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1

Introduction

Optimal control of constrained linear and piecewise affine (PWA) systems has garnered great
interest in the research community due to the ease with which complex problems can be stated
and solved. The aim of the Multi-Parametric Toolbox (MPT ) is to provide efficient computational
means to obtain feedback controllers for these types of constrained optimal control problems
in a Matlab [27] programming environment. By multi-parametric programming, a linear or
quadratic optimization problem is solved off-line. The associated solution takes the form of a
PWA state feedback law. In particular, the state-space is partitioned into polyhedral sets and
for each of those sets the optimal control law is given as one affine function of the state. In
the on-line implementation of such controllers, computation of the controller action reduces to
a simple set-membership test, which is one of the reasons why this method has attracted so
much interest in the research community.

As shown in [8] for quadratic objectives, a feedback controller may be obtained for constrained
linear systems by applying multi-parametric programming techniques. The linear objective was
tackled in [4] by the same means. The multi-parametric algorithms for constrained finite time
optimal control (CFTOC) of linear systems contained in the MPT are based on [1] and are
similar to [28]. Both [1] and [28] give algorithms that are significantly more efficient than the
original procedure proposed in [8].

It is current practice to approximate the constrained infinite time optimal control (CITOC) by
receding horizon control (RHC) - a strategy where CFTOC problem is solved at each time step,
and then only the initial value of the optimal input sequence is applied to the plant. The main
problem of RHC is that it does not, in general, guarantee stability. In order to make reced-
ing horizon control stable, conditions (e.g., terminal set constraints) have to be added to the
original problem which may result in degraded performance [25, 24]. The extensions to make
RHC stable are part of the MPT . It is furthermore possible to impose a minimax optimization
objective which allows for the computation of robust controllers for linear systems subject to
polytopic and additive uncertainties [6, 19]. As an alternative to computing suboptimal stabi-
lizing controllers, the procedures to compute the infinite time optimal solution for constrained
linear systems [13] are also provided.

Optimal control of piecewise affine systems has also received great interest in the research
community since PWA systems represent a powerful tool for approximating non-linear sys-
tems and because of their equivalence to hybrid systems [17]. The algorithms for computing
the feedback controllers for constrained PWA systems were presented for quadratic and linear
objectives in [10] and [3] respectively, and are also included in this toolbox. Instead of comput-
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1 Introduction 2

ing the feedback controllers which minimize a finite time cost objective, it is also possible to
obtain the infinite time optimal solution for PWA systems [2].

Even though the multi-parametric approaches rely on off-line computation of a feedback law,
the computation can quickly become prohibitive for larger problems. This is not only due
to the high complexity of the multi-parametric programs involved, but mainly because of
the exponential number of transitions between regions which can occur when a controller
is computed in a dynamic programming fashion [10, 20]. The MPT therefore also includes
schemes to obtain controllers of low complexity for linear and PWA systems as presented in
[15, 14, 16].



2

Installation

2.1 Installation

Remove any previous copy of MPT from your disk before installing any new version!

The MPT toolbox consists of the following directories

mpt/ toolbox main directory
mpt/@mptctrl directory of the mptctrl object
mpt/@polytope directory of the polytope object
mpt/examples documentation
mpt/examples sample dynamical systems
mpt/extras auxiliary routines
mpt/solvers different solvers

In order to use MPT , set a Matlab path to the whole mpt/ directory and to all it’s subdirecto-
ries. If you are using Matlab for Windows, go to the ”File - Set Path...” menu, choose ”Add with
Subfolders...” and pick up the MPT directory. Click on the ”Save” button to store the updated
path setting. Under Unix, you can either manually edit the file ”startup.m”, or to use the same
procedure described above.

Once you install the toolbox, please consult Section 3 on how to set default values of certain
parameters.

To explore functionality of MPT , try one of the following:

help mpt
help mpt/polytope
help mpt_sysStruct
help mpt_probStruct
mpt_demo1
mpt_demo2
mpt_demo3
mpt_demo4
mpt_demo5

3
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mpt_demo6

runExample

MPT toolbox comes with a set of pre-defined examples which the user can go through to get
familiar with basic features of the toolbox.

If you wish to be informed about new releases of the toolbox, subscribe to our mailing list by
sending an email to:

mpt-request@list.ee.ethz.ch

and put the word

subscribe

to the subject field. To unsubscribe, send an email to the same mail address and spec-
ify

unsubscribe

on the subject field.

If you have any questions or comments, or you observe buggy behavior of the toolbox, please
send your reports to

mpt@control.ee.ethz.ch

2.2 Additional software requirements

LP and QP solvers

The MPT toolbox is a package primary designed to tackle multi-parametric programming
problems. It relies on external Linear programming (LP) and Quadratic programming (QP)
solvers. Since the LP and QP solvers shipped together with Matlab (linprog and quadprog) are
rather slow, the toolbox provides a unified interface to other solvers.

One of the supported LP solvers is the free CDD package from Komei Fukuda
(http://www.cs.mcgill.ca/ ∼fukuda/soft/cdd home/cdd.html )

The CDD is not only a fast and reliable LP solver, it can also solve many problems from
computational geometry, e.g. computing convex hulls, extreme points of polytopes, calculating
projections, etc.

A pre-compiled version of the Matlab interface to CDD is included in this release of
the MPT toolbox. The interface is available for Windows, Solaris and Linux. Source
code of the interface comes along with this distribution of MPT . For more details, visit
http://control.ee.ethz.ch/ ∼hybrid/cdd.php
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Please consult Section 2.3 on how to make CDD a default LP solver for the MPT toolbox.

The NAG Foundation Toolbox for Matlab provides a fast and reliable functionality to
tackle many different optimization problems. It’s LP and QP solvers are fully supported by
MPT .

An another alternative is the commercial CPLEX solver from ILOG. The authors provide an
interface to call CPLEX directly from Matlab, you can download source codes and pre-compiled
libraries for Windows, Solaris and Linux from
http://control.ee.ethz.ch/ ∼hybrid/cplexint.php

Please note that you need to be in possession of a valid CPLEX license in order to use CPLEX
solvers.

The free GLPK (GNU Linear Programming Kit) solver is also supported by MPT toolbox and a
MEX interface is included in the distribution. You can download the latest version of GLPKMEX
written by Nicolo Giorgetti from:
http://www-dii.ing.unisi.it/ ∼giorgetti/downloads.php

Note that we have experienced several numerical inconsistencies when using GLPK.

Semi-definite optimization packages

Some routines of the MPT toolbox rely on Linear Matrix Inequalities (LMI) theory. Certain
functions therefore require solving a semidefinite optimization problem. The YALMIP interface
by Johan Lofberg http://control.ee.ethz.ch/ ∼joloef/

is included in this release of MPT toolbox. Since the interface is a wrapper and calls external
LMI solver, we strongly recommend to install one of the solvers supported by YALMIP. You
can obtain a list of free LMI solvers here:
http://control.ee.ethz.ch/ ∼joloef/yalmip.php

YALMIP supports a large variety of Semi-Definite Programming packages. One of them,
namely the SeDuMi solver written by Jos Sturm, comes along with MPT . Source codes as well
as binaries for Windows are included directly, you can compile the code for other operating sys-
tems by following the instructions in mpt/solvers/SeDuMi105/Install.unix . For more
information consult http://fewcal.kub.nl/sturm/software/sedumi.html

Solvers for projections

MPT allows to compute orthogonal projections of polytopes. To meet this task, several methods
for projections are available in the toolbox. Two such methods – ESP and Fourier-Motzkin Elim-
ination are coded in C and need to be accessible as a mex library. These libraries are already pro-
vided in compiled form for Linux and Windows. For other architectures you will need to com-
pile the corresponding library on your own. To do so follow instructions in mpt/solvers/esp
and mpt/solvers/fourier , respectively.
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2.3 Setting up default parameters

By default, it is not necessary to modify the default setting stored in mpt init.m .
However if you decide to do so, we strongly recommend to use the GUI setup func-
tion

mpt_setup

Any routine of the MPT toolbox can be called with user-specified values of certain global
parameters. To make usage of MPT toolbox as user-friendly as possible, we provide the
option to store default values of the parameters in variable mptOptions , which is kept
in MATLAB’s workspace as a global variable (i.e. it stays there unless one types clear
all ).

The variable is created when the toolbox get’s initialized through a call to mpt init .

Default LP solver: In order to set the default LP solver to be used, open the file mpt init.m
in your editor. Scroll down to the following line:

mptOptions.lpsolver = [];

Integer value on the right-hand side specifies the default LP solver. Allowed values are:
0 NAG Foundation LP solver
3 CDD Criss-Cross Method
2 CPLEX
4 GLPK
5 CDD Dual-Simplex Method
1 linprog

If the argument is empty, the fastest available solver will be enabled. Solvers presented
in the table above are sorted in the order of preference.

Default QP solver: To change the default QP solver, locate and modify this line in mpt init.m :

mptOptions.qpsolver = [];

Allowed values for the right-hand side argument are the following:
0 NAG Foundation QP solver
2 CPLEX
1 quadprog

Again, if there is no specification provided, the fastest alternative will be used.

Note: Quadratic Program solver is not necessarily required by MPT . If you are not in
possession of any QP solver, you still will be able to use large part of functionality in-
volved in the toolbox. But the optimization problems will be limited to linear performance
objectives.

Default solver for extreme points computation: Some of the functions in MPT toolbox require
computing of extreme points of polytopes given by their H-representation and calculating
convex hulls of given vertices respectively. Since efficient analytical methods are limited
to low dimensions only, we provide the possibility to pass this computation to an external
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software package (CDD). However, if the user for any reason does not want to use third-
party tools, the problem can still be tackled in an analytical way (with all the limitations
mentioned earlier).

To change the default method for extreme points computation, locate the following line
in mpt init.m :

mptOptions.extreme_solver = [];

and change the right-hand side argument to one of these values:
3 CDD (faster computation, works also for higher dimensions)
0 Analytical computation (limited to dimensions up to 3)

Default tolerances: The Multi-Parametric Toolbox internally works with 2 types of tolerances:
- absolute tolerance - relative tolerance

Default values for these two constants can be set by modifying the following lines of
mpt init.m :

mptOptions.rel_tol = 1e-6;

mptOptions.abs_tol = 1e-7;

Default values for Multi-parametric solvers: Solving a given QP/LP in a multi-parametric way
involves making ”steps” across given boundaries. Length of this ”step” is given by the
following variable:

mptOptions.step_size = 1e-4;

Due to numerical problems tiny regions are sometimes difficult to calculate, i.e. are not
identified at all. This may create ”gaps” in the computed control law. For the exploration,
these will be jumped over and the exploration in the state space will continue. See [1] for
details.

Level of detecting those gaps is given by the following variable:

mptOptions.debug_level = 1;

The right-hand side argument can have three values:

1 No debug done

2 A tolerance is given to find gap in the region partition, small empty regions inside
the region partition will be discarded. Note that this is generally not a problem, since
the feedback law is continuous and can therefore be interpolated easily. Correction
to the calculation of the outer hull is performed as well.

3 Zero tolerance to find gaps in the region partition, empty regions if they exist, will
be detected, i.e. the user will be notified. Correction to the calculation of the outer
hull is performed.

Default Infinity-box: MPT internally converts the Rn to a box with large bounds. The following
parameter specifies size of this box:

mptOptions.infbox = 1e4;
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Note that also polyhedra (unbounded polytopes) are converted to bounded polytopes by
making an intersection with the ”Infinity-box”.

Default values for plotting: The overloaded plot function can be forced to open a new fig-
ure windows every time the user calls it. If you want to disable this feature, go to the
following line in mpt init.m :

mptOptions.newfigure = 0;

and change the constant to 0 (zero)

1 means ”enabled”, 0 stands for ”disabled”

Default level of verbosity: Text output from functions can be limited or suppressed totally by
changing the following option in mpt init.m :

mptOptions.display = 1;

Allowed values are:
0 only important messages
1 displays also intermediate information
2 no output suppression

Level of details: Defines how many details about the solution should be stored in the resulting
controller structure. This can have a significant impact on the size of the controller struc-
ture. If you want to evaluate open-loop solution for PWA systems, set this to 1. Otherwise
leave the default value to save memory and disk space.

mptOptions.details = 0;

Once you modify the mpt init.m file, type:

mpt_init

to initialize the toolbox.
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Theory of Polytopes and Multi-Parametric
Programming

3.1 Polytopes

Polytopic (or, more general, polyhedral) sets are an integral part of multi-parametric program-
ming. For this reason we give some of the definitions and fundamental operations with poly-
topes. For more details we refer reader to [30, 12].

Definition 3.1.1 (polyhedron): A convex set Q ⊆ Rn given as an intersection of a finite number
of closed half-spaces

Q = {x ∈ R
n | Qxx ≤ Qc}, (3.1)

is called polyhedron.

Definition 3.1.2 (polytope): A bounded polyhedron P ⊂ Rn

P = {x ∈ R
n | Pxx ≤ Pc}, (3.2)

is called polytope.

It is obvious from the above definitions that every polytope represents a convex, compact (i.e.,
bounded and closed) set. We say that a polytope P ⊂ Rn, P = {x ∈ Rn | Pxx ≤ Pc} is full
dimensional if ∃x ∈ Rn : Pxx < Pc. Furthermore, if ‖(Px)i‖ = 1, where (Px)i denotes i-th row of
a matrix Px, we say that the polytope P is normalized. One of the fundamental properties of a
polytope is that it can also be described by its vertices

P = {x ∈ R
n | x =

vP

∑
i=1

αiV
(i)
P , 0 ≤ αi ≤ 1,

vP

∑
i=1

αi = 1}, (3.3)

where V
(i)
P denotes the i-th vertex of P , and vP is the total number of vertices of

P .

We will henceforth refer to the half-space representation (3.2) and vertex representation (3.3)
as H and V representation respectively.

9
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Definition 3.1.3 (face): Linear inequality a′x ≤ b is called valid for a polyhedron P if a′x ≤ b
holds for all x ∈ P . A subset of a polyhedron is called a face of P if it is represented as

F = P ∩ {x ∈ R
n | a′x = b}, (3.4)

for some valid inequality a′x ≤ b. The faces of polyhedron P of dimension 0, 1, (n − 2) and
(n − 1) are called vertices, edges, ridges and facets, respectively.

We say that a polytope P ⊂ Rn, P = {x ∈ Rn | Pxx ≤ Pc} is in a minimal representation
if a removal of any of the rows in Pxx ≤ Pc would change it (i.e., there are no redundant
halfspaces). It is straightforward to see that a normalized, full dimensional polytope P has a
unique minimal representation. This fact is very useful in practice. Normalized, full dimensional
polytopes in a minimal representation allow us to avoid any ambiguity when comparing them
and very often speed-up other polytope manipulations. We will now define some of the basic
manipulations on polytopes.

3.2 Basic Polytope Manipulation

The Set-Difference of two polytopes P and Q is a union of polytopes R =
⋃

i Ri

R = P \ Q := {x ∈ R
n | x ∈ P , x /∈ Q}. (3.5)

The Pontryagin-Difference of two polytopes P and W is a polytope

P ⊖W := {x ∈ R
n | x + w ∈ P , ∀w ∈ W}. (3.6)

The Minkowski-Addition of two polytopes P and W is a polytope

P ⊕W := {x + w ∈ R
n | x ∈ P , w ∈ W}. (3.7)

The convex hull of a union of polytopes Pi ⊂ Rn, i = 1, . . . , p, is a polytope

hull

(

p
⋃

i=1

Pi

)

:= {x ∈ R
n | x =

p

∑
i=1

αixi, xi ∈ Pi, 0 ≤ αi ≤ 1,
p

∑
i=1

αi = 1}. (3.8)

The envelope of two H-polyhedra P = {x ∈ Rn | Pxx ≤ Pc} and Q = {x ∈ Rn | Qxx ≤ Qc} is
an H-polyhedron

env(P ,Q) = {x ∈ R
n | P̄xx ≤ P̄c, Q̄xx ≤ Q̄c}, (3.9)

where P̄xx ≤ P̄c is the subsystem of Pxx ≤ Pc obtained by removing all the inequalities not
valid for the polyhedron Q, and Q̄xx ≤ Q̄c are defined in the similar way with respect to
Qxx ≤ Qc and P [7].
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3.3 Multi-Parametric Programming

This section first covers some of the fundamentals of multi-parametric programming for linear
systems before restating results for PWA systems. Consider a discrete-time linear time-invariant
system

x(t + 1) = Ax(t) + Bu(t) (3.10a)

y(t) = Cx(t) + Du(t) (3.10b)

with A ∈ Rn×n and B ∈ Rn×m. Let x(t) denote the state at time t and xt+k|t denote the predicted
state at time t + k given the state at time t. For brevity we denote xk|0 as xk. Let uk be the
computed input for time k, given x(0). Assume now that the states and the inputs of the
system in (3.10) are subject to the following constraints

x ∈ X ⊂ R
n, u ∈ U ⊂ R

m (3.11)

where X and U are compact polyhedral sets containing the origin in their interior, and consider
the constrained finite-time optimal control (CFTOC) problem

J∗N(x(0)) = min
u0,...,uN−1

||Q f xN ||ℓ +
N−1

∑
k=0

||Ruk||ℓ + ||Qxk||ℓ (3.12a)

subj. to xk ∈ X, ∀k ∈ {1, . . . , N}, (3.12b)

xN ∈ Xset, (3.12c)

uk ∈ U, ∀k ∈ {0, . . . , N − 1}, (3.12d)

x0 = x(0), xk+1 = Axk + Buk, ∀k ∈ {0, . . . , N − 1}, (3.12e)
{

Q = Q′ � 0, Q f = Q′
f � 0, R = R′ ≻ 0, if ℓ = 2,

rank(Q) = n, rank(R) = m, if ℓ ∈ {1, ∞}.
(3.12f)

where (3.12c) is a user defined set-constraint on the final state which may be chosen such
that stability of the closed-loop system is guaranteed [24]. The cost (3.12a) may be linear (e.g.,
ℓ ∈ {1, ∞}) [4] or quadratic (e.g., ℓ = 2) [8] whereby the matrices Q, R and Q f represent
user-defined weights on the states and inputs.

