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Abstract We compute multi-gluon production in the Color Glass Condensate approach in dilute-dense collisions, pA,
extending previous calculations up to four gluons. We include the contributions that are leading in the overlap area of the
collision but keep all orders in the expansion in the number of colors. We develop a diagrammatic technique to write the
numerous color contractions and exploit the symmetries to group the diagrams and simplify the expressions. To proceed further,
we use the McLerran–Venugopalan and Golec–Biernat–Wüsthoff models for the projectile and target averages, respectively.
We use a form of the Lipatov vertices that leads to the Wigner function approach for the projectile previously employed,
that we generalise to take into account quantum correlations in the projectile wave function. We provide analytic expressions
for integrated and differential two gluon cumulants and show a smooth dependence on the parameters defining the projectile
and target Wigner function and dipole, respectively. For four gluon correlations we find that the second order four particle
cumulant is negative, so a sensible second Fourier azimuthal coefficient can be defined. The effect of correlations in the
projectile on this result results qualitatively and quantitatively large.
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1 Introduction

Small collision systems, proton-proton (pp) and proton-nucleus (pA), studied at the Large Hadron Collider (LHC) show many
of the characteristics [1–5] that in heavy ion collisions are considered as signatures of the formation of hot deconfined partonic
matter, the Quark Gluon Plasma. The most prominent example is the existence of azimuthal correlations in the two-particle
inclusive distributions that are extended in pseudorapidity and show maxima when the particle transverse momenta are either
parallel or antiparallel. This finding, named the ridge, was first observed in high multiplicity pp collisions [6], and then for
smaller multiplicities [7–10], in pPb collisions [11–16] and in association with Z boson production [17]. It was also observed
in pAu, dAu and 3HeAu collisions at the Relativistic Heavy Ion Collider (RHIC) [18–21]. Azimuthal asymmetries in particle
production have also been searched for in even smaller systems: in γ Pb through ultraperipheral collisions at the LHC [22]
where they were found, and in e+e− collisions [23] at the Large Electron-Positron collider and deep inelastic scattering in
ep at the Hadron–Elektron–Ringanlage [24] with inconclusive results.

The key open question nowadays is the clarification of the origin of such collective behaviour. In heavy ion collisions where
the partonic density is very large, a natural explanation is that collectivity is built through the strong final state interactions
of the created system. Such explanation looks justified by the success of viscous relativistic hydrodynamics [25,26] for
describing the observed experimental features in soft particle production. The open questions at this moment are how the
conditions for hydrodynamics to be applicable are reached from an initial state that is very far from equilibrium [27] – the
emergence of the macroscopic description given by hydrodynamics from Quantum Chromodynamics (QCD) –, for which
both strong and weak coupling explanations have been proposed (see, e.g., [28]), and why hydrodynamics seems to work
even for large anisotropies, outside its presumed range of applicability. Hydrodynamics appears as the effective theory for
describing the soft modes of any field theory, see e.g. [29] and references therein.

The success of the application of hydrodynamics for describing azimuthal asymmetries in small systems, pp and pPb
collisions [26,30], while requiring careful choices of the initial conditions, pushes this description to small collision areas and
low particle densities where non-hydrodynamic modes play a very important role [26,31,32]. Therefore, it seems sensible to
explore other alternatives. The color glass condensate (CGC) [33,34], as weak coupling non-perturbative effective theory for
QCD at high energies and partonic densities, offers a framework where azimuthal asymmetries can be calculated from first
principles, see the review [35] and references therein. Correlations in the final state reflect those found in the wave function
of the projectile and target hadrons or nuclei, assuming that final state effects, including hadronisation, do not wash them out.

The initial versus final state origin of azimuthal correlations in small systems has been subject to intense scrutiny in recent
years [36–38]. At present, no CGC-based model is able to fully describe the existing experimental data. Still, the search
for observables that may discriminate initial from final effect continues, e.g., the correlation of v2 with the mean transverse
momentum of the particles produced in the collisions [39–42] that has also been analysed in the CGC [43]. Also many particle
cumulants are expected to be crucial. For example, four particle cumulants c2{4}, with v2{4} = [−c2{4}]1/4 (definitions of
all these quantities will be provided below), change sign from positive to negative with increasing particle multiplicity in
the event, with a smooth behaviour from small to large systems and from smaller to larger energies. This change of sign
is associated with the onset of true collective flow of final state origin because higher order cumulants are less sensitive to
non-flow contributions than those computed from two-particle correlations. In the CGC numerical implementation in [44,45]
the change of sign of c2{4} was interpreted as the transition from a dilute-dilute situation, described by the glasma graph
approach [46,47] where azimuthal correlations correspond to the Bose enhancement of the gluons in the wave function of the
colliding hadrons and to the Hanbury-Brown-Twiss (HBT) effect for the final gluons [48–51], to a dilute-dense situation where
multiple scattering dominates (for a discussion on density correlations to the dilute-dense situation, see [52] and references
therein).

The goal of this work is the extension of the calculations of multiparticle production in the CGC in the dilute-dense situation
(suitable for pA collisions) performed in [53] to four gluon production (see [54] for inclusive cross sections involving final
state quark-antiquark pairs), and the computation of the two and four particle cumulants.1 Note that up to four gluon production
was previously computed in the glasma graph approach [55], and arguments in [56] suggested that in such approximation
c2{4} > 0 – a result also found in [45] where only quark scattering is considered and partons in the projectile wave function

1 As in standard CGC calculations, here odd azimuthal harmonics are absent, see a discussion of the origin of the problem and proposed solutions
in [35] and references therein.
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are uncorrelated. In this work we use the argument in [53,57–59] that captures those contributions of the ensembles of Wilson
lines to multiparticle production that are leading in the overlap area of the collision (i.e., in the number of color domains or
correlated particle sources), while keeping contributions to all orders in the number of colors. We use the Golec–Biernat–
Wüsthoff (GBW) model [60,61] for the target, and the generalised McLerran–Venugopalan (MV) model [62,63] for the
projectile. In order to push the analytical calculations as far as possible, we employ the Wigner function ansatz used in
[45,64,65] but extended to include quantum correlations in the projectile wave function. Due to the Gaussian forms that we
employ for both the Wigner function and dipole, our results cannot be considered reliable for transverse momenta sizeably
larger than the saturation scale.

This manuscript is organized as follows. In Sect. 2 we introduce the formalism to compute particle production in the CGC.
Section 3 is devoted to the calculation of projectile and target averages required to obtain the final results. Then, in Sect. 4 we
present our results and in Sect. 5 we give a summary and our conclusions. “Appendices A, B, C and D” contain a discussion
on the validity of the area enhancement argument that we use for computing target ensembles of Wilson lines, useful integrals,
a discussion of the Wigner function approach and details on the calculation of four gluon production, respectively.

2 Theoretical background on multi-particle correlation

2.1 Gluon production in dilute-dense collisions

In this section we present a quick overview on multi-particle production in proton-nucleus collisions in the CGC framework.
We follow [66,67] and references therein. The projectile is considered a highly boosted dilute system that is composed,
mostly, by large-x partons that act each as a color source with color charge density ρa(x), with superindex a denoting color
and x the transverse position. The target is characterised by a strong field Aμ(x) = Aaμ(x)T a , with T a the generators of the
SU(Nc) group in the adjoint representation. The nucleus ensemble is supposed to be much larger than the projectile in the
transverse plane. In this picture, working in the light-cone gauge A+ = 0 and neglecting the transverse components of the
field, the amplitude for producing a gluon with transverse momentum k, pseudorapidity η, polarization λ and color a in the
projectile-target collision is obtained by using the LSZ reduction formula (at leading order in the QCD coupling constant g)
leading to

Ma
λ(η, k) = g

∫

d2q

(2π)2
M

ab

λ (η, k, q)ρb(k − q), (1)

with ρa(q) the Fourier transform of the color charge density of the projectile which is defined (see e.g. [68]) as

ρa(x) =
∫

dp+

2π
a

†
i (p+, x)T aai (p+, x), (2)

where a
†
i (p+, x) and ai (p+, x) are the creation and annihilation operators for gluons with longitudinal momentum p+ at

transverse position x, respectively. The reduced matrix amplitude M
ab

λ (η, k, q) is derived in [66,69,70] and it reads

M
ab

λ (η, k, q) = ǫi∗
λ (k)ieik−L+

{

2
ki

k2

∫

y

e−iqyUab
y (L+, 0) − 2

(k − q)i

(k − q)2

∫

y,x

ei(k−q)y−ikxGab
k+(L+, x; 0, y)

+
∫

x,y

ei(k−q)y 1

k+

∫ L+

0
dy+e−ikx[∂yi G

ac
k+(L+, x; y+, y)]Ucb

y (y+, 0)

}

. (3)

In this equation
∫

x ≡
∫

d2x, ǫi∗
λ (k) is the polarisation vector, k− = k2/(2k+), k+ = eη/

√
2, L+ is the longitudinal length of

the target, q is the transverse momentum transferred from the target during the interaction and k-q is the transverse momenta
of the projectile color charge density, and

Gab
k+(x+, x; y+, y) = 	(x+ − y+)

∫ x

y

Dz exp

[

ik+

2

∫ x+

y+
dz+ż2(z+)

]

Uab
z

(

x+, y+) (4)
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Fig. 1 Physical interpretation of the Lipatov vertex, with the vertical dashed line denoting the interaction with the target

is the scalar gluon propagator, with the path integral taking into account the Brownian motion of the gluon in transverse plane,
for fixed ends of the trajectory z(x+) = x, z(y+) = y. We use light-cone coordinates x± = (x0 ± x3)/

√
2.

Uab
x (x+, y+) = P exp

{

ig

∫ x+

y+
dz+A−(z+, x)

}ab

(5)

is the Wilson line that accounts for the multiple gluon exchanges with the target.

It is necessary to mention that the reduced matrix amplitude M
ab

λ (η, k, q) given in Eq. (3) is written for a target with a
longitudinal width L+ and therefore goes beyond the standard eikonal approximation commonly adopted in CGC calculations.
In the eikonal approximation (see [35] and references there) the target and projectile are taken as very highly boosted systems
without longitudinal extent because of Lorentz contraction. This is equivalent to taking the limit L+ → 0, k+ → ∞ and
assuming that the target field is a local shock-wave, A−(z+, x) ∝ δ(z+). In the present work, we restrict ourselves to the
standard CGC framework and adopt the eikonal approximation. Within this approximation, the scalar gluon propagator
simplifies and can be written as

Gab
k+(x, y) → Uab

x

(

x+, y+) δ(2)(x − y). (6)

Consequently, the reduced matrix amplitude given in Eq. (3) simplifies as well and it reads

M
ab

λ (k, q) = 2iǫi∗
λ (k)L i (k,q)

∫

y

e−iqyU ab(y), (7)

where we have introduced the Lipatov vertex

L i (k,q) = ki

k2
− (k − q)i

(k − q)2
(8)

and changed the notation of the Wilson lines, U ab(y) = Uab
y (L+, 0).

The physical interpretation of the Lipatov vertex, see Fig. 1, is such that the first element in the sum in Eq. (8) accounts for
interaction of the color source ρa(x) with the target before emitting the gluon and the second element accounts for a gluon
being emitted from the source and then interacting with the target.

In [71,72] it was shown that the corrections with respect to the eikonal approximation stemming from the target having
a finite length can be important for collision energies below a few hundred GeV. Corrections coming from the inclusion of
transverse components of the background field have also been considered in [73–77], but until now no estimation is available
of their quantitative impact on particle production. In the remainder of this work we restrict to the eikonal approximation.

The multiplicity for producing n-gluons with transverse momentum ki , pseudorapidity ηi , color ai and polarization λi is
given, in terms of the amplitude matrix that is leading for gρa(q) ∼ 1, as

2n(2π)3n dn N
∏n

i=1 dηi d2ki

=
〈

M
a1
λ1

(η1, k1) · · · Man

λn
(ηn, kn)

(

M
an

λn
(ηn, kn)

)†
· · ·

(

M
a1
λ1

(η1, k1)
)† 〉

p,T
, (9)

where 〈· · ·〉p,T denotes the average over the color charge density configurations of the projectile and target. The factor of 2n

on the right hand side of Eq. (9) originates from the Lorentz invariant phase space written in terms of rapidity ηi .
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Fig. 2 Diagram showing Eq. (10) with its momentum assignments. Each group of three vertical straight lines represents the rescattering with the
target, the black blobs Lipatov vertices and the vertical dashed line the cut

Using Eq. (1) and dropping the dependence on η due to the eikonal approximation, we can write this expression as (see
Fig. 2)

2n(2π)3n dn N
∏n

i=1 d2ki

= g2n

∫

(

2n
∏

i=1

d2qi

(2π)2

)

〈

ρb1(k1 − q1)ρ
b2†(k1 − q2) · · · ρb2n−1(kn − q2n−1)ρ

b2n†(kn − q2n)
〉

p

×
〈

M
a1b1
λ1

(k1, q1)M
b2a1†
λ1

(k1, q2) · · · Manb2n−1
λn

(kn, q2n−1)M
b2nan†
λn

(kn, q2n)
〉

T
. (10)

Solving this equation is the main point of this work and will be the focus of the discussion in the next sections.
Equation (10) involves the 2n-point correlation functions of the color charge densities of the projectile and the target.

Solving these objects is a highly non trivial task. It is known that using the MV Gaussian weight [62,63] it is possible to
find a closed-form solution for these correlators [45,78–84]. However, the solution can be extremely complicated for n > 2
if the large-Nc limit is not taken. Corrections to the Gaussian weight for the 2-point correlator were considered in [85], and
solutions based on high-energy evolution at large Nc in [86], but in this work we restrict ourselves to the MV model.

