Multi-Party Computation with

Conversion of Secret Sharing

Josef Pieprzyk

joint work with
Hossein Ghodosi and Ron Steinfeld

v

MACQUARIE
UNIVERSITY

SYDNEY ~ AUSTRALIA

NTU, Singapore, September 2011 s

@ Introduction
e Background

@ Our Contribution
o Building Blocks

¢ Additive secret sharing
¢ Multiplicative secret sharing

o Computations using Hybrid Secret Sharing

o Conversion of Multiplicative Shares into Additive Shares
@ MPC Protocols with Hybrid Secret Sharing

o Conclusions

Introduction

What is multi-party computation (MPC) protocol?
Assume that

@ there is a collection of participants
{Py1, Ps,...,P,} and a function Y = F(xy,..., X,)
@ each participant
P; holds a private input x; for i=1,...,n

@ a MPC protocol allows participants to evaluate the
function F in such a way that at the end of the protocol
@ all participants learn Y and
@ their inputs remain private

Introduction — ldeal Process

Assume that there is a trusted party (TP). Then we can run
the following protocol:

@ Participants submit their inputs to TP
@ TP evaluates the function
@ TP distributes the result to all participants

Problem:
What happens if the participants cannot agree on a TP?

Introduction — Security Settings

Two possible frameworks:

e computationally secure
breaking the security of the protocol implies that the
adversary is able to solve a problem (in polynomial time)
that is believed to be intractable

o unconditionally secure

the adversary cannot break the system by any method
better than by guessing private inputs

Introduction — Adversary

Two generic types of adversary

@ passive — also called “honest but curious”. The corrupted
participants follow the protocol but they try to learn
private information

@ active — corrupted participants behave arbitrarily or
maliciously

Background

Early developments
o Yao, 1982 — the concept of secure MPC

o Goldreich, Micali and Wigderson, 1987 — solution with
computational security

o Ben-Or, Goldwasser, and Wigderson and

independently Chaum, Crepeau, and Damgard, 1988 —
solutions with unconditional security

Background — the BGW/CCD Solution

Assume that
Y =F(x1,..., %) = fo‘l e X

can be represented by a polynomial (sum of products) over
GP(p). The participants

@ collectively evaluate products

o collectively evaluate the sums and finding shares of Y
Note 1
At the initial stage, each participant P; distributes their shares x; using Shamir
secret sharing with the polynomial

fi(x) =x +aix+ ..., Faxt

Note 2

Computation of products is highly interactive — the multiplication of two
polynomials of degree t gives a polynomial of degree 2t. Reduction of the
degree requires n > 2t + 1

Note 3

Computation of sums is easy.

Background — Unconditionally Secure MPC —

Standard Model

O In the presence of a passive adversary, no set of size
t<n/2

of participants learns any additional information, other
than what they could derive from their private inputs and
the output of the protocol.

@ In the presence of an active adversary, no set of size
t<n/3

of participants can learn any additional information or
disrupt the protocol.

Background - Trusted Setup Assumptions

We study the trusted model when the participants may

interact with trusted party BEFORE receiving their private
inputs.

Previous results:

o Killian, 1988 — protocols that are secure against
dishonest majority

o Beaver, 1995 — unconditionally secure OT protocols in
trusted setup model

10/33

Background — MPC Efficiency

Two measures:
o round complexity — maximum number of rounds in the
protocol

@ communication complexity — maximum number of bits
exchanged during a run of the protocol

MPC protocols in trusted setup model with Beaver's
pre-computation construction are based on OT and have the
following communication complexity

o O(m - n?) field elements over GF(2) or
o O((log p+ k) - m - n?) over GF(p)
where m is the number of multiplication gates.

11/33

Our Contribution

MPC protocols in unconditionally secure setting to evaluate
F(x1, .. yxn) = Fr(xa, .oy Xa)+Fe (X1, oy Xn) 4o o FFe, (X1, .o Xn)

where
@ Fi(xi,...,x,) denotes the linear component
o Fc(xa,...,x,) denotes monomials, where i =1,...,¢

12/33

Our Contribution — Details

@ The linear component, and every monomial (regardless of
its depth), can be computed with no interaction using
hybrid secret sharing

@ The value of function is computed by converting

multiplicative secret sharing
into
an additive secret sharing

with a help of auxiliary information distributed to the
participants in a trusted setup phase

@ Our MPC protocol allows the adversary to corrupt up to
n — 1 participants and does not use OT

@ The communication complexity of our protocol is
O(¢ - n?) field elements

13/33

Our Contribution — Comparison of Models

Ideal Process (t < n)

Broadcast

P P Py

xl\ \XQ /xn

Trusted Party

Output

Y

Hybrid Model (t < n)

Source
of

Randomness

Auxiliary Information

MPC
Protocol

Distributed Model (t < n/2)

P

X1
P> —
22 MPC
Protocol
Xn
/b

14 /33

Building Blocks — Assumptions

@ We have complete synchronous network with private
channels available between every pairs of n collaborating
participants.