Definition 3.3.1: We define the N-step feasible set X N
f ⊆ Rn as the set of initial states x(0) for

which the CFTOC problem (3.12) is feasible, i.e.

X N
f = {x(0) ∈ R

n | ∃(u0, . . . , uN−1) ∈ R
Nm, xk ∈ X, uk−1 ∈ U, ∀k ∈ {1, . . . , N}}. (3.13)

For a given initial state x(0), problem (3.12) can be solved as an LP or QP for linear or quadratic
cost objectives respectively. However, this type of on-line optimization may be prohibitive for
control of fast processes.

By substituting xk = Akx(0) + ∑
k−1
j=0 AkBuk−1−j, problem (3.12) for the quadratic cost objective

can be reformulated as

J∗N(x(0)) = x(0)′Yx(0) + min
UN

{

U′
N HUN + x(0)′FUN

}

s.t. GUN ≤ W + Ex(0) (3.14)
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where the column vector UN , [u′
0, . . . , u′

N−1]
′ ∈ Rs is the optimization vector, s , mN and H,

F, Y, G, W, E are easily obtained from Q, R, Q f , (3.10) and (3.11) (see [8] for details). The same
transformation can trivially be applied to linear cost objectives in (3.12a). Because problem (3.14)
depends on x(0), it can be also solved as a multi-parametric program [8]. Denoting with UN =
[u′

0, . . . , u′
N−1]

′ the optimization vector and considering x(0) as a parameter, problem (3.12)
can then be solved for all parameters x(0) to obtain a feedback solution with the following
properties,

Theorem 3.3.2: [8, 9] Consider the CFTOC problem (3.12). Then, the set of feasible parameters
X N

f is convex, the optimizer U∗
N : X N

f → RNm is continuous and piecewise affine (PWA), i.e.

U∗
N(x(0)) = Frx(0) + Gr if x(0) ∈ Pr = {x ∈ R

n|Hrx ≤ Kr}, r = 1, . . . , R (3.15)

and the optimal cost J∗N : X N
f → R is continuous, convex and piecewise quadratic (ℓ = 2) or

piecewise linear (ℓ ∈ {1, ∞}).

According to Theorem 3.3.2, the feasible state space X N
f is partitioned into R polytopic regions,

i.e., X N
f = {Pr}R

r=1. Though the initial approach was presented in [8], more efficient algorithms

for the computation are given in [1, 28]. With sufficiently large horizons or appropriate terminal
set constraints (3.12c) the closed-loop system is guaranteed to be stabilizing for receding hori-
zon control [13, 24]. However, no robustness guarantees can be given. This issue is addressed
in [19, 6] where the authors present minimax methods which are able to cope with additive
disturbances

x(t + 1) = Ax(t) + Bu(t) + w, w ∈ W , (3.16)

where W is a polytope with the origin in its interior. The minimax approach can be applied
also when there is polytopic uncertainty in the system dynamics,

x(t + 1) = A(λ)x(t) + B(λ)u(t), (3.17)

with λ ∈ RL and

Ω := conv
{

[A(1)|B(1)], [A(2)|B(2)], . . . , [A(L)|B(L)]
}

, (3.18a)

[A(λ)|B(λ)] ∈ Ω, (3.18b)

i.e., there exist L nonnegative coefficients λl ∈ R (l = 1, . . . , L) such that

L

∑
l=1

λl = 1 , [A(λ)|B(λ)] =
L

∑
l=1

λl [A
(l)|B(l)]. (3.19)

The set of admissible λ can be written as Λ := {x ∈ [0, 1]L | ||x||1 = 1}. In order to guar-
antee robust stability of the closed loop system, the objective (3.12a) is modified such that
the feedback law which minimizes the worst case is computed, hence the name minimax con-
trol.

The results in [8] were extended in [5, 10, 3] to compute the optimal explicit feedback controller
for PWA systems of the form

x(k + 1) = Aix(k) + Biu(k) + fi, (3.20a)

Lix(k) + Eiu(k) ≤ Wi, i ∈ I (3.20b)

if [x′(k) u′(k)]′ ∈ Di (3.20c)
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whereby the dynamics (3.20a) with the associated constraints (3.20b) are valid in the polyhedral
set Di defined in (3.20c). The set I ⊂ N, I = {1, . . . , d} represents all possible dynamics, and d
denotes the number of different dynamics. Henceforth, we will abbreviate (3.20a) and (3.20c)
with x(k + 1) = fPWA(x(k), u(k)). Note that we do not require x(k + 1) = fPWA(x(k), u(k)) to
be continuous. The optimization problem considered here is given by

J∗N(x(0)) = min
u0,...,uN−1

||Q f xN ||ℓ +
N−1

∑
k=0

||Ruk||ℓ + ||Qxk||ℓ (3.21a)

subj. to Lixk + Eiuk ≤ Wi, if [xk uk]
′ ∈ Di, i ∈ I, ∀k ∈ {0, . . . , N − 1}, (3.21b)

xN ∈ Xset, (3.21c)

xk+1 = fPWA(xk, uk), x0 = x(0), ∀k ∈ {0, . . . , N − 1}, (3.21d)
{

Q = Q′ � 0, Q f = Q′
f � 0, R = R′ ≻ 0, if ℓ = 2,

rank(Q) = n, rank(R) = m, if ℓ ∈ {1, ∞}.
(3.21e)

Here (3.21c) is a user-specified set constraint on the terminal state which may be used to
guarantee stability [23, 14, 9]. As an alternative, the infinite horizon solution to (3.21) guarantees
stability as well [2]. In order to robustify controllers with respect to additive disturbances, a
minimax approach is taken [20] which is identical to what was proposed for linear systems
[19, 9].

All multi-parametric programming methods suffer from the curse of dimensionality. As the pre-
diction horizon N increases, the number of partitions R (X N

f = {Pr}R
r=1) grows exponentially

making the computation and application of the solution intractable. Therefore, there is a clear
need to reduce the complexity of the solution. This was tackled in [16, 15, 14] where the authors
present two methods for obtaining feedback solutions of low complexity for constrained linear
and PWA systems. The first controller drives the state in minimum time into a convex set Xset,
where the cost-optimal feedback law is applied [15, 14]. This is achieved by iteratively solving
one-step multi-parametric optimization problems. Instead of solving one problem of size N,
the algorithm solves N problems of size 1, thus the decrease in both on- and off-line complexity.
This scheme guarantees closed-loop stability. If a linear system is considered, an even simpler
controller may be obtained by solving only one problem of size 1, with the additional constraint
that x1 ∈ X N

f [15, 16]. In order to guarantee stability of this closed-loop system, an LMI analysis

is performed which aims at identifying a Lyapunov function [18, 11].
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MPT in 15 minutes

This short introduction is not meant to (and does not) replace the MPT manual. It serves to
clarify the key points of Model Predictive Control and application thereof within the framework
of the MPT toolbox. Specifically, the main problems which arise in practice are illustrated in a
concise manner without going into the technical details.

4.1 First Steps

Before reading the rest of this introduction, have a close look at the provided demonstrations
and go through them slowly. At the Matlab command prompt, type mpt demo1, mpt demo2,
. . . , mpt demo6. After completing the demos, run some examples by typing runExample
at the command prompt. More demos can be found in the mpt/examples/ownmpc and
mpt/examples/nonlin directories of your MPT installation. Finally, for a good overview,
type help mpt and help polytope to get the list and short descriptions of (almost) all
available functions.

4.2 How to Obtain a Tractable State Feedback Controller

In this section the regulation problem will be treated. See the subsequent section for the special
case of tracking.

Guidelines for Modelling a Dynamical System

The most important aspects in system modelling for MPT are given below:

1. Always make sure your dynamic matrices and states/inputs are well scaled. Ideally all
variables exploit the full range between ±10. See [26] for details.

2. Try to have as few different dynamics as possible when designing your PWA system
model.

3. The fewer states and inputs your system model has, the easier all subsequent computa-
tions will be.

4. Use the largest possible sampling time when discretizing your system.

14
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Control Schemes

In order to compute a controller, only one function call is needed

controller = mpt control(sysStruct,probStruct)

For a detailed description of how to define your system sysStruct and problem probStruct ,
see Sections 5.7 and 6.9), respectively. We also suggest you examine the m-files in the ‘Exam-
ples’ directory of the MPT toolbox and take a closer look at the runExample.m file. Detailed
examples for controller computations are also provided in the MPT manual (Section Examples).

Computing explicit state feedback controllers via multi-parametric programming may easily
lead to controllers with prohibitive complexity (both in runtime and solution) and the following
is intended to give a brief overview of the existing possibilities to obtain tractable controllers
for the problems MPT users may face. Specifically, there are three aspects which are important
in this respect: performance, stability and constraint satisfaction.

Infinite Time Optimal Control: [13, 2]
To use this method, set probStruct.N=Inf , probStruct.subopt lev=0 . This will
yield the infinite time optimal controller, i.e., the best possible performance for the prob-
lem at hand. Asymptotic stability and constraint satisfaction are guaranteed and all states
which are controllable (maximum controllable set) will be covered by the resulting con-
troller. However, the complexity of the associated controller may be prohibitive. Note that
the computation of this controller may take forever.

Finite Time Optimal Control [8, 3, 9, 24]
To use this method, set probStruct.N ∈ N+ , {1, 2, . . .} and probStruct.subopt lev=0 .
This will yield the finite time optimal controller, i.e. performance will be N-step opti-
mal but may not be infinite horizon optimal. The complexity of the resulting controller
depends strongly on the prediction horizon (large N → complex controller). It is further-
more necessary to differentiate the following cases:

probStruct.Tconstraint=0 : No terminal set constraint. The controller will be de-
fined over a superset of the maximum controllable set, but no guarantees on stability or
closed-loop constraint satisfaction can be given. As the prediction horizon N is increased
the feasible set of states will converge to the maximum controllable set from ‘the outside-
in’, i.e. the controlled set will shrink as N increases. To extract the set of states which
satisfy the constraints for all time, call mpt invariantSet . To analyze these states for
stability, call mpt lyapunov . Note all these functions may have prohibitive run times for
large partitions.

probStruct.Tconstraint=1 : Stabilizing terminal set is automatically computed. The
resulting controller will guarantee stability and constraint satisfaction for all time, but
will only cover a subset of the maximum controllable set of states. By increasing the pre-
diction horizon, the controllable set of states will converge to the maximum controllable
set from ‘the inside-out’, i.e. the controlled set will grow larger as N increases.
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probStruct.Tset=P : User defined terminal set. Depending on the properties (e.g., in-
variance, size) of the target set P, any combination of the two cases previously described
may occur.

Minimum Time Control [15, 14]
To use this method, set probStruct.subopt lev=1 . This will yield the minimal time
controller with respect to a target set around the origin, i.e. the controller will drive the
state into this set in minimal time. In general, the complexity of minimum time con-
trollers is significantly lower than that of their 1/2/∞-norm cost optimal counterparts.
The controller is guaranteed to cover all controllable states and asymptotic stability and
constraint satisfaction are guaranteed. Note that if you choose to manually define your
target set by setting probStruct.Tset=P , these properties may not hold.

Low Complexity Controller [15, 16]
To use this method, set probStruct.subopt lev=2 . This will yield a controller for
a prediction horizon N = 1 with additional constraints which guarantee asymptotic
stability and constraint satisfaction in closed-loop. The controller covers all controllable
states. The complexity of this 1-step controller is generally significantly lower than all
other control schemes in MPT which cover the maximal controllable set. However, the
computation of the controller may take a long time.

Conclusion

The key influence on controller complexity are as follows

1. Prediction horizon N

2. Number of different dynamics of the PWA system

3. Dimension of state and input.

4. Type of control scheme.

Furthermore, 2-norm objectives generally yield controllers of lower complexity than their 1/∞-
norm counterparts. Therefore, we suggest you try the control schemes in the following order
to trade-off performance for complexity

1. Finite Horizon Optimal Control for small N (i.e., N = 1, 2); probStruct.Tconstraint=0

2. Low Complexity (1-step) Controller

3. Minimum Time Control

4. Finite Horizon Optimal Control for large N (i.e., N = 9, 10); probStruct.Tconstraint=1

5. Infinite Horizon Optimal Control

Note that for your specific system, the order of preference may be different, so it may yet be
best if you try all.
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4.3 Tracking

If you are solving a tracking problem, everything becomes more complicated. It is necessary to
differentiate between the case of constant reference tracking (reference state is fixed a priori)
and varying reference tracking (reference is arbitrarily time varying).

For constant reference tracking (probStruct.xref ∈ Rn or probStruct.yref ∈ Rp), the
problem setup reduces to a normal regulation problem where all of the observations from the
previous section hold.

Time varying reference tracking (probStruct.tracking=1 ) is implemented for LTI as well
as for PWA systems. For time varying reference states, it is necessary to augment the state
space matrices. The process of augmenting the state update equations is performed automat-
ically by MPT , the following exposition is intended to give you some flavor of what is going
on.

First the state vector x is extended with the reference state vector xre f , i.e. the reference states
are added to the dynamical model. The input which is necessary such that the state remains
at the reference is not generally known. Therefore the dynamics are reformulated in ∆u-form.
In this framework the system input at time k is ∆u(k) whereby u(k − 1) is an additional state
in the dynamical model, i.e. the system input can be obtained as u(k) = u(k − 1) + ∆u(k). The
state update equation is then given by





x(k + 1)
u(k)

xre f (k + 1)



 =





A B 0
0 I 0
0 0 I









x(k)
u(k − 1)
xre f (k)



+





B
I
0



∆u(k)

Assume a 3rd order system with 2 inputs. In ∆u-tracking formulation, the resulting dynamical
model will have 8 states (3 system states x + 3 reference states xre f + 2 input states u(k− 1)) and
2 inputs (∆u(k)). If we solve the regulation problem for the augmented system (see previous
sections) we obtain a controller which allows for time varying references. For control purposes,
the reference state xre f is imposed by the user, i.e. xre f is set to a specific value. The regulation
controller then automatically steers the state x to the reference state.

Note that time varying tracking problems are generally of high dimension, such that controller
computation is expensive. If you can reduce your control objective to a regulation problem
for a set of predefined reference points, we suggest you solve a sequence of fixed state track-
ing problems instead of the time varying tracking problem, in order to obtain computational
tractability.
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Modelling of Dynamical Systems

In this chapter we will show how to model dynamical systems in MPT framework. As already
described before, each system is defined by means of a sysStruct structure which is described
in more details in Section 5.7.

Behavior of a plant is in general driven by two major components: system dynamics
and system constraints. Both these components has to be described in the system struc-
ture.

5.1 System dynamics

MPT can deal with two types of discrete-time dynamical systems:

1. Linear Time-Invariant (LTI) dynamics

2. Piecewise-Affine (PWA) dynamics

LTI dynamics

LTI dynamics can be captured by the following linear relations:

x(k + 1) = Ax(k) + Bu(k) (5.1)

y(k) = Cx(k) + Du(k) (5.2)

where x(k) ∈ Rnx is the state vector at time instance k, x(k + 1) denotes the state vector at
time k + 1, u(k) ∈ Rnu and y(k) ∈ Rny are values of the control input and system output,
respectively. A, B, C and D are matrices of appropriate dimensions, i.e. A is a nx × nx matrix,
dimension of B is nx × nu, C is a ny × nx and D a ny × nu matrix.

