
Multi-Party Computation with

Conversion of Secret Sharing

Josef Pieprzyk

joint work with
Hossein Ghodosi and Ron Steinfeld

NTU, Singapore, September 2011 1 / 33

Road Map

Introduction

Background

Our Contribution
Building Blocks

Additive secret sharing
Multiplicative secret sharing

Computations using Hybrid Secret Sharing

Conversion of Multiplicative Shares into Additive Shares

MPC Protocols with Hybrid Secret Sharing

Conclusions

2 / 33

Introduction

What is multi-party computation (MPC) protocol?
Assume that

there is a collection of participants

{P1,P2, . . . ,Pn} and a function Y = F (x1, . . . , xn)

each participant

Pi holds a private input xi for i = 1, . . . , n

a MPC protocol allows participants to evaluate the
function F in such a way that at the end of the protocol

all participants learn Y and
their inputs remain private

3 / 33

Introduction – Ideal Process

Assume that there is a trusted party (TP). Then we can run
the following protocol:

Participants submit their inputs to TP

TP evaluates the function

TP distributes the result to all participants

Problem:
What happens if the participants cannot agree on a TP?

4 / 33

Introduction – Security Settings

Two possible frameworks:

computationally secure

breaking the security of the protocol implies that the
adversary is able to solve a problem (in polynomial time)
that is believed to be intractable

unconditionally secure

the adversary cannot break the system by any method
better than by guessing private inputs

5 / 33

Introduction – Adversary

Two generic types of adversary

passive – also called “honest but curious”. The corrupted
participants follow the protocol but they try to learn
private information

active – corrupted participants behave arbitrarily or
maliciously

6 / 33

Background

Early developments

Yao, 1982 – the concept of secure MPC

Goldreich, Micali and Wigderson, 1987 – solution with
computational security

Ben-Or, Goldwasser, and Wigderson and
independently Chaum, Crepeau, and Damg̊ard, 1988 –
solutions with unconditional security

7 / 33

Background – the BGW/CCD Solution

Assume that

Y = F (x1, . . . , xn) =
∑

xα1
1 · · · x

αn

n

can be represented by a polynomial (sum of products) over
GP(p). The participants

collectively evaluate products

collectively evaluate the sums and finding shares of Y
Note 1
At the initial stage, each participant Pi distributes their shares xi using Shamir
secret sharing with the polynomial

fi (x) = xi + a1x + . . . ,+atx
t

Note 2
Computation of products is highly interactive – the multiplication of two
polynomials of degree t gives a polynomial of degree 2t. Reduction of the
degree requires n ≥ 2t + 1
Note 3

Computation of sums is easy.
8 / 33

Background – Unconditionally Secure MPC –
Standard Model

1 In the presence of a passive adversary, no set of size

t < n/2

of participants learns any additional information, other
than what they could derive from their private inputs and
the output of the protocol.

2 In the presence of an active adversary, no set of size

t < n/3

of participants can learn any additional information or
disrupt the protocol.

9 / 33

Background - Trusted Setup Assumptions

We study the trusted model when the participants may
interact with trusted party BEFORE receiving their private
inputs.

Previous results:

Killian, 1988 – protocols that are secure against
dishonest majority

Beaver, 1995 – unconditionally secure OT protocols in
trusted setup model

10 / 33

Background – MPC Efficiency

Two measures:

round complexity – maximum number of rounds in the
protocol

communication complexity – maximum number of bits
exchanged during a run of the protocol

MPC protocols in trusted setup model with Beaver’s
pre-computation construction are based on OT and have the
following communication complexity

O(m · n2) field elements over GF (2) or

O((log p + k) ·m · n2) over GF (p)

where m is the number of multiplication gates.