@ The adversary is passive with unlimited computing
capabilities.

Definition

A MPC protocol is t-private if after completion of the protocol
no subset of t participants

learns any information (about uncorrupted participant private
inputs) more than what they could derive from their private inputs
and the output of the protocol.

15/33

Building Blocks — Hybrid Secret Sharing

Definition
Let K be the domain of possible secrets, and let S be the domain of possible
shares. A hybrid (¢, n)-threshold scheme determines two sets of functions

Fa:S'"—> K and Gi:S'—= K

defined for every A C {1,...,n} with |A] = t, such that for any given set of t
shareholders each function defines the value of the secret, i.e.,

K = Fa(si,-..,5.) = Ga(s},...,s])

i1

We refer to such secret sharing scheme as a (F, G)-hybrid (¢, n)-threshold
scheme.

We use the following instantiations
@ F is the modular addition, and

@ G is the modular multiplication over GF(p)

16 /33

Building Blocks — Additive (n, n) Secret Sharing

Share Distribution
The dealer chooses n — 1 shares s;,...,s,_; at random
from all possible values in GF(p), and computes

K=s,+Xs; (mod p)

The dealer sends (privately) share s; to participant P;
(i=1,...,n).

Secret Reconstruction
All participants pool their shares and reconstruct the secret

K=1Ysi (mod p)

17 /33

Building Blocks — Multiplicative (n, n) Secret Sharing

Share Distribution
The dealer chooses n—1 independent and uniformly random
shares s1,...,s,_1 from GF(p)*, and computes

sp =K x (NZ!s)™* (mod p)

For i = 1,...,n, the dealer privately sends share s; to
participant P;.

Secret Reconstruction
All participants pool their shares and reconstruct the secret

K =Ti_;s; (mod p)

18 /33

Computations for Linear Functions

Given two secrets x; and xi shared using (n, n)-threshold SS
P; &4 x; and P; &L

@ In order to compute shares of x; + x, each participant P;
computes
itk
J
'Dj
where sj“‘ is the share of P; associated with the secret
X; + xx. This is because the additive (n, n)-threshold
scheme is (+, +)-homomorphic.
o For every known scalar ¢ € GF(p) and each secret input
X;, then

=Si,j Sk,

(X,' -+ Xk),

C-Sjj

Pj < c-x;

19/33

Computations for Linear Functions

o Given a secret x; and a scalar ¢ € GF(p), how to
computer shares of
c+ X;
This can be done at least in two ways:
(i) Share the value ¢ amongst all participants, using the additive
(n, n)-threshold scheme, i.e.
(2 ¢
Then each participant
Pj

G tSi,j

(c+x),

where j=1,...,n.
(ii) A more efficient way is that only a designated participant, Py,
¢ e {1,...,n} (whois chosen by all participants) adds c to his
share from x;, i.e., computes ¢ + s; 4.
e Computation of an additive inverse — each participant P;
computes the additive inverse of his share.

Thus, every linear function with n inputs can be computed

with no interaction.
20/33

Computation of Monomials

Given n secret inputs x, ..., Xx,, of participants Py, ..., P,.
They are shared using the multiplicative (n, n)-threshold
scheme.

Assume that
m;j j my j
P; <= x; and P; +— x
Then .
m’.+k:m,-’j~mk’j

PJ' ! «— Xi * Xk,

This can be done as the multiplicative (n, n)-threshold scheme
is (X, x)-homomorphic.

21/33

Computations of Monomials

o Given a secret x; and a scalar ¢ € GF(p), how to

computer shares of € o5

This can be done at least in two ways:
(i) Share the value ¢ amongst all participants, using the
multiplicative (n, n)-threshold scheme, i.e.
(2 ¢
Then each participant
IDj

<jSij

(C : Xf)a
where j=1,...,n.
(i) A more efficient way is that only a designated participant, Py,
¢e{1,...,n} (who is chosen by all participants) multiplies ¢
by his share of x;, i.e., computes ¢ - s; .
o Computation of an multiplicative inverse — each
participant P; computes the multiplicative inverse of his
share.

Thus, every multiplication gate, regardless of its depth, can be

computed with no interaction. B

Conversion of Multiplicative Shares to Additive Shares

Inputs:

o Shares — Each participant P; (j = 1,..., n) owns a share
m; associated to a multiplicative (n, n)-threshold scheme
over GF(p), such that

my X ...xm,=K (mod p)

where K € GF(p)* is the secret.

o Auxiliary information — Each participant P;
(j=1,...,n) is given a set of n elements av , ..., a,;,
such that

Y ,u;=1 (mod p), where u; =T7_ja;; (mod p).

23/33

Conversion of Multiplicative Shares to Additive Shares

The «;;'s are generated as follows:

@ Pick uy,...,u, in GF(p) as shares for an additve
(n, n)-threshold sharing of 1, i.e. pick uy,..., U, 1
independently and uniformly at random from GF(p) and
compute

—1—Zu, (mod p) € GF(p)

@ For i=1,...,n, pick n— 1 independent and uniformly
random elements {«;;};.; from GF(p)* and compute

i g = (s - (H a;j)"t (mod p) € GF(p)
J#i

(note that o ; = 0 if and only if u; = 0).