Dynamical matrices are stored in the following fields of the system structure:

sysStruct.A = A
sysStruct.B = B
sysStruct.C = C
sysStruct.D = D

18
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Example 5.1.1: Assume a double integrator dynamics sampled at 1 second:

x(k + 1) =

[

1 1
0 1

]

x(k) +

[

1
0.5

]

u(k) (5.3)

y(k) =

[

1 0
0 1

]

x(k) +

[

0
0

]

u(k) (5.4)

In MPT , the above described system can be defined as follows:

sysStruct.A = [1 1; 0 1];
sysStruct.B = [1; 0.5];
sysStruct.C = [1 0; 0 1];
sysStruct.D = [0; 0]

PWA dynamics

Piecewise-Affine systems are systems whose dynamics are affine and can be different in differ-
ent parts of the state-input state. In particular, they are defined by

x(k + 1) = Aix(k) + Biu(k) + fi (5.5)

y(k) = Cix(k) + Diu(k) + gi (5.6)

if

[

x(k)
u(k)

]

∈ Di (5.7)

The subindex i takes values 1 . . . NPWA, where NPWA is total number of PWA dynamics defined
over a polyhedral partition D. Dimensions of matrices in (5.5)–(5.7) are summarized in Table 5.1.

Matrix Dimension

A nx × nx

B nx × nu

f nx × 1
C ny × nx

D ny × nu

g ny × 1

Tab. 5.1: Dimensions of matrices of a PWA system.

Matrices in equations (5.5) and (5.6) are stored in the following fields of the system struc-
ture:

Equation (5.7) defines a polyhedral partition of the state-input space over which the different
dynamics are active. Different segments of the polyhedral partition D are defined using so-
called guard lines, i.e. constraints on state and input variables. In general, the guard lines are
described by the following constraints:

Gx
i x(k) + Gu

i u(k) ≤ Gc
i (5.8)
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Fig. 5.1: Car moving on a PWA hill.

which means that dynamics i represented by the tuple [Ai, Bi, fi, Ci, Di, gi] will be active
in the part of state-input space which satisfies constraints (5.8). If at future time the state
x(k + T) or input u(k + T) moves to a different sector of the polyhedral partition, say
Gx

j x(k + T) + Gu
j u(k + T) ≤ Gc

j , the dynamics will be driven by the tuple [Aj, Bj, f j, Cj, Dj, gj],

and so on.

In MPT , PWA systems are represented by the following fields of the system struc-
ture:

sysStruct.A = {A1, A2, ..., An}
sysStruct.B = {B1, B2, ..., Bn}
sysStruct.f = {f1, f2, ..., fn}
sysStruct.C = {C1, C2, ..., Dn}
sysStruct.D = {D1, D2, ..., Cn}
sysStruct.g = {g1, g2, ..., gn}
sysStruct.A = {A1, A2, ..., An}
sysStruct.guardX = {Gx1, Gx2, ..., Gxn}
sysStruct.guardU = {Gu1, Gu2, ..., Gun}
sysStruct.guardC = {Gc1, Gc2, ..., Gcn}

In PWA case, each field of the structure has to be a cell array of matrices of appropriate
dimensions. Each index i ∈ 1, 2, . . . , n corresponds to one PWA dynamics, i.e. to one tuple
[Ai, Bi, fi, Ci, Di, gi] and one set of constraints Gx

i x(k) + Gu
i u(k) ≤ Gc

i

Unlike the LTI case, you can omit sysStruct.f and sysStruct.g if they are zero. All other
matrices have to be defined in the structure.

We will illustrate modelling of PWA systems on the following example:

Example 5.1.2: Assume a frictionless car moving horizontally on a hill with different slopes, as
illustrated in Figure 5.1.
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Dynamics of the car is driven by Newton’s laws of motion:

dp

dt
= v (5.9)

m
dv

dt
= u − mg sin α (5.10)

where p denotes horizontal position and v stands for velocity of the object. If we now define
x = y = [p v]T , assume the mass m = 1 and discretize the system with sampling time of 0.1
seconds, we obtain the following affine system:

x(k + 1) =

[

1 0.1
0 1

]

x(k) +

[

0.005
0.1

]

u(k) +

[

c
−g sin α

]

(5.11)

y(k) =

[

1 0
0 1

]

x(k) +

[

0
0

]

u(k) +

[

0
0

]

(5.12)

It can be seen that speed of the car depends only on the force applied to the car (manipu-
lated variable u) and slope of the road α. Slope is different in different sectors of the road. In
particular we have:

Sector 1: p ≥ −0.5 ⇒ α = 0o

Sector 2: −3 ≤ p ≤ −0.5 ⇒ α = 10o

Sector 3: −4 ≤ p ≤ −3 ⇒ α = 0o

Sector 4: p ≤ −4 ⇒ α = −5o

(5.13)

Substituting slopes α from (5.13) to (5.11), we obtain 4 tuples [Ai, Bi, fi, Ci, Di, gi] for i ∈ 1, . . . , 4.
Furthermore we need to define parts of the state-input space where each dynamics is active. We
do that using the guard-lines Gx

i x(k) + Gu
i u(k) ≤ Gc

i . With this formulation we can describes
each sector as follows:

Sector 1:
[

−1 0
]

x(k) ≤ 0.5

Sector 2:

[

1 0
−1 0

]

x(k) ≤

[

−0.5
3

]

Sector 3:

[

1 0
−1 0

]

x(k) ≤

[

−3
4

]

Sector 4:
[

1 0
]

x(k) ≤ −4

(5.14)

Note that the state vector x consists of two components (position and velocity) and our sectors
do not depend on value of the manipulated variable u, hence Gu is zero in our case and can be
omitted from the definition. Once different dynamics and the corresponding guard-lines are
defined, they must be linked together to tell MPT which dynamics is active in which sector. To
do so, one needs to fill out the system structure in a prescribed way, i.e. by putting dynamics i
and guard-lines i at the same position in the corresponding cell array. If you, for instance, put
guard-lines defining sector 1 at first position in the cell array sysStruct.guardX , you link
this sector with the proper dynamics by putting A1, B1, f1, C1, D1 also on the first position in
the corresponding fields. The whole system structure will then look as follows:

• Sector 1 - Guard-lines and dynamics:

sysStruct.guardX{1} = [-1 0]
sysStruct.guardC{1} = 0.5
sysStruct.A{1} = [1 0.1; 0 1]
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sysStruct.B{1} = [0.005; 0.1]
sysStruct.f{1} = [c; -g * sin(alpha1)]
sysStruct.C{1} = [1 0;0 1]
sysStruct.D{1} = [0; 0]

• Sector 2 - Guard-lines and dynamics:

sysStruct.guardX{2} = [1 0; -1 0]
sysStruct.guardC{2} = [-0.5; 3]
sysStruct.A{2} = [1 0.1; 0 1]
sysStruct.B{2} = [0.005; 0.1]
sysStruct.f{2} = [c; -g * sin(alpha2)]
sysStruct.C{2} = [1 0;0 1]
sysStruct.D{2} = [0; 0]

• Sector 3 - Guard-lines and dynamics:

sysStruct.guardX{3} = [1 0; -1 0]
sysStruct.guardC{3} = [-3; 4]
sysStruct.A{3} = [1 0.1; 0 1]
sysStruct.B{3} = [0.005; 0.1]
sysStruct.f{3} = [c; -g * sin(alpha3)]
sysStruct.C{3} = [1 0;0 1]
sysStruct.D{3} = [0; 0]

• Sector 4 - Guard-lines and dynamics:

sysStruct.guardX{4} = [1 0]
sysStruct.guardC{4} = -4
sysStruct.A{4} = [1 0.1; 0 1]
sysStruct.B{4} = [0.005; 0.1]
sysStruct.f{4} = [c; -g * sin(alpha4)]
sysStruct.C{4} = [1 0;0 1]
sysStruct.D{4} = [0; 0]

Note that since gi is always zero in (5.12), you can omit it from the system definition (the same
holds for Gu

i if it is always zero).

We now consider a slight extension of Example 5.1.2 and show how to define a PWA system
which also depends on values of the manipulated variable(s) u.

Example 5.1.3: Assume the Car on a PWA hill system as depicted in Figure 5.1. In addition to
the original setup we assume different behavior of the car when applying positive and negative
control action. In particular we assume that translation of the force u on the car is limited by
half when u is negative. We can then consider two cases:

1. u ≥ 0:

dp

dt
= v (5.15)

m
dv

dt
= u − mg sin α (5.16)
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2. u ≤ 0:

dp

dt
= v (5.17)

m
dv

dt
=

1

2
u − mg sin α (5.18)

With m = 1 and x = [p v]T , discretization with sampling time of 0.1 seconds leads the following
state-space representation:

1. u ≥ 0:

x(k + 1) =

[

1 0.1
0 1

]

x(k) +

[

0.005
0.1

]

u(k) +

[

c
−g sin α

]

(5.19)

= Ax(k) + B1u(k) + fi (5.20)

y(k) =

[

1 0
0 1

]

x(k) +

[

0
0

]

u(k) +

[

0
0

]

(5.21)

= Cx(k) + Du(k) + g (5.22)

2. u ≤ 0:

x(k + 1) =

[

1 0.1
0 1

]

x(k) +

[

0.0025
0.05

]

u(k) +

[

c
−g sin α

]

(5.23)

= Ax(k) + B2u(k) + fi (5.24)

y(k) =

[

1 0
0 1

]

x(k) +

[

0
0

]

u(k) +

[

0
0

]

(5.25)

= Cx(k) + Du(k) + g (5.26)

Value of the slope α again depends on horizontal position of the car according to sector con-
ditions (5.13). Model of such a system now consists of 8 PWA dynamics (4 for positive u, 4
for negative u) which are defined over 8 sectors of the state-input space. Note that matrices
A, C, D and g in (5.19)–(5.25) are constant and do not depend on the slope α nor on value
of the control input u. With fi we abbreviate matrices we obtain by substituting α from (5.13)
into the equations of motion. B1 and B2 take different values depending on the orientation of
the manipulated variable u. We can now define 8 segments of the state-input space and link
dynamics to these sectors. We define these sectors using guard lines on states and inputs as
follows:

• Sectors for u ≥ 0
Sector 1: p ≥ −0.5 ⇒ α = 0o

Sector 2: −3 ≤ p ≤ −0.5 ⇒ α = 10o

Sector 3: −4 ≤ p ≤ −3 ⇒ α = 0o

Sector 4: p ≤ −4 ⇒ α = −5o

(5.27)

• Sectors for u ≤ 0
Sector 5: p ≥ −0.5 ⇒ α = 0o

Sector 6: −3 ≤ p ≤ −0.5 ⇒ α = 10o

Sector 7: −4 ≤ p ≤ −3 ⇒ α = 0o

Sector 8: p ≤ −4 ⇒ α = −5o

(5.28)
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which we can translate into guard-line setup Gx
i x(k) + Gu

i u(k) ≤ Gc
i as follows:

• Sectors for u ≥ 0

Sector 1:

[

−1 0
0 0

]

x(k) +

[

0
−1

]

u(k) ≤

[

0.5
0

]

Sector 2:





1 0
−1 0
0 0



 x(k) +





0
0
−1



 u(k) ≤





−0.5
3
0





Sector 3:





1 0
−1 0
0 0



 x(k) +





0
0
−1



 u(k) ≤





−3
4
0





Sector 4:

[

1 0
0 0

]

x(k) +

[

0
−1

]

u(k) ≤

[

−4
0

]

(5.29)

• Sectors for u ≤ 0

Sector 5:

[

−1 0
0 0

]

x(k) +

[

0
1

]

u(k) ≤

[

0.5
0

]

Sector 6:





1 0
−1 0
0 0



 x(k) +





0
0
1



 u(k) ≤





−0.5
3
0





Sector 7:





1 0
−1 0
0 0



 x(k) +





0
0
1



 u(k) ≤





−3
4
0





Sector 8:

[

1 0
0 0

]

x(k) +

[

0
1

]

u(k) ≤

[

−4
0

]

(5.30)

Now we can define the system by filling out the system structure:

• Sector 1 - Guard-lines and dynamics:

sysStruct.guardX{1} = [-1 0; 0 0]
sysStruct.guardU{1} = [0; -1]
sysStruct.guardC{1} = [0.5; 0]
sysStruct.A{1} = A
sysStruct.B{1} = B_1
sysStruct.f{1} = f_1
sysStruct.C{1} = C
sysStruct.D{1} = D

• Sector 2 - Guard-lines and dynamics:

sysStruct.guardX{2} = [1 0; -1 0; 0 0]
sysStruct.guardU{2} = [0; 0; -1]
sysStruct.guardC{2} = [-0.5; 3; 0]
sysStruct.A{2} = A
sysStruct.B{2} = B_1
sysStruct.f{2} = f_2
sysStruct.C{2} = C
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sysStruct.D{2} = D

...

• Sector 8 - Guard-lines and dynamics:

sysStruct.guardX{8} = [1 0; 0 0]
sysStruct.guardU{8} = [0; 1]
sysStruct.guardC{8} = [-4; 0]
sysStruct.A{8} = A
sysStruct.B{8} = B_2
sysStruct.f{8} = f_4
sysStruct.C{8} = C
sysStruct.D{8} = D

5.2 Import of models from various sources

MPT can design control laws for discrete-time constrained linear, switched linear and hybrid
systems. Hybrid systems can be described in Piecewise-Affine (PWA) or Mixed Logical Dy-
namical (MLD) representations and an efficient algorithm is provided to switch from one rep-
resentation to the other form and vice-versa. To increase user’s comfort, models of dynamical
systems can imported from various sources:

• Models of hybrid systems designed in the HYSDEL [29] language,

• MLD structures generated by mpt pwa2mld

• Nonlinear models defined by mpt nonlinfcn template

• State-space and transfer function objects of the Control toolbox,

• System identification toolbox objects,

• MPC toolbox objects.

In order to import a dynamical system, one has to call

model=mpt sys(object, Ts)

where object can be either a string (in which case the model is imported from a corresponding
HYSDEL source file), or it can be a variable of one of the above mentioned object types. The
second input parameter Ts denotes sampling time and can be omitted, in which case Ts = 1
is assumed.

Example 5.2.1: The following code will first define a continuous-time state-space object which
is then imported to MPT :

% sampling time
Ts = 1;

% continuous-time model as state-space object
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di = ss([1 1; 0 1], [1; 0.5], [1 0; 0 1], [0; 0]);

% import the model and discretize it
sysStruct = mpt_sys(di, Ts);

Note: If the state-space object is already in discrete-time domain, it is not necessary to provide
the sampling time parameter Ts to mpt sys . After importing a model using mpt sys it is still
necessary to define system constraints as described previously.

5.3 Modelling using HYSDEL

Models of hybrid systems can be imported from HYSDEL source (see HYSDEL documentation
for more details on HYSDEL modelling), e.g.

sysStruct = mpt_sys(’hysdelfile.hys’, Ts);

Note: Hybrid systems modeled in HYSDEL are already defined in the discrete-time domain, the
additional sampling time parameter Ts is only used to set the sampling interval for simulations.
If Ts is not provided, it is set to 1.

Model of a hybrid system defined in hysdelfile.hys is first transformed into an Mixed
Logical Dynamical (MLD) form using the HYSDEL compiler and then an equivalent PWA
representation is created using MPT . It is possible to avoid the PWA transformation by call-
ing

sysStruct = mpt_sys(’hysdelfile.hys’, Ts, ’mld’);

in which case only an MLD representation is created. Note, however, that systems only in MLD
form can be controlled only with the on-line MPC schemes.

After calling mpt sys it is still necessary to define system constraints as described in the next
section.

5.4 System constraints

MPT allows to define following types of constraints:

• Min/Max constraints on system outputs

• Min/Max constraints on system states

• Min/Max constraints on manipulated variables

• Min/Max constraints on slew rate of manipulated variables

• Polytopic constraints on states
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Constraints on system outputs

Output equation is in general driven by the following relation for PWA systems

y(k) = Cix(k) + Diu(k) + gi (5.31)

and by
y(k) = Cx(k) + Du(k) (5.32)

for LTI systems. It is therefore clear that by choice of C = I one can use these constraints to
restrict system states as well. Min/Max output constraints have to be given in the following
fields of the system structure:

sysStruct.ymax = outmax
sysStruct.ymin = outmin

where outmax and outmin are ny × 1 vectors.

Constraints on system states

Constraints on system states are optional and can be defined by

sysStruct.xmax = xmax
sysStruct.xmin = xmin

where xmax and xmin are nx × 1 vectors.

Constraints on manipulated variables

Goal of each control technique is to design a controller which chooses a proper value of the ma-
nipulated variable in order to achieve the given goal (usually to guarantee stability, but other as-
pects like optimality may also be considered at this point). In most real plants values of manip-
ulated variables are restricted and these constraints have to be taken into account in controller
design procedure. These limitations are usually saturation constraints and can be captured by
min / max bounds. In MPT , constraints on control input are given in:

sysStruct.umax = inpmax
sysStruct.umin = inpmin

where inpmax and inpmin are nu × 1 vectors.