11 / 33

Our Contribution

MPC protocols in unconditionally secure setting to evaluate

F (x1, . . . , xn) = FL(x1, . . . , xn)+FC1
(x1, . . . , xn)+. . .+FCℓ

(x1, . . . , xn)

where

FL(x1, . . . , xn) denotes the linear component

FCi
(x1, . . . , xn) denotes monomials, where i = 1, . . . , ℓ

12 / 33

Our Contribution – Details

The linear component, and every monomial (regardless of
its depth), can be computed with no interaction using
hybrid secret sharing

The value of function is computed by converting

multiplicative secret sharing

into
an additive secret sharing

with a help of auxiliary information distributed to the
participants in a trusted setup phase
Our MPC protocol allows the adversary to corrupt up to
n − 1 participants and does not use OT
The communication complexity of our protocol is
O(ℓ · n2) field elements

13 / 33

Our Contribution – Comparison of Models

Ideal Process (t < n)

Trusted Party

Output

Y

P1 P2 Pn· · ·

xnx2x1

Broadcast

Hybrid Model (t < n)

Source
of

Randomness

Pn

xn

P1 x1

P2
x2

MPC
Protocol

Auxiliary Information

Distributed Model (t < n/2)

Pn

xn

P1 x1
P2
x2 MPC

Protocol...

...

14 / 33

Building Blocks – Assumptions

We have complete synchronous network with private
channels available between every pairs of n collaborating
participants.

The adversary is passive with unlimited computing
capabilities.

Definition

A MPC protocol is t-private if after completion of the protocol

no subset of t participants

learns any information (about uncorrupted participant private
inputs) more than what they could derive from their private inputs
and the output of the protocol.

15 / 33

Building Blocks – Hybrid Secret Sharing

Definition

Let K be the domain of possible secrets, and let S be the domain of possible
shares. A hybrid (t, n)-threshold scheme determines two sets of functions

FA : S t → K and GA : S t → K

defined for every A ⊆ {1, . . . , n} with |A| = t, such that for any given set of t
shareholders each function defines the value of the secret, i.e.,

K = FA(si1 , . . . , sit) = GA(s
′

i1
, . . . , s ′it)

We refer to such secret sharing scheme as a (F ,G)-hybrid (t, n)-threshold
scheme.

We use the following instantiations

F is the modular addition, and

G is the modular multiplication over GF (p)

16 / 33

Building Blocks – Additive (n, n) Secret Sharing

Share Distribution

The dealer chooses n − 1 shares s1, . . . , sn−1 at random
from all possible values in GF (p), and computes

K = sn + Σn−1
i=1 si (mod p)

The dealer sends (privately) share si to participant Pi

(i = 1, . . . , n).

Secret Reconstruction

All participants pool their shares and reconstruct the secret

K = Σn
i=1si (mod p)

17 / 33

Building Blocks – Multiplicative (n, n) Secret Sharing

Share Distribution

The dealer chooses n−1 independent and uniformly random
shares s1, . . . , sn−1 from GF (p)∗, and computes

sn = K × (Πn−1
i=1 si)

−1 (mod p)

For i = 1, . . . , n, the dealer privately sends share si to
participant Pi .

Secret Reconstruction

All participants pool their shares and reconstruct the secret

K = Πn
i=1si (mod p)

18 / 33

Computations for Linear Functions

Given two secrets xi and xk shared using (n, n)-threshold SS

Pj

si,j
←− xi and Pj

sk,j
←− xk

In order to compute shares of xi + xk , each participant Pj

computes

Pj

s i+k
j

=si,j+sk,j
←− (xi + xk),

where s i+k
j is the share of Pj associated with the secret

xi + xk . This is because the additive (n, n)-threshold
scheme is (+,+)-homomorphic.

For every known scalar c ∈ GF (p) and each secret input
xi , then

Pj

c·si,j
←− c · xi

19 / 33

Computations for Linear Functions

Given a secret xi and a scalar c ∈ GF (p), how to
computer shares of

c + xi
This can be done at least in two ways:
(i) Share the value c amongst all participants, using the additive

(n, n)-threshold scheme, i.e.

Pj

cj
←− c

Then each participant

Pj

cj+si,j
←− (c + xi),

where j = 1, . . . , n.
(ii) A more efficient way is that only a designated participant, Pℓ,

ℓ ∈ {1, . . . , n} (who is chosen by all participants) adds c to his
share from xi , i.e., computes c + si ,ℓ.

Computation of an additive inverse – each participant Pj

computes the additive inverse of his share.

Thus, every linear function with n inputs can be computed
with no interaction.