Conversion of Multiplicative Shares to Additive Shares

Conversion:
o Each participant P; (1,...,n) sends v;; = a; ;m;
(mod p) (for i=1,...,n) to part|C|pant P:.
Outputs:

o Participant P; (i =1,...,n) computes

5 = H vij =M_j0i;m = uK (mod p)

Jj=1

as his share of K, associated to an additive (n, n)-threshold
scheme.

25/33

Conversion of Multiplicative Shares to Additive Shares

Multiplicative secret sharing

:';77_120;1-1‘ rI_‘I'l_zzoé_;z‘: .rf—‘ﬂ—n;l];‘: 27:1(1_[}7:1 O‘U) =1

Additive secret sharing

26 /33

Conversion of Multiplicative Shares to Additive Shares

Correctness — Each participant P; (i =1,...,n) receives
n — 1 values «a; jm; from participants P; (j =1,...,n, j #i).
Knowing «; j, m;, and the received information, P; computes

— n ..M. — n -
S, — nj:IOé,JmJ — I_lj:]_Oé,’JK,

as his share corresponding to an additive (n, n)-threshold
scheme. The conversion protocol is correct, because at the
end of the protocol, the sum of the computed shares of all
participants is:

er-’:lS; = 27:1 (njr]:lOé;,jK) = (Z,r';l (njzla;7j)) K=K (mod ,D)

27 /33

Conversion of Multiplicative Shares to Additive Shares

Security — Let P;,..., P,_; be the set of n — 1 participants
who collude in order to breach the privacy of the proposed
conversion protocol via learning some information about the
secret, K.

They collectively know

@ n— 1 shares my,..., m,_; associated with a multiplicative
(n, n)-threshold scheme

e auxiliary information o;; (i=1,...,n and
j=1,...,n—1)and

o n— 1 values v, , = myaj, (mod p) (i=1,...,n—1)

received from the honest participant P,.

To demonstrate the security, we need to show that all these
known values can be perfectly simulated by the collusion
Py, ..., P,_1 by itself, independently of the secret K.

28/33

MPC Protocols with Hybrid Secret Sharing

o Initialization — Each participant P; (i =1,...,n)
distributes his private input x; € GF(p)* amongst all
participants, using the additive and multiplicative
(n, n)-threshold schemes

o Computation — In order to compute the function
F(xt,...,xn) = Fu() + Fe () + ..., Fc,(.), each
participant P; (i =1,...,n) computes F;(.) and all
monomials Fc.(.) j=1,...,4).

@ Reconstruction — Let A;; be the share of participant P;
associated with monomial F¢(.), in an additive
(n, n)-threshold format. Now, P; computes
Yi=Aio+Ai1+...,Ais where Ay is the share of P;
associated with the linear component F;(.) (if it exists).
They can pool their shares and compute the function
value, using

Y=%,Y: (mod p).

29 /33

MPC Protocols with Hybrid Secret Sharing

Corollary
o Let F: (GF(p)*)" — GF(p) denote a n-variate

polynomial over GF(p) (with inputs restricted to GF(p)*)
having ¢ non-linear monomials.

o Assume a setup phase in which an auxiliary information
(which is independent of the function inputs and consists
of O((- n?) elements of GF(p)) is privately distributed
among the n participants.

Then the function F can be computed by the n participants
such that

@ no subset of n — 1 participants can learn any additional
information, other than what they can learn from their
inputs and the protocol’s output.

@ the protocol has a total communication complexity of
O(¢ - n?) elements of GF(p).

30/33

MPC Protocols with Hybrid Secret Sharing

Remark 1 — The protocol can still be used for GF(2). To see
that this is possible, it suffices to show that a two-input
NAND gate can be encoded into a polynomial over non-zero
inputs over the larger field.
Consider

h(x1, %) = 2x2x3 4 3x1x0 + 2

over the field GF(5). It is easy to verify that
h(2,2) = h(1,2) = h(2,1) =1 and h(1,1) =2

so h computes an encoding of the GF(2) NAND function over
GF(5), where we encode the GF(2) values 0 (respectively 1)
as the GF(5) non-zero values 2 (respectively 1).

31/33

MPC Protocols with Hybrid Secret Sharing

Remark 2 — For security reasons, any set of auxiliary
information should be used only once. That is, for computing
a function containing ¢ monomials, ¢ sets of auxiliary
information should be provided to the participants.

32/33

Conclusions

@ How to extend our results for active adversary?

o Hybrid secret sharing is an interesting tool, and its
properties need more investigation. How the conversion
depends on the access structure and required
homomorphic properties.

o If we would like to efficiently extend our approach to
arithmetic circuits of an arbitrary depth, then we need a
conversion of additive secret sharing into its multiplicative
version. So far, we do not know how to do this.

8Sy488!