Constraints on slew rate of manipulated variables

Another important type of constraints are rate constraints. These limitations restrict the varia-
tion of two consecutive control inputs (δu = u(k)− u(k− 1)) to be within of prescribed bounds.
One can use slew rate constraints when a “smooth” control action is required, e.g. when con-
trolling a gas pedal in a car to prevent the car from jumping due to sudden changes of the
controller action. Min/max bounds on slew rate can be given in:
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sysStruct.dumax = slewmax
sysStruct.dumin = slewmin

where slewmax and slewmin are nu × 1 vectors.
Note: This is an optional argument and does not have to be defined. If it is not given, bounds
are assumed to be ±∞.

Polytopic constraints on states

MPT also supports one additional constraint, the so-called Pbnd constraint. If you define
sysStruct.Pbnd as a polytope object of the dimension of your state vector, this entry will be
used as a polytopic constraint on the initial condition, i.e.

x0 ∈ sysStruct.Pbnd

This is especially important for explicit controllers, since sysStruct.Pbnd there lim-
its the state-space which will be explored. If sysStruct.Pbnd is not specified, it will
be set as a ”large” box of size defined by mptOptions.infbox (see help mpt init
for details). Note: sysStruct.Pbnd does NOT impose any constraints on predicted
states!

If you want to enforce polytopic constraints on predicted states, inputs and outputs, you
need to add them manually using the ”Design your own MPC” function described in Sec-
tion 6.4.

5.5 Systems with discrete valued inputs

MPT allows to define system with discrete-valued control inputs. This is especially important
in framework of hybrid systems where control inputs are often required to belong to certain
set of values. We distinguish between two cases:

1. All inputs are discrete

2. Some inputs are discrete, the rest are continuous

Purely discrete inputs

Typical application of discrete-valued inputs are various on/off switches, gears, selectors, etc.
All these can be modelled in MPT and taken into account in controller design. Defining
discrete inputs is fairly easy, all you need to do is to fill out

sysStruct.Uset = Uset

where Uset is a cell array which defines all possible values for every control input. If your
system has, for instance, 2 control inputs and the first one is just an on/off switch (i.e.
u1 = {0, 1}) and the second one can take values from set {−5, 0, 5}, you define it as fol-
lows:
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sysStruct.Uset{1} = [0, 1]
sysStruct.Uset{2} = [-5, 0, 5]

where the first line corresponds to u1 and the second to u2. If your system has only one manip-
ulated variable, the cell operator can be omitted, i.e. one could write:

sysStruct.Uset = [0, 1]

The set of inputs doesn’t have to be ordered.

Example 5.5.1: Consider a double integrator sampled at 1 second:

x(k + 1) =

[

1 1
0 1

]

x(k) +

[

1
0.5

]

u(k) (5.33)

y(k) =
[

1 0
]

x(k) (5.34)

and assume that the the manipulated variable can take only values from the set {−1, 01}. The
corresponding MPT model would look like this:

sysStruct.A = [1 1; 0 1]
sysStruct.B = [1; 0.5]
sysStruct.C = [1 0]
sysStruct.D = 0
sysStruct.Uset = [-1 0 1]
sysStruct.ymin = -10
sysStruct.ymax = 10
sysStruct.umax = 1
sysStruct.umin = -1

Notice that constraints on control inputs umax, umin have to be provided even when manip-
ulated variable is declared to be discrete.

Example 5.5.2: We consider system defined in Example 5.5.1. In addition we assume that when
u is 1, dynamics of the system is driven by equation (5.33), otherwise the state-update equation
takes the following xform:

x(k + 1) =

[

1 1
0 1

]

x(k) +

[

2
1

]

u(k), (5.35)

i.e. the system matrix B is amplified by a factor of 2.

Such a behavior can be efficiently captured by a PWA model, which will consist of two modes
separated by a guard-line defined on the manipulated variable. The first dynamics (defined
by (5.33)) will be active whenever u ≤ 0 and dynamics 2 will be enforced once u ≥ 1. The
corresponding MPT model is then:

sysStruct.A = { [1 1; 0 1], [1 1; 0 1] }
sysStruct.B = { [1; 0.5], [2; 1] }
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sysStruct.C = { [1 0], [1 0] }
sysStruct.D = { 0, 0}
sysStruct.guardX = { [0 0], [0 0] }
sysStruct.guardU = { 1, -1 }
sysStruct.guardC = { 0, -1 }
sysStruct.Uset = [-1 0 1]

with same constraints on outputs and manipulated variables as in example 5.5.1.

Mixed inputs

Mixed discrete and continuous inputs can be modelled by appropriate choice of sysStruct.Uset .
For each continuous input it is necessary to set the corresponding entry to [-Inf Inf] , in-
dicating to MPT that this particular input variable should be treated as a continuous input.
For a system with two manipulated variables, where the first one takes values from a set
{−2.5, 0, 3.5} and the second one is continuous, one would set:

sysStruct.Uset{1} = [-2.5, 0, 3.5]
sysStruct.Uset{2} = [-Inf Inf]

5.6 Text labels

State, input and output variables can be assigned a text label which overrides the default axis
labels in trajectory and partition plotting (xi, ui and yi, respectively). To assign a text label, set
the following fields of the system structure, e.g. as follows:

sysStruct.xlabels = {’position’, ’speed’};
sysStruct.ulabels = ’force’;
sysStruct.ylabels = {’position’, ’speed’};

which corresponds to the Double Integrator example. Each field is an array of strings
corresponding to a given variable. If the user does not define any (or some) labels, they will be
replaced by default strings (xi, ui and yi). The strings are used once polyhedral partition of the
explicit controller, or closed-loop (open-loop) trajectories are visualized.

5.7 System Structure sysStruct

System structure sysStruct is a structure which describes the system to be controlled.
MPT can deal with two types of systems:

1. Discrete-time linear time-invariant (LTI) systems

2. Discrete-time Piecewise Affine (PWA) Systems
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Both system types can be subject to constraints imposed on control inputs and sys-
tem outputs. In addition, constraints on slew rate of the control inputs can also be
given.

LTI systems

In general, a constrained linear time-invariant system is defined by the following rela-
tions:

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)

subt. to

ymin ≤ y(k) ≤ ymax

umin ≤ u(k) ≤ umax

Such an LTI system is defined by the following mandatory fields:

sysStruct.A = A;
sysStruct.B = B;
sysStruct.C = C;
sysStruct.D = D;
sysStruct.ymax = ymax;
sysStruct.ymin = ymin;
sysStruct.umax = umax;
sysStruct.umin = umin;

Constraints on slew rate of the control input u(k) can also be imposed by:

sysStruct.dumax = dumax;
sysStruct.dumin = dumin;

which enforces ∆umin <= u(k) − u(k − 1) <= ∆umax.

Note: If no constraints are present on certain inputs/states, set the associated values to
Inf .

LTI system which is subject to parametric uncertainty and/or additive disturbances is driven
by the following set of relations:

x(k + 1) = Auncx(k) + Buncu(k) + w(k)

y(k) = Cx(k) + Du(k)

where w(k) is an unknown, but bounded additive disturbance, i.e.

w(n) ∈ W ∀n ∈ (0...In f )
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To specify an additive disturbance, set

sysStruct.noise = W

where Wis a polytope object bounding the disturbance. MPT also supports lower-dimensional
noise polytopes. If you want to define noise only on a subset of system states, you can now
do so by defining sysStruct.noise as a set of vertices representing the noise. Say you want
to impose a +/- 0.1 noise on x1 , but no noise should be used for x2 . You can do that
by:

sysStruct.noise = [-0.1 0.1; 0 0];

Just keep in mind that the noise polytope must have vertices stored column-wise.

A polytopic uncertainty can be specified by a cell array of matrices Aunc and Bunc as fol-
lows:

sysStruct.Aunc = {A1, ..., An};
sysStruct.Bunc = {B1, ..., Bn};

PWA Systems

PWA systems are models for describing hybrid systems. Dynamical behavior of such systems
is captured by relations of the following form:

x(k + 1) = Aix(k) + Biu(k) + fi

y(k) = Cix(k) + Diu(k) + gi

subj. to

ymin ≤ y(k) ≤ ymax

umin ≤ u(k) ≤ umax

∆umin ≤ u(k) − u(k − 1) ≤ ∆umax

Each dynamics i is active in a polyhedral partition bounded by the so-called guard-
lines:

guardXi x(k) + guardUiu(k) <= guardCi

which means dynamics i will be applied if the above inequality is satisfied.

Fields of sysStruct describing a PWA system are listed below:

sysStruct.A = {A1, ..., An}
sysStruct.B = {B1, ..., Bn}
sysStruct.C = {C1, ..., Cn}
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sysStruct.D = {D1, ..., Dn}
sysStruct.f = {f1, ..., fn}
sysStruct.g = {g1, ..., gn}
sysStruct.guardX = {guardX1, ..., guardXn}
sysStruct.guardU = {guardU1, ..., guardUn}
sysStruct.guardC = {guardC1, ..., guardCn}

Note that all fields have to be cell arrays of matrices of compatible dimensions, n stands for
total number of different dynamics. If sysStruct.guardU is not provided, it is assumed to
be zero.

System constraints are defined by:

sysStruct.ymax = ymax;
sysStruct.ymin = ymax;
sysStruct.umax = umax;
sysStruct.umin = umin;
sysStruct.dumax = dumax;
sysStruct.dumin = dumin;

Constraints on slew rate are optional and can be omitted.

MPT is able to deal also with PWA systems which are affected by bounded additive distur-
bances:

x(k + 1) = Aix(k) + Biu(k) + fi + w(k)

where the disturbance w(k) is assumed to be bounded for all time instances by some polytope
W. To indicate that your system is subject to such a disturbance, set

sysStruct.noise = W;

where Wis a polytope object of appropriate dimension.

Mandatory and optional fields of the system structure are summarized in Tables 5.7 and 5.7,
respectively.

A, B, C, D, f, g State-space dynamic martices in (3.10) and (3.20a).
Set elements to empty if they do not apply.

umin, umax Bounds on inputs umin ≤ u(t) ≤ umax.
ymin, ymax Constraints on the outputs ymin ≤ y(t) ≤ ymax.
guardX, guardU, guardC Polytope cell array defining where the dynamics

are active (for PWA systems).
Di = {(x, u) | guardXi x + guardUi u ≤ gu/ardCi}.

Tab. 5.2: Mandatory fields of the system structure sysStruct .
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Uset Declares discrete-valued inputs
dumin, dumax Bounds on dumin ≤ u(t)-u(t-1) ≤ dumax.
noise A polytope bounding the additive disturbance, i.e. noise =W in (3.16).
Aunct, Bunct Cell arrays containing the vertices of the polytopic uncertainty (3.18).
Pbnd Polytope limiting the feasible state-space of intersest.

Tab. 5.3: Optional fields of the system structure sysStruct .
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Control Design

6.1 Controller computation

For constrained linear and hybrid systems, MPT can design optimal and sub-optimal control
laws either in implicit form, where an optimization problem of finite size is solved on-line at
every time step and is used in a Receding Horizon Control (RHC) manner or, alternatively,
solve an optimal control problem in a multi-parametric fashion. If the latter approach is used,
an explicit representation of the control law is obtained.

The solution to an optimal control problem can be obtained by a simple call of mpt control .
The general syntax to obtain an explicit representation of the control law is:

ctrl = mpt_control(sysStruct, probStruct)

On-line MPC controllers can be generated by

ctrl = mpt_control(sysStruct, probStruct, ’online’)

Based on the system definition described by sysStruct (cf. Section 5.7) and problem descrip-
tion provided in probStruct (cf. Section 6.9), the main control routine automatically calls
one of the functions reported in Table 6.1 to calculate the explicit solution to a given problem.
mpt control first verifies if all mandatory fields in sysStruct and probStruct structures
are filled out, if not, the procedure will break with an appropriate error message. Note that the
validation process sets the optional fields to default values if there are not present in the two
respective structures. Again, an appropriate message is displayed.

Once the control law is calculated, the solution (here ctrl ) is returned as an instance of the
mptctrl object. Internal fields of this object, described in Section 6.2, can be accessed directly
using the sub-referencing operator. For instance

Pn = ctrl.Pn;

will return the polyhedral partition of the explicit controller defined in the variable
ctrl .

Control laws can further be analyzed and/or implemented by functions reported in Chapters 8
and 9.

35
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System N Suboptimality Problem Function Reference

LTI fixed 0 CFTOC mpt optControl [1, 9]
LTI Inf 0 CITOC mpt optInfControl [13]
LTI Inf 1 CMTOC mpt iterative [15, 16]
LTI Inf 2 LowComp mpt oneStepCtrl [15, 16]

PWA fixed 0 CFTOC mpt optControlPWA [10, 20, 9]
PWA Inf 0 CITOC mpt optInfControlPWA [2]
PWA Inf 1 CMTOC mpt iterativePWA [14]
PWA Inf 2 LowComp mpt iterativePWA [14]

Tab. 6.1: List of control strategies applied to different system and problem definitions.

MPT provides a variety of control routines which are being called from mpt control . So-
lutions to the following problems can be obtained depending on the properties of the sys-
tem model and the optimization problem. One of the following control problems can be
solved:

A. Constrained Finite Time Optimal Control (CFTOC) Problem.

B. Constrained Infinite Time Optimal Control Problem (CITOC).

C. Constrained Minimum Time Optimal Control (CMTOC) Problem.

D. Low complexity setup.

The problem which will be solved depends on parameters of the system and problem structure,
namely on the type of the system (LTI or PWA), prediction horizon (fixed or infinity) and the
level of sub-optimality (optimal solution, minimum-time solution, low complexity). Different
combinations of these three parameters lead to a different optimization procedure, as reported
in Table 6.1.

See the documentation of the individual functions for more details. For a good overview of
receding horizon control we refer the reader to [24, 22].

6.2 Fields of the mptctrl object

The controller object includes all results obtained as a solution of a given optimal control
problem. In general, it describes the obtained control law and can be used both for analysis of
the solution, as well as for an implementation of the control law.

Fields of the object are summarized in Table 6.2. Every field can be accessed using the standard
. (dot) sub-referencing operator, e.g.

Pn = ctrl.Pn;
Fi = ctrl.Fi;
runtime = ctrl.details.runtime;
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Pn The polyhedral partition over which the control law is defined is returned
in this field. It is, in general, a polytope array.

Fi, Gi The PWA control law for a given state x(k) is given by u = Fi {r } x(k)
+ Gi {r }. Fi and Gi are cell arrays.

Ai, Bi, Ci Value function is returned in these three cell arrays and for a given state x(k)
can be evaluated as J = x(k)’ Ai {r } x(k) + Bi {r } x(k) + Ci {r }
where the prime denotes the transpose and r is the index of the active re-
gion, i.e. the region of Pn containing the given state x(k).

Pfinal In this field, the maximum (achieved) feasible set is returned. In general, it
corresponds to the union of all polytopes in Pn.

dynamics A vector which denotes which dynamics is active in which region of Pn.
(Only important for PWA systems.)

details More details about the solution, e.g. total run time.
overlaps Boolean variable denoting whether regions of the controller partition over-

lap.
sysStruct System description in the sysStruct format.
probStruct Problem description in the probStruct format.

Tab. 6.2: Fields of MPT controller objects.

6.3 Functions defined for mptctrl objects

Once the explicit control law is obtained, the corresponding controller object is returned to the
user. The following functions can then be applied:

analyze

Analyzes a given explicit controller and suggests which actions to take in order to improve the
controller.

>> analyze(ctrl)

The controller can be simplified:
ctrl = mpt_simplify(ctrl) will reduce the number of regions .

The closed-loop system may not be invariant:
ctrl = mpt_invariantSet(ctrl) will identify the invariant subset.

isexplicit

Returns true if the controller is an explicit controller.

% compute an explicit controller
>> expc = mpt_control(sysStruct, probStruct);
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% compute an on-line controller
>> onlc = mpt_control(sysStruct, probStruct, ’online’);

>> isexplicit(expc)

ans =

1

>> isexplicit(onlc)

ans =

0

isinvariant

Returns true if a given explicit controller is invariant.

>> isinvariant(ctrl)

ans =

1

isstabilizable

Returns true if a given controller guarantees closed-loop stability.

>> isstabilizable(ctrl)

ans =

1

length

Returns the number of regions over which the explicit control law is defined.

>> length(ctrl)

ans =

25
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plot

Plots regions of the explicit controller.

>> plot(ctrl)

runtime

Returns runtime needed to compute a given explicit controller.

>> runtime(ctrl)

ans =

0.5910

sim

Compute trajectories of the closed-loop system.

>> [X, U, Y] = sim(ctrl, x0, number_of_steps)

The sim command computes trajectories of the closed-loop system subject to a given controller.
For a more detailed description, please see help mptctrl/sim .

simplot

Plot trajectories of the closed-loop system.

>> simplot(ctrl, x0, number_of_steps)

The simplot plots closed-loop trajectories of a given system subject to given control law. For
a more detailed description, please see help mptctrl/simplot .