20 / 33

Computation of Monomials

Given n secret inputs x1, . . . , xn, of participants P1, . . . ,Pn.
They are shared using the multiplicative (n, n)-threshold
scheme.
Assume that

Pj

mi,j

←− xi and Pj

mk,j

←− xk

Then

Pj

mi+k
j

=mi,j ·mk,j

←− xi · xk ,

This can be done as the multiplicative (n, n)-threshold scheme
is (×,×)-homomorphic.

21 / 33

Computations of Monomials

Given a secret xi and a scalar c ∈ GF (p), how to
computer shares of c · xi
This can be done at least in two ways:
(i) Share the value c amongst all participants, using the

multiplicative (n, n)-threshold scheme, i.e.

Pj

cj
←− c

Then each participant

Pj

cj ·si,j
←− (c · xi),

where j = 1, . . . , n.
(ii) A more efficient way is that only a designated participant, Pℓ,

ℓ ∈ {1, . . . , n} (who is chosen by all participants) multiplies c
by his share of xi , i.e., computes c · si ,ℓ.

Computation of an multiplicative inverse – each
participant Pj computes the multiplicative inverse of his
share.

Thus, every multiplication gate, regardless of its depth, can be
computed with no interaction.

22 / 33

Conversion of Multiplicative Shares to Additive Shares

Inputs:

Shares – Each participant Pj (j = 1, . . . , n) owns a share
mj associated to a multiplicative (n, n)-threshold scheme
over GF (p), such that

m1 × . . .×mn = K (mod p)

where K ∈ GF (p)∗ is the secret.

Auxiliary information – Each participant Pj

(j = 1, . . . , n) is given a set of n elements α1,j , . . . , αn,j ,
such that

Σn
i=1ui ≡ 1 (mod p), where ui ≡ Πn

j=1αi ,j (mod p).

23 / 33

Conversion of Multiplicative Shares to Additive Shares

The αi ,j ’s are generated as follows:

Pick u1, . . . , un in GF (p) as shares for an additve
(n, n)-threshold sharing of 1, i.e. pick u1, . . . , un−1

independently and uniformly at random from GF (p) and
compute

un ≡ 1−

n−1
∑

i=1

ui (mod p) ∈ GF (p)

For i = 1, . . . , n, pick n − 1 independent and uniformly
random elements {αi ,j}j 6=i from GF (p)∗ and compute

αi ,i ≡ ui · (
∏

j 6=i

αi ,j)
−1 (mod p) ∈ GF (p)

(note that αi ,i = 0 if and only if ui = 0).
24 / 33

Conversion of Multiplicative Shares to Additive Shares

Conversion:

Each participant Pj (j = 1, . . . , n) sends vi ,j = αi ,jmj

(mod p) (for i = 1, . . . , n) to participant Pi .

Outputs:

Participant Pi (i = 1, . . . , n) computes

si =

n
∏

j=1

vi ,j = Πn
j=1αi ,jmj = uiK (mod p)

as his share of K , associated to an additive (n, n)-threshold
scheme.

25 / 33

Conversion of Multiplicative Shares to Additive Shares

Secret K

PnP1 P2

α11

α21

αn1 αn2

α22

α12 α1n

α2n

αnn

m1α11

m1α21

m1αn1

m2α12

m2α22

m2αn2

mnα1n

mnα2n

mnαnn

P1 P2 Pn

· · ·

∏n

j=1 α1j

Additive secret sharing

Multiplicative secret sharing

∏n

j=1 α2j

∏n
j=1 αnj

Distribution

sn=
∏n

j=1αnjmjs2=
∏n

j=1α2jmjs1=
∏n

j=1α1jmj

= K
∏n

j=1αnj= K
∏n

j=1α2j= K
∏n

j=1α1j

∑n

i=1(
∏n

j=1 αij) = 1

Auxiliary information
m1 m2 mn

· · ·

· · ·

· · ·

· · ·

· · ·

...
...

...
...

...

