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Abstract—We consider a multi-pair relay channel where multi-
ple sources simultaneously communicate with destinations using
a relay. Each source or destination has only a single antenna,
while the relay is equipped with a very large antenna array. We
investigate the power efficiency of this system when maximum
ratio combining/maximal ratio transmission (MRC/MRT) or
zero-forcing (ZF) processing is used at the relay. Using a very
large array, the transmit power of each source or relay (or
both) can be made inversely proportional to the number of
relay antennas while maintaining a given quality-of-service. At
the same time, the achievable sum rate can be increased by a
factor of the number of source-destination pairs. We show that
when the number of antennas grows to infinity, the asymptotic
achievable rates of MRC/MRT and ZF are the same if we scale
the power at the sources. Depending on the large scale fading
effect, MRC/MRT can outperform ZF or vice versa if we scale
the power at the relay.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) technology has now

become an integral feature of many advanced communica-

tion systems. A cellular architecture with MIMO that has

gained significant research interest is multi-user MIMO (MU-

MIMO) in which an antenna array simultaneously serves a

multiplicity of autonomous co-channel users/nodes [1]. While

the current systems have limited number of antennas (e.g.

the LTE standard allows for up to 8 antenna ports), MU

systems having a large number of antennas at the base station

(very large MIMO) have been advocated recently in [2]–

[4]. Very large MU-MIMO systems can substantially reduce

the interference with simple signal processing techniques and

achieve increased reliability and throughput, and significant

reduction in total transmitted power [5].

On the other hand, relaying has been extensively explored

to provide expanded coverage and high throughput, especially

at the cell edge [6]. However, inter-user interference can

cause major performance degradation in MU relay systems

[7]. As a result, a large body of performance analysis work

on MU relay systems, e.g., [8]–[10] has mainly avoided in-

terference slots by adopting spectrally inefficient policies such

as orthogonalization of time/frequency. Another line of work

on MU relay systems has considered deploying complicated

precoder/decoder designs; e.g., in [11] and advanced joint

This research is partly supported by the Singapore University Technology
and Design (Grant No. SUTD-ZJU/RES/02/2011). The work of H. Q. Ngo
and E. G. Larsson was supported in part by the Swedish Research Council
(VR), the Swedish Foundation for Strategic Research (SSF), and ELLIIT.

network coding and signal alignment techniques for the multi-

pair two-way relay channel [12].

In this paper, we analyze the performance of a multi-

pair relaying scenario where a group of K sources and K
destinations communicate using a single relay equipped with

N antennas, where N ≫ K . To the best of our knowledge,

there is no prior work that analyzes the effects of large antenna

arrays on the performance of the considered relay system.

In the first time slot, all K sources simultaneously transmit

their signals to the relay. In the second time slot, a linearly

transformed version of the received signal at the relay is

forwarded to the K destinations. For this multi-pair relay

channel, we study the achievable rate vs. power efficiency

performance with (1) maximum ratio combining/maximal ratio

transmission (MRC/MRT) and (2) zero-forcing (ZF) at the

relay.

We show that when N is large, we can cut the transmit

power at each source or/and the relay proportionally to 1/N
with no performance degradation. The asymptotic achievable

rates of MRC/MRT and ZF for N → ∞ are derived for cases

when the transmit power of each source or/and the relay is

made inversely proportional to N . The results show that when

the transmit power of each source scales as 1/N while keeping

a fixed transmit power at the relay, the fast fading, interference

from other sources, and noise at the destination disappear

and hence, the system performance does not depend on the

quality of the channel in the second hop. In contrast, for the

case when the transmit power of each source is fixed and the

transmit power of the relay is scaled down as 1/N , the system

performance does not depend on the channel quality of the first

hop. We further show that when the transmit power at the relay

is cut proportionally to 1/N , with very large N , depending on

the large-scale fading effect, MRC/MRT performs better than

ZF or vice versa.