Evaluation of controllers as functions

In order to obtain a control action associated to a given initial state x0, it is possible to evaluate
the controller object as follows:

>> u = ctrl(x0)

ans =

-0.7801
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6.4 Design of custom MPC problems

This is the coolest feature in the whole history of MPT ! And the credits go Johan Löfberg and
his YALMIP [21]. The function mpt ownmpcallows you to add (almost) arbitrary constraints to
an MPC setup and to define a custom objective functions.

First we explain the general usage of the new function. Design of the custom MPC controllers
is divided into three parts:

1. Design phase. In this part, general constraints and a corresponding cost function are de-
signed

2. Modification phase. In this part, the user is allowed to add custom constraints and/or to
modify the cost function

3. Computation phase. In this part, either an explicit or an on-line controller which respects
user constraints is computed.

Design phase

Aim of this step is to obtain constraints which define a given MPC setup, along with an asso-
ciated cost function, and variables which represent system states, inputs and outputs at vari-
ous prediction steps. In order to obtain said elements for the case of explicit MPC controllers,
call:

>> [CON, OBJ, VARS] = mpt_ownmpc(sysStruct, probStruct)

or, for on-line MPC controllers, call:

>> [CON, OBJ, VARS] = mpt_ownmpc(sysStruct, probStruct, ’o nline’)

Here the variable CONrepresents a set of constraints, OBJ denotes the optimization objective
and VARSis a structure with the fields VARS.x (predicted states), VARS.u (predicted inputs)
and VARS.y (predicted outputs). Each element is given as a cell array, where each element
corresponds to one step of the prediction (i.e. VARS.x1 denotes the initial state x0 , VARS.x2 is
the first predicted state x1 , etc.) If a particular variable is a vector, it can be indexed directly to
refer to a particular element, e.g. VARS.x3(1) refers to the first element of the 2nd predicted
state (i.e. x2 ).

Modification phase

Now you can start modifying the MPC setup by adding your own constraints and/or by modi-
fying the objective. See examples below for more information about this topic.

Note: You should always add constraints on system states (sysStruct.xmin , sysStruct.xmax ),
inputs (sysStruct.umin , sysStruct.umax ) and outputs (sysStruct.ymin , sysStruct.ymax )
if you either design a controller for PWA/MLD systems, or you intend to add logic constraints
later. Not adding the constraints will cause your problem to be very badly scaled, which can
lead to very bad solutions.
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Computation phase

Once you have modified the constraints and/or the objective according to your needs, you can
compute an explicit controller by

>> ctrl = mpt_ownmpc(sysStruct, probStruct, CON, OBJ, VARS )

or an on-line MPC controller by

>> ctrl = mpt_ownmpc(sysStruct, probStruct, CON, OBJ, VARS , ’online’)

Example 6.4.1 (Polytopic constraints 1): Say we would like to introduce polytopic constraints of
the form Hxk ≤ K on each predicted state, including the initial state x0. To do that, we simply
add these constraints to our set CON:

for k = 1:length(VARS.x)
CON = CON + set(H * VARS.x{k} <= K);

end

You can now proceed with the computation phase, which will give you a controller which
respects given constraints.

Example 6.4.2 (Polytopic constraints 2): We now extend the previous example and add the spec-
ification that polytopic constraints should only be applied on the 1st, 3rd and 4th predicted
state, i.e. on x1, x3 and x4. It is important to notice that the variables contained in the VARS
structure are organized in cell arrays, where the first element of VARS.x corresponds to x0, i.e.
to the initial condition. Therefore to meet or specifications, we would write following code:

for k = [1 3 4],
% VARS.x{1} corresponds to x(0)
% VARS.x{2} corresponds to x(1)
% VARS.x{3} corresponds to x(2)
% VARS.x{4} corresponds to x(3)
% VARS.x{5} corresponds to x(4)
% VARS.x{6} corresponds to x(5)
CON = CON + set(H * VARS.x{k+1} <= K);

end

Example 6.4.3 (Move blocking): Say we want to use more complicated move blocking with fol-
lowing properties: u0 = u1, (u1 − u2) = (u2 − u3), and u3 = Kx2. These requirements can be
implemented by

% VARS.u{1} corresponds to u(0)
% VARS.u{2} corresponds to u(1), and so on

% u_0 == u_1
>> CON = CON + set(VARS.u{1} == VARS.u{2});
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% (u_1-u_2) == (u_2-u_3)
>> CON = CON + set((VARS.u{2}-VARS.u{3}) == (VARS.u{3}-VAR S.u{4}));

% u_3 == K* x_2
>> CON = CON + set(VARS.u{4} == K * VARS.x{3});

Example 6.4.4 (Mixed constraints): As illustrated in the move blocking example above, one can
easily create constraints which involve variables at various stages of the prediction. In addition,
it is also possible to add constraints which involve different types of variables. For instance, we
may want to add a constraint that the sum of control inputs and system outputs at each step
must be between certain bounds. This specification can be expressed by:

for k = 1:length(VARS.u)
CON = CON + set(lowerbound < VARS.y{k} + VARS.u{k} < upperbou nd);

end

Example 6.4.5 (Equality constraints): Say we want to add a constraint that the sum of all predicted
control actions along the prediction horizon should be equal to zero. This can easily be done
by

>> CON = CON + set((VARS.u{1}+VARS.u{2}+VARS.u{3}+...+VA RS.u{end}) == 0);

or, in a vector notation:

>> CON = CON + set(sum([VARS.u{:}]) == 0);

Example 6.4.6 (Constraints involving norms): We can extend the previous example and add a
specification that the sum of absolute values of all predicted control actions should be less than
some given bound. To achieve this goal, we can make use of the 1-norm function, which exactly
represents the sum of absolute values of each element:

>> CON = CON + set(norm([V.u{:}], 1) <= bound);

The same can of course be expressed in a more natural form:

>> CON = CON + set(sum(abs([V.u{:}])) <= bound);

Example 6.4.7 (Contraction constraints): The norm-type constraints can be used to define ”con-
traction” constraints, i.e. constraints which force state xk+1 to be closer to the origin (in the
1/Inf-norm sense) than the state xk has been:

for k = 1:length(VARS.x)-1
CON = CON + set(norm(VARS.x{k+1}, 1) <= norm(VARS.x{k}, 1)) ;

end

Note that these types of constraints are not convex and resulting problems will be difficult to
solve (time-wise).
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Example 6.4.8 (Obstacle avoidance): It is a typical requirement of control synthesis to guarantee
that the system states will avoid some set of ”unsafe” states (typically an obstacle or a set of
dangerous operating conditions). You can now solve these kind of problems with MPT if you
add suitable constraints. If you, for instance, want to avoid a polytopic set of states, proceed as
follows:

% first define set of unsafe states
>> Punsafe = polytope(H, K);

% now define the complement of the "usafe" set versus some lar ge box,
% to obtain the set of states which are "safe":
>> Pbox = unitbox(dimension(Punsafe), 100);
>> Psafe = Pbox \ Punsafe;

% now add constraints that each predicted state must be insid e
% of the "safe" set of states
for k = 1:length(VARS.x)

CON = CON + set(ismember(VARS.x{k}, Psafe));
end

Here set(ismember(VARS.xk, Psafe)) will impose a constraint which tells MPT that it
must guarantee that the state xk belongs to at least one polytope of the polytope array Psafe ,
and hence avoiding the ”unsafe” set Punsafe . Notice that this type of constraints requires
binary variables to be introduced, making the optimization problem difficult to solve.

Example 6.4.9 (Logic constraints): Logic constraints in the form of IF-THEN conditions can be
added as well. For example, we may want to require that if the first predicted input u0 is
smaller or equal to zero, then the next input u1 has to be bigger than 0.5:

% if u(0) <= 0 then u(1) must be >= 0.5
>> CON = CON + set(implies(VARS.u{1} <= 0, VARS.u{2} >= 0.5)) ;

Notice that this constraint only acts in one direction, i.e. if u0 ≤ 0 then u1 ≥ 0.5, but it does not
say what should be the value of u1 if u0 > 0.

To add an ”if and only if” constraint, use the iff() operator:

% if u(0) <= 0 then u(1) >= 0.5, and
% if u(0) > 0 then u(1) < 0.5
>> CON = CON + set(iff(VARS.u{1} <= 0, VARS.u{2} >= 0.5));

which will guarantee that if u0 > 0, then the value of u1 will be smaller than 0.5.

Example 6.4.10 (Custom optimization objective): In the last example we show how to define your
own objective functions. Depending on the value of probStruct.norm , the objective can
either be quadratic, or linear. By default, it is defined according to standard MPC theory (see
help mpt probStruct for details).

To write a custom cost function, simply sum up the terms you want to penalize. For instance,
the standard quadratic cost function can be defined by hand as follows:
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OBJ = 0;
for k = 1:length(VARS.u),

% cost for each step is given by x’ * Q* x + u’ * R* u
OBJ = OBJ + VARS.x{k}’ * Q * VARS.x{k};
OBJ = OBJ + VARS.u{k}’ * R * VARS.u{k};

end

% cost for the last predicted state x_N’ * P_N* x_N
OBJ = OBJ + VARS.x{end}’ * P_N * VARS.x{end};

For 1/Inf-norm cost functions, you can use the overloaded norm() operator, e.g.

OBJ = 0;
for k = 1:length(VARS.u),

% cost for each step is given by ||Q * x|| + ||R * u||
OBJ = OBJ + norm(Q * VARS.x{k}, Inf);
OBJ = OBJ + norm(R * VARS.u{k}, Inf;

end

% cost for the last predicted state ||P_N * x_N||
OBJ = OBJ + norm(P_N * VARS.x{end}, Inf);

If you, for example, want to penalize deviations of predicted outputs and inputs from a given
time-varying trajectories, you can do so by defining a cost function as follows:

yref = [4 3 2 1];
uref = [0 0.5 0.1 -0.2]
OBJ = 0;
for k = 1:length(yref)

OBJ = OBJ + (VARS.y{k} - yref(k))’ * Qy * (VARS.y{k} - yref(k));
OBJ = OBJ + (VARS.u{k} - uref(k))’ * R * (VARS.u{k} - uref(k));

end

Example 6.4.11 (Defining new variables): Remember the avoidance example? There we have used
constraints to tell the controller that it should avoid a given set of unsafe states. Let’s now
modify that example a bit. Instead of adding constraints, we will introduce a binary variable
which will take a true value if the system states are inside of a given location. Subsequently
we will add a high penalty on that variable, which will tell the MPC controller that it should
avoid the set if possible.

% first define the set which we want to avoid
>> Pavoid = polytope(H, K);

% define a new scalar binary variable
>> d = binvar(1, 1);
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% now add a constraint which forces "d" to be true if x(0) is
% inside of Pavoid
>> CON = CON + set(implies(ismember(VARS.x{1}, Pavoid), d) )

% penalize "d" heavily
>> OBJ = OBJ + 1000* d

Example 6.4.12 (Removing constraints): When mpt ownmpc constructs the constraints and ob-
jectives, it adds constraints on system states, inputs and outputs, providing they are defined
in respective fields of probStruct . Though one may want to remove certain constraints, for
instance the target set constraints imposed on the last predicted state. To do so, first notice that
each constraint has an associated string tag:

>> Double_Integrator
>> sysStruct.xmax = sysStruct.ymax; sysStruct.xmin = sysS truct.ymin;
>> probStruct.N = 2;
>> [CON, OBJ, VARS] = mpt_ownmpc(sysStruct, probStruct);
>> CON
+++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++++++++++++++
| ID| Constraint| Type| Tag|
+++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++++++++++++++
| #1| Numeric value| Element-wise 2x1| umin < u_1 < umax|
| #2| Numeric value| Element-wise 4x1| xmin < x_1 < xmax|
| #3| Numeric value| Element-wise 4x1| xmin < x_2 < xmax|
| #4| Numeric value| Element-wise 4x1| ymin < y_1 < ymax|
| #5| Numeric value| Equality constraint 2x1| x_2 == A * x_1 + B * u_1|
| #6| Numeric value| Equality constraint 2x1| y_1 == C * x_1 + D* u_1|
| #7| Numeric value| Element-wise 6x1| x_2 in Tset|
| #8| Numeric value| Element-wise 4x1| x_0 in Pbnd|
| #9| Numeric value| Element-wise 2x1| umin < u_0 < umax|
| #10| Numeric value| Element-wise 4x1| xmin < x_0 < xmax|
| #11| Numeric value| Element-wise 4x1| ymin < y_0 < ymax|
| #12| Numeric value| Equality constraint 2x1| x_1 == A * x_0 + B * u_0|
| #13| Numeric value| Equality constraint 2x1| y_0 == C * x_0 + D* u_0|
+++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++++++++++++++

Then to remove certain constraints all you need to do is to substract the constraint you want to
get rid of, identified by its tag. For instance

>> CON = CON - CON(’x_2 in Tset’);
>> CON = CON - CON(’xmin < x_2 < xmax’);
>> CON
+++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++++++++++++++
| ID| Constraint| Type| Tag|
+++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++++++++++++++
| #1| Numeric value| Element-wise 2x1| umin < u_1 < umax|
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| #2| Numeric value| Element-wise 4x1| xmin < x_1 < xmax|
| #3| Numeric value| Element-wise 4x1| ymin < y_1 < ymax|
| #4| Numeric value| Equality constraint 2x1| x_2 == A * x_1 + B * u_1|
| #5| Numeric value| Equality constraint 2x1| y_1 == C * x_1 + D* u_1|
| #6| Numeric value| Element-wise 4x1| x_0 in Pbnd|
| #7| Numeric value| Element-wise 2x1| umin < u_0 < umax|
| #8| Numeric value| Element-wise 4x1| xmin < x_0 < xmax|
| #9| Numeric value| Element-wise 4x1| ymin < y_0 < ymax|
| #10| Numeric value| Equality constraint 2x1| x_1 == A * x_0 + B * u_0|
| #11| Numeric value| Equality constraint 2x1| y_0 == C * x_0 + D* u_0|
+++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++++++++++++++

will remove any state constraints imposed on the last predicted state x 2. Alternativelly, it is
also possible to identify constraints by their index (ID number in the first column of the above
table). For example to remove the constraint on u 0 (constraint number 7 in the list above), one
can do

>> CON = CON - CON(7)
+++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++++++++++++++
| ID| Constraint| Type| Tag|
+++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++++++++++++++
| #1| Numeric value| Element-wise 2x1| umin < u_1 < umax|
| #2| Numeric value| Element-wise 4x1| xmin < x_1 < xmax|
| #3| Numeric value| Element-wise 4x1| ymin < y_1 < ymax|
| #4| Numeric value| Equality constraint 2x1| x_2 == A * x_1 + B * u_1|
| #5| Numeric value| Equality constraint 2x1| y_1 == C * x_1 + D* u_1|
| #6| Numeric value| Element-wise 4x1| x_0 in Pbnd|
| #7| Numeric value| Element-wise 4x1| xmin < x_0 < xmax|
| #8| Numeric value| Element-wise 4x1| ymin < y_0 < ymax|
| #9| Numeric value| Equality constraint 2x1| x_1 == A * x_0 + B * u_0|
| #10| Numeric value| Equality constraint 2x1| y_0 == C * x_0 + D* u_0|
+++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++++++++++++++++

Notice that while the string tags associated to each constraint remain absolute, the relative
position of constraints given by the ID number may change.

6.5 Soft constraints

Since MPT 2.6 it is possible to denote certain constraints as soft. This means that the respective
constraint can be violated, but such a violation is penalized. To soften certain constraints, it is
necessary to define the penalty on violation of such constraints:

• probStruct.Sx - if given as a ”nx” x ”nx” matrix, all state constraints will be treated
as soft constraints, and violation will be penalized by the value of this field.

• probStruct.Su - if given as a ”nu” x ”nu” matrix, all input constraints will be treated
as soft constraints, and violation will be penalized by the value of this field.
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• probStruct.Sy - if given as a ”ny” x ”ny” matrix, all output constraints will be treated
as soft constraints, and violation will be penalized by the value of this field.

In addition, one can also specify the maximum value by which a given constraint can be
exceeded:

• probStruct.sxmax - must be given as a ”nx” x 1 vector, where each element defines
the maximum admissible violation of each state constraints.

• probStruct.sumax - must be given as a ”nu” x 1 vector, where each element defines
the maximum admissible violation of each input constraints.

• probStruct.symax - must be given as a ”ny” x 1 vector, where each element defines
the maximum admissible violation of each output constraints.

The aforementioned fields also allow to tell that only a subset of state, input, or output con-
straint should be treated as soft constraints, while the rest of them remain hard. Say, for instance,
that we have a system with 2 states and we want to soften only the second state constraint.
Then we would write:

>> probStruct.Sx = diag([1 1000])
>> probStruct.sxmax = [0; 10]

Here probStruct.sxmax(1)=0 tells MPT that the first constraint should be treated as a hard
constraint, while we are allowed to exceed the second constraints at most by the value of 10,
while every such violation will be penalized by the value of 1000.