−→

−→

−→

26 / 33

Conversion of Multiplicative Shares to Additive Shares

Correctness – Each participant Pi (i = 1, . . . , n) receives
n − 1 values αi ,jmj from participants Pj (j = 1, . . . , n, j 6= i).
Knowing αi ,i , mi , and the received information, Pi computes

si = Πn
j=1αi ,jmj = Πn

j=1αi ,jK ,

as his share corresponding to an additive (n, n)-threshold
scheme. The conversion protocol is correct, because at the
end of the protocol, the sum of the computed shares of all
participants is:

Σn
i=1si = Σn

i=1

(

Πn
j=1αi ,jK

)

=
(

Σn
i=1

(

Πn
j=1αi ,j

))

K = K (mod p).

27 / 33

Conversion of Multiplicative Shares to Additive Shares

Security – Let P1, . . . ,Pn−1 be the set of n − 1 participants
who collude in order to breach the privacy of the proposed
conversion protocol via learning some information about the
secret, K .
They collectively know

n− 1 shares m1, . . . ,mn−1 associated with a multiplicative
(n, n)-threshold scheme

auxiliary information αi ,j (i = 1, . . . , n and
j = 1, . . . , n − 1) and

n − 1 values vi ,n ≡ mnαi ,n (mod p) (i = 1, . . . , n − 1)
received from the honest participant Pn.

To demonstrate the security, we need to show that all these
known values can be perfectly simulated by the collusion
P1, . . . ,Pn−1 by itself, independently of the secret K .

28 / 33

MPC Protocols with Hybrid Secret Sharing

Initialization – Each participant Pi (i = 1, . . . , n)
distributes his private input xi ∈ GF (p)∗ amongst all
participants, using the additive and multiplicative
(n, n)-threshold schemes
Computation – In order to compute the function
F (x1, . . . , xn) = FL(.) + FC1

(.) + . . . , FCℓ
(.), each

participant Pi (i = 1, . . . , n) computes FL(.) and all
monomials FCj

(.) (j = 1, . . . , ℓ).
Reconstruction – Let Ai ,j be the share of participant Pi

associated with monomial FCj
(.), in an additive

(n, n)-threshold format. Now, Pi computes
Yi = Ai ,0 + Ai ,1 + . . . ,Ai ,ℓ, where Ai ,0 is the share of Pi

associated with the linear component FL(.) (if it exists).
They can pool their shares and compute the function
value, using

Y = Σn
i=1Yi (mod p).

29 / 33

MPC Protocols with Hybrid Secret Sharing

Corollary

Let F : (GF (p)∗)n → GF (p) denote a n-variate
polynomial over GF (p) (with inputs restricted to GF (p)∗)
having ℓ non-linear monomials.

Assume a setup phase in which an auxiliary information
(which is independent of the function inputs and consists
of O(ℓ · n2) elements of GF (p)) is privately distributed
among the n participants.

Then the function F can be computed by the n participants
such that

no subset of n − 1 participants can learn any additional
information, other than what they can learn from their
inputs and the protocol’s output.

the protocol has a total communication complexity of
O(ℓ · n2) elements of GF (p).

30 / 33

MPC Protocols with Hybrid Secret Sharing

Remark 1 – The protocol can still be used for GF (2). To see
that this is possible, it suffices to show that a two-input
NAND gate can be encoded into a polynomial over non-zero
inputs over the larger field.
Consider

h(x1, x2) = 2x2
1x

2
2 + 3x1x2 + 2

over the field GF (5). It is easy to verify that

h(2, 2) = h(1, 2) = h(2, 1) = 1 and h(1, 1) = 2

so h computes an encoding of the GF (2) NAND function over
GF (5), where we encode the GF (2) values 0 (respectively 1)
as the GF (5) non-zero values 2 (respectively 1).

31 / 33

MPC Protocols with Hybrid Secret Sharing

Remark 2 – For security reasons, any set of auxiliary
information should be used only once. That is, for computing
a function containing ℓ monomials, ℓ sets of auxiliary
information should be provided to the participants.

32 / 33

Conclusions

How to extend our results for active adversary?

Hybrid secret sharing is an interesting tool, and its
properties need more investigation. How the conversion
depends on the access structure and required
homomorphic properties.

If we would like to efficiently extend our approach to
arithmetic circuits of an arbitrary depth, then we need a
conversion of additive secret sharing into its multiplicative
version. So far, we do not know how to do this.

33 / 33