When |k|/Qs ≫ 1 with Qs the saturation momentum of the gluons in the target [33,34], or equivalently g A− ≪ 1, we
can expand the product of 2n Wilson lines up to order g2n . Thus, if a Gaussian weight is chosen for the target color charge
density we can apply Wick’s theorem and write the 2n-point functions as the sum of (2n −1)!! products of n 2-point functions,
thus being able to solve the correlator exactly. This is the glasma graph approach previously mentioned and has been used
in several works [46,55,87–90] to produce phenomenological results. The main disadvantage of this approximation is that it
works in a small kinematic range, being only suitable for dilute–dilute collisions.

Another approach for evaluating the n-point functions that keeps the simplicity of the glasma graph approximation but
without having to restrict ourselves to the dilute limit is the so called area enhancement argument [53,57–59]. We will explain
the this argument in the next section.

2.2 The area enhancement argument

One of the key points to evaluate the multiplicity for multi-particle production is the calculation of the average over charge
color densities of 2n matrix amplitudes:

〈

M
a1b1
λ1

(k1, q1)M
b2a1†
λ1

(k1, q2) · · · Manb2n−1
λn

(kn, q2n−1)M
b2nan†
λn

(kn, q2n)
〉

T
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∝
∫

y1···y2n

e−iq1·y1+iq2·y2···+iq2n ·y2n

〈

U (y1)
a1b1U †(y2)

b2a2 · · · U †(y2n)
b2na2n

〉

T
, (11)

where we have used the fact that the only part of the reduced amplitude that depends on the target charge density are the
Wilson lines.

For the sake of simplicity, let us just consider the case where we just have 4 Wilson lines in such a way that the color
indices are contracted forming a single trace. In this case the object that we have to evaluate is the quadrupole operator

Q̃(q1, q2, q3, q4) =
∫

y1y2y3y4

e−iq1·y1+iq2·y2−iq3·y3+iq4·y4
1

N 2
c − 1

〈

T r
[

U (y1)U
†(y2)U (y3)U

†(y4)
] 〉

T

≡
∫

y1y2y3y4

e−iq1·y1+iq2·y2−iq3·y3+iq4·y4 Q(y1, y2, y3, y4). (12)

Following the arguments in [58,59], the configuration of the transverse coordinates yi that maximises the integral is such
that these legs are as far away as possible between them. On the other hand, in the CGC picture the target ensemble is
composed by domains of chromoelectric field with a typical correlation length, Q−1

s , that is fixed by the saturation scale,
where color neutralises. Therefore two objects that only depend on the target color charge density, sitting at two different
points yi and y j , will have a vanishing correlation when |yi − y j | ≫ Q−1

s . This implies that the only way of obtaining a non
vanishing correlator is by grouping the legs in, at least, pairs where the distance between the transverse points is smaller than
the correlation length. Thus, for the case of the quadrupole, this is equivalent to write

Q(y1, y2, y3, y4) ≈ lim
|y1−y2|�Q−1

s

|y3−y4|�Q−1
s

|y1−y3|�Q−1
s

Q(y1, y2, y3, y4) + lim
|y1−y2|�Q−1

s

|y3−y4|�Q−1
s

|y1−y3|≫Q−1
s

Q(y1, y2, y3, y4)

+ lim
|y1−y3|�Q−1

s

|y2−y4|�Q−1
s

|y1−y2|≫Q−1
s

Q(y1, y2, y3, y4) + lim
|y1−y4|�Q−1

s

|y2−y3|�Q−1
s

|y1−y2|≫Q−1
s

Q(y1, y2, y3, y4). (13)

The first term of this equation, although it gives a non vanishing contribution to the 4-point correlator, is constrained to a
smaller region of phase space than the other 3 terms. This will imply that, after performing the integration in Eq. (12), it will
be suppressed by the area of the target with respect to the other ones. On the other hand, the other three terms can be just
written as a product of dipoles, that is

lim
|y1−y2|�Q−1

s

|y3−y4|�Q−1
s

|y1−y3|≫Q−1
s

〈

U (y1)
a1b1U †(y2)

b1a2U (y3)
a2b2U †(y4)

b2a1

〉

T
≈
〈

U (y1)
a1b1U †(y2)

b1a2

〉

T

〈

U (y3)
a2b2U †(y4)

b2a1

〉

T
(14)

and analogously to the other terms. Thus we can write the quadrupole operator as a sum of products of 2-point functions,

〈

U (y1)
a1b1U †(y2)

b1a2U (y3)
a2b2U †(y4)

b2a1

〉

T
≈
〈

U (y1)
a1b1U †(y2)

b1a2

〉

T

〈

U (y3)
a2b2U †(y4)

b2a1

〉

T

+
〈

U (y1)
a1b1U (y3)

a2b2

〉

T

〈

U †(y2)
b1a2U †(y4)

b2a1

〉

T
+
〈

U (y1)
a1b1U †(y4)

b2a1

〉

T

〈

U †(y2)
b1a2U (y3)

a2b2

〉

T
, (15)

keeping in mind that this approximation is only good after performing the phase space integral since, otherwise the first term
in Eq. (13) is non-negligible. In Appendix A we discuss the validity of this argument, that we call area enhancement argument.

This result can be generalised to the case of any number or configuration of the Wilson lines by noting that the contribution
of the multipole that is enhanced by the area of the target, i.e., that is leading in S⊥Q−2

s with S⊥ the area of the projectile
(or the overlap area in a dilute-dense collision), is always a sum over all possible combinations of 2-point functions. This is
analogous to assume that the target averages of Wilson lines follow a Gaussian statistics and thus we are able to apply Wick’s
theorem to them:
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Fig. 3 Picture of the chromoelectric fields inside the target

〈

U (y1)
a1b1U (y2)

a2b2 · · · U (y2n)a2nb2n

〉

T
=

∑

σ∈�(χ)

∏

{α,β}∈σ

〈

U (yα)aαbαU (yβ)aβbβ

〉

T
, (16)

being χ = {1, 2, . . . , 2n} and �(χ) the set of partitions of χ with disjoint pairs. Eq. (16) simplifies enormously the evaluation
of multipoles and shares its simplicity with the glasma graph approach through Wick’s theorem. The main difference between
them is that the first does not rely on the dilute limit and thus is applicable to dilute-dense scattering. This approach has been
used recently [43,53] in order to evaluate the phase space integral of 4-point and 6-point functions. We will use it in order to
evaluate Eq. (10).

2.3 Particle correlations

In this section we summarise the main ideas behind particle correlations within the CGC effective theory and provide the
general formulae that we will employ to study azimuthal correlations. For a complete review of the former aspect, we refer
to [35] and references therein.

Following the argument in [91,92], we make the picture of angular correlations in dilute-dense scatterings through the
interactions of the projectile partons with the strong chromoelectric fields generated by the target. The strength of the
chromoelectric field in the target wave function is characterised by the saturation momentum, Qs , which is also the typical
momentum of partons in the wave function, k⊥ ∼ Qs . The correlation length of the fields is roughly Q−1

s and the target
ensemble can be modelled as a compound of domains with different chromoelectric fields that change from event to event
as illustrated in Fig. 3. When a parton coming from the projectile wave function hits the target it will scatter in one of these
domains and will pick a momentum that is proportional to the chromoelectric field inside this domain. Thus angular correlation
appears when two partons scatter in the same chromoelectric domain. As gluons belong to a real representation of SU(3),
scattering with parallel and antiparallel momenta is identical. Thus, this picture is also able to explain the absence of odd
azimuthal correlations in gluon production.

In order to study the azimuthal harmonics appearing in multi-particle correlation it is convenient to use the cumulant method
[93]. This method aims to reduce the contribution of the so-called “non-flow” correlation, i.e., contributions to the correlation
function that come from other processes other than true collective flow, such as resonance decays or jet correlations, to the
definition of the azimuthal harmonics. In this method we define the 2- and 4-particle cumulants of order n as

cn{2} =
〈

ein(φ1−φ2)
〉

, (17)

cn{4} =
〈

ein(φ1+φ2−φ3−φ4)
〉

− 2
〈

ein(φ1−φ2)
〉2

, (18)
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where 〈· · · 〉 denotes the average over all events and particles. For convenience we define the nth-order κ-function

κn{m} =
∫

(

m
∏

i=1

d2ki

(2π)2

)

dm N
∏m

i=1 d2ki

ein(φ1+···+φm/2−φm/2+1−···−φm ), (19)

in such a way that the event average can be written as
〈

ein(φ1+···+φm/2−φm/2+1−···−φm )
〉

= κn{m}
κ0{m} . (20)

Given this definition of the cumulants we can write the 2- and 4-particle Fourier harmonics of order n as

vn{2} = (cn{2})1/2, (21)

vn{4} = (−cn{4})1/4. (22)

Similarly, the harmonics vn can also be defined as a function of the transverse momentum. In order to do that we also
define the so-called “differential” cumulants:

dn{2}(p⊥) = κ̃n{2}(p⊥)

κ̃0{2}(p⊥)
, (23)

dn{4}(p⊥) = κ̃n{4}(p⊥)

κ̃0{4}(p⊥)
− 2

κ̃n{2}(p⊥)

κ̃0{2}(p⊥)

κn{2}
κ0{2} , (24)

where p⊥ = |p| and we have defined the differential κ-functions as

κ̃n{m}(p⊥) ≡ dκn{m}
p⊥dp⊥

=
∫ 2π

0
dφ1

∫

(

m
∏

i=2

d2ki

(2π)2

)

dm N
∏m

i=1 d2ki

∣

∣

∣

∣

k1=p

ein(φ1+···+φm/2−φm/2+1−···−φm ). (25)

With this prescription, the differential azimuthal harmonics are given by2

vn{2}(p⊥) = [dn{2}(p⊥)]1/2, (26)

vn{4}(p⊥) = [−dn{4}(p⊥)]1/4. (27)

3 Evaluating the target and projectile correlation functions

In this section we will introduce the notation and the arguments followed in order to evaluate the 2n-point correlation functions
for both projectile and target ensembles.

3.1 Setting up the notation

We write the reduced matrix amplitude as

�i ≡ M
ai bi

λi
(ki , qi ), (28)

where i = 1, . . . , 2n. We should note, however, that in this notation when i is even the reduced matrix element is conjugate
(i.e., to the right of the cut) and when it is odd it is not conjugate (i.e., to the left of the cut). Furthermore, since the produced

2 In experimental analysis, e.g. [14], these harmonics are usually normalised as

vn{2}(p⊥) = dn{2}(p⊥)

(cn{2})1/2
,

vn{4}(p⊥) = −dn{4}(p⊥)

(−cn{4})3/4
.
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gluon has the same momentum, polarisation and color both in the real and conjugate spaces we have to apply the following
constraints:

k2m = k2m−1 , (29)

λ2m = λ2m−1 , (30)

a2m = a2m−1 , (31)

with m = 1, . . . , n. Thus this notation also changes the usual labelling of the gluon final momenta, ki , since now they are
labeled by only odd numbers (1, 3, 5, . . . ) instead of 1, 2, 3, . . . . With these convention we can write the 2n-point function
of the reduced matrix amplitudes in the simplified form

〈

M
a1b1
λ1

(k1, q1)M
b2a1†
λ1

(k1, q2) · · · Manb2n−1
λn

(kn, q2n−1)M
b2nan†
λn

(kn, q2n)
〉

T
=
〈

�1�2 · · · �2n−1�2n

〉

T
. (32)

As we have pointed out in Sect. 2.2, in this work we will use the area enhancement argument in order to evaluate the
multipole correlators. Thus, using the same arguments that we have used for obtaining Eq. (16), we apply Wick’s theorem
and Eq. (32) reads

〈

�1�2 · · · �2n−1�2n

〉

T
=

∑

σ∈�(χ)

∏

{α,β}∈σ

〈

�α�β

〉

T
, (33)

with χ = {1, 2, . . . , 2n} and �(χ) the set of partitions of χ with disjoint pairs. On the other hand, in order to evaluate the
2-point function we use Eq. (7),

〈

�α�β

〉

T
= 4ǫi∗

λα
(kα)L i (kα, qα)ǫ

j∗
λβ

(kβ)L j (kβ , qβ)

∫

yα

ei(−1)αqαyα+i(−1)βqβyβ

〈

U aαbα (yα)U aβbβ (yβ)
〉

T
, (34)

where we do not write the overall sign of the equation which should be −(−1)α+β since the number of real and complex
conjugate matrix elements are the same and therefore the net sign of Eq. (33) will always be positive. Another simplification
that we can make is by noting that the Lipatov vertices will always be contracted with the one that is evaluated at the same
momentum ki . This follows from the fact that two gluons with the same transverse momentum will also have the same
polarisation and thus the polarisation vectors fulfill

ǫi∗
λ (k)ǫ

j
λ(k) = δi j , (35)

which implies a contraction of the two Lipatov vertices with the same k-momentum. Thus we will write directly Lλ(k, q) in
Eq. (34) instead of ǫi∗

λ (k)L i (k, q) because both expressions lead to the same result.
On the other hand, we should also evaluate the average of two Wilson lines. In order to do so we follow [59] and use the

fact that the target ensemble is globally color invariant, which implies that the average of any tensor in this ensemble has to
be proportional to a linear combination of invariant tensors. Thus

〈

U aαbα (yα)U aβbβ (yβ)
〉

T
= δaαaβ δbαbβ

(N 2
c − 1)2

〈

T r
[

U (yα)U (yβ)
]

〉

T
≡ δaαaβ δbαbβ

N 2
c − 1

D(yα, yβ), (36)

where we have introduced the dipole operator D(x, y).
Therefore, making the change of variables yα,β = b ± r/2 we can write Eq. (34) as