Please note that soft constraints are not available for minimum-time (probStruct.subopt lev=1 )
and low-complexity (probStruct.subopt lev=2 ) strategies.

6.6 Control of time-varying systems

Time-varying system dynamics or systems with time-varying constraints can now be used for
synthesis of optimal controllers. There are couple of limitations, though:

• Number of states, inputs and outputs must remain identical for each system.

• You cannot use time-varying systems in time-optimal (probStruct.subopt lev=1 )
and low-complexity (probStruct.subopt lev=2 ) strategies.

To tell MPT that it should consider a time-varying system, define one system structure for each
step of the prediction, e.g.

>> Double_Integrator
>> S1 = sysStruct;
>> S2 = sysStruct; S2.C = 0.9 * S1.C;
>> S3 = sysStruct; S3.C = 0.8 * S1.C;

Here we have three different models which differ in the C element. Now we can define the
time-varying model as a cell array of system structures by
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>> model = {S1, S2, S3};
>> probStruct.N = 3;

Notice that order of systems in the model variable determines that the system S1 will be used
to make predictions of states x(1) , while the predicted value of x(2) will be determined based
on model S2, and so on. Once the model is defined, you can now compute either the explicit,
or an on-line MPC controller using the standard syntax:

>> explicitcontroller = mpt_control(model, probStruct)
>> onlinecontroller = mpt_control(model, probStruct, ’on line’)

Systems with time-varying constraints can be defined in similar fashion, e.g.

>> Double_Integrator
>> S1 = sysStruct; S1.ymax = [5; 5]; S1.ymin = [-5; -5];
>> S2 = sysStruct; S2.ymax = [4; 4]; S2.ymin = [-4; -4];
>> S3 = sysStruct; S3.ymax = [3; 3]; S3.ymin = [-3; -3];
>> S4 = sysStruct; S4.ymax = [2; 2]; S4.ymin = [-2; -2];
>> probStruct.N = 4;
>> ctrl = mpt_control({S1, S2, S3, S4}, probStruct);

You can go as far as combining different classes of dynamical systems at various stages of the
predictions, for instance you can arbitrary combine linear, Piecewise-Affine (PWA) and Mixed
Logical Dynamical (MLD) systems. For instance you can use a detailed PWA model for the first
prediction, while having a simple LTI model for the rest:

>> pwa_DI; pwa = sysStruct; % PWA model with 4 dynamics
>> Double_Integrator; lti = sysStruct; % simple LTI model
>> probStruct.N = 5;
>> model = {pwa, pwa, lti, lti, lti};
>> ctrl = mpt_control(model, probStruct);

6.7 On-line MPC for nonlinear systems

With MPT 2.6 you can now solve on-line MPC problems based on nonlinear or piecewise
nonlinear systems. In order to define models of such systems, one has to create a special func-
tion based on the mpt nonlinfcn.m template (see for instance the duffing oscillator.m
or pw nonlin.m examples contained in your MPT distribution). Once the describing func-
tion is defined, you can use mpt sys to convert it into format suitable for further computa-
tion:

>> sysStruct = mpt_sys(@function_name)

where function name is the name of the function you have just created. Now you can con-
struct an on-line MPC controller using the standard syntax:
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>> ctrl = mpt_control(sysStruct, probStruct, ’online’);

or

>> [C, O, V] = mpt_ownmpc(sysStruct, probStruct, ’online’) ;
% modify constraints and objective as needed
>> ctrl = mpt_ownmpc((sysStruct, probStruct, C, O, V, ’onli ne’);

After that you can use the controller either in Simulink, or in Matlab-based simulations invoked
either by

>> u = ctrl(x0);

or by

>> [X, U, Y] = sim(ctrl, x0, number_of_simulation_steps)
>> simplot(ctrl, x0, number_of_simulation_steps)

Note: nonlinear problems are very difficult to solve, don’t be surprised! Check the help of
mpt getInput for description of parameters which can affect quality and speed of the nonlin-
ear solvers. Also note that currently only polynomial type of nonlinearities is supported, i.e. no
1/x terms or log/exp functions are allowed. Moreover, don’t even try to use nonlinear models
for things like reachability or stability analysis, it wouldn’t work.

6.8 Move blocking

Move blocking is a popular technique used to decrease complexity of MPC problems. In this
strategy the number of free control moves is usually kept low, while some of the control
moves are assumed to be fixed. To enable move blocking in MPT , define the control hori-
zon in

>> probStruct.Nc = Nc;

where Nc specifies the number of free control moves, and this value should be less than the
prediction horizon probStruct.N . Control moves u0 up to uNc−1 will be then treated as free
control moves, while uNc , . . . , uN−1 will be kept identical to uNc−1, i.e.

u_(Nc-1) == u_Nc == u_(Nc+1) == ... == u_(N-1)

6.9 Problem Structure probStruct

Problem structure probStruct is a structure which states an optimization problem to be
solved by MPT .
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One and Infinity Norm Problems

The optimal control problem with a linear performance index is given by:

min
u(0),...,u(N−1)

||PN x(N)||p +
N−1

∑
k=0

||Ru(k)||p + ||Qx(k)||p

subj. to

x(k + 1) = fdyn(x(k), u(k), w(k))

umin ≤ u(k) ≤ umax

∆umin ≤ u(k) − u(k − 1) ≤ ∆umax

ymin ≤ gdyn(x(k), u(k)) ≤ ymax

x(N) ∈ Tset

where:
u vector of manipulated variables over which the optimization is performed

N prediction horizon
p linear norm, can be 1 or Inf for 1- and Infinity-norm, respectively

Q weighting matrix on the states
R weighting matrix on the manipulated variables

PN weight imposed on the terminal state
umin, umax constraints on the manipulated variable(s)

∆umin, dumax constraints on slew rate of the manipulated variable(s)
ymin, ymax constraints on the system outputs

Tset terminal set

the function fdyn(x(k), u(k), w(k)) is the state-update function and is different for LTI and for
PWA systems (see Section 5.7 for more details).

Quadratic Cost Problems

In case of a performance index based on quadratic forms, the optimal control problem takes
the following form:

min
u(0),...,u(N−1)

x(N)T PNx(N) +
N−1

∑
k=0

u(k)T Ru(k) + x(k)TQx(k)

subj. to

x(k + 1) = fdyn(x(k), u(k), w(k))

umin ≤ u(k) ≤ umax

∆umin ≤ u(k) − u(k − 1) ≤ ∆umax

ymin ≤ gdyn(x(k), u(k)) ≤ ymax

x(N) ∈ Tset

If the problem is formulated for a fixed prediction horizon N, we refer to it as to Constrained
Finite Time Optimal Control (CFTOC) problem. On the other hand, if N is infinity, the Con-
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strained Infinite Time Optimal Control (CITOC) problem is formulated. Objective of the op-
timization is to choose the manipulated variables such that the performance index is mini-
mized.

Mandatory fields of probStruct

In order to specify which problem the user wants to solve, mandatory fields of the problem
structure probStruct are listed in Table 6.3.

probStruct.N prediction horizon
probStruct.Q weights on the states
probStruct.R weights on the inputs
probStruct.norm either 1 or Inf for linear cost, or 2 for quadratic cost objective
probStruct.subopt lev level of optimality

Tab. 6.3: Mandatory fields of the problem structure probStruct .

Level of Optimality

MPT can solve different control strategies:

1. The cost-optimal solution leads to a control law which minimizes a given performance
index. This strategy is enforced by

probStruct.subopt_lev = 0

The cost optimal solution for PWA systems is currently supported only for linear perfor-
mance index, i.e. probStruct.norm = 1 or probStruct.norm = Inf .

2. Another possibility is to use the time-optimal solution, i.e. the control law will push a
given state to an invariant set around the origin as fast as possible. This strategy usually
leads to simpler control laws, i.e. less controller regions are generated. This approach is
enforced by

probStruct.subopt_lev = 1

3. The last option is to use a low-complexity control scheme. This approach aims at con-
structing a one-step solution and subsequent a PWQ or PWA Lyapunov function compu-
tation is performed to verify stability properties. The approach generally results in a small
number of regions and asymptotic stability as well as closed-loop constraint satisfaction
is guaranteed. If you want to use this kind of solution, use:

probStruct.subopt_lev = 2

Optional fields of probStruct

Optional fields are summarized in Table 6.4.
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probStruct.Qy used for output regulation. If provided the additional term
‖Q(y − yre f )‖p is introduced in the cost function and the con-
troller will regulate the output(s) to the given references (usu-
ally zero, or provided by probStruct.yref .

probStruct.tracking 0/1/2 flag
0 – no tracking, resulting controller is a state regulator which
drives all system states (or outputs, if probStruct.Qy is given)
towards origin
1 – tracking with ∆u-formulation. The controller will drive
the system states (or outputs, if probStruct.Qy is given) to
a given reference. The optimization is performed over the dif-
ference of manipulated variables (u(k) − u(k − 1)), which in-
volves an extension of the state vector by nu additional states
where nu is the number of system inputs.
2 – tracking without ∆u-formulation. The same as
probStruct.tracking=1 with the exception that the op-
timization is performed over u(k), i.e. no ∆u-formulation is
used and no state vector extension is needed. Note, however,
that offset-free tracking cannot be guaranteed with this set-
ting.
Default setting is probStruct.tracking = 0 .

probStruct.y0bounds boolean variable (1 means yes, 0 stands for no) denoting
whether or not to impose constraints also on the initial system
output (default is 0)

probStruct.yref instead of driving a state to zero, it is possible to reformulate
the control problem and rather force the output to zero. To
ensure this task, define probStruct.Qy which penalizes the
difference of the actual output and the given reference.

probStruct.P N weight on the terminal state. If not specified, it is assumed
to be zero for quadratic cost objectives, or PN = Q for linear
cost.

probStruct.Nc control horizon. Specifies the number of free control moves in
the optimization problem.

probStruct.Tset a polytope object describing the terminal set. If not provided
and probStruct.norm = 2 , the invariant LQR set around
the origin will be computed automatically to guarantee sta-
bility properties.

probStruct.Tconstraint an integer (0, 1, 2) denoting which stability constraint to ap-
ply. 0 – no terminal constraint, 1 – use LQR terminal set,
2 – use user-provided terminal set constraint. Note that if
probStruct.Tset is given, Tconstraint will be set to 2
automatically.

probStruct.feedback boolean variable, if set to 1, the problem is augmented such
that U = Kx + c where K is a state-feedback gain (typically
an LQR controller) and the optimization aims to identify the
proper offset c. (default is 0)

probStruct.FBgain if the former option is activated, a specific state-feedback gain
matric K can be provided (otherwise an LQR controller will
be computed automatically)

Tab. 6.4: Optional field of the probStruct structure.
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Analysis and Post-Processing

The toolbox offers broad functionality for analysis of hybrid systems and verification of safety
and liveliness properties of explicit control laws. In addition, stability of closed-loop systems
can be verified using different types of Lyapunov functions.

7.1 Reachability Computation

MPT can compute forward N-steps reachable sets for linear and hybrid systems assuming
the system input either belongs to some bounded set of inputs, or when the input is driven by
some given explicit control law.

To compute the set of states which are reachable from a given set of initial conditions X0 in N
steps assuming system input u(k) ∈ U0, one has to call:

R = mpt_reachSets(sysStruct, X0, U0, N);

where sysStruct is the system structure, X0 is a polytope which defines the set of initial
conditions (x(0) ∈ X0), U0 is a polytope which defines the set of admissible inputs and N
is an integer which specifies for how many steps should the reachable set be computed. The
resulting reachable sets R are returned as a polytope array. We illustrate the computation on
the following example:

Example 7.1.1: First we define the dynamical system for which we want to compute reachable
sets

% define matrices of the state-space object
A = [-1 -4; 4 -1]; B = [1; 1]; C = [1 0]; D = 0;
syst = ss(A, B, C, D);
Ts = 0.02;

% create a system structure by discretizing the continous-t ime model
sysStruct = mpt_sys(syst, Ts);

% define system constraints
sysStruct.ymax = 10; sysStruct.ymin = -10;
sysStruct.umax = 1; sysStruct.umin = -1;
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Now we can define a set of initial conditions X0 and a set of admissible inputs U0 as polytope
objects.

% set of initial states
X0 = polytope([0.9 0.1; 0.9 -0.1; 1.1 0.1; 1.1 -0.1]);

% set of admissible inputs
U0 = unitbox(1,0.1); % inputs should be such that |u| <= 0.1

Finally we can compute the reachable sets.

N = 50;
R = mpt_reachSets(sysStruct, X0, U0, N);

% plot the results
plot(X0, ’r’, R, ’g’);

The reachable sets (green) as well as the set of initial conditions (red) are depicted in Figure 7.1.
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Fig. 7.1: Reachable sets for Example 7.1.1.

To compute reachable sets for linear or hybrid systems whose inputs are driven by an explicit
control law, the following syntax can be used:

R = mpt_reachSets(ctrl, X0, N);

where ctrl is the controller object as generated by mpt control , X0 is a polytope which
defines a set of initial conditions (x(0) ∈ X0), and N is an integer which specifies for how many
steps should the reachable set be computed. The resulting reachable sets R are again returned
as polytope array.
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Example 7.1.2: In this example we illustrate the reachability computation on the double integra-
tor example

% load system and problem parameters
Double_Integrator

% compute explicit controller
ctrl = mpt_control(sysStruct, probStruct);

% define the set of initial conditions
X0 = unitbox(2,1) + [3;0];

% compute the 5-Steps reachable set
N = 5;
R = mpt_reachSets(ctrl, X0, N);

% plot results
plot(ctrl.Pn, ’y’, X0, ’r’, R, ’g’);

The reachable sets (green) as well as the set of initial conditions (red) are depicted on top of
the controller regions (yellow) in Figure 7.2.
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Fig. 7.2: Reachable sets for Example 7.1.2.

7.2 Verification

Reachability computation can be directly extended to answer the following question: Do states
of a dynamical system (whose inputs either belong to some set of admissible inputs, or whose in-
puts are driven by an explicit control law) enter some set of “unsafe” states in a given number of
steps?
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Example 7.2.1: In this example we show how to answer the verification question for the first
case, i.e. system inputs belong to some set of admissible inputs (u(k) ∈ U0). Although we use
a linear system here, exactly the same procedure applies to hybrid systems in PWA represen-
tation as well.

% define matrices of the state-space object
A = [-1 -4; 4 -1]; B = [1; 1]; C = [1 0]; D = 0;
syst = ss(A, B, C, D);
Ts = 0.02;

% create a system structure by discretizing the continous-t ime model
sysStruct = mpt_sys(syst, Ts);

% define system constraints
sysStruct.ymax = 10; sysStruct.ymin = -10;
sysStruct.umax = 1; sysStruct.umin = -1;

% define the set of initial condintions as a polytope object
X0 = polytope([0.9 0.1; 0.9 -0.1; 1.1 0.1; 1.1 -0.1]);

% set of admissible inputs as a polytope object
U0 = unitbox(1,0.1); % inputs should be such that |u| <= 0.1

% set of final states (the ‘‘unsafe’’ states)
Xf = unitbox(2,0.1) + [-0.2; -0.2];

% number of steps
N = 50;

% perform verification
[canreach, Nf] = mpt_verify(sysStruct, X0, Xf, N, U0);

If system states can reach the set Xf , canreach will be true, otherwise the function will return
false. In case Xf can be reached, the optional second output argument Nf will return the number
of steps in which Xf can be reached from X0.

Example 7.2.2: It is also possible to answer the verification question if the system inputs are
driven by an explicit control law:

% load dynamical system
Double_Integrator

% compute explicit controller
expc = mpt_control(sysStruct, probStruct);

% define set of initial condintions as a polytope object
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X0 = unitbox(2,1) + [3;0];

% set of final states (the ‘‘unsafe’’ states)
Xf = unitbox(2,0.1) + [-0.2; -0.2];

% number of steps
N = 10;

% perform verification
[canreach, Nf] = mpt_verify(expc, X0, Xf1, N);

7.3 Invariant set computation

For controllers for which no feasibility guarantee can be given a priori, the function
mpt invariantSet can compute an invariant subset of a controller, such that constraints
satisfaction is guaranteed for all time.

ctrl_inv = mpt_invariantSet(ctrl)

7.4 Lyapunov type stability analysis

In terms of stability analysis, MPT offers functions which aim at identifying quadratic, sum-
of-squares, piecewise quadratic, piecewise affine or piecewise polynomial Lyapunov functions.
If such a function is found, it can be used to show stability of the closed-loop systems even in
cases where no such guarantee can be given a priori. To compute a Lyapunov function, one has
to call

ctrl_lyap = mpt_lyapunov(ctrl, lyaptype}

where ctrl is an explicit controller and lyaptype is a string parameter which defines
type of a Lyapunov function to compute. Allowed values of the second parameter are sum-
marized in Table 7.1. Parameters of the Lyapunov function, if one exists, will be stored
in

lyapfunction = ctrl_lyap.details.lyapunov

7.5 Complexity Reduction

MPT also addresses the issue of complexity reduction of resulting explicit control laws. As
mentioned in previous sections, in order to apply an explicit controller to a real plant, a proper
control law has to be identified. This involves checking which region of an explicit controller
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lyaptype Type of Lyapunov function

’quad’ Common quadratic Lyapunov function
’sos’ Common sum-of-squares Lyapunov function
’pwa’ Piecewise affine Lyapunov function
’pwq’ Piecewise quadratic Lyapunov function
’pwp’ Piecewise polynomial Lyapunov function

Tab. 7.1: Allowed values of the functiontype parameter in mpt lyapunov .

contains a given measured state. Although such effort is usually small, it can become prohibitive
for very complex controllers with several thousands or even more regions. MPT therefore al-
lows to reduce this complexity by simplifying the controller partitions over which the control
law is defined. This simplification is performed by merging regions which contain the same ex-
pression of the control law. By doing so, the number of regions is greatly reduced, while main-
taining the same performance as the original controller. Results of the merging procedure for a
sample explicit controller of a hybrid system is depicted in Figure 7.3.
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(a) Regions of an explicit controller before simplification
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(b) Regions of an explicit controller after simplification
(39 regions).

