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Abstract 

The purpose of this work was to construct a 3D multi-
parametric model of the heart by automatically 
segmenting cardiac cavities, left myocardium, scar and 
epicardial fat from multidetector computed tomographic 
(MDCT) volumes, using a level set algorithm based on a 
new multi-scale stopping function. This method was 
applied to 4 patients with recurrent ventricular 
tachycardia (VT) undergoing contrast enhanced (CE)-
MDCT imaging, composed by an angiographic (ANGIO) 
and a late enhanced (LE) scan, before electro-anatomic 
mapping (EAM) and radiofrequency ablation (RFa). The 
segmented structures were integrated into the clinical 
surgery software system (CARTO). The adequacy of our 
model was verified by an expert radiologist and an 
arrhythmologist using a qualitative score. 

1. Introduction

In ventricular tachycardia (VT) ablation procedures, 
the exact location and extent of myocardial scar is 
important to decide whether the procedure will be 
epicardial or endocardial, as well as to reduce 
intervention time [1]. Today, contrast enhanced magnetic 
resonance imaging (CE-MRI) is considered the standard 
for the assessment of scar tissue. However, contrast 
enhanced multidetector computed tomographic (CE-
MDCT) imaging could be an interesting alternative, since 
it is less prone to artefacts introduced by the metallic 
cardioverter usually implanted in these patients [2]. The 
tissue characterization capabilities of both imaging 
modalities are similar: in the same way as MRI, MDCT 
shows myocardium scar as delayed hyperenhanced zones 
(regions of increased signal intensity compared with 
normal myocardium zones), i.e. reduced outflow rates 

with respect to normal myocardium [3]. Moreover, in an 
acquisition, during one apnea, MDCT presents a higher 
spatial resolution compared to MRI, that is important in 
applications such as ablation surgeries which need a good 
3D reconstruction of the heart structures.  

In the identification of scar during substrate mapping, 
the presence and thickness of epicardial fat has also been 
shown to be of key importance, because it presents 
voltage characteristics similar to scar tissue and is often 
confused with scar [1]. Despite MDCT can reliably 
visualize epicardial fat distribution, it is nowadays 
neglected in the ablation procedures because fat needs a 
very time consuming manual segmentation of MDCT 
images. 

In this work, we construct a multi-parametric model of 
the heart, containing anatomical information useful for 
guidance during VT ablation procedures. This model is 
obtained segmenting automatically left ventricle, right 
ventricle, myocardium, scar and epicardial fat.  

2. Methods

In the following we present the pre-procedural MDCT 
acquisition and processing steps used to construct the 
multi-parametric heart model. 

2.1.  Study protocol 

4 patients with recurrent VT underwent 64-slice-
MDCT before electro-anatomic mapping (EAM) and 
radiofrequency ablation (RFa), including angiographic 
(ANGIO) and low-energy (80 kV) late enhanced (LE) 
scan, 10 minutes after high-concentration iodine 
injection. 3 out of 4 patients have an implantable 
cardioverter defibrillator (ICD). The voxel size of both 
scans is 0.4 x 0.4 x 0.4 mm. 

EAM/RFa approach (endocardial or epicardial) was 
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chosen based on the prevalent distribution of scars at LE-
MDCT. 

 
2.2.  ANGIO/LE scans registration 

Although ANGIO and LE scans were acquired with a 
few minutes distance, misalignment of the patient 
between both scans often occurred as seen in Fig.1, which 
required registration. 

 

 
Figure 1. a) ANGIO scan, b) LE scan, c) subtraction of 

both scans and d) subtraction after affine registration. 
 
To define the transformation T that align two different 

volumes we used an affine transformation with 12 
degrees of freedom: 
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where the first matrix on the right side denotes the 

directional translations and the second vector contains the 
rotation, scaling and shearing information. The similarity 
metric used was the normalized mutual information [4], 
combination of the marginal and joint entropies of the 
images. The transformation model was estimated with the 
Powell's optimization method [5]. 

 
2.3.  Segmentation 

Both scans were firstly cropped to enclose only the 
heart volume. 

 
2.3.1. Method 

The segmentation model is a boundary-based geodesic 
active contour [6], where the embedded surface in the 
level set function  can be formulated by the following 
partial differential equation: 

      gaIbgKIcgt  

where the speed function includes a dependence on the 
curvature c, the propagation term b, and the advection 
term a. The edge stopping function g is based on a multi-
scale approach, with the form: 
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where h and β change after convergence. h1 and h2 are 

the maximum responses of the two bi-dimensional bar 
filters, and the values of β1 and β2 are constants. The 
method is described in more detail in [7]. 

 
2.3.2. Anatomy extraction 

On the angiographic scan, we re-sampled the volume 
into the short axis view and, to reduce signal to noise 
ratio maintaining boundary information, we applied an 
anisotropic diffusion smoothing [8].  

After anisotropic filtering, we extracted two slices at 
25% and 50% of the cropped heart volume, and used a 
Fuzzy C Mean algorithm to segment each of the two 
slices in 5 labels. On the label correspondent to the LV 
we identified the centroid on both slices and used these 
points as seeds for a 3D region growing algorithm. We 
summed the segmentations resulting from the region 
growing process of each seed point and used them as our 
active contour initialization. After contour propagation 
we obtained the LV structure. To obtain the myocardium 
contour initialization, the previous extracted structure was 
dilated and the operation of convex hull applied. 