〈

�α�β

〉

T
= 4Lλα (kα, qα)Lλβ (kβ , qβ)

δaαaβ δbαbβ

N 2
c − 1

∫

r,b

eib[(−1)αqα+(−1)βqβ ]+ir/2[(−1)αqα−(−1)βqβ ]D(r, b). (37)

This equation can be simplified further if we exploit the fact that the target ensemble has a much larger extension in
the transverse plane than the projectile one and then we assume translational invariance of the dipole operator, that is,
D(r, b) = D(|r|). Thus, defining the Fourier transform of the dipole operator

123



760 Page 10 of 39 Eur. Phys. J. C (2021) 81 :760

d(q) =
∫

r

e−iq·r D(|r|), (38)

we obtain our final expression for the 2-point function of the reduced matrix amplitude:

〈

�α�β

〉

T
= 4

δaαaβ δbαbβ

N 2
c − 1

(2π)2δ(2)[qα + (−1)α+βqβ ]Lλα (kα, qα)Lλβ (kβ , qβ)d(qα). (39)

In order to obtain a final expression for Eq. (10) we should also evaluate the 2n-point function of the projectile color charge
densities. In this case we will use the generalised MV model and also use the Wick’s theorem. Introducing again the simplified
notation

gρbi (ki − qi ) ≡ �i , (40)

we can write the 2n-point function as

g2n
〈

ρb1(k1 − q1)ρ
b2†(k1 − q2) · · · ρb2n−1(kn − q2n−1)ρ

b2n†(kn − q2n)
〉

p
=
〈

�1�2 · · · �2n−1�2n

〉

p
. (41)

Here, as in Eq. (32), even indices correspond to complex conjugates.
This correlator, Eq. (41), has the following Wick expansion:

〈

�1�2 · · · �2n−1�2n

〉

p
=

∑

ω∈�(χ)

∏

{i, j}∈ω

〈

�i� j

〉

p
. (42)

In the generalised MV model this 2-point function can be written as

〈

�i� j

〉

p
= δbi b j

N 2
c − 1

μ2
[

ki − qi , (−1)i+ j (k j − q j )
]

, (43)

where μ2(k, q) is a function peaked around k + q = 0. In the strict MV model we have that μ2(k, q) ∝ δ(2)(k + q).
All in all, using the area enhancement argument for computing the target correlator and the MV model for computing the

projectile one, we arrive at the following general result for the multiplicity of n-gluon production:

2n(2π)3n dn N
∏n

i=1 d2ki

=
∫

(

2n
∏

i=1

d2qi

(2π)2

)

⎛

⎝

∑

σ∈�(χ)

∏

{i, j}∈σ

〈

�i� j

〉

p

⎞

⎠

⎛

⎝

∑

ω∈�(χ)

∏

{α,β}∈ω

〈

�α�β

〉

T

⎞

⎠ , (44)

that, together with Eqs. (39) and (43), provides the full expression that will be used along this work.

3.2 Wick diagrams

Since the expression of Eq. (44) involves the product of two Wick expansions it includes the sum of (2n − 1)!!2 products
of 2n 2-point functions. Thus, when n > 2 we will have to deal with a large number of terms and, for this reason, it is
convenient to introduce a shorthand notation for each of these objects involved in the sum. Therefore we introduce in this
work a diagrammatic notation for each term inside the sum of Eq. (44) analogous to the diagrams introduced in [90] within
the glasma graph approach. In our case, the diagrams consist of two parts that are separated by a vertical dashed line. In both
parts we draw 2 rows and n columns of dots where the dots of the upper row are labelled by odd numbers and the ones of the
lower row are labelled by even numbers, and the labels are the same in both sides:

· · ·

· · ·1 3 5 2n-1

2 4 6 2n
· · ·

· · ·1 3 5

2 4 6 2n

2n-1

. (45)

Each column of both parts of the diagram corresponds to a produced gluon. The columns defined by (1,2) corresponds to
gluon 1, the ones defined by (3,4) to gluon 2 and so on. The upper row (odd indices) will represent the real space and the
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lower row (even indices) will represent the conjugate space. As we have said, each term of the sum of Eq. (44) will have a
product of n 2-point functions coming from the projectile average and n 2-point functions coming from the target average
that are labelled by 2 indices that goes from 1 to 2n. We will draw these 2-point functions as lines that connect the dots in
the diagram. We choose the left part of the diagram to represent the 2-point correlators of the projectile and the right part to
represent the 2-point correlators of the target and schematically what we will draw is the following3:

〈

�i� j

〉

p

〈

�α�β

〉

T
=

α

β

i

j

. (46)

As an illustrative example let us select one of the 5!!2 = 225 terms that appear in Eq. (44) when n = 3:

∫

(

6
∏

i=1

d2qi

(2π)2

)

〈

�1�6

〉

p

〈

�3�4

〉

p

〈

�2�5

〉

p

〈

�1�5

〉

T

〈

�3�4

〉

T

〈

�2�6

〉

T
. (47)

This term will be represented by the following diagram:

1 3 5

2 4 6

1 3 5

2 4 6

. (48)

Note that the integration over the q′s is implicit.
If we want to write the diagram in an equation form we just have to use Eqs. (39) and (43). For example, the diagram in

Eq. (48) reads (remember that we are labeling ki with odd indices, and Eqs. (29) to (31))

1 3 5

2 4 6

1 3 5

2 4 6

=
∫

(

6
∏

i=1

d2qi

(2π)2

)

1

(N 2
c − 1)6

δb1b6δb2b5δb3b4μ2[k1 − q1,−(k5 − q6)]μ2[k1 − q2,−(k5 − q5)]

× μ2[k3 − q3,−(k3 − q4)]δa1a5δb1b5δa1a5δb2b6δa3a3δb3b4 43Lλ1(k1, q1)Lλ1(k1, q2)Lλ5(k5, q6)

× Lλ5(k5, q5)Lλ3(k3, q3)Lλ3(k3, q4)(2π)6δ(2)[q1 + q5]δ(2)[q2 + q6]δ(2)[q3 − q4]d(q1)d(q2)d(q3)

= 43 1

(N 2
c − 1)2

∫

q1,q2,q3

d(q1)d(q2)d(q3)L i (k1, q1)L i (k1, q2)L j (k3, q3)L j (k3, q3)Lk(k5,−q1)

× Lk(k5,−q2)μ
2[k1 − q1,−(k5 + q2)]μ2[k1 − q2,−(k5 + q1)]μ2[k3 − q3,−(k3 − q3)], (49)

with
∫

q ≡
∫

d2q/(2π)2.
Besides making the notation more compact we can also exploit the structure of the diagrams in order to find symmetries

between them, the associated power in (N 2
c −1) for each diagram and which kind of quantum correlations (Bose enhancement

or HBT) it includes, by making use of the following properties:

(i) Interchanging two dots within a column, 2m ↔ 2m −1, of a given diagram is equivalent to make the change of variables

k2m−1 → −k2m−1. For example,

1 3 5

2 4 6

1 3 5

2 4 6

(k5 → −k5) =
1 3 5

2 4 6

1 3 5

2 4 6

. (50)

3 This diagrammatic approach is also very similar to the notation used in [59] where they wrote the terms of the Wick expansion of the target as
[i1, i2][i3, i4] · · · [i2n−1, i2n], being the indices inside the brackets the ones that define the 2-point functions in the expansion. For the projectile they
used the same notation changing the brackets by curly brackets.
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In order to prove this property it is enough to evaluate
〈

�2m�i

〉

p

〈

�2m−1� j

〉

p

〈

�2m�γ

〉

T

〈

�2m−1�β

〉

T
, being i, j, γ and

β arbitrary indices, since it is the only piece of Eq. (44) that depends on the dots 2m and 2m − 1. This expression can
be computed using Eqs. (39) and (43). Then, if one makes the change of variables with unit Jacobian q2m → −q2m−1

and q2m−1 → −q2m and uses the fact that Lλ(k,−q) = −Lλ(−k, q) and μ2(−k,−q) = μ2(k, q), we see that

〈

�2m�i

〉

p

〈

�2m−1� j

〉

p

〈

�2m�γ

〉

T

〈

�2m−1�β

〉

T

=
〈

�2m−1�i

〉

p

〈

�2m� j

〉

p

〈

�2m−1�γ

〉

T

〈

�2m�β

〉

T
(k2m−1 → −k2m−1). (51)

(ii) Interchanging two columns (2m, 2m − 1) and (2k, 2k − 1) of a given diagram is equivalent to make the change of

variables k2m−1 ↔ k2k−1.
For example,

1 3 5

2 4 6

1 3 5

2 4 6

(k3 ↔ k5) =
1 3 5

2 4 6

1 3 5

2 4 6

. (52)

The proof of this property is trivial since, by definition, each column of dots corresponds to a momentum ki and, therefore,
interchanging two columns in both sides is equivalent to interchange the label of two momenta.

(iii) We can extract the powers of (N 2
c −1) by looking at the structure of each side of the diagram. Before making a statement

of the property we will start by using Eq. (48) as an illustrative example. Using Eqs. (39) and (43) we can extract the
counting in powers of (N 2

c − 1)−1 of this diagram by writing the Kronecker deltas

1 3 5

2 4 6

1 3 5

2 4 6

∝ 1

(N 2
c − 1)6

δa1a5δa3a4δa2a6 × δa1a2δa3a4δa5a6 × δb1b5δb3b4δb2b6 × δb1b6δb2b5δb3b4 , (53)

where the second group of deltas of the first line is introduced to preserve Eq. (31), that is, that the color of the produced
gluons is the same in the real and the conjugate spaces. The first group of deltas of both lines accounts to the target
configuration (right side of the diagram) and the last group of deltas accounts to the projectile configuration. If we
organize this equation in such a way that all the indices in the deltas are closed we have that

1 3 5

2 4 6

1 3 5

2 4 6

∝ 1

(N 2
c − 1)6

(

δa5a1δa1a2δa2a6δa6a5
)

×
(

δa4a3δa3a4
)

×
(

δb5b1δb1b6δb6b2δb2b5

)

×
(

δb4b3δb3b4

)

= (N 2
c − 1)2(N 2

c − 1)2

(N 2
c − 1)6

= (N 2
c − 1)−2, (54)

where we have written the deltas that come from the target side of the diagram in a different color by convenience.
We can do the same procedure that we did in the last equation in a diagrammatic and faster way by just drawing the
target (right) side of the diagram on top of the left side and counting the number of closed lines that we obtain (which
is equivalent to the second line of Eq. (54)) and drawing vertical lines in the right side of the diagram and counting the
number of closed lines that we obtain (which is equivalent to the first line of Eq. (54)),

1 3 5

2 4 6

1 3 5

2 4 6

−→ −→ (N 2
c − 1)2(N 2

c − 1)2

(N 2
c − 1)6

= (N 2
c − 1)−2, (55)

where we can identify the red lines in the second diagram as the red Kronecker deltas of Eq. (54). In general, if we call

n p the number of closed lines that we obtain by projecting the right side of the diagram on top of the left side and nT the
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number of closed lines that we obtain by projecting vertical lines on top of the right side of the diagrams the counting

in powers of (N 2
c − 1) of a given diagram for general n is

(N 2
c − 1)n p (N 2

c − 1)nT

(N 2
c − 1)2n

= (N 2
c − 1)n p+nT −2n . (56)

As we will see through this work, this property is useful for organising the terms of Eq. (44) in powers of (N 2
c − 1)−1

in a systematic way, especially when n is large.
(iv) The types of quantum correlation that we have in a given diagram can be obtained as follows. If the same two dots

are linked in both sides of the diagram we have two possibilities: if the dots belong to the same column labelled by

(2k, 2k − 1) it means that the gluon k is uncorrelated (disconnected piece) and if the dots belong to different columns it

means that the gluons that define these columns have an HBT correlation. By exclusion, all the gluons involved in other

kind of links have a Bose enhancement correlation either in the projectile or in the target wave function.
For example,

(57)

in this diagram the 3rd produced gluon is uncorrelated, gluons 1-2 and 2-4 have an HBT correlation and gluons 1-4-5
have a Bose enhancement correlation.
In order to check this property it is enough to evaluate the terms in Eq. (44) that contain the same links in both the
projectile and target sides. That is, we are interested in terms that contain

〈

�a�b

〉

p

〈

�a�b

〉

T
, (58)

where a, b = 1, ..., 2n are generic dots. The objects of Eqs. (39) and (43) that contain the information of the quantum
interference correlations are the Dirac deltas and the functions μ2(k, q) respectively (the Lipatov vertices and the dipole
functions give a different kind of correlation). Thus, we can write

〈

�a�b

〉

p

〈

�a�b

〉

T
∝ μ2

[

ka − qa, (−1)a+b(kb − qb)
]

δ(2)
[

qa + (−1)a+bqb

]

= μ2
[

ka − qa, (−1)a+bkb + qa

]

δ(2)
[

qa + (−1)a+bqb

]

. (59)

Since μ2(k, q) is peaked around k = −q this implies that we have a peak around ka = −(−1)a+bkb which is an HBT
correlation. In the case in which a and b belong to the same column, that is, a = 2k − 1 and b = 2k (or vice-versa), it is
clear that we loose the correlation in function μ2 – in fact we loose any kind of correlation since in this case the Lipatov
vertices and the dipole function can be factorized.

4 Results

In this section we present the calculation of Eq. (44) for n = 2, 3 and 4. Larger values of n can be also considered in the same
fashion, contingent upon sufficient computation power. In order to compute Eq. (44) we need Eqs. (39) (43) which contain
two functions that need to be modelled, μ2(k, q) and d(q).