Notation: †, || · || and Tr (·) denote the conjugate transpose

operation, Euclidean norm and the trace of a matrix respec-

tively. E{x} stands for the expectation of a random variable x,

and IIIM is the identity matrix of size M .
a.s.→ and

d→ denote the

almost sure convergence and the convergence in distribution,

respectively.

II. SYSTEM MODEL

Consider a scenario with a group of K sources, Sk, K
destinations, Dk, for k = 1, . . . ,K , and a single relay, R.
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Fig. 1. System model. The channel strengths of the source-relay, (Sk −R)
and relay-destination, (R − Dk) links for k = 1, . . . ,K are η1k and η2k ,
respectively.

Each source/destination is equipped with a single antenna

while R is equipped with N antennas as shown in Fig. 1.

The source Sk wants to communicate with the destination Dk.

Communication in this network occurs via R since there are

no direct links among Sk and Dk, for any k due to heavy

shadowing and path loss phenomenon.

During the first phase all sources simultaneously transmit

their symbols to R, and the received N × 1 signal vector can

be written as

yyyR =
√
PtGGG1xxx+nnnR, (1)

where
√
Ptxxx =

√
Pt[x1, x2, . . . , xK ]T are transmitted symbols

with E{xxxxxx†} = IIIK (the average transmitted power of each

source is Pt) and nnnR is an N×1 additive white Gaussian noise

(AWGN) vector at the relay node with E{nnnRnnn
†
R} = σ2

nIIIN .

The N ×K channel matrix between the K sources and R is

expressed as GGG1 = HHH1DDD
1/2
1 where HHH1 contains independent

and identically distributed (i.i.d.) CN (0, 1) entries and DDD1 is

a K×K diagonal matrix, where [DDD1]kk = η1k. Moreover, we

model the N ×K channel matrix between the K destinations

and R as GGG2 = HHH2DDD
1/2
2 where HHH2 contains i.i.d. CN (0, 1)

entries and DDD2 is a K ×K diagonal matrix, where [DDD2]kk =
η2k. Note that HHH1 and HHH2 represent independent fast fading,

while DDD1 and DDD2 represent path-loss attenuation, and log-

normal shadow fading. The assumption of independent fast

fading is sufficiently realistic for systems where the antennas

are spaced sufficiently far apart [5].

During the second phase, R re-transmits a transformation

of the received signal given by ỹyyR =WWWyyyR. The signal at Dk

can be expressed as

yDk
=

√
Ptggg

†
2k
WWWggg1kxk +

√
Pt

K∑

i=1,i�=k

ggg†2kWWWggg1ixi

+ ggg†2kWWWnnnR + nDk
, (2)

where ggg1i is the i-th column of GGG1, ggg2k is the k-th column

of GGG2, WWW is the N × N transformation matrix normal-

ized to satisfy a total power constraint, Pr, at the relay as

Tr

(
E

{
ỹyyRỹyy

†
R

})
= Pr, and nDk

is the AWGN at Dk with

E{nDk
n†
Dk

} = σ2
n.

As a result, the instantaneous end-to-end (e2e) signal-to-

interference-noise ratio (SINR) at Dk can be written as

γk =
Pt|ggg†2kWWWggg1k |2

Pt

K∑
i=1,i�=k

|ggg†2kWWWggg1i |2 + ‖ggg†2kWWW‖2σ2
n + σ2

n

. (3)

A. MRC/MRT at the Relay

When CSI is available at R, it is natural to apply a

transformation based on the MRC/MRT principle1. In the first

phase, the relay uses MRC to combine the signals transmitted

from K sources and then in the second phase, it uses MRT

precoding to forward data to K destinations. Hence the relay

transformation matrix is given by WWW = amrcGGG2GGG
†
1. In this

case, to meet the power constraint at the relay, we have

amrc =

√√√√√
Pr

Tr

(
Pt

(
GGG†

1GGG1

)2

GGG†
2GGG2 + σ2

nGGG
†
1GGG1GGG

†
2GGG2

) . (4)