Fig. 7.3: Region merging results.

To simplify the representation of a given explicit controller by merging regions which contain
the same control law, one has to call:

ctrl_simple = mpt_simplify(ctrl)

If the function is called as indicated above, a heuristical merging will be used. It is also possible
to use optimal merging based on boolean minimization:

ctrl_simple = mpt_simplify(ctrl, ’optimal’)

Note, however, that the optimal merging can be prohibitive for dimensions above
2.
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Implementation of Control Law

8.1 Algorithm

The control law obtained as a result of mpt control is stored in a respective controller object
mptctrl (see Section 6.2 for more details). The explicit controller takes the form a of Piecewise
Affine control law where the actual control action is given by

U(k) = Kx(k) + Fr
i x(k) + Gr

i (8.1)

where the superindex r denotes the active region, i.e. the region which contains the
given state x(k). If the solution was obtained with feedback pre-stabilization enabled
(probStruct.feedback=1 ) K is the feedback gain (either user-provided or computed
and stored in ctrl.probStruct.FBgain ). K will be zero if pre-stabilization was not re-
quested.

In the controller structure, matrices Fi and Gi are stored as cell arrays, i.e.

ctrl.Fi = { Fi{1} Fi{2} ... Fi{n} }
ctrl.Gi = { Gi{1} Gi{2} ... Gi{n} }

Regions of the state-space where each affine control (8.1) is active are stored as a polytope array
in the following field:

ctrl.Pn = [ Pn(1) Pn(2) ... Pn(n)]

Moreover, expression of the value function is stored in

ctrl.Ai = { Ai{1} Ai{2} ... Ai{n} }
ctrl.Bi = { Bi{1} Bi{2} ... Bi{n} }
ctrl.Ci = { Ci{1} Ci{2} ... Ci{n} }

Cost associated to a given state x(k) can therefore easily be obtained by simply evaluating the
cost expression, which is defined by

J = x(k)T Ar
i x(k) + Br

i x(k) + Cr
i (8.2)
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The procedure to obtain the control action for a given state x(k) therefore reduces to a simple
membership-test. First, index of the active region r has to be identified. Since the polyhedral
partition is a polytope object, the function isinside will return indices of regions which con-
tain the given state x(k). Since certain types of optimization problems naturally generate over-
lapped regions, the active region corresponds to the region in which the cost expression (8.2) is
minimal. Once the active region is identified, the control action is calculated according to (8.1)
and can be applied to the system.

If the optimal control problem was solved for a fixed prediction horizon N, evalua-
tion (8.1) gives a vector of control moves which minimize the given performance criterion,
i.e.

U , [u(0)Tu(1)T...u(N)T]T (8.3)

When applying the obtained control law in the closed-loop, only the first input u(0) is extracted
from the sequence U and is applied to the system. This policy is refereed to as the Receding
Horizon Policy.

The algorithm to identify the active control law is summarized below:

Algorithm 8.1.1: getInput(x0, Pn, Fi, Gi, Ai, Bi, Ci)

Input: Polyhedral partition Pn, PWA control law Fi, Gi, matrices of the cost expression Ai, Bi, Ci.

Output: Optimal control action U associated to a given state, Index of the active region r

1. Identify regions of Pn which contain the point x0. Denote array of of the associated regions
by R.

2. IF R = ∅, return ERROR - No associated control law found.

3. Set J = ∅

4. FOR each element of R DO

a) J = xT
0 Ar

i x0 + Br
i x0 + Ci

b) Add the ordered pair {J, r} to J

5. END FOR

6. Identify the minimal cost from the set of ordered pairs J .

7. Extract from J the region r associated to the minimal cost

8. Compute the optimal input sequence U = Kx0 + Fr
i x0 + Gi (K will be zero unless feedback

pre-stabilization enabled.

9. Return U, r

8.2 Implementation

The Algorithm 8.1.1 is implemented by the function mpt getInput . Syntax of the function is
the following

[U, feasible, region, cost] = mpt_getInput(ctrl, x0)
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U Feedback control law obtained by (8.1)
feasible Boolean variable (0/1) denoting whether there is at least one region which

contains the point x0 in it’s interior
region Index of the active region in ctrl.Pn
cost Cost associated to the given state x0
ctrl Controller structure
x0 State vector
Options Additional optional arguments

Tab. 8.1: Input and output arguments of mpt getInput .

[U, feasible, region, cost] = mpt_getInput(ctrl, x0, Optio ns)

where the input and arguments are described in Table 8.1

The function returns the optimizer U associated to a region in which the cost expression (8.2)
is minimal. If there is no region associated to a given state x0, the variable feasible will be
set to 0 (zero).

Unless specified otherwise, the function mpt getInput returns only the first element of the
sequence U (8.3), i.e. U = u(0) , which can be directly applied to the system to obtain the
successor state x(k + 1). If the user wants to return the full sequence U, Options.openloop
has to be set to 1.

The above described function (mpt getInput ) processes the controller structure as an input
argument. If, for any reason, the solution to a given multi-parametric program was obtained
by a direct call to mpt mpLPor mpt mpQP, the function

[U, feasible, region]=mpt_getOptimizer(Pn, Fi, Gi, x0, Op tions)

can be used to extract the sequence of arguments which minimize the given performance
criterion. Note that unlike Algorithm 8.1.1, mpt getOptimizer does not take into account
overlaps. This is due to the fact that overlapping regions are not (usually) not generated by
mpLP and mpQP algorithms which are implemented in MPT .

The function sim calculates the open-loop or closed-loop state evolution from a given initial
state x0. In each time step, the optimal control action is calculated according to Algorithm 8.1.1
by calling mpt getInput . Subsequently, the obtained control move is applied to the system to
obtain the successor state x(k + 1). The evolution is terminated once the state trajectory reaches
the origin. Because of numerical issues, a small box centered at origin is constructed an the evo-
lution is stopped as soon as all states enter this small box. Size of the box can be specified by the
user. For tracking problems, the evolution is terminated when all states reach their respective
reference signals. Validation of input and output constraints is performed automatically and
the user is provided with a textual output if the bounds are exceeded.

General syntax is the following:

[X,U,Y]=sim(ctrl,x0)
[X,U,Y]=sim(ctrl,x0,N)
[X,U,Y]=sim(ctrl,x0,N,Options)
[X,U,Y,cost,feasible]=sim(ctrl,x0,N)
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X Matrix containing evolution of the system states, i.e. X = [x(0)x(1)...x(n +
1)]T

U Matrix containing the control actions applied at each time step, i.e. U =
[u(0)u(1)...u(n)]T

Y Matrix containing the evolution of system outputs, i.e. Y =
[y(0)y(1)...y(n)]T

cost Overall cost obtained as a sum of (8.2).
feasible Boolean variable (0/1) denoting whether there is at least one region which

contains the point x0 in it’s interior
ctrl Controller object
x0 Initial conditions
N Number of steps for which the evolution should be computed.
Options Additional optional arguments

Tab. 8.2: Input and output arguments of the sim function.

[X,U,Y,cost,feasible]=sim(ctrl,x0,N,Options)

where the input and output arguments are summarized in Table 8.2. Note: If the third argument is an empty
matrix (N = [] ), the evolution will be automatically stopped when system states (or system outputs) reach a given
reference point with a pre-defined tolerance.

The trajectories can be visualized using the simplot function:

simplot(ctrl)
simplot(ctrl, x0)
simplot(ctrl, x0, N)

If x0 is not provided and the controller partition is in R2, you will be able to specify the initial state just by clicking
on the controller partition.

Using different dynamical system in sim and simplot

It is possible to specify your own dynamical system to use for simulations. In such case control actions ob-
tained by a given controller can be applied to a different system than that which was used for computing the
controller:

sim(ctrl, system, x0, N, Options)
simplot(ctrl, system, x0, N, Options)

Note that the N and Options arguments are optional. You can specify your own dynamics in two
ways:

1. By setting the system parameter to a system structure, i.e.

sim(ctrl, sysStruct, x0, N, Options)

2. By setting the system parameter to a handle of a function which will provide updates of system states in a
discrete-time fashion:

sim(ctrl, @sim_function, x0, N, Options)

Take a look at help di sim fun on how to write simulation functions compatible with this function.
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8.3 Simulink library

MPT Simulink library can be accessed by starting

>> mpt_sim

on Matlab command prompt. By this time the library offers 3 blocks:

The MPT Controller block supplies (sub)optimal control action as a function of measured state. Auxiliary
state/output references can be provided for tracking controllers (probStruct.tracking = 1|2 . If the con-
troller is an explicit one, it is possible to directly compile a Simulink model which includes one or more of the MPT
Controller blocks using the Real Time Workshop.

The Dynamical System block serves for simulations of constrained linear and hybrid systems described by
means of MPT sysStruct structures. The user must specify initial values of the state vector in a dialog
box.

The In polytope block returns true if a input point lies inside of a given polytope, false otherwise. If the polytope
variable denotes a polytope array, the output of this block will be the index of a region which contains a given
point. If no such region exists, 0 (zero) will be returned.

8.4 Export of controllers to C-code

It is possible to export explicit controllers to standalone code using

mpt_exportc(ctrl)
mpt_exportc(ctrl, filename)

If the function is called with only one input argument, a file called mpt getInput.h will be created in the working
directory. It is possible to change the filename by providing second input argument to mpt exportc . The header
file is then compiled along with mpt getInput.c and your target application. For more information, see the demo
in mpt/examples/ccode/mpt example.c :

% generate an explicit controller using ’mpt_control’
>> Double_Integrator
>> controller = mpt_control(sysStruct, probStruct);

% export the explicit controller to C-code
>> mpt_exportc(controller);

% compile the example
>> !gcc mpt_example.c -o mpt_example

8.5 Export of search trees to C-code

If a binary search tree was calculated for a given controller by calling mpt searchTree , it is possible to export
such tree into a standalone C-file by calling

>> mpt_exportST(ctrl, filename)

where the filename argument specifies the name of the file which should be created. The controller ctrl used in
this example must have the search tree stored inside. If it does not, use the mpt searchTree function to calculate
it first:

>> ctrl = mpt_searchTree(ctrl);
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Visualization

MPT provides various functionality for visualization of polytopes, polyhedral partitions, control laws, value func-
tions, general PWA and PWQ functions defined over polyhedral partitions. Part of the functions operate directly
on the resulting controller object ctrl obtained by mpt control , while the other functions accept more general
input arguments. Please consult help files of individual functions for more details.

9.1 Plotting of polyhedral partitions

Explicit solution to a optimal control problem results in a PWA control law which is defined over regions of
polyhedral partition. If the solution was obtained by a call to mpt control , it is returned back in the form of
the controller object ctrl , which encompasses the polyhedral partition over which the control law is defined (see
Section 6.2 for more details). The polyhedral partition ctrl.Pn is a polytope object and can therefore be plotted
using the overloaded plot function. However, MPT provides also more sophisticated plotting method, where,
depending on the type of the solution, regions are depicted in approapriate colors which helps to understand
behavior of the controller. This kind of plots is obtained by a call to

plot(ctrl)

i.e. the plot function is overloaded to accept mptctrl objects directly.

If ctrl contains a solution to Constrained Infinite Time Optimal Control Problem, or to Constrained Time Optimal
Control Problem, the regions are depicted in a red-green shading. Generally speaking, red regions are close to
the origin, while the more green color the region contains, the more steps will be needed to reach the desired
origin.

9.2 Visualization of closed-loop and open-loop trajectori es

Once the explicit solution to a given optimal control problem is obtained, the resulting control law can be applied to
the original dynamical system. MPT provides several functions for a user-friendly way of visualizing the state tra-
jectories which are subject to control. As mentioned already in Chapter 8, the PWA feedback law which corresponds
to a given state x(k) has to be isolated and evaluated in order to obtain the successor state x(k + 1). Moreover, when
applying the RHC strategy, this procedure has to be repeated at each time instance. The function sim described in
Section 8.2 can be used to perform this repeated evaluation, and subsequently returns evolution of state, input and
output trajectories assuming the initial state x(0) was provided. To visualize the computed trajectories, following
command can be used:

simplot(ctrl)

which allows to pick up the initial state x(0) by a mouse click, providing the controller object represents an ex-
plicit controller and dimension of the associated polyhedral partition is equal to 2. Subsequently, state trajectory is
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calculated on plotted on top of the polyhedral partition over which the control law is defined. If the solution was
obtained for a tracking problem, the user is first prompted to choose the reference point, again by a mouse click.
Afterwards, the initial state x(0) has to be selected. Finally, evolution of states is plotted again versus the polyhedral
partition.

If the same command is used with additional input arguments, e.g.

simplot(ctrl, x0, horizon)

then the computed trajectories are visualized with respect to time. The system is not limited in dimension or number
of manipulated variables. Unlike the point-and-click interface, the initial point x(0) has to be provided by the user.
In addition, the maximal number of steps can be specified in horizon . If this variable is missing, or set to an
empty matrix, the evolution will continue until origin (or the reference point for tracking problems) is reached.
Additional optional argument Options can be provided to specify additional requirements. Similarly as described
by Section 8.2, also the simplot function allows the user to use different system dynamics when calculating the
system evolution. Check the help description of mptctrl/simplot for more details.

9.3 Visualization of general PWA and PWQ functions

A Piecewise affine function is defined by

f (x) = Lrx + Cr if x ∈ Pr
n (9.1)

where the superindex r indicates that the expression for the function is different in every region r of a polyhedral
partition Pn.

Piecewise Quadratic functions can be described as follows

f (x) = xT Mrx + Lrx + Cr if x ∈ Pr
n (9.2)

Again, expression for the cost varies in different regions of the polyhedral set Pn.

MPT allows you to visualize both aforementioned types of functions.

The command

mpt_plotPWA(Pn, L, C)

plots the PWA function (9.1) defined over the polyhedral partition Pn. Typical application of this function is to
visualize the control law and value function obtained as a solution to a given optimal control problem. For the first
case (visualization of control action), one would type:

mpt_plotPWA(ctrl.Pn, ctrl.Fi, ctrl.Gi)

since the control law is affine over each polytope of ctrl.Pn .

Note: The function supports 2-D partitions only.

To visualize the value function, one simply calls

mpt_plotPWA(ctrl.Pn, ctrl.Bi, ctrl.Ci)

to get the desired result. The same limitation applies also in this case.

Piecewise quadratic functions defined by (9.2) can be plotted by function

mpt_plotPWQ(Pn, Q, L, C, meshgridpoints)
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Inputs are the polytope array Pn, cell arays Q, L and C. When plotting a PWQ function, the space covered by Pn
has to be divided into a mesh grid. The fourth input argument (meshgridpoints ) states into how many points
should each axis of the space of interest be divided. Default value for this parameter is 30. Note that dimension of
Pn has to be at most 2.

MPT provides a ”shortcut” function to plot value of the control action with respect to the polyhedral partition
directly, without the need to pass each input (Pn, L, C ) separately:

mpt_plotU(ctrl)

If the function is called with a valid controller object, value of the control action in each region will be de-
picted. If the polyhedral partition Pn contains overlapping regions, the user will be prompted to use the ap-
propriate reduction scheme (mpt removeOverlaps ) first to get a proper result. See help mpt plotU for more
details.

Similarly, values of the cost function associated to a given explicit controller can be plotted by

mpt_plotJ(ctrl)

Also in this case the partition is assumed to contain no overlaps. See help mpt plotJ for more details and list of
available options.