As indicated before, in the strict MV model μ2(k, q) is proportional to a Dirac delta. However, in order to be more realistic,
we choose a smoother function that is also peaked around k + q = 0, such as a Gaussian4:

μ2(k, q) = e
− (k+q)2

4B
−1
p , (60)

4 In order to preserve dimensions, this function should be multiplied by 2π Bp . However, since the multiplicity that we are evaluating will be
normalised in such a way that the integrated multiplicity for single inclusive gluon production is dimensionless we do not need to care about this
factor. In fact, any constant factor in the multiplicity is irrelevant for studying correlations because of the normalisation of the cumulants.
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where Bp is the gluonic transverse area of the projectile.
For the dipole we use the Fourier transform of the GBW saturation model [60,61]:

d(q) = 4π

Q2
s

e
− q2

Q2
s . (61)

We should also account for the infrared divergences of the Lipatov vertices. The product of two Lipatov vertices is

L i (k, q1)L i (k, q2) =
[

ki

k2
− (k − q1)

i

(k − q1)
2

][

ki

k2
− (k − q2)

i

(k − q2)
2

]

. (62)

Usually these divergences are regulated by introducing an infrared cutoff both in all the integration over the momenta.
However, in this work we use the following expression for the product of two Lipatov vertices:

L i (k, q1)L i (k, q2) = (2π)2

ξ2
exp

{

−[k − (q1 + q2)/2]2

ξ2

}

, (63)

where ξ2 is a parameter with dimensions of momentum squared. This choice, although it does not maintain some important
properties of the Lipatov vertices, it is much simpler to deal with and, as we show in Appendix C, it is equivalent to using
the Wigner function approach [44,45,64,65,94] but including quantum correlations in the projectile wave function. Thus, for
two partons in the projectile the joint Wigner function that we use reads

W b1b2b3b4(b1, p1, b2, p2) = 1

(N 2
c − 1)2

1

π4ξ4 B2
p

e−(p2
1+p2

2)/ξ
2
e−(b2

1+b2
2)/Bp

[

δb1b2δb3b4 + δb1b3δb2b4 2π Bpδ
(2)(b1 − b2)

× e−(p1+p2)
2/(2B−1

p ) + δb1b4δb2b3 2π Bpδ
(2)(b1 − b2)e

−(p1−p2)
2/(2B−1

p )
]

, (64)

where one sees the uncorrelated term as the first one in the sum on the right hand side and the four color indices correspond
to the four ρ’s in the projectile average for the double inclusive gluon cross section.

We note that the main problem of Eq. (63) is that it only depends on the momentum of the parent parton, ki − qi , and not
on the final momentum, ki . Therefore, Eq. (63) only includes the contribution in which the gluon is emitted from the source
and then interacts with the target, thus missing part of the physics. The final momentum is acquired by the interaction with
the target which is suitable for the projectile collinear limit. In principle, in this limit the so-called “hybrid factorization” is
employed and it corresponds to forward production of partons near the proton fragmentation region [95]. The approach that
we adopt in this manuscript is suitable for central production even though the approximation used for the Lipatov vertices in
Eq. (63) is more appropriate for considering the forward limit. Therefore, admittedly the validity of our approach is reduced
to the forward region but not yet near the proton fragmentation one. In this region, the projectile partons are defined in terms
of Wigner functions (see [44,45,64,65,94]). However, we would like to emphasize that the Wigner functions adopted in
these references are factorized for two partons and do not include quantum correlations in the projectile. The two parton joint
Wigner function (given in Eq. (64)) that we use in our approach indeed encodes the correlations in the projectile which is one
of the novelties of the present manuscript5. Moreover, adopting Eq. (63) for the Lipatov vertices and Eq. (64) for the joint
Wigner function to describe the projectile partons, allows us to perform the computation analytically until the very end, even
though they restrict the validity region of our results. In our approach, one can generalise the computation to the production
of any number of particles and can perform the study analytically within its limits of the validity. Other approaches that are
strictly valid for central production, such as the study performed in [43] or the one in [45], rely on final numerical integrations
which would be extremely difficult in the case of four particle correlations, or the computation is performed numerically
from the very beginning making it difficult to control, respectively. Finally, due to the assumed Gaussian forms, our final
expressions cannot be considered reliable for transverse momenta sizeably larger than the saturation scale.

5 Quantum correlations in the projectile have been taken into account in [58,59] but not for more than two partons.
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4.1 Double inclusive gluon production

The case n = 2, that is, the spectrum for double inclusive gluon production is the most studied case. It was well described
using the exact solution for the dipole correlators in the MV model [64,65], in the glasma graph approximation [46] and using
the area enhancement argument [53,57]. The result that we present in this section is the same obtained in [53] but now, with
the help of Eqs. (60), (61) and (63), we are able to obtain a closed-form solution for both the multiplicity and the azimuthal
harmonics.

In this case, the expansion of Eq. (44) in terms of the Wick diagrams is

d2 N

d2k1d2k3
= +

(

+ + k3 → −k3

)

+
(

+ + k3 → −k3

)

, (65)

where we have grouped the 9 diagrams by their powers in (N 2
c − 1)−1.

The Wick diagrams of Eq. (65) can be computed using Eqs. (39), (43), (60), (61) and (63) in a straightforward way since
all the arguments of the qi integrals are Gaussian functions and, therefore, they can be trivially solved. The result is

= 1

π2(ξ2 + Q2
s )

2
exp

[

− k2
1 + k2

3

ξ2 + Q2
s

]

, (66)

= 1

(N 2
c − 1)

1

π2(ξ2 + Q2
s )[Q2

s + ξ2(1 + Bp Q2
s )]

exp

[

−2ξ2 Bp(k1 + k3)
2 + [Q2

s + ξ2(1 + Bp Q2
s )](k2

1 + k2
3)

(ξ2 + Q2
s )[Q2

s + ξ2(1 + Bp Q2
s )]

]

,

(67)

= 1

(N 2
c − 1)

1

π2ξ2(ξ2 + Q2
s )

exp

[

−2ξ2(k2
1 + k2

3) + (Bp Q2
s ξ

2 + Bpξ
4 + Q2

s )(k1 + k3)
2

2ξ2(ξ2 + Q2
s )

]

, (68)

= 1

(N 2
c − 1)2

1

ξ2π2(ξ2 + Q2
s )(1 + Bp Q2

s )
exp

[

−2ξ2(k2
1 + k2

3) + Q2
s (k1 + k3)

2

2ξ2(ξ2 + Q2
s )

]

, (69)

= 1

(N 2
c − 1)2

1

π2ξ2[Q2
s +ξ2(1+Bp Q2

s )]
exp

[

− Bpξ
4(k1−k3)

2+(Q2
s +Bp Q2

s ξ
2)(k1+k3)

2+2ξ2(k2
1+k2

3)

2ξ2[Q2
s +ξ2(1+Bp Q2

s )]

]

.

(70)

With these five equations we have fully determined the differential multiplicity in Eq. (65). In order to obtain the value of
the integrated spectrum we just have to perform again Gaussian integrations over ki obtaining

N = κ0{2}

= 1 + 2

N 2
c − 1

[

2

1 + Bpξ2

]

+ 2

(N 2
c − 1)2

[

1

1 + Bp Q2
s

+ 1

1 + Bpξ2

]

. (71)

We can see from this equation that, apart from the suppression in powers of (N 2
c − 1)−1, the correlated terms contain

suppression factors (1 + Bp Q2
s )

−1 and (1 + Bpξ
2)−1. Following the domain picture that we have discussed in Sect. 2.3,

Bp Q2
s ≡ nD is the number of color domains in the overlap area of the projectile with the target in the transverse plane. We

should expect decorrelation of the produced gluons in the limit of nD → ∞ since the probability of two gluons scattering
off the same domain vanishes in this limit. Therefore, to fix ξ2 it makes sense to choose a value that is proportional to Q2

s in
order to preserve decorrelation in the limit nD → ∞. For this reason we will choose ξ2 = αQ2

s , being α a real number, in
the rest of this work.6

6 Since ξ2 is a momentum scale of the projectile wave function it should be related with B−1
p and not with Q2

s which is a momentum scale of

the target wave function. However, the choice ξ2 = Q2
s is the one that has given more consistent phenomenological results and for this reason we

use it through all this work. In [64,65,94] the choices ξ2 = B−1
p and ξ = Qs/4 have been made, respectively, and the sensitivity of the results to

variations of these choices has been examined.
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Fig. 4 Dependence of the even
2-particle azimuthal harmonics,
v2n{2}, on α ≡ ξ2/Q2

s (left, for
Bp Q2

s = 12) and nD ≡ Bp Q2
s

(right, for ξ2/Q2
s = 1/4)

The 2-particle azimuthal harmonics, Eq. (17), can be obtained by performing the integration over ki with the help of
Eq. (B12). The result for the second order κ-function is

κ2n{2} = 8Ŵ (n + 1)2

Ŵ(2n + 1)

{

α(1 + α)

N 2
c − 1

×
[

(1 + α + αnD)

α4n2
D

(

α2nD

2 + α2nD + 2α(1 + nD)

)2(n+1)

× 2 F1

(

n + 1, n + 1; 2n + 1;
(

α2nD

2 + α2nD + 2α(1 + nD)

)2
)

+ 1

(1 + α2nD + α(2 + nD))2

(

1 + αnD + α2nD

1 + α2nD + α(2 + nD)

)2n

× 2 F1

(

n + 1, n + 1; 2n + 1;
(

1 + αnD + α2nD

1 + α2nD + α(2 + nD)

)2
)

]

+ 1

(N 2
c − 1)2

[

α(1 + α + αnD)

(1 + α2nD + α(2 + nD))2

(

1 + αnD − α2nD

1 + α2nD + α(2 + nD)

)2n

× 2 F1

(

n + 1, n + 1; 2n + 1;
(

1 + αnD − α2nD

1 + α2nD + α(2 + nD)

)2
)

+ α(1 + α)

1 + nD

(1 + 2α)−2(n+1)
2 F1

(

n + 1, n + 1; 2n + 1; 1

(1 + 2α)2

)]}

, (72)

where we have defined α = ξ2/Q2
s , we have taken n > 0 and due to the symmetry k3 → −k3 of Eq. (65) all odd harmonics

vanish. Using Eqs. (71) and (72) we can evaluate the 2-particle azimuthal harmonics as

v2n{2} =
√

κ2n{2}
κ0{2} . (73)

In Fig. 4 we plot the dependence of v2n{2} with respect to nD and α by fixing Nc = 3. The value of the even azimuthal
harmonics grows rapidly as both nD and α approach zero and it decreases slowly when these parameters are large. This
decrease with nD is what we should expect in the color domain picture of particle correlation since as nD gets larger the
probability of two gluons scattering in the same domain is smaller and thus the overall correlation. On the other hand, the
decrease with α must be taken with care because α gives the ratio between the momentum transfers from projectile and target.
The dilute-dense approximation that we are using makes sense only for α sizeably smaller than 1.

As we have seen in Sect. 2.3, we can also compute the azimuthal harmonics as a function of transverse momentum by
using the differential κ-function defined in Eq. (25). The ki integral can be solved with the help of Eq. (B11) and the result is

κ̃0{2}(p⊥) = e
− p2

⊥
αQ2

s

Q2
s

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2e

p2
⊥

α(1+α)Q2
s

1 + α
+ 8

N 2
c − 1

⎡

⎢

⎢

⎣

e

(1+αnD−α2nD )p2
⊥

α[1+α2nD+α(2+nD )]Q2
s

1 + α2nD + α(2 + nD)
+ e

(2+2αnD−α2nD )p2
⊥

α[2+α2nD+2α(1+nD )]Q2
s

2 + α2nD + 2α(1 + nD)

⎤

⎥

⎥

⎦
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+ 8

(N 2
c − 1)2

⎡

⎢

⎢

⎣

e

p2
⊥

α(1+2α)Q2
s

(1 + 2α)(1 + nD)
+ e

(1+αnD−α2nD )p2
⊥

α[1+α2nD+α(2+nD )]Q2
s

1 + α2nD + α(2 + nD)

⎤

⎥

⎥

⎦

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (74)

and

κ̃2n{2}(p⊥) = 8Ŵ(1 + n)

Q2
s Ŵ(1 + 2n)

(

p2
⊥

2Q2
s

)n

e
− p2

⊥
αQ2

s

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1

N 2
c − 1

⎡

⎢

⎢

⎣

e
− (−1+αnD+α2nD )p2

⊥
2α(1+α)Q2

s

1 + α2nD + α(2 + nD)

(

(1 + αnD + α2nD)2

α(1 + α)(1 + α2nD + α(2 + nD))

)n

× 1 F1

(

n + 1; 2n + 1; (1 + αnD + α2nD)2 p2
⊥

2α(1 + α)[1 + α2nD + α(2 + nD)]Q2
s

)

+ e
− [−2+α3nD−2α(1+nD )]p2

⊥
2α(1+α)(1+α+αnD )Q2

s

2 + α2nD + 2α(1 + nD)

(

α4n2
D

(1 + α)(1 + α + αnD)[2 + α2nD + 2α(1 + nD)]

)n

× 1 F1

(

n + 1; 2n + 1;
α4n2

D p2
⊥

2(1 + α)(1 + α + αnD)[2 + α2nD + 2α(1 + nD)]Q2
s

)]

+ 1

(N 2
c − 1)2

⎡

⎢

⎢

⎣

e
− (−1−αnD+α2nD )p2

⊥
2α(1+α+αnD )Q2

s

1 + α2nD + α(2 + nD)

(

(1 + αnD − α2nD)2

α(1 + α + αnD)(1 + α2nD + α(2 + nD))

)n

× 1 F1

(

n + 1; 2n + 1; (1 + αnD − α2nD)2 p2
⊥

2α(1 + α + αnD)(1 + α2nD + α(2 + nD))Q2
s

)

+ e
− p2

⊥
2α(1+α)Q2

s

(1 + 2α)(1 + nD)

(

1

α(1 + α)(1 + 2α)

)n

1 F1

(

n + 1; 2n + 1; p2
⊥

2α(1 + α)(1 + 2α)Q2
s

)

⎤

⎥

⎥

⎦

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, (75)

where n > 0. The fact that κ̃2n(p⊥) is proportional to (p2
⊥/Q2

s )
n was also obtained in [65] although there a different model

for the target average was employed. The differential 2-particle even azimuthal harmonics can be obtained by evaluating

v2n{2}(p⊥) =
√

κ̃2n{2}(p⊥)

κ̃0{2}(p⊥)
(76)

and the result is plotted in Fig. 5 for n = 1, 2, 3 and Bp = 6 GeV−2, ξ = Qs/2, Q2
s = 2 GeV2 and Nc = 3. Although we

do not aim for a comparison with experimental data, the obtained values are in the ballpark of them. Note that due to the
Gaussian forms that we employ, our results cannot be considered reliable for p⊥ sizeably larger than Qs .