From (2), the received signal at Dk for MRC/MRT at the

relay is given by

yDk
=amrc

√
Ptggg

†
2k
GGG2GGG

†
1ggg1kxk+amrc

√
Pt

K∑

i=1,i�=k

ggg†2kGGG2GGG
†
1ggg1ixi

+ amrcggg
†
2k
GGG2GGG

†
1nnnR + nDk

. (5)

Hence, the e2e SINR can be expressed as

γmrc

k =

Pt

|ggg†
2k

GGG2GGG
†
1
ggg
1k

|2

‖ggg†
2k

GGG2GGG
†
1
‖2

Pt

K∑
i=1,i�=k

|ggg†
2k

GGG2GGG
†
1
ggg
1i
|2

‖ggg†
2k

GGG2GGG
†
1
‖2

+ σ2
n +

σ2
n

a2
mrc

‖ggg†
2k

GGG2GGG
†
1
‖2

. (6)

B. ZF at the Relay

We now consider the use of ZF receivers and precoders at

the relay. With ZF processing, the transformation matrix can be

expressed as WWW = azfGGG2

(
GGG†

2GGG2

)−1 (
GGG†

1GGG1

)−1

GGG†
1, where

azf is chosen to satisfy the power constraint at the relay2, i.e.,

azf =

√√√√√
Pr

Tr

(
Pt

(
GGG†

2GGG2

)−1

+ σ2
n

(
GGG†

2GGG2

)−1 (
GGG†

1GGG1

)−1
) .

(7)

1Note that the choice of WWW based on the MRC/MRT principle is not
optimal for maximizing the SINR. However, finding the optimal WWW in an
analytical form seems impossible due to the non-convex nature of the problem.
Furthermore, with very large antennas arrays, the channel vectors are nearly
orthogonal, and hence MRC/MRT is nearly optimal [2].

2Reference [13, Sec. IV] also considers ZF at the relay and employs a fixed

gain for long term power normalization. In contrast, we consider a variable
gain in (7). Since for receive filtering/transmit ZF precoding at the relay,
instantaneous channel information must be used and a fixed gain can result
in high peak-to-average power ratio signals, the gain in (7) is a good practical
choice when implementing ZF at the relay.



For this case, we have

ggg†2kWWWggg1i = azfδki, (8)

where δki = 1 when k = i and 0 otherwise. Therefore, from

(2), we can write the received signal at Dk as

yDk
= azf

√
Ptxk + azf

[(
GGG†

1GGG1

)−1

GGG†
1

]

k

nnnR + nDk
, (9)

where [AAA]k is the k-th row of the matrix AAA.

Now we can express the e2e signal-to-noise ratio (SNR) as

γzf

k =
a2
zf
Pt

a2
zf

[(
GGG†

1GGG1

)−1
]

kk

σ2
n + σ2

n

. (10)

C. Orthogonal Scheme

For comparison with MRC/MRT and ZF, we also consider

a “naive scheme” that employs orthogonal channel access.

Specifically, to completely avoid the inter-user interference,

each Sk−Dk pair for k = 1, . . . ,K uses 1
2K channel resources

for communication. At the relay, MRC/MRT is employed as it

maximizes the e2e SNR3. Therefore, the e2e SNR at Dk can

be expressed as

γns

k =

Pt‖ggg†
1k

‖2

σ2
n

Pr‖ggg2k
‖2

σ2
n

Pt‖ggg†
1k

‖2

σ2
n

+
Pr‖ggg†

2k
‖2

σ2
n

+ 1

. (11)

III. LARGE N ANALYSIS

In this section, we further simplify the e2e SINR expressions

(6) and (10) in the very large N regime. These new expressions

illuminate several aspects of the achievable rate vs. power

efficiency performance in the considered network. Here we

assume that N ≫ K . We further assume that when N
is large, the elements of the channel matrices GGG1 and GGG2

are still independent. Note that even with very large N , the

physical size of the antenna array can be small. For example,

at 2.6 GHz, a cylindrical array with 128 antennas and λ/2
antenna spacing occupies only a physical size of 28 cm × 29
cm and even with this array, the antennas experience nearly

independent fading [3], [14].