10

Examples

In order to obtain a feedback controller, it is necessary to specify both a system as well as the problem. We
demonstrate the procedure on a simple second-order double integrator, with bounded input |u| ≤ 1 and output
||y(k)||∞ ≤ 5:

Example 10.0.1:

>> sysStruct.A=[1 1; 0 1]; % x(k+1)=Ax(k)+Bu(k)
>> sysStruct.B=[0 1]; % x(k+1)=Ax(k)+Bu(k)
>> sysStruct.C=[1 0; 0 1]; % y(k)=Cx(k)+Du(k)
>> sysStruct.D=[0;0]; % y(k)=Cx(k)+Du(k)

>> sysStruct.umin=-1; % Input constraints umin<=u(k)
>> sysStruct.umax=1; % Input constraints u(k)<=umax
>> sysStruct.ymin=[-5 -5]’; % Output constraints ymin<=y( k)
>> sysStruct.ymax=[5 5]’; % Output constraints y(k)<=ymax
>> sysStruct.xmin = [-5; -5]; % State constraints x(k)>=xmi n
>> sysStruct.xmax = [5; 5]; % State constraints x(k)<=xmax

For this system we will now formulate the problem with quadratic cost objective in (3.12) and a prediction horizon
of N = 5:

>> probStruct.norm=2; %Quadratic Objective
>> probStruct.Q=eye(2); %Objective: min_U J=sum x’Qx + u’R u...
>> probStruct.R=1; %Objective: min_U J=sum x’Qx + u’Ru...
>> probStruct.N=5; %...over the prediction horizon 5
>> probStruct.subopt_lev=0; %Compute optimal solution, n ot low complexity.

If we now call

>> ctrl=mpt_control(sysStruct,probStruct); %Compute fe edback controller
>> plot(ctrl)

the controller for the given problem is returned and plotted (see Figure 10.1(a)), i.e., if the state x ∈ PA(i), then the
optimal input for prediction horizon N = 5 is given by u = Fiix + Gii. If we wish to compute a low complexity
solution, we can run the following:

>> probStruct.subopt_lev=2; % Compute low complexity solu tion.
>> probStruct.N = 1; % Use short prediction horizon
>> ctrl = mpt_control(sysStruct,probStruct);
>> plot(ctrl) % Plot the controller partition
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(a) The N = 5 step optimal feed-
back solution.
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(b) The iterative low complexity
solution for the double integrator.
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(c) Lyapunov function for the low
complexity solution.

Fig. 10.1: Results obtained for Example 10.0.1.

>> Q = ctrl.details.lyapunov.Q;
>> L = ctrl.details.lyapunov.L;
>> C = ctrl.details.lyapunov.C;
>> mpt_plotPWQ(ctrl.finalPn,Q,L,C); % Plot the Lyapunov F unction

The resulting partition and Lyapunov function is depicted in Figures 10.1(b) and 10.1(c) respectively. In the following
we will solve the PWA problem introduced in [23] by defining two different dynamics which are defined in the left-
and right half-plane of the state space respectively.

Example 10.0.2:

>> H=[-1 1; -3 -1; 0.2 1; -1 0; 1 0; 0 -1]; %Polytopic state const raints Hx(k)<=K
>> K=[ 15; 25; 9; 6; 8; 10]; %Polytopic state constraints Hx(k )<=K

>> sysStruct.C{1} = [1 0]; %System Dynamics 1: y(k)=Cx(k)+D u(k)+g
>> sysStruct.D{1} = 0; %System Dynamics 1: y(k)=Cx(k)+Du(k )+g
>> sysStruct.g{1} = [0]; %System Dynamics 1: y(k)=Cx(k)+Du (k)+g
>> sysStruct.A{1} = [0.5 0.2; 0 1]; %System Dynamics 1: x(k+1 )=Ax(k)+Bu(k)+f
>> sysStruct.B{1} = [0; 1]; %System Dynamics 1: x(k+1)=Ax(k )+Bu(k)+f
>> sysStruct.f{1} = [0.5; 0]; %System Dynamics 1: x(k+1)=Ax (k)+Bu(k)+f
>> sysStruct.guardX{1} = [1 0; H]; %Dynamics 1 defined in gua rdX * x <= guardC
>> sysStruct.guardC{1} = [ 1; K]; %Dynamics 1 defined in guar dX* x <= guardC

>> sysStruct.C{2} = [1 0]; %System Dynamics 2: y(k)=Cx(k)+D u(k)+g
>> sysStruct.D{2} = 0; %System Dynamics 2: y(k)=Cx(k)+Du(k )+g
>> sysStruct.g{2} = [0]; %System Dynamics 2: y(k)=Cx(k)+Du (k)+g
>> sysStruct.A{2} = [0.5 0.2; 0 1]; %System Dynamics 2: x(k+1 )=Ax(k)+Bu(k)+f
>> sysStruct.B{2} = [0; 1]; %System Dynamics 2: x(k+1)=Ax(k )+Bu(k)+f
>> sysStruct.f{2} = [0.5; 0]; %System Dynamics 2: x(k+1)=Ax (k)+Bu(k)+f
>> sysStruct.guardX{2} = [-1 0; H]; %Dynamics 2 defined in gu ardX * x <= guardC
>> sysStruct.guardC{2} = [ -1; K]; %Dynamics 2 defined in gua rdX * x <= guardC

>> sysStruct.ymin = -10; %Output constraints for dynamic 1 a nd 2
>> sysStruct.ymax = 10; %Output constraints for dynamic 1 an d 2
>> sysStruct.umin = -1; %Input constraints for dynamic 1 and 2
>> sysStruct.umax = 1; %Input constraints for dynamic 1 and 2

we can now compute the low complexity feedback controller by defining the problem
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>> probStruct.norm=2; %Quadratic Objective
>> probStruct.Q=eye(2); %Objective: min_U J=sum x’Qx + u’R u...
>> probStruct.R=0.1; %Objective: min_U J=sum x’Qx + u’Ru.. .
>> probStruct.subopt_lev=1; %Compute low complexity cont roller.

and calling the control function,

>> ctrl=mpt_control(sysStruct,probStruct);
>> plot(ctrl)

The result is depicted in Figure 10.2.
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Fig. 10.2: Controller partition obtained for Example 10.0.2.

For more examples we recommend to look at the demos which can be found in respective subdirectories of the
mpt/examples directory of your MPT installation.
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Polytope Library

As already mentioned in Section 3.1, a polytope is a convex bounded set which can be represented either as an
intersection of a finite number of half-spaces (H-representation) or as a convex hull of vertices (V-representation).
Both ways of defining a polytope are allowed in MPT and you can switch from one representation to the other
one. However, by default all polytopes are generated in H-representation only to avoid unnecessary computa-
tion.

11.1 Creating a polytope

A polytope in MPT is created by a call to the polytope constructor as follows:

P = polytope(H,K)

creates a polytope by providing it’s H-representation, i.e. the matrices H and K which form the polytope P = {x ∈
Rn | Hx ≤ K}. If input matrices define some redundant constraints, these will be automatically removed to form a
minimal representation of the polytope. In addition, center and diameter of the largest ball which can be inscribed
into the polytope are computed as well and the H-representation is normalized to avoid numerical problems. The
constructor then returns a polytope object.

Polytope can also be defined by it’s vertices as follows:

P = polytope(V)

where V is a matrix which contains vertices of the polytope in the following format:

V =







v1,1 . . . v1,n
...

...
...

vk,1 . . . vk,n






(11.1)

where k is the total number of vertices and n is the dimension. Hence vertices are stored row-wise. Before the
polytope object is created, V-representation is first converted to half-space description by eliminating all points from
V which are not extreme points. Convex hull of the remaining points is then computed to obtain the corresponding
H-representation. Extreme points will be stored in the polytope object and can be returned upon request without
additional computational effort.

11.2 Accessing data stored in a polytope object

Each polytope object is internally represented as a structure, but because of the Object-Oriented approach, this
information cannot be directly obtained by using structure deferencing through the . (dot) operator. Special functions
have to be called in order to retrieve individual fields.
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H, K H-representation of the polytope
xCheb, RCheb Center and radius of Chebyshev’s ball (largest ball inscribed in the polytope
normal Flag whether the H-representation is normalized (1/0)
minrep Flag whether the H-representation is reduced (1/0)
Vertices Extreme points (V-representation) of the polytope (may be empty)

Tab. 11.1: Data stored in thepolytope object.

Fields of the polytope structure are summarized it Table 11.2.

In order to access the H-representation (matrices H and K), one has to use the command double as fol-
lows:

[H,K] = double(P)

to store matrices H and K individually, or alternatively:

HK = double(P)

which returns a matrix HK = [H K].

Center and radius of Chebyshev’s ball can be obtined by:

[xCheb, RCheb] = chebyball(P)

If polytope is in normalized representation, call to

flag = isnormal(P)

will return 1, 0 otherwise.

The command

flag = isminrep(P)

return 1 if polytope P is in minimal representation (i.e. the H-representation contains no redundant hyperplanes),
0 otherwise.

The polytope is bounded if

flag = isbounded(P)

returns 1 as the output.

Dimension of a polytope can be obtained by

d = dimension(P)

and

nc = nconstr(P)

will return number of constraints (i.e. number of half-spaces) defining the given polytope P.

Vertex representation of a polytope can be obtained by:
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V = extreme(P)

which returns vertices stored row-vise in the matrix V. As enumeration of extreme vertices is an expensive operation,
the computed vertices can be stored in the polytope object. To do it, we always recommend to call the function as
follows:

[V,R,P] = extreme(P)

which returns extreme points V, extreme rays R and the update polytope object with vertices stored inside
(P).

To check if a given point x lies in a polytope P, use the following call:

flag = isinside(P,x)

The function returns 1 if x ∈ P, 0 otherwise. If P is a polyarray (see Section 11.3 for more details about polyarrays),
the function call can be extended to provide additional information:

[flag, inwhich, closest] = isinside(P,x)

which returns a 1/0 flag which denotes if the given point x belongs to any polytope of a polyarray P. If the given
point lies in more than one polytope, inwhich contains indexes of the regions which contain x . If there is no such
region, index of a region which is closest to the given point x is returned in closest .

Functions mentioned in this chapter are summarized in Table 11.2.

P=polytope(H,K) Constructor for creating the polytope P = {x ∈ Rn | Hx ≤ K}.
P=polytope(V) Constructor for creating the polytope out of extreme points
double(P) Access internal data of the polytope, e.g. [H,K]=double(P) .
display(P) Displays details about the polytope P.
nx=dimension(P) Returns dimension of a given polytope P
nc=nconstr(P) For a polytope P = {x ∈ Rn | Hx ≤ K} returns number of

constraints of the H matrix (i.e. number of rows).
[ , ] Horizontal concatenation of polytopes into an array,

e.g. PA=[P1,P2,P3] .
( ) Subscripting operator for polytope arrays,

e.g. PA(i) returns the i-th polytope in PA.
length(PA) Returns number of elements in a polytope array PA.
end In indexing functions returns the final element of an array.
[c,r]=chebyball(P) Returns center c and radius r of the Chebychev ball inside P.
V=extreme(P) Computes extreme points (vertices) of a polytope P.
bool=isfulldim(P) Checks if polytope P is full dimensional.
bool=isinside(P,x) Checks if x ∈ P. Works also for polytope arrays.

Tab. 11.2: Functions defined for class polytope .

11.3 Polytope arrays

polytope objects can be concatenated into arrays. Currently, only one-dimensional arrays are supported by
MPT and it does not matter if the elements are stored row-wise or column-wise. Polytope array (or polyarray ),
is created using standard Matlab concatenation operators [,] , e.g. A = [B C D] .
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It does not matter whether the concatenated elements are single polytopes or polyarrays. To illustrate this, assume
we’ve defined polytopes P1, P2, P3, P4, P5 and polyarrays A = [P1 P2] and B = [P3 P4 P5] . Then the
following polyarrays Mand N are equivalent:

M = [A B]
N = [P1 P2 P3 P4 P5]

Individual elements of a polyarray can be obtained using the standard referencing (i) operator, i.e.

P = M(2)

will return the second element of the polyarray Mwhich is equal to P2 in this case. More complicated expressions
can be used for referencing:

Q = M([1,3:5])

will return a polyarray Qwhich contains first, third, fourth and fifth element of polyarray M.

If you want to remove some element from a polyarray, use the referencing command as follows:

M(2) = []

which will remove the second element from the polyarray M. Again, multiple indices can be specified,
e.g.

M([1 3]) = []

will erase first and third element of the given polyarray.

Important:If some element of a polyarray is deleted, the remaining elements are shifted towards the start of the
polyarray! This means that, assuming N = [P1 P2 P3 P4 P5] , after

N([1 3]) = []

the polyarray N = [P2 P4 P5] and the length of the array is 3. No empty positions in a polyarray are allowed!
Similarly, empty polytopes are not being added to a polyarray.

A polyarray is still a polytope object, hence all functions which work on polytopes support also polyarrays. This
is an important feature mainly in the geometric functions.

Length of a given polyarray is obtained by

l = length(N)

A polyarray can be flipped by the following command:

Nf = fliplr(N)

i.e. if N = [P1 P2 P3 P4 P5] then Nf = [P5 P4 P3 P2 P1] .
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P == Q Check if two polytopes are equal (P = Q).
P ∼= Q Check if two polytopes are not-equal (P 6= Q).
P >= Q Check if P ⊇ Q.
P <= Q Check if P ⊆ Q.
P > Q Check if P ⊃ Q.
P < Q Check if P ⊂ Q.
P & Q Intersection of two polytopes, P ∩ Q.
P | Q Union of two polytopes, P ∪ Q. If the union is convex, the polytope

P ∪ Q is returned, otherwise the polyarray [P Q] is returned.
P + Q Minkowski sum, P ⊕ Q.
P - Q Pontryagin difference, P ⊖ Q.
P \ Q Set difference operator.
B=bounding box(P) Computes minimal hyper-rectangle containing a polytope P.
E=envelope(P,Q) Computes envelope E of two polytopes P and Q.
P=range(Q,A,f) Affine transformation of a polytope.

P = {Ax + f ∈ Rn | x ∈ Q}
P=domain(Q,A,f) Compute polytope that is mapped to Q.

P = {x ∈ Rn | Ax + f ∈ Q}
R=projection(P,dim) Orthogonal projection of P onto coordinates given in dim

Tab. 11.3: Computational geometry functions

11.4 Geometric operations on polytopes

The polytope library of MPT can efficiently perform many geometric manipulations on polytopes and polyarrays
(non-convex unions of polytopes). Theoretical description of some basic operations has been already described in
Section 3.1. List of computational geometry functions is provided in Table 11.3.

Except of bounding box , all other functions are implemented to take polytopes and/or polyarrays as input argu-
ments. We recommend to consult help files for respective functions for more details about extended function calls
and other details.

The following examples show how to use some of the functionality described in Table 11.3:

Example 11.4.1:

>> P=polytope([eye(2);-eye(2)],[1 1 1 1]’); %Create Polyt ope P
>> [r,c]=chebyball(P) %Chebychev ball inside P

r=[0 0]’
c=1

>> W=polytope([eye(2);-eye(2)],0.1 * [1 1 1 1]’); %Create Polytope W
>> DIF=P-W; %Pontryagin difference P-W
>> ADD=P+W; %Minkowski addition P+W
>> plot(ADD, P, DIF, W); %Plot polytope array

The resulting plot is depicted in Figure 11.1. When a polytope object is created, the constructor automatically
normalizes its representation and removes all redundant constraints. Note that all elements of the polytope class
are private and can only be accessed as described in the tables. Furthermore, all information on a polytope is
stored in the internal polytope structure. In this way unnecessary repetitions of the computations during polytopic
manipulations in the future can be avoided.

Example 11.4.2:



11 Polytope Library 75

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 11.1: The result of the plot call in Example 11.4.1

>> P=unitbox(2, 1); %Create Polytope P as a box in 2D with side s of size 1
>> Q=unitbox(2, 0.1); %Create Polytope Q as a box in 2D with si des of size 0.1
>> D=P\Q; %Compute set difference between P and Q
>> length(D) %D is a polytope array with 4 elements

ans=4
>> U=D|Q; %Compute union of D and Q
>> length(U) %Union is again a polytope

ans=1
>> U==P %Check if two polytopes are equal

ans=1
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(a) The sets P and Q in Example 11.4.2.
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(b) The sets P \ Q in Example 11.4.2.

The polytopes P and Q are depicted in Figure 11.4. The following will illustrate the hull and extreme func-
tions.

Example 11.4.3:

>> P=polytope([eye(2);-eye(2)],[0 1 1 1]’); %Create Polyt ope P
>> Q=polytope([eye(2);-eye(2)],[1 1 0 1]’); %Create Polyt ope Q
>> VP=extreme(P); %Compute extreme vertices of P
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>> VQ=extreme(Q); %Compute extreme vertices of P
>> D1=hull([P Q]); %Create convex Hull of P and Q
>> D2=hull([VP;VQ]); %Create convex Hull of vertices VP and VQ
>> D1==D2 %Check if hulls are equal

ans=1

The hull function is overloaded such that it takes both elements of the polytope class as well as matrices of
points as input arguments.
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