4.2 Triple inclusive gluon production

In this section we show the result for Eq. (44) when n = 3, that is, the triple inclusive gluon spectrum. Since in this work we
are mainly interested in computing azimuthal harmonics we will just show the expansion of the spectrum in terms of the Wick
diagrams. However, it has be shown recently [43] that this result is useful for studying the correlation between the 2-particle
azimuthal harmonics and multiplicity and average transverse momentum.

As we did for n = 2, we can group the Wick diagrams in the expression for the n = 3 gluon spectrum in powers of
(N 2

c − 1)−1 as

8(2π)9 d3 N

d2k1d2k3d2k5
= N

(0)
3 + N

(1)
3 + N

(2)
3 + N

(3)
3 + N

(4)
3 . (77)
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Fig. 5 Dependence of the differential 2-particle even azimuthal harmonics, v2n{2}, on transverse momentum p⊥. In this graph we have used
Bp = 6 GeV−2, ξ = Qs/2, Q2

s = 2 GeV2 and Nc = 3

In order to obtain each one of these terms we have to use the property (iii) of Sect. 3.2. In this case the suppression of each
diagram is given by (N 2

c − 1)n p+nT −6 and we can have three kind of configurations on each side of the diagram

, (78)

(

+ k5 → −k5

)

+ k1 ↔ k3 + k1 ↔ k5, (79)

(

+ k1 → −k1 + k3 → −k3 + k5 → −k5

)

+ k1 ↔ k5. (80)

It is easy to see that the only way of obtaining nT = 3 ,2 and 1 is having the first, second and third configuration on the right
side of the diagram, Eqs. (78) to (80) respectively. On the other hand, the only way of obtaining n p = 3, 2 and 1 is having
the same configuration on the left side of the diagram as the one on the right side, a configuration on the left side that has one
link equal to the configuration on the right side and the other 2 links different, and at configuration on the left side that has all
the links different than the configuration on the right side, respectively. One can also check that for a given configuration on
the right side of the diagram the number of possibilities for n p = 3 is 1, for n p = 2 is 6 and for n p = 1 is 8.

With this taken into account, let us show as an example how to find all the Wick diagrams suppressed by (N 2
c − 1)−2. In

this case n p + nT = 4. There are three possibilities:

(i) n p = 1 and nT = 3.
This implies that we have to have the configuration of Eq. (78) on the right side and configurations on the left side that
has all the links different than the one on the right side. As we have said, there are 8 possibilities for this case:

, , , ,

, , , .

(ii) n p = 2 and nT = 2.
This implies that we have to have the configuration of Eq. (79) on the right side of the diagram and configurations on
the left side that have one link in common with the right side and the other ones different. There are 6 × 6 possibilities
in this case:

, , , , ,
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and the 5 permutations of Eq. (79) for each diagram.
(iii) n p = 3 and nT = 1.

This implies that we have to have the configuration of Eq. (80) on the right side of the diagram and configurations on
the left side that have all the links in common with the right side. There are 1 × 8 possibilities in this case:

and the 7 permutations of Eq. (80).

All in all, we can write all the 52 Wick diagrams that have a suppression of (N 2
c − 1)−2 as

N
(2)
3 =

{[(

+
)

+ k1 → −k1 + k3 → −k3 + k5 → −k5

]

+ k1 ↔ k5

}

+
{[(

+ + + + +
)

+ k5 → −k5

]

+ k1 ↔ k3 + k1 ↔ k5

}

. (81)

This procedure, although tedious, is straightforward to implement on a computer. Repeating it we find that there is 1
diagram suppressed by (N 2

c − 1)0:

N
(0)
3 = , (82)

12 diagrams suppressed by (N 2
c − 1)−1:

N
(1)
3 =

{[(

+
)

+ k5 → −k5

]

+ k1 ↔ k3 + k1 ↔ k5

}

, (83)

96 diagrams suppressed by (N 2
c − 1)−3:

N
(3)
3 =

⎧

⎨

⎩

[(

+ + + + +

+ +
)

+ k5 → −k5

]

+ k1 ↔ k3 + k1 ↔ k5

⎫

⎬

⎭

+

⎧

⎨

⎩

[(

+ + + + +
)

+k1 → −k1 + k3 → −k3 + k5 → −k5

]

+ k1 ↔ k5

⎫

⎬

⎭

, (84)

and 64 diagrams suppressed by (N 2
c − 1)−4:

N
(4)
3 =

⎧

⎨

⎩

[(

+ + + + +
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+ +
)

+ k1 → −k1 + k3 → −k3 + k5 → −k5

]

+ k1 ↔ k5

⎫

⎬

⎭

. (85)

All in all, we get the 225 = (5!!)2. Eqs. (81) to (85) give the full Wick expansion of the triple inclusive gluon spectrum to
all orders in (N 2

c − 1)−1. These equations were computed in [53] up to order (N 2
c − 1)−2. In order to write Eq. (77) just as

a function of ki one just has to employ Eqs. (39), (43), (60), (61) and (63) and then perform the qi integrals. These integrals
are straightforward if the arguments of the integrals are Gaussian functions, as we assumed before.

4.3 Four gluon inclusive production

In this section we evaluate Eq. (44) for n = 4, that is, the four gluon inclusive spectrum. Since in this case the number of
diagrams involved is very large ([7!!]2 = 11025) and thus their writing is not viable, we will start by discussing the simpler
case in which the partons in the wave function of the projectile are initially not correlated. Then we will consider to the more
general case that is explained in detail in Appendix D.

The case in which the partons in the projectile wave function are initially uncorrelated was discussed for scattering quarks
[45], and for gluons [55] within the glasma graph approach. In our case, this implies writing Eq. (44) as

2n(2π)3n dn N
∏n

i=1 d2ki

=
∫

(

2n
∏

i=1

d2qi

(2π)2

)

n
∏

i=1

〈

�2i−1�2i

〉

p

⎛

⎝

∑

σ∈�(χ)

∏

{α,β}∈σ

〈

�α�β

〉

T

⎞

⎠ , (86)

and, instead of having [(2n − 1)!!]2 terms in the sum, we just have (2n − 1)!!. Using Eq. (86) we can write the 4-gluon
inclusive production as the sum of 105 diagrams (also known as rainbow diagrams [90]) in the following form:

16(2π)12 d4 N

d2k1d2k3d2k5d2k7
=

+
[(

+ k7 → −k7

)

+ k1 ↔ k5 + k1 ↔ k7+k3 ↔ k5+k3 ↔ k7+(k3 ↔ k5)(k1 ↔ k7)

]

+
{[(

+ k3 → −k3+k5 → −k5+k7 →−k7

)

+k3 ↔ k7

]

+k1 ↔ k3+k1 ↔ k5+k1 ↔ k7

}

+
[(

+ k1 → −k1 + k5 → −k5 + (k1 → −k1)(k5 → −k5)

)

+ k3 ↔ k5 + k3 ↔ k7

]

+
{[

+ k1 → −k1 + k3 → −k3 + k5 → −k5 + k7 → −k7

+ 1

2

(

(k1 → −k1)(k3 → −k3) + (k1 → −k1)(k5 → −k5) + (k1 → −k1)(k7 → −k7) + (k3 → −k3)(k5 → −k5)

+ (k3 → −k3)(k7 → −k7) + (k5 → −k5)(k7 → −k7)

)]

+k1 ↔ k3+k1 ↔ k7+k3 ↔ k5+k3 ↔ k7 + k5 ↔ k7

}

.

(87)

In this expression, the term in the first line corresponds to the case in which all the generated gluons are uncorrelated . The
12 terms in the second line correspond to the case in which 2 gluons are uncorrelated and 2 gluons are correlated. The 32
terms in the third line correspond to the case in which 1 gluon is uncorrelated and the remaining three ones are correlated. The
12 terms of the fourth line correspond to the case in which two pair of gluons are correlated independently, i.e., factorisable
connected diagrams. Finally, the 48 terms of the last lines (the factor 1/2 avoids double counting of the diagrams) correspond
to the case in which all the gluons are correlated between them, i.e., fully connected diagrams. Note that the first, second,
third and fourth, and fifth terms in the sum on the right hand side correspond to terms with increasing powers in (N 2

c − 1)−2.
The Wick diagrams of Eq. (87) can be computed in the same fashion as in Sect. 4.1. However, since we are only interested

in computing the 4-particle cumulants, Eq. (18), we will exploit the ki ↔ k j and ki → −ki symmetries in order to simplify
the calculation. When evaluating the 4-particle κ-function in Eq. (19) all the terms that contain at least one disconnected
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piece, i.e., two vertical lines in both sides of the diagram, will vanish trivially due to rotational invariance. For this reason the
diagrams of the first three lines of Eq. (87) will not contribute to the 4-particle κ-function when n > 0 and therefore we can
write

κ2n{4} =
∫

d2k1d2k3d2k5d2k7ei2n(φ1+φ3−φ5−φ7)

[(

+ perm4

)

+
(

+ perm5

)]

,

(88)

where we have written schematically perm4, which encodes all the factorizable connected diagrams, and perm5, which
includes all the fully connected diagrams, as all the permutations of the fourth and fifth lines of Eq. (87) respectively. Note
that we have also dropped the factors 2 and 2π as they cancel in Eqs. (17), (18), (23) and (24).

On the other hand, we can read from the permutations for the fully connected diagrams perm5, that all the diagrams that
are related by a change of variables ki → −ki will give the same result for the integral in Eq. (88) since this transformation
is equivalent to making φi → φi + π in the argument of the exponential and, thus, leaves the integral invariant. Furthermore,
it is easy to check that all the diagrams of the last three lines of Eq. (87) that are related by the change of variables k1 ↔ k3,
k5 ↔ k7 and k3 ↔ k7 also give the same value for the integral. By inspection of the symmetries, which is detailed in
Appendix D, we can write the 48 integrals defined by the permutations of the last three lines of Eq. (87) as

∫

d2k1d2k3d2k5d2k7ei2n(φ1+φ3−φ5−φ7)

(

+ perm5

)

=
∫

d2k1d2k3d2k5d2k7ei2n(φ1+φ3−φ5−φ7)

(

32 + 16

)

, (89)

where the last diagram can be seen as the first one with the change of variables k1 ↔ k7.
Furthermore, 4 out of the 12 diagrams of the fourth term of Eq. (87)

+ k1 → −k1 + k3 → −k3 + (k1 → −k1)(k3 → −k3) (90)

only depend on φ1 − φ3 and φ5 − φ7 and therefore vanish due to rotational invariance. Having this into account we can write
Eq. (88) as

κ2n{4} =
∫

d2k1d2k3d2k5d2k7ei2n(φ1+φ3−φ5−φ7)

(

8 + 32

+ 16

)

. (91)

On the other hand, the 2-particle κ-function in the case in which the partons are initially uncorrelated in the projectile wave
function is

2κ2n{2}2 = 2

(

2

∫

d2k1d2k3ei2n(φ1−φ3)

)2

= 8

∫

d2k1d2k3d2k5d2k7ei2n(φ1+φ3−φ5−φ7) .

(92)

Therefore we can write Eq. (91) as

κ2n{4} =
∫

d2k1d2k3d2k5d2k7ei2n(φ1+φ3−φ5−φ7)

(

32 + 16

)

+ 2κn{2}2. (93)

In order to compute κ0{4} we have to have into account all the diagrams of Eq. (87). However, since all the permutations
are related by the change of variables ki → −ki or ki ↔ k j (i �= j) that leave the integral invariant we can write

κ0{4} =
∫

d2k1d2k3d2k5d2k7

(

+ 12 + 32
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Fig. 6 Dependence of the
4-particle integrated cumulants
on Q2

s (left) and of the
differential cumulants on p⊥
(right) in the case in which the
partons in the projectile wave
function are uncorrelated. In
these graphs we have used
Nc = 3 and the values of the
remaining parameters are
indicated on the plots

+ 12 + 48

)

. (94)

This integral can be easily performed since all the terms are just Gaussian functions.
All in all, the 4-particle cumulant can be computed by using Eq. (18) and Eqs. (93) and (94)

c2n{4} = 1

κ0{4}

∫

d2k1d2k3d2k5d2k7ei2n(φ1+φ3−φ5−φ7)

(

32 + 16

)

+ 2κ2n{2}2
(

1

κ0{4} − 1

κ0{2}2

)

(95)

and the four particle even azimuthal harmonics is obtained as

v2n{4} = (−c2n{4})1/4. (96)

In Fig. 6 left we have plotted our results for Eq. (95) as a function of Q2
s . The absolute values of the cumulant are very

small and it even becomes positive with increasing Q2
s . The reason why it is so comes from the fact that we are not having

into account all the contributions that come from the correlation of the partons in the projectile ensemble. Below, see Eq. (7),
these contributions are taken into account and the values are reasonable and in the ballpark of the ones in experimental data.