The achievable ergodic sum rate of the system is given by 4

C⋆
sum = E

{
K∑

k=1

1

2αf

log2 (1 + γ⋆
k)

}
, (12)

where ⋆ = {mrc, zf, ns} refers to MRC/MRT, ZF and naive

schemes and the pre-log factor 1
2 is due to the half-duplex

relaying. For MRC/MRT and ZF: αf = 1 and for the naive

scheme αf = K .

3In the remainder of the paper, “MRC/MRT” is used to refer to the scheme
(cf. Section II-A) where K > 1 destinations are simultaneously served.

4The exact analysis of Cmrc
sum and Czf

sum for arbitrary N is not a mathe-
matically tractable problem since the required probability density functions
(p.d.f.s) of γmrc

k
and γzf

k
do not readily permit mathematical manipulation. A

closed-form expression Cns
sum can be derived, but not reported since our main

focus in this paper is to analyze the impact of the very large array, where
N ≫ K .

In the following analysis, we will consider three cases:

namely, Case I) Fixed NPt, N → ∞; Case II) Fixed

NPr, N → ∞; Case III) Fixed NPt, Fixed NPr, N → ∞.

A. MRC/MRT at the Relay

Case I): If Pt = Et

N where Et is fixed, then from (5) we

have

yDk√
N

=
amrc

√
Etggg

†
2k
GGG2GGG

†
1ggg1kxk

N
+

K∑

i=1,i�=k

amrc

√
Etggg

†
2k
GGG2GGG

†
1ggg1ixi

N

+
amrcggg

†
2k
GGG2GGG

†
1nnnR√

N
+

nDk√
N

. (13)

In the very large N regime, we apply the law of large numbers

given by [15]

ggg†2kggg2i
N

a.s.→
N→∞

{
0 i �= k
1 i = k

(14)

and note that

Namrc =

√√√√√
Pr

Tr

(
Et

N3

(
GGG†

1GGG1

)2

GGG†
2GGG2 + σ2

n
1
N2GGG

†
1GGG1GGG

†
2GGG2

)

a.s.→
N→∞

√
Pr

Tr
(
EtDDD

2
1DDD2 + σ2

nDDD1DDD2

) . (15)

Now re-expressing the first term in (13) as

amrc

√
Et

ggg†2kGGG2GGG
†
1ggg1k

N
= Namrc

√
Et

K∑

i=1

ggg†2kggg2kggg
†
1k
ggg1k

N2
.

Therefore, when N tends to infinity, we have

amrc

√
Et

ggg†2kGGG2GGG
†
1ggg1k

N

a.s.→
√

PrEt

Tr
(
EtDDD

2
1DDD2+σ2

nDDD1DDD2

)η1kη2k.

(16)

Similarly, for i �= k, re-expressing the second term in (13) as

amrc

√
Et

ggg†2kGGG2GGG
†
1ggg1i

N
= Namrc

√
Et

K∑

j=1

ggg†2kggg2jggg
†
1j
ggg1i

N2
,

we obtain

a
√
Et

ggg†2kGGG2GGG
†
1ggg1i

N2
→ 0. (17)

Note that the third term in (13) can be written as

amrc

ggg†2kGGG2GGG
†
1nnnR√

N
= Namrc

K∑

i=1

ggg†2kggg2iggg
†
1i
nnnR

N
√
N

.

