015 113.2 

-0.0745 56.51 

0.8315 7.99 

-0.0152 1367 

0.0480 0.84 

Figure 2. The mean and minimum (best) 
population costs. 

4& Experiment 

value %error 

0.9973 0.15 

0.0422 11.3 

-0.504 5.88 

0.9062 0.28 

0.0009 25.0 

0.0440 7.56 

PARAMETER f l  1 
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-0.5 
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-0.9 

0 100 200 300 400 500 600 700 800 900 1000 
ITERATIONS 

Figure 3. Evolution of parameter fi,. 

Final Best V 

2"d Experiment 

f,2 0.0476 0.0527 10.7 0.0480 0.84 

fil -0.0476 -0.0449 5.67 -0.0481 1.05 

fn 0.9037 0.90163 0.23 0.9033 0.04 

g, 0.0012 O.OOO9 25.0 0.0010 16.7 

g, 0.0476 0.0507 6.51 0.0477 0.21 

Table I .  Comparison of final value results of experiments and actual parameters. 
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