The differential 4-particle cumulant in Eq. (24) can be computed in the same fashion but since we are fixing one of the
momentums we have to be more careful with the symmetries discussed in the last paragraphs. In Appendix D we show that
we can write (again dropping factors 2 and 2π )

∫ 2π

0
dφ1

∫

d2k3d2k5d2k7ei2n(φ1+φ3−φ5−φ7)

(

+ perm5

)
∣

∣

∣

∣

|k1|=p⊥

=
∫ 2π

0
dφ1

∫

d2k3d2k5d2k7ei2n(φ1+φ3−φ5−φ7)

(

32 + 16

)
∣

∣

∣

∣

|k1|=p⊥

(97)

and, therefore,

κ̃2n{4}(p⊥) =
∫ 2π

0
dφ1

∫

d2k3d2k5d2k7ei2n(φ1+φ3−φ5−φ7)

×
(

32 + 16

)
∣

∣

∣

∣

|k1|=p⊥

+ 2κ̃n{2}(p⊥)κn{2}. (98)

In order to compute κ̃0{4}(p⊥) we cannot use the same symmetries that we employed for computing κ0{4} because now
one of the momenta is fixed. All the Wick diagrams of Eq. (87) that are related by a change of variables ki → −ki still
leave the integral invariant but now, since we are fixing |k1| = p⊥, all the diagrams that are related by a change of variable
k1 ↔ k j will give a different value for the integral but the ones that are related by ki ↔ k j , with i, j �= 1, still leave the
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integral invariant. Performing a simple counting of the permutations of Eq. (87) we can write

κ̃0{4}(p⊥) =
∫ 2π

0
dφ1

∫

d2k3d2k5d2k7

[
∣

∣

∣

∣

|k1|=p⊥

+
(

6 + 6(k1 ↔ k5)

)
∣

∣

∣

∣

|k1|=p⊥

+
(

8 + 24(k1 ↔ k3)

)
∣

∣

∣

∣

|k1|=p⊥

+ 12

∣

∣

∣

∣

|k1|=p⊥

+
(

32 + 16(k1 ↔ k3)

)
∣

∣

∣

∣

|k1|=p⊥

]

. (99)

Thus, using Eqs. (98) and (99) the differential 4-particle cumulant can be written in a similar form as (95):

d2n{4}(p⊥) = 1

κ̃0{4}(p⊥)

∫ 2π

0
dφ1

∫

d2k3d2k5d2k7ei2n(φ1+φ3−φ5−φ7)

×
(

32 + 16

)
∣

∣

∣

∣

|k1|=p⊥

+ 2κ̃2n{2}(p⊥)κ2n{2}
(

1

κ̃0{4}(p⊥)
− 1

κ̃0{2}(p⊥)κ0{2}

)

, (100)

and the differential 4-particle azimuthal harmonics is defined as

vn{4}(p⊥) = (−d2n{4}(p⊥))1/4. (101)

In Fig. 6 right we have plotted our result for Eq. (100). Again, the values are very small and they even become positive
with increasing p⊥ because we are not including the diagrams that take into account the correlation of the partons inside the
projectile.

With the results of Fig. 6 we have finished our discussion of 4-gluon production in the case in which the partons are not
correlated in the projectile wave function. So far, let us recapitulate what we did in this section. First, we wrote the 4-gluon
spectrum in terms of the Wick diagrams by classifying them in different topologies and, thus, with a different suppression in
powers of (N 2

c − 1)−1. Then we wrote the diagrams with the same topology as just one plus a bunch of permutations, as in
Eq. (87). Then we exploited the symmetries of these permutations in order to reduce the number of integrals to be performed in
the 4-particle cumulant functions Eqs. (95) and (100). We also noticed that the contribution of the non vanishing factorizable
connected diagrams to κn{4} can be written as 2κn{2}2. Finally, we solved numerically these integrals for given values of Q2

s

and Bp.
Now let us jump to the case in which we take into account all the terms of the Wick expansion of the projectile correlator. In

this case we have to deal with (7!!)2 = 11025 terms instead of 7!! = 105. While the calculation becomes more cumbersome,
the approach is exactly the same. First, we group all the Wick diagrams in the 4-gluon spectrum by their topology that defines
the power in (N 2

c − 1)−1, by using the property (iii) of Sect. 3.2. Then, we relate the diagrams with the same topology by
permutations. Next, in order to compute the 4-particle cumulant we exploit the symmetries of these permutations and reduce
as much as possible the number of integrals to be performed. Finally, we solve numerically each one of these integrals and
obtain a result for the azimuthal harmonics. The detailed discussion of this procedure can be found in Appendix D.

In Figs. 7 and 8 we show our results for the four gluon cumulants as a function of Q2
s , the differential cumulants as a

function of p⊥ and the corresponding azimuthal harmonics for n = 2 and 4. We use the same parameters that we employed
in the two gluon case. Now, in contrast with the case seen above, the values obtained are negative (for the cumulants, thus
real for the Fourier coefficients), larger in absolute value and in the ballpark of experimental data. Monte Carlo integration is
used, yielding negligible errors except for the smallest p⊥ for d4{4}. On the other hand, it is known that when the multiplicity
gets low the 4-particle cumulant turns positive [10,15]. The naive assumption that the multiplicity is proportional to the
saturation momentum suggests a change of sign in the cumulant as Q2

s → 0. Indeed, in the glasma graph approach, suitable
for dilute-dilute collisions and therefore for lower multiplicities, arguments [56] suggested that c2{4} > 0 – a result also found
in [45] where a transition from positive to negative is found when multiple scattering (that goes beyond glasma graphs) is
introduced. This is not seen in Fig. 7. A more detailed calculation should be done in this regime of low multiplicities where
the transition for the glasma graph approach is expected.
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Fig. 7 Dependence of the
4-particle cumulant (left) and
azimuthal harmonic (right) of
second and fourth order with
Q2

s . In these graphs we have
used Nc = 3 and the values of
the remaining parameters are
indicated on the plots

Fig. 8 Dependence of the differential 4-particle cumulant (left) and azimuthal harmonic (right) of second and fourth order with p⊥. For the latter
we also show the results obtained from 2-particle correlations. In these graphs we have used Nc = 3 and the values of the remaining parameters
are indicated on the plots

With the results for the azimuthal harmonics in the case of 4-gluon inclusive production we finish our discussion on
multi-gluon production. We point out that the procedure that we have developed can be generalised for larger values of n. It
implies dealing with a large number of diagrams ([(2n − 1)!!]2). There is not conceptual problem for doing it since, as we
have shown, we can always use the property (iii) of Sect. 3.2 to group all the diagrams in a systematic way and then exploit
the symmetries to reduce the number of integrals to be performed. The remaining issue is dealing with a large number of
2n-dimensional integrals that must be solved numerically.

We should also note that, although the results shown in this section are consistent with experimental data, no attempt is done
to compare with them. We have used the area enhancement argument that should only be valid in the case when the overlap
area is large. Furthermore, we have only taken into account the scattering of gluons. For more realistic results, we should at
least compute the differential multiplicities for scattering quarks, consider more involved projectile and target averages (e.g.
fluctuations) and convolute the results with fragmentation functions.

5 Summary

In this work we have computed multi-gluon production in the CGC in dilute-dense (pA) collisions, extending the work in
[53] to four gluons. Our calculation includes the contributions that are leading in the overlap area of the collision [53,57–
59], while keeping all orders in the expansion in the number of colors. We develop a diagrammatic technique to write the
numerous color contractions and exploit the symmetries to group the diagrams and simplify the expressions. This technique
reduces dramatically the number of integrals needed to compute the multiplicity distributions and integrated and differential
cumulants, which results essential for the large number of diagrams, more than 10,000, that appears for four gluon production.
We use the GBW model [60,61] for the dipoles that result from the target averages, and the generalised MV model [62,63] for
projectile averages. In order to proceed analytically as far as possible and simplify the final calculations, we use the Wigner
function approach [45,64,65] that we extend to include quantum correlations in the projectile wave function. The Wigner
function approach supposes that the final momenta of gluons is mainly acquired through interaction with the dense target and
is thus suitable for a collinear projectile approximation.

Apart from the techniques developed and the discussions on the validity of the area enhancement argument and the
Wigner function approach, our main results can be summarised in Figs. 4, 5, 7 and 8. For two gluon correlations, we provide
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analytic expressions for integrated and differential cumulants which show smooth dependences on the parameters defining the
projectile and target Wigner function and dipole, respectively. For four gluon correlations we find that the second order four
particle cumulant c2{4} < 0 – thus providing a sensible second order Fourier coefficient v2{4}, a result found in [45] (where
only quark scattering is considered and partons in the projectile wave function are uncorrelated) and attributed to multiple
scattering. We note that the approximation in which gluons in the projectile are uncorrelated gives results for the cumulants
that are much smaller in absolute value than when correlations are included, and become positive for some values of Qs and
p⊥. This emphasises the importance of including the full correlations in the projectile.

Our numerical results, due to the Gaussian forms that we employ for the Wigner function and dipole, cannot be considered
reliable for p⊥ sizeably larger than Qs . They lie in the ballpark of experimental data, for values of parameters that look
reasonable. But we are aware that further analytic understanding is still required, and several pieces are still missing in our
formalism: the contribution from quarks, more involved projectile and target averages, fragmentation functions,. . . . All these
aspects should be explored before we can establish a model ready for phenomenology.

An immediate outlook of this work that we plan to address in the near future, is exploring the transition to low multiplicities,
where the target should behave as a dilute object and the glasma graph approach should be valid. It has been argued that
in such approximation c2{4} > 0 [45,56]. It would be most interesting to clarify the origin of such change of behaviour
observed in data [10,15] and implement a framework that consistently goes from the dilute-dilute to the dilute-dense situation
to examine the behaviour of the many particle cumulants.
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Appendix A: On the validity of the area enhancement argument

In this section we will study the validity of the area enhancement argument, from now on AE model, introduced in Sect. 2.2.
For the sake of simplicity we will work in the fundamental representation of the Wilson lines instead of in the adjoint
representation. Furthermore, we will only consider the expectation value of 4 Wilson lines, i.e. double quark interaction with
a target. We expect the discussion presented here to be also valid for any number of Wilson lines or for a different color
representation. In our case, the expected value of the double dipole operator is

〈D(x, y)D(u, v)〉AE
T = D(x, y)D(u, v) + 1

N 2
c

D(x, v)D(u, y), (A1)

where we have introduced the dipole operator D(x, y) = 1
Nc

Tr[U (x)U †(y)] and D(x, y) is its target average.
As discussed in Sect. 2.2, this approximation is only valid after integration over the phase space and at leading order in the

transverse size of the interaction region, Bp. In order to check the validity of this model we will compare it with the result of
[81,96] that was obtained by assuming multiple coherent scatterings of the quarks within the target. This result was obtained
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using the MV model and the result is

〈D(x, y)D(u, v)〉MV
T = D(x, y)D(u, v)

[(

F(x, u; y, v) +
√

�

2
√

�
− 1

N 2
c

F(x, y; u, v)√
�

)

e
Nc
4 μ2

√
�

−
(

F(x, u; y, v) −
√

�

2
√

�
− 1

N 2
c

F(x, y; u, v)√
�

)

e− Nc
4 μ2

√
�

]

e
− Nc

4 μ2 F(x,u;y,v)+ 1
2Nc

μ2 F(x,y;u,v)
, (A2)

where

� = F(x, u; y, v)2 + 4

N 2
c

F(x, y; u, v)F(x, v; u, y) (A3)

and function F(x, y; u, v) is defined in [81]. In the GBW model this function reads simply

μ2 F(x, y; u, v) = Q2
s

2CF

(x − y) · (u − v). (A4)

Taking the large-Nc limit we can simplify Eq. (A2) drastically to read, in the GBW model,

〈D(x, y)D(u, v)〉MV
T = D(x, y)D(u, v) + 1

N 2
c

F(x, y; u, v)2

F(x, u; y, v)2

[

D(x, v)D(u, y) + D(x, y)D(u, v)

×
(

Q2
s

2
(u − x) · (v − y) − 1

)]

+ O

(

1

N 3
c

)

. (A5)

Thus, in the large-Nc limit, the ratio between the integral of the double dipole weighted by an arbitrary smooth function
of the coordinates �(x, y, u, v) computed in the MV and AE models is

∫

x,y,u,v〈DD〉MV�(x, y, u, v)
∫

x,y,u,v〈DD〉AE�(x, y, u, v)

= 1 + 1

N 2
c

∫

x,y,u,v

�(x, y, u, v)

[(

F(x, y; u, v)2

F(x, u; y, v)2
− 1

)

D(x, v)D(u, y) + F(x, y; u, v)2

F(x, u; y, v)2

×
(

Q2
s

2
(u − x) · (v − y) − 1

)

D(x, y)D(u, v)

]/∫

x,y,u,v

D(x, y)D(u, v)�(x, y, u, v) + O

(

1

N 3
c

)

. (A6)

Using the saddle point approximation, and noting that F(x, y; u, v) → 0 when x → y or u → v and the fact that the
dipole functions are Gaussian functions, it is straightforward to see that, in this approximation, the MV and AE model lead
to the same result. For such approximation to hold we must consider the Gaussian functions, with width ∝ 1/Qs , to behave
δ-like with respect to the integration area. Therefore, corrections must be order 1/Q2

s that, by dimensional reasons, has to
be multiplied by an inverse area, with the overlap area, i.e., the size of the proton Bp, being the only parameter with such
dimensions.