We apply the law of large numbers and the Lindeberg-Lévy

central limit theorem and obtain5

amrc

ggg†2kGGG2GGG
†
1ggg1i√

N

d→
√

Pr

Tr
(
EtDDD

2
1DDD2 + σ2

nDDD1DDD2

)η2kñR,

(18)

5Lindeberg-Lévy central limit theorem: Let ppp and qqq be n×1 vectors whose
elements are i.i.d. random variables with zero mean and variances of σ2p and

σ2
q , respectively. Then 1

√

n
pppHqqq

d
→CN

(

0, σ2
pσ

2
q

)

, as n → ∞.



where ñR ∼ CN
(
0, η1kσ

2
n

)
. Substituting (16), (17) and (18)

into (13) and since 1√
N
nDk

→ 0 we have

yDk√
N

→
√

PrEt

Tr
(
EtDDD

2
1DDD2 + σ2

nDDD1DDD2

)η1kη2kxk

+

√
Pr

Tr
(
EtDDD

2
1DDD2 + σ2

nDDD1DDD2

)η2kñR. (19)

Now from (19) we obtain

γmrc

k → Etη1k
σ2
n

, as N → ∞. (20)

For K = 1, it is clear that we can reduce the transmit power

by a factor of 1/N with no reduction in performance due to

the array gain. But here we consider multiple sources, and

the above result implies that by using a large number of relay

antennas, we can still obtain the same array gain as in the case

of single source. Interestingly, from (20) we can see that when

N grows large and NPt is fixed, the e2e SNR does not depend

on the transmit power at the relay and the large-scale fading

of the second hop. This is due to the fact that, with MRT

precoding at the relay in the second phase and P r is fixed,

as N goes to infinity, the effect of inter-user interference and

noise at Dk disappears. Finally, the sum rate follows directly

by substituting (20) into (12).

Case II): If Pr =
Er

N where Er is fixed, we observe that

N2amrc

a.s.→
N→∞

√
Er

Tr
(
PtDDD

2
1DDD2

) . (21)

Therefore when N grows without bound, the first term in (5)

tends to

amrc

√
Ptggg

†
2k
GGG2GGG

†
1ggg1k

a.s.→
√

Er

Tr
(
DDD2

1DDD2

)η1kη2k. (22)

Similarly, when N goes to infinity, the second and third terms

in (5) converge almost sure to 0. Therefore,

yDk

a.s.→
√

Er

Tr
(
DDD2

1DDD2

)η1kη2kxk + nDk
, as N → ∞. (23)

From (23), as N → ∞, we have

γmrc

k → Erη
2
1kη

2
2k

Tr
(
DDD2

1DDD2

)
σ2
n

. (24)

The above result shows that the transmit power at relay

can be made inversely proportional to the number of relay

antennas without compromising the quality-of-service. Note

that in the special case where η1k = η1 and η2k = η2 for

k = 1, . . . ,K , we have γmrc

k → 1
K

Erη2

σ2
n

which does not depend

on the transmit power of each source and the channel quality

of the first hop.

Case III): If Pt =
Et

N and Pr =
Er

N where Et and Er are

fixed, using a similar approach as above we can show that

yDk

d→
n→∞

√
EtEr

Tr
(
EtDDD

2
1DDD2 + σ2

nDDD1DDD2

)η1kη2kxk

+

√
Er

Tr
(
EtDDD

2
1DDD2 + σ2

nDDD1DDD2

)η2kñR + nDk
. (25)

Therefore,

γmrc

k →
Etη1k

σ2
n

1 +
Tr(EtDDD2

1
DDD2+σ2

nDDD1DDD2)
Erη1kη2

2k

, as N → ∞. (26)

Interestingly, by using large antenna arrays, we can scale

down both transmit powers of source and relay nodes by a

factor of 1/N with no reduction in performance. Furthermore,

we can see that when Et → ∞, the above SINR coincides

with the result for the case Pr is fixed, and when Er → ∞,

the above SINR coincides with the result for the case Pt is

fixed.

In the special case where η1k = η1 and η2k = η2 for k =

1, . . . ,K; we have γmrc

k →
Etη1

σ2
n

1+ K
Erη2
σ2
n

(

1+
Etη1

σ2
n

) .