Finally, we joined myocardium and RV segmentation, 
computed the correspondent convex hull operation and 
used it as initialization for the active contour propagation 
to obtain the segmentation of the epicardial fat. The 
cardiac structures segmentation are shown in Fig.2 for 
two exemplificative cases. 

 

Figure 2. ANGIO scan overlaid with segmentations of 
anatomical structures in two different patients (the first 
has an ICD) and three different heart levels (basal, medial 
and apical). Artifacts of the ICD are visible on the first 
row. 

 
2.3.3. Scar extraction 

We aligned LE with respect to the ANGIO scan as 
described in Sec. 2.2, cropping the two datasets to 
exclude most ICD artefacts. After registration, and 

a)                     b)                              c)                           d) 
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because CE-MDCT had a very low signal to noise ratio, 
this scan was filtered using a Gaussian kernel. Using the 
MDCT LV segmentation as mask on the CE-MDCT scan, 
we calculated the mean vascular signal intensity as a 
segmentation threshold on this volume. Indeed, scar areas 
in the myocardium have an high signal intensity such as 
vascular structures. After thresholding, the volume is re-
sampled into the short axis view, with the same 
parameters as the angiographic scan, and the MDCT 
myocardium segmentation was used as mask to include 
only myocardium areas of high SI. In patients with a 
metallic cardioverter, segmented areas near the ICD were 
excluded, because artefacts due to the metallic device also 
present high signal intensity. Two examples of scar 
segmentation results are shown in Fig. 3. 

 

Figure 3. Example of a LE slice. On the left, arrows 
show scarred area and on the right LE overlaid with 
healthy (green) and scarred (red) myocardium from a 
patient. 

 
3. Results 

  Segmentations of all cardiac structures were 
superimposed to the angiographic scan and, for each 
patient, LV, RV, myocardium and fat segmentations were 
evaluated on each of the 10 equal distributed slices by an 
expert radiologist. In the same way, scar segmentations 
were overlaid on the correspondent contrast enhanced 
scan and evaluated by the radiologist. The qualitative 
evaluation consists in the following 5-points 
classification: 1-unsatisfactory, 2-poor 3-satisfactory, 4-
good, 5-excellent. The mean evaluation of all subjects is 
shown in Table 1. 

 
Table 1. Mean qualitative evaluation of the segmented 

structures of the 4 patients with respect to pre-procedural 
CE-MDCT imaging. 

 
Structure 

Mean 
qualitative 
evaluation 

LV 4 
RV 4 

myocardium 4 
fat 3 

scar 3 

An example of the 3D reconstruction of the multi-
parametric model of the heart is shown in Fig 4, where 
the reconstruction was done using surface rendering by 
implementing a marching cubes algorithm [9]. 

 

Figure 4. 3D reconstructions of the heart structures 
correspondent to two patients: yellow-RV, red-LV with 
coronaries, green- myocardium, white-scar and violet- fat. 
On the left, the patient has little fat layer, on the right side 
instead, there is a thick fat layer. 

4.  Discussion 

Due to the technological development of MDCT in the 
last years, manual segmentation of such images is 
becoming an even less efficient option in the clinical 
practice. Today, model-based segmentation methods are 
widely used to segment cardiac structures [10-14]. 
However, they present some limitations on the LV and 
myocardium. In the former, papillary muscles were 
considered as LV cavity and in the latter, the substantial 
variation of wall thickness in such pathological subjects 
reduces their good performance. Therefore, it is usually 
still necessary to manually segment (or/and correct) the 
cardiac structures to plan adequately the ablation 
procedure. Additionally, to the best of our knowledge, 
there is no automatically segmentation method for 
epicardial fat and scar for ANGIO and LE images 
respectively, as proposed in this research. 

In this work we demonstrated the feasibility of the 
automatic construction of an accurate heart model as an 
effective tool to assist the surgeon during ablation 
procedure. Main contributions of our work are the supply 
of a method that automatically segments all structures of 
interest and their integration in the clinical surgery 
software system to guide EAM and RFa procedures. The 
importance of our results are related to the reduction of 
the segmentation time and the optimization of 
intervention planning, being able, for example, to 
determine the fat layer thickness (crucial to plan a 
possible epicardial access). 

The slight low evaluation of our segmentation for 
epicardial fat is principally due to the invisible 
pericardium in several zones and several slices. In the 
case of scar, the accurate segmentation is very limited to 
the low CE-MDCT resolution and the goodness of 
registration. The qualitative evaluation in the case of the 
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cardiac cavities and myocardium, were mostly influenced 
on the limited accurate segmentation near the ICD due to 
image artefacts that it generates (Fig. 2a and 3). In 
particular, if some scar is near to the ICD it cannot be 
detected using pre-procedural imaging modalities. 
Therefore, and despite the good judgment of the 
arrithmologist regarding the 3D reconstruction of the 
automatic scar segmentation as being very helpful and in 
good agreement with EAM during RFa procedure, at 
present, pre-procedural scar imaging remains only a 
complementation to EAM. This is evident in patients with 
ICD (very common in VT) in our study, and as shown in 
recent literature, also for patients without ICD [2]. 
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