So far the discussion in this section only relies on the dynamics of the target and for this reason Bp does not appear in the
expressions. We will introduce it by defining the phase space measure as

d� = d2xd2yd2ud2v	
(

√

2Bp − |x|
)

	
(

√

2Bp − |y|
)

	
(

√

2Bp − |u|
)

	
(

√

2Bp − |v|
)

; (A7)

that is, we integrate over a 4-sphere of radius
√

2Bp in such a way that the integral over the phase space leads to the expected
result

∫

d� = (2π Bp)
4 = S4

⊥. (A8)
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Fig. 9 Ratio of the Fourier transforms of Eqs. (A2) and (A1) at different values of Bp . The values of the ratio were computed using four sets of
random momenta with moduli between 0.5 and 1.5 GeV. We present both the norm (blue lines) and the argument (yellow lines). We have suppressed
the values where the estimated error in the Monte Carlo integration becomes larger than 10%

In order to compare the MV and AE models, we perform a Fourier transform over the phase space measure defined as

〈D(q1, q2)D(q3, q4)〉T =
∫

d�eiq1·x−iq2·y+iq3·u−iq4·v〈D(x, y)D(u, v)〉T . (A9)

In Fig. 9 we show the result for the ratio of the Fourier transforms of Eqs. (A2) and (A1) for different values of Bp, taking
Q2

s = 1 GeV2. The result was generated by using four sets of random momenta with moduli between 0.5 and 1.5 GeV. We
see that, as expected, as we increase the value of Bp Q2

s the results in the AE model tends to those in the MV model, being
the difference between both approaches of order a few % at relatively high Bp.

An analogous discussion can be performed to the expected value of the quadrupole operator. In the AE model it can be
written as

〈Q(x, y, u, v)〉AE
T = D(x, y)D(u, v) + D(x, v)D(u, y), (A10)

where Q(x, y, u, v) = 1
Nc

Tr[U (x)U †(y)U (u)U †(v)]. In the MV model it reads [96]

〈Q(x, y, u, v)〉MV
T = D(x, y)D(u, v)

[(

F(x, u; y, v) +
√

�

2
√

�
− F(x, y; u, v)√

�

)

e
Nc
4 μ2

√
�

−
(

F(x, u; y, v) −
√

�

2
√

�
− F(x, y; u, v)√

�

)

e− Nc
4 μ2

√
�

]

e
− Nc

4 μ2 F(x,u;y,v)+ 1
2Nc

μ2 F(x,y;u,v)
. (A11)

It turns out that the only difference between the expectation value of the quadrupole and double dipole operators in both
models is a factor 1/N 2

c .
In the large-Nc limit, Eq. (A11) can be simplified to read

〈Q(x, y, u, v)〉MV
T = D(x, y)D(u, v) − F(x, y; u, v)

F(x, u; y, v)

[

D(x, y)D(u, v) − D(x, v)D(u, y)
]

+ O

(

1

N 2
c

)

. (A12)

We can show again that by using the saddle point approximation and the same arguments given below Eq. (A6) that the
expected value of the quadrupole is the same in both models. However, in the case of the quadrupole the difference between
Eqs. (A10) and (A12) is not suppressed by any power of 1/N 2

c and, therefore, we expect a larger discrepancy between both
models.

In Fig. 10 we plot the ratio between the Fourier transform, defined analogous to Eq. (A9), of Eqs. (A11) and (A10) for
three sets of random momenta with moduli between 0.5 and 1.5 GeV for different values of Bp, taking again Q2

s = 1 GeV2.
In this case the difference between both models is of order 30% at relatively high Bp, being larger than in Fig. 9 due to the
1/N 2

c suppression present for the double dipole and absent for the quadrupole. It also looks that at high Bp the AE model
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Fig. 10 Ratio of the Fourier transform of Eqs. (A11) and (A10) at different values of Bp . The values of the ratio were computed using three sets of
random momenta with moduli between 0.5 and 1.5 GeV. We present both the norm (blue lines) and the argument (yellow lines). We have suppressed
the values where the estimated error in the Monte Carlo integration becomes larger than 10%

tends to the MV model but integrals become very time consuming which prevents reaching larger values of Bp Q2
s . Therefore,

the tendency is not as clear as in Fig. 9.

Appendix B: Table of integrals

In this section we present all the closed-form solutions of the integrals that have been used in this work. First, let us introduce
the well known definitions

In(x) =
∞
∑

k=0

( x

2

)2k+n 1

k!Ŵ(k + n + 1)
, (B1)

p Fq(a1, . . . , ap; b1, . . . , bq ; z) =
∞
∑

n=0

(a1)n · · · (ap)n

(b1)n . . . (bq)n

zn

n! , (B2)

(a)n = Ŵ(a + n)

Ŵ(a)
, (B3)

Ŵ(k) =
∫ ∞

0
dxe−x xk−1, (B4)

where In(x) is the modified Bessel function of the first kind, p Fq(a1, . . . , ap; b1, . . . , bq ; z) is the generalised hypergeometric
function, (a)n is the rising factorial (or Pochhammer symbol) and Ŵ(k) is the gamma function.

We will also introduce for convenience the Jacobi-Anger expansion

ex cos φ =
∞
∑

n=−∞
In(x)e−inφ . (B5)

The first integral and the one that will be the most used in this work is the well known Gaussian integral

∫

d2k e−Ak2+B·k = π

A
e

B2

4A . (B6)

When computing the 2-particle differential cumulant we will have to deal with the following integral

∫ 2π

0
dφ1

∫

d2k2 ei2n(φ1−φ2)e−A1k2
1−A2k2

2+A12k1·k2

∣

∣

∣

|k1|=p⊥

=
∫ 2π

0
dφ1dφ2 ei2n(φ1−φ2)

∫ ∞

0
dk2k2 e−A1 p2

⊥−A2k2
2+A12 p⊥k2 cos(φ1−φ2)
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= 2πeB

∫ ∞

0
dk2k2 e−A2k2

2

∫ 2π

0
dφ ei2nφ+Ck2 cos φ,

(B7)

where we have defined B = −A1 p2
⊥ and C = A12 p⊥. Taking into account the Jacobi-Anger expansion Eq. (B5) and the fact

that n is an integer we can write

2πeB

∫ ∞

0
dk2k2 e−A2k2

2

∫ 2π

0
dφ ei2nφ+Ck2 cos φ

= 2πeB

∞
∑

m=−∞

∫ ∞

0
dk2k2 e−A2k2

2 Im(Ck2)

∫ 2π

0
dφ ei(2n−m)φ = (2π)2eB

∫ ∞

0
dk2k2 e−A2k2

2 I2n(Ck2). (B8)

Using the definition of Eq. (B1) and then making the change of variable x = A2k2
2 we have that

(2π)2eB

∫ ∞

0
dk2k2 e−A2k2

2 I2n(Ck2) = (2π)2eB

∞
∑

k=0

∫ ∞

0
dk2k2 e−A2k2

2

(

Ck2

2

)2k+2n 1

k!Ŵ(k + 2n + 1)

= (2π)2eB

∞
∑

k=0

1

k!Ŵ(k + 2n + 1)

∫ ∞

0

dx

2A2
e−x

(

C2x

4A2

)k+n

= (2π)2

2A2
eB

(

C2

4A2

)n ∞
∑

k=0

(

C2

4A2

)k
1

k!Ŵ(k + 2n + 1)

∫ ∞

0
e−x xk+n

= (2π)2

2A2
eB

(

C2

4A2

)n ∞
∑

k=0

(

C2

4A2

)k
1

k!Ŵ(k + 2n + 1)
Ŵ(k + n + 1), (B9)

where in the last line we have used the definition of the Gamma function Eq. (B4). Using the definition of the hypergeometric
function Eq. (B2) we can write the last sum as

∞
∑

k=0

(

C2

4A2

)k
1

k!Ŵ(k + 2n + 1)
Ŵ(k + n + 1) = Ŵ(n + 1)

Ŵ(2n + 1)
1 F1

(

n + 1; 2n + 1; C2

4A2

)

(B10)

and, therefore, the result for the integral is

∫ 2π

0
dφ1

∫

d2k2 ei2n(φ1−φ2)e−A1k2
1−A2k2

2+A12k1·k2

∣

∣

∣

|k1|=p⊥

= (2π)2

2A2
e−A1 p2

⊥

(

A2
12 p2

⊥
4A2

)n
Ŵ(n + 1)

Ŵ(2n + 1)
1 F1

(

n + 1; 2n + 1; A2
12 p2

⊥
4A2

)

. (B11)

The solution of the integrals that we will find when we evaluate the 2-particle cumulant can be obtained in the same fashion
and the result is

∫

d2k1d2k2 ei2n(φ1−φ2)e−A1k2
1−A2k2

2+A12k1·k2 = (2π)2

4A1 A2

(

A2
12

4A1 A2

)n
Ŵ(n+1)2

Ŵ(2n+1)
2 F1

(

n+1, n+1; 2n+1; A2
12

4A1 A2

)

.

(B12)

Appendix C: The Wigner function approach

The Wigner function approach was used in several works [44,45,64,65,94] in order to compute multi-particle production.
Here we will follow the arguments in [64]. The forward amplitude for a gluon with momentum p scattering on a dense target
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and leaving with a momentum k is given, at leading order, by

out 〈k, a|p, b〉in =
∫

x

ei(k−p)·xU ab(x), (C1)

where for simplicity we are not taking into account the longitudinal polarization of the gluons. On the other hand the distribution
of gluons with momentum k and color a coming from the projectile after the interaction with the target can be written as

d N

d2k
= out 〈k, a| ρ̂ |k, a〉out , (C2)

where ρ̂ is the single gluon density matrix.
Using the completeness relation for the initial state we can write this equation as

d N

d2k
=
∫

q1q2

out 〈k, a|q1, b1〉in in 〈q1, b1| ρ̂ |q2, b2〉in in 〈q2, b2|k, a〉out

=
∫

q1q2

∫

xx̄

e−i(k−q1)·x+i(k−q2)·x̄U ab1(x)U b2a(x̄)†
in 〈q1, b1| ρ̂ |q2, b2〉in . (C3)

Doing the change of variables q1,2 = p ± q/2 and x, x̄ = b ± r/2 we get

d N

d2k
=
∫

rb

∫

pq

eiq·b
in

〈

p + q

2
, b1

∣

∣

∣
ρ̂

∣

∣

∣
p − q

2
, b2

〉

in

× e−i(k−p)·rU ab1

(

b + r

2

)

U b2a
(

b − r

2

)†
. (C4)

Defining

�b2b1(b, k − p) =
∫

r

e−i(k−p)·rU ab1

(

b + r

2

)

U b2a
(

b − r

2

)†
(C5)

and realizing that

W b1b2(b, p) =
∫

q

eiq·b
in

〈

p + q

2
, b1

∣

∣

∣
ρ̂

∣

∣

∣
p − q

2
, b2

〉

in
(C6)

is the Weyl transform of the density matrix, that is, the Wigner function, we can write the single inclusive gluon spectrum as

d N

d2k
=
∫

b

∫

p

W b1b2(b, p)�b2b1(b, k − p). (C7)

Since this expression is also dependent of the color charge density of the target we still have to perform the target average.
On the other hand, in the approach used in this work, we can evaluate the single gluon spectrum, before target averaging,

using Eq. (10):

2(2π)3 d N

d2k
=
∫

q1q2

〈

ρb1(q1)ρ
b2(q2)

∗
〉

p
4L i (k, k − q1)L i (k, k − q2)

∫

xx̄

e−i(k−q1)·x+i(k−q2)·x̄U ab1(x)U b2a(x̄)†. (C8)

Doing the same change of variables that we did before can write this expression as

d N

d2k
= 1

2(2π)3

∫

b

∫

p

∫

q

eiq·b
〈

ρb1

(

p + q

2

)

ρb2

(

p − q

2

)∗ 〉

p
4

× L i
(

k, k − p − q

2

)

L i
(

k, k − p + q

2

)

�b2b1(b, k − p). (C9)
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Thus, comparing Eqs. (C7) and (C9) we see that the single particle Wigner function can be written in terms of the Lipatov
vertices and the 2-point correlator of the projectile charge density:

W b1b2(b, p) = 1

2(2π)3

∫

q

eiq·b
〈

ρb1

(

p + q

2

)

ρb2

(

p − q

2

)∗〉

p
4L i

(

k, k − p − q

2

)

L i
(

k, k − p + q

2

)

. (C10)

Using the models employed through this work, Eqs. (63) and (60), we can write the single particle Wigner function as

W b1b2(b, p) = δb1b2

N 2
c − 1

1

2(2π)3

(4π)2

ξ2
e−p2/ξ2 ×

∫

q

eiq·be−q2/(4B−1
p ) = δb1b2

N 2
c − 1

1

π2

1

ξ2 Bp

e−b2/Bp−p2/ξ2
, (C11)

which is the same function found in the literature [64]. We can also check that this function is well normalised by performing
the trace and integrating over b and p,

∫

b

∫

p

W aa(b, p) = 1. (C12)

Doing an analogous discussion we can write the 2-particle Wigner function as

W b1b2b3b4(b1, p1, b2, p2)

= 4

(2π)6

∫

q1q2

eiq1·b1+iq2·b2

〈

ρb1

(

p1 + q1

2

)

ρb2

(

p1 − q1

2

)∗
ρb3

(

p2 + q2

2

)

ρb4

(

p2 − q2

2

)∗ 〉

p

L i
(

k1, k1 − p1 − q1

2

)

× L i
(

k1, k1 − p1 + q1

2

)

L i
(

k2, k2 − p2 − q2

2

)

L i
(

k2, k2 − p2 + q2

2

)

. (C13)

Performing the Wick expansion of the projectile correlator and using again Eqs. (63) and (60) we obtain Eq. (64). We can
check that the quantity defined in that equation is not well normalised:

∫

b1b2

∫

p1p2

W aabb(b1, p1, b2, p2) = 1 + 2
1

(N 2
c − 1)

1

1 + Bpξ2
. (C14)

Therefore, in order to have a proper definition of the Wigner function we should normalise Eq. (64) by this factor. However,
since in correlation studies the overall constants do not contribute to the cumulants, this normalisation factor is not important
for us.