B. ZF at the Relay

By following a similar derivation as in the case of

MRC/MRT, we can obtain the same power scaling law as

follows.

Case I): In the very large N regime we first note that

azf
N

a.s.→
√√√√

Pr

Tr

(
EtDDD

−1
2 + σ2

n (DDD1DDD2)
−1

) . (27)

Then from (9) we have

yDk√
N

d→
N→∞

√√√√
Pr

Tr

(
EtDDD

−1
2 + σ2

n (DDD1DDD2)
−1

)xk

+

√√√√
Pr

Tr

(
EtDDD

−1
2 + σ2

n (DDD1DDD2)
−1

)
η21k

ñR +
nDk√
N

, (28)

where ñR ∼ CN
(
0, η1kσ

2
n

)
. Hence, when N grows without

bound, we obtain

γzf

k

a.s.→ Etη1k
σ2
n

. (29)

Case II): In this case for very large N , azf tends to

azf
a.s.→

√
Er

Tr
(
PtDDD

−1
2

) . (30)

Therefore, we can write (9) as

yDk
→

√
Er

Tr
(
PtDDD

−1
2

)
√
Ptxk + nDk

, as N → ∞. (31)



which leads to

γzf

k → Er

Tr
(
DDD−1

2

)
σ2
n

, as N → ∞. (32)

In the special case when η2k = η2 for k = 1, . . . ,K , we

have γk → 1
K

Erη2

σ2
n

.

Case III): If Pt =
Et

N and Pr =
Er

N where Et and Er are

fixed, when N tends to infinity, we obtain

azf√
N

a.s.→
√√√√

Er

Tr

(
EtDDD

−1
2 + σ2

n (DDD1DDD2)
−1

) . (33)

Therefore,

yDk

d→
√√√√

EtEr

Tr

(
EtDDD

−1
2 + σ2

n (DDD1DDD2)
−1

)xk (34)

+

√√√√
Er

Tr

(
EtDDD

−1
2 + σ2

n (DDD1DDD2)
−1

)
η21k

ñR + nDk
,

where ñR ∼ CN
(
0, η1kσ

2
n

)
. Hence, when N goes to infinity,

we obtain

γzf

k →
Etη1k

σ2
n

1 +
Tr(EtDDD

−1

2
+σ2

n(DDD1DDD2)
−1)η1k

Er

. (35)

In the special case where η1k = η1 and η2k = η2 for k =

1, . . . ,K , we have γzf

k →
Etη1

σ2
n

1+ K
Erη2
σ2
n

(

1+
Etη1

σ2
n

) .

Remark 1: In Case I) the asymptotic rate (N → ∞) of Dk

with MRC/MRT and ZF processing is same and given by

Cmrc

k = Czf

k = 1
2 log2

(
1 + Etη1k

σ2
n

)
.

Remark 2: In Case II) the asymptotic rates at Dk with

MRC/MRT and ZF, Cmrc

k ⋚ Czf

k , is determined by

1

η21kη
2
2k

K∑

i�=k

η21iη2i �
K∑

i�=k

1

η2i
. (36)

Remark 3: In Case III) the asymptotic rates at the kth des-

tination with MRC/MRT and ZF, Cmrc

k ⋚ Czf

k , is determined

by

1

η21kη
2
2k

K∑

i�=k

η1iη2i

(
1 +

Etη1i
σ2
n

)
�

K∑

i�=k

1

η1iη2i

(
1 +

Etη1i
σ2
n

)
.

(37)

C. Orthogonal Scheme

We now consider the asymptotic sum rate of the orthogonal

scheme. In Case I): It is easy to show that γ ns

k → Etη1k

σ2
n

and

Cns
sum

= 1
2K

∑K
i=1 log2

(
1 + Etη1k

σ2
n

)
. In Case II): γns

k → Erη2k

σ2
n

and Cns
sum = 1

2K

∑K
i=1 log2

(
1 + Erη2k

σ2
n

)
and in Case III): We

have γns

k →
Etη1k
σ2
n

Erη2k
σ2
n

Etη1k
σ2
n

+
Erη2k

σ2
n

+1
and

Cns

sum
=

1

2K

K∑

i=1

log2

(
1 +

Etη1k

σ2
n

Erη2k

σ2
n

Etη1k

σ2
n

+ Erη2k

σ2
n

+ 1

)
. (38)
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Fig. 2. Case I): Sum rate vs. the number of relay antennas. Et = 10 dB,
Pr = 1 and K = 5 users are served. DDD1 = DDD2 = III5.
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Fig. 3. Case II): Sum rate vs. the number of relay antennas. Pt = 1, Er = 10

dB and K = 5 users are served. DDD1 =DDD2 = III5.

IV. NUMERICAL RESULTS

The sum rates achieved by the multi-pair relay system are

evaluated through simulations and compared with our asymp-

totic analytical results. Without loss of generality, σ2
n = 1 is

assumed.

Fig. 2 shows the simulated sum rate vs. the number of relay

antennas and the presented analytical asymptotic results for

Case I). Clearly, as the number of antennas increases, the sum

rates of MRC/MRC, ZF and the naive schemes approaches

the corresponding constant values predicted by our analysis.

Interestingly, the sum rate curve of ZF has a sharper knee than

the MRC/MRT counterpart on the way to the same asymptotic

constant and the achieved sum rate is 8.65 bits/s/Hz. Though it

is not explicitly seen in Fig. 2, for small number of antennas

(N ≤ 6), the naive scheme exhibits a better sum rate than

MRC/MRT as expected. However, as N increases, the sum
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Fig. 4. Case III): Sum rate vs. the number of relay antennas. Pt = 10 dB,
Er = 10 dB and K = 5 users are served. DDD1 =DDD2 = III5.

rate offered by the naive scheme rapidly saturates while

the sum rates of the MRC/MRT and ZF schemes show a

rapid improvement. This is because with a limited number of

antennas, interference cannot be significantly reduced and thus

lowers the sum rate of MRC/MRT. But when N grows large,

the random channel vectors between sources/destinations and

relay become pairwise orthogonal and hence, the interference

is canceled out. At the same time, we gain from simultaneously

serving K source-destination pairs in the same time-frequency

resource.

Figs. 3 and 4 show results for the second and third power

scaling laws; Case II) and Case III). Both MRC/MRT and

ZF achieves the same sum rate of 4.73 and 3.36 bits/s/Hz in

Case II) and Case III), respectively. Moreover, similar trends

in results as in Fig. 2 can be observed.

The rates achieved by individual destinations are illustrated

in Fig. 5 for slow-fading coefficients; η11 = 2, η12 = 2, η13 =
2 and η21 = 1, η22 = 3, η23 = 3 and Case II). Results in Fig.

5 confirm that the sum rate of MRC/MRT can be higher than

the sum rate of ZF depending on the slow fading parameters.

Cmrc
sum = 8.98 and Czf

sum = 8.90. Recall that Cmrc
sum < Czf

sum in

the example of Fig. 3. Interestingly, when N ≤ 350, all three

users in the ZF system achieve a higher rate than the users in

the MRC system. However, when N is very large, two users

of the MRC achieve a higher rate than the ZF users.

V. CONCLUSION

We have shown that relay systems can benefit significantly

from the use of very large antenna arrays. The offered sum

rates of a multi-pair relay system was investigated for three

different power scaling laws. At the relay, MRC/MRT and ZF

processing was considered. We derived asymptotic sum rate re-

sults and confirmed their accuracy using computer simulations.

Several insights were extracted using the analysis to illuminate

the comparative performances between MRC/MRT and ZF.

For example, the asymptotic achievable rates of MRC/MRT

and ZF are the same if we scale the power at the sources.
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served.
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