We should also note that Eq. (64) breaks the factorisation assumption that is used in the literature in which the 2-particle
Wigner function factorizes into a product of two single particle Wigner function:

W b1b2b3b4(b1, p1, b2, p2) = W b1b2(b1, p1)W b3b4(b2, p2). (C15)

The reason for the breaking of this factorisation is that we are including in our approach quantum correlations in the projectile
wave function. Thus we can interpret the terms in Eq. (64) that break factorisation as Bose enhancement contributions in the
projectile wave function.

Appendix D: Calculation of four gluon inclusive production

In this section we analyse the four gluon inclusive spectrum by taking into account all the terms in Eq. (10). In order to do so
we will follow the same arguments that we have used for writing down the triple gluon spectrum in Sect. 4.2. First we note
that after performing the Wick expansion of either the target or projectile correlators we have 105 contributions on each side
that can be written schematically as

, (D1)
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(

+ k7 → −k7

)

+ k1 ↔ k5 + k1 ↔ k7 + k3 ↔ k5 + k3 ↔ k7 + (k3 ↔ k5)(k1 ↔ k7), (D2)

[(

+ k3 → −k3 + k5 → −k5 + k7 → −k7

)

+ k3 ↔ k7

]

+ k1 ↔ k3 + k1 ↔ k5 + k1 ↔ k7, (D3)

(

+ k1 → −k1 + k5 → −k5 + (k1 → −k1)(k5 → −k5)

)

+ k3 ↔ k5 + k3 ↔ k7, (D4)

[

+ k1 → −k1 + k3 → −k3 + k5 → −k5 + k7 → −k7

+ 1

2

(

(k1 → −k1)(k3 → −k3) + (k1 → −k1)(k5 → −k5) + (k1 → −k1)(k7 → −k7) + (k3 → −k3)(k5 → −k5)

+ (k3 → −k3)(k7 → −k7) + (k5 → −k5)(k7 → −k7)

)]

+ k1 ↔ k3 + k1 ↔ k7 + k3 ↔ k5 + k3 ↔ k7 + k5 ↔ k7,

(D5)

where the permutations ki → −ki and ki ↔ k j are an abuse of notation since we have not contracted the diagrams and thus
we cannot apply properties (i) and (ii) yet. In order to make the notation lighter we write these permutations as

, (D6)

+ perm2, (D7)

+ perm3, (D8)

+ perm4, (D9)

+ perm5. (D10)

Now we generate the Wick diagrams in such a way that they are grouped by their powers of (N 2
c − 1)−1. In order to do so

we exploit property (iii) of Sect. 3.2. In this case the suppression of a given diagram is given by (N 2
c − 1)n p+nT −8, with the

values of n p and nT fixing the topology of the diagram.
It is straightforward to realise that all the diagrams with nT = 4 will have the configuration of Eq. (D1) on the right side.

All the diagrams with nT = 3 will have one of the 12 configurations of Eq. (D2) on the right side. All the diagrams with
nT = 2 will have one of the 32 configurations of Eq. (D3) or one of the 12 configurations of Eq. (D4) on the right side and
all the diagrams with nT = 1 will have one of the 48 configurations of Eq. (D5) on the right side. Therefore the value of nT

is fixed by the configuration that we have on the right side of the diagram.
The value of n p, on the other hand, will depend on the configuration that we have on both sides. It is determined by the

number of disconnected pieces that we obtain after drawing the right configuration of the diagram on top of the left one.
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Thus, the only way of obtaining n p = 4 is by having a configuration on the left that has the same links as the one on the right.
The only way of obtaining n p = 3 is by having a configuration on the left that has just two links that are equal to the ones
on the right. The way of obtaining n p = 2 is by having a configuration on the left that has only one link that is equal to the
right configuration or by having all the links different but in such a way that, after the projection, we obtain two disconnected
pieces. Finally, the only way of obtaining n p = 1 is by having a configuration on the left side that has all the links different to
the right configuration in such a way that, after the projection, we have a fully connected piece. The number of possibilities
for n p = 4 is 1, for n p = 3 is 12, for n p = 2 is 32 and 12, respectively, and for n p = 1 is 48.

Having this into account we can find all the diagrams with a given suppression in powers of (N 2
c − 1)−1. As an example,

let us see which are the diagrams with power suppression (N 2
c − 1)−3. In this case we have n p + nT = 5 and we will have 4

different topologies that are fixed by this constraint: nT = 4 and n p = 1 ; nT = 3 and n p = 2 ; nT = 2 and n p = 3 ; nT = 1
and n p = 4. Let us study this situation case by case:

(i) nT = 4 and n p = 1. In this case we will have the configuration of Eq. (D1) on the right side of the diagram and on the
left side we will have all the diagrams that have zero links in common with the one on the right in such a way that after
the projection we just have one connected piece. Thus we will have 1 × 48 possibilities that are

+ + + +

+ + + + +

+ + + + +

+ + + + +

+ + + + +

+ + + + +

+ + + + +

+ + + + +

+ + + + +

+ + +

= + perm5, (D11)

where in the last line we have used the fact that since on the right side of the diagram we have a fully disconnected piece
we can write the sum of these 48 diagrams as just one plus perm5.
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(ii) nT = 3 and n p = 2. In this case we will have the configurations of Eq. (D2) on the right side of the diagram and on the
left side we will have all the diagrams that have just one link in common with the right one. This gives a total of 12 × 32
possibilities

+ + + +

+ + + + +

+ + + + +

+ + + + +

+ + + + +

+ + + + +

+ + + perm2, (D12)

or we can have on the left side the configurations that have no links in common with the one on the right in such a way
that, after the projection, we have two connected pieces. This gives a total of 12 × 12 possibilities:

+ + + +

+ + + + +

+ + + perm2. (D13)

(iii) nT = 2 and n p = 3. This implies that we will have the configurations of Eq. (D3) or Eq. (D4) on the right side of the
diagram and on the left side we will have the configurations that have two links equal to the one on the right. This gives
a total of 32 × 12 possibilities for the first case,

+ + + +

+ + + + +

+ + + perm3, (D14)
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and 12 × 12 possibilities for the second case,

+ + + +

+ + + + +

+ + + perm4. (D15)

(iv) nT = 1 and n p = 4. This implies that we have the configurations of Eq. (D5) on the right side of the diagram and on
the left side we have the configuration that have the same links with respect to the right one. This gives a total of 48 × 1
possibilities:

+ perm5. (D16)

With (D11) to (D16) we have found all the 1152 diagrams with a suppression of (N 2
c − 1)−3 and written them as a bunch

of diagrams plus permutations – which was our goal. We should also note that some of the diagrams that are drawn in these
equations can also be related by symmetries ki → −ki or ki ↔ k j , which could lead to a better optimisation of the calculation
but we have not found any systematic way of finding these symmetries. Therefore, we have decided to not include them in
the calculation since we see not advantage in doing this by hand.

We can find the other diagrams with a different suppression in the same fashion obtaining 1 diagram with a suppression of
(N 2

c − 1)0, 24 diagrams with a suppression of (N 2
c − 1)−1, 232 diagrams with a suppression of (N 2

c − 1)−2, 3088 diagrams
with a suppression of (N 2

c − 1)−4, 4224 diagrams with a suppression of (N 2
c − 1)−5 and 2304 diagrams with a suppression

of (N 2
c − 1)−6.

The next step is to exploit the symmetries encoded within the permutations in order to evaluate the cumulants through
Eq. (19). We will do as an example the calculation only for the terms that contribute, again, with a power (N 2

c − 1)−3. Let

us introduce the shorthand notation D̂n p as the sum of all the diagrams that satisfy the topology given by n p with a given

configuration on the right side. Then we can write the contribution of order (N 2
c − 1)−3 to the 4-gluon spectrum as

N (3) =
(

+ perm5

)

+
(

D̂
(1)
2

+ D̂
(2)
2

+ perm2

)

+
(

D̂3 + perm3

)

+
(

D̂3 + perm4

)

+
(

+ perm5

)

, (D17)

with D̂
(1)
2 and D̂

(2)
2 referring to the first and second contributions to Item (ii) discussed above, respectively.

In order to evaluate κ0{4} we can use the fact that all the permutations, permi , of (D1) to (D2) will give the same result
since we are integrating over all the momentum ki . Thus we can write

κ
(3)
0 {4} =

∫

k1k3k5k7

[

48 + 12D̂
(1)
2

+ 12D̂
(2)
2

+ 32D̂3 + 12D̂3 + 48

]

. (D18)

When we evaluate κn{4} with n �= 0 we have to integrate the spectrum times ein(φ1+φ3−φ5−φ7) which will break some
of the symmetries encoded in the permutations, permi . In order to check how we can simplify the integration let us start
with the permutations of the nT = 3 case with a generic n p. In this case we can define the sum of the diagrams without the
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permutations as

D̂n p
≡ f2(k1, k3, k5, k7). (D19)

By using the properties (i) and (ii) of Sect. 3.2 we can check that this sum has the following symmetry

f2(k1, k3, k5, k7) = f2(k1, k3, k7, k5). (D20)

Thus, the contribution of the nT = 3 diagrams to the κ-function can be written as

∫

k1k3k5k7

ein(φ1+φ3−φ5−φ7)

[

D̂n p
+ perm2

]

= 2

∫

k1k3k5k7

ein(φ1+φ3−φ5−φ7)
[

f2(k1, k3, k5, k7) + f2(k5, k3, k1, k7) + f2(k7, k3, k5, k1)

+ f2(k1, k5, k3, k7) + f2(k1, k7, k5, k3) + f2(k7, k5, k3, k1)
]

= 2

∫

k1k3k5k7

ein(φ1+φ3−φ5−φ7)
[

2 f2(k1, k3, k5, k7) + 4 f2(k1, k5, k3, k7)
]

, (D21)

where the factor 2 comes from exploiting the symmetries ki → −ki that are in Eq. (D2) and in the last equality we have used
Eq. (D20) and relabelled the variables. Therefore, we can write

∫

k1k3k5k7

ein(φ1+φ3−φ5−φ7)

[

D̂n p
+ perm2

]

=
∫

k1k3k5k7

ein(φ1+φ3−φ5−φ7)

[

4D̂n p
+ 8D̂n p

]

. (D22)

For the nT = 2 diagrams that are defined by Eq. (D3) we can follow the same arguments by defining

D̂n p
≡ f3(k1, k3, k5, k7). (D23)

We can check that this function has the following symmetries

f3(k1, k3, k5, k7) = f3(−k1,−k7,−k5,−k3) = f3(−k1,−k3,−k7,−k5) = f3(−k1,−k5,−k3,−k7). (D24)

Thus, exploiting this symmetries we can write the contribution of the diagrams that have the configuration of Eq. (D3) on the
right side with generic n p to the cumulant as

∫

k1k3k5k7

ein(φ1+φ3−φ5−φ7)

[

D̂n p
+ perm3

]

= 32

∫

k1k3k5k7

ein(φ1+φ3−φ5−φ7)D̂n p
. (D25)

For the nT = 2 diagrams that are defined by Eq. (D4) we define

D̂n p
≡ f4(k1, k3, k5, k7), (D26)

which has the following symmetries

f4(k1, k3, k5, k7) = f4(k3, k1, k5, k7) = f4(k1, k3, k7, k5). (D27)
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Thus, the contribution of the diagrams that have the configuration of Eq. (D4) on the right side with generic n p to the cumulant
is

∫

k1k3k5k7

ein(φ1+φ3−φ5−φ7)

[

D̂n p
+ perm4

]

=
∫

k1k3k5k7

ein(φ1+φ3−φ5−φ7)

[

4D̂n p
+ 8D̂n p

]

. (D28)

For the nT = 1 diagrams that are defined by Eq. (D5) we define

D̂n p
≡ f5(k1, k3, k5, k7). (D29)

This function has the following symmetries

f5(k1, k3, k5, k7) = f5(−k5,−k3,−k1,−k7) = f5(−k1,−k7,−k5,−k3) = f5(−k3,−k1,−k7,−k5). (D30)

Therefore, the contribution of the diagrams that have the configuration of Eq. (D5) on the right side with generic n p to the
cumulant is

∫

k1k3k5k7

ein(φ1+φ3−φ5−φ7)

[

D̂n p
+ perm5

]

=
∫

k1k3k5k7

ein(φ1+φ3−φ5−φ7)

[

32D̂n p
+ 16D̂n p

]

. (D31)

All in all, using Eq. (D17) and the simplifications in Eqs. (D22), (D25), (D28) and (D31), we can reduce the number of
integral when computing κn{4} at order (N 2

c − 1)−3 down to

κ(3)
n {4} =

∫

k1k3k5k7

ein(φ1+φ3−φ5−φ7)

[

32 + 16 + 4D̂
(1)
2

+ 8D̂
(1)
2

+ 4D̂
(2)
2

+ 8D̂
(2)
2

+ 32D̂3 + 4D̂3

+ 8D̂3 + 32 + 16

]

. (D32)

We compute the contribution at different orders of (N 2
c − 1)−1 in the same way. Finally, we just have to solve numerically

Eqs. (D32) and (D18) and the equivalent ones at different order. By doing that we are able to obtain Fig. (7).
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