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Abstract

Secure multi-party computation has seen significant performance advances and increasing
use in recent years. Techniques based on secret sharing offer attractive performance and are
a popular choice for privacy-preserving machine learning applications. Traditional techniques
operate over a field, while designing equivalent techniques for a ring Z2k can boost performance.
In this work we develop a suite of multi-party protocols for a ring in the honest majority
setting starting from elementary operations to more complex with the goal of supporting general-
purpose computation. We demonstrate that our techniques are substantially faster than their
field-based equivalents and perform on par with or better than state-of-the-art techniques. We
also evaluate our techniques on machine learning applications and show that they offer attractive
performance for these applications.

1 Introduction

Secure multi-party computation has recently seen notable performance improvements that make
privacy-preserving computation of increasingly complex functionalities on increasingly large data
sets more practical than ever before. Recent significant interest in privacy-preserving machine learn-
ing (PPML) has brought to light secret sharing techniques which were often previously overlooked
in the literature. Secret sharing (SS) offers superior performance for arithmetic operations such as
matrix multiplications and has been extensively used for privacy-preserving neural network (NN)
inference and training [62, 18, 52, 55, 17, 40, 21, 63, 31]. Because SS offers information-theoretic
security, computation can proceed on short integers, aiding efficiency.

Traditionally performance of SS techniques has been measured in terms of two parameters: the
number of interactive operations and the number of sequential interactive operations, or rounds.
However, for some computations such as matrix multiplication local operations can dominate the
overall cost. Traditional techniques such as Shamir SS [61] carry out computation on protected data
over a field, most commonly set up as Zp with prime p. This makes frequent use of modulo reduction
a necessity, increasing the cost of the computation. To improve performance and directly utilize
native instructions of modern processors, researchers turned to computation over ring Z2k [14, 7,
19, 23]. Unfortunately, Shamir SS – a popular and efficient choice for computation in the honest
majority setting – cannot be used for computation over Z2k and we must seek other options.

The honest majority setting, which assumes that only a minority of the parties carrying out the
computation can be corrupt, offers great performance with reasonable trust assumptions, making
a good performance-security trade-off. The techniques we are aware of in this setting which can
perform computation over ring Z2k for some k are limited to a fixed number of parties, most
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commonly to 3 (see, e.g., [7, 45, 52, 18, 17]). This means that the techniques do not easily generalize
to a larger number of participants, should there be a need to change the computation setup. This
is the task we set to address in this work and generalize computation based on replicated secret
sharing (RSS) to support more than n = 3 computational parties.

Our contributions can be summarized as follows:

• We design a comprehensive set of elementary building blocks for RSS over an arbitrary ring
in the semi-honest setting. These building blocks include generating shares of pseudorandom
integers and ring elements, multiplication, reconstructing a value from shares, multiplication
followed by reconstruction as a single building block, denoted by MulPub, and inputting pri-
vate values into computation. We optimize the solutions to lower communication complexity
by relying on a pseudo-random function. This means that the techniques are computation-
ally secure and they also come with formal security proofs. Our solutions are efficient and,
for example, the cost of multiplication when instantiated with three parties matches custom
results which apply to the three-party setting only [7, 62].
• We build on the techniques of [23] and [31] to develop higher-level protocols over Z2k such as

for random bit generation, comparisons, conversion between different ring sizes and more to
enable general-purpose computation in this framework.
• We provide extensive benchmarks to evaluate performance of the developed techniques. We

observe that when n = 3 our techniques are up to 450 times faster than their field-based
counterparts for operations such as matrix multiplication and up to 24 times faster for com-
parisons. Incorporating recent advances in random bit generation yields even more promising
results.
• We improve the techniques of [21] for securely evaluating quantized NNs and eliminate the

need for fixed-point multiplication and large truncation, which enables us to use a significantly
smaller ring.
• We also evaluate performance of our techniques on machine learning applications, namely,

NN predictions, quantized NN inference, and support vector machine (SVM) classification.
Similarly, our runtimes are significantly faster than similar field-based implementations and
compare favorably to the state of the art.

Because our techniques are based on RSS, it is expected that they will be used with a relatively
small number of parties. This is similar to most efficient techniques based on Shamir SS (e.g.,
[16, 11]) which also rely on RSS for certain operations.

2 Related Work

Secret sharing [61, 10] is a popular choice for secure multi-party computation, and common options
include Shamir SS [61], additive SS, and more recently RSS [36] for three parties. Computation
over rings, and specifically Z2k , has recently gained attention, and publications that use this setting
include [14, 7, 45, 19, 25, 23, 30, 4, 39, 21]. We can distinguish between three-party techniques
based on RSS such as [14, 7, 45, 25, 30, 4, 39]; multi-party techniques based on additive SS such
as [19, 23], often for the setting with no honest majority; and ad-hoc techniques for three or four
parties that utilize one or more types of rings with constructions for specific applications such as
[38] and others.

The first category is the closest to this work and includes Sharemind [14], a well-developed
framework for three-party computation with a single corruption using custom protocols; Araki et
al. [7] who use three-party with a single corruption to support arithmetic or Boolean circuits; and
several compilers from passively secure to actively secure protocols [45, 25, 30, 4]. Dalskov et al. [22]
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also studied four-party computation with a single corruption. We are not aware of existing multi-
party techniques with honest majority over a ring which extend beyond three parties or multi-party
protocols based on RSS over a ring. While RSS is meaningful only for a small number of parties, we
still find it desirable to support more participants and build additional techniques for this setting.
For example, if our matrix multiplication protocol over a ring with three parties is 100 times faster
than field-based computation, it will remain faster even if the work increases when the number of
parties is larger than 3.

We rely on the results of Damgard et al. [23] for some of our protocols. While this work is
for the SPDZ2k framework [19] in the malicious setting with no honest majority, once we develop
elementary building blocks, the structure of higher-level protocols can remain similar. Composite
protocols such as comparison, conversion, and truncation require a large number of random bits.
We leverage the edaBit protocol from [31] to efficiently generate sets of binary and arithmetic shared
bits. Their technique improves upon the daBit technique [59]. Rabbit [48] builds on daBits [59] and
edaBits [31] and developed an efficient n-party comparison protocol by relying on commutativity
of addition over fields and rings. Their protocol offers significant improvement over [31] in most
adversarial settings over a field, but remains comparable with a passively secure honest majority
over a ring.

Literature on PPML is also related to this work. We distinguish between two-party solutions
where one party holds the model and the other party holds the input on which the model is to be
evaluated and between multi-party (typically, three-party) solutions. Publications from the first
category include MiniONN [46] which studied NN evaluation using SS and homomorphic encryp-
tion; Gazelle [38] which combined homomorphic encryption with garbled circuits (GC) and additive
SS; DELPHI [51] which improved upon these techniques; CrypTFlow2 [57] which also built upon
this work with a focus on deep NNs; and ABY2.0 [54] which expanded upon the ABY [28] framework
with fundamental operations relying on Beaver circuit randomization [8]. Chameleon [58] incor-
porated GCs, the GMW protocol [50], and additive SS. MP2ML [12] introduced a hybrid MPC
and homomorphic encryption framework based on ABY and nGraph-HE [13], respectively. SIRNN
[56] provides semi-honest two-party protocols and improved approximations of several continuous
functions.

Multi-party constructions provide protocols for training and prediction across multiple parties.
SecureML [53] was one of the first publications to provide a two-server architecture for training NNs
(as wells as several other machine learning applications). ABY3 [52] combines techniques based
on replicated and binary SS with and GCs in the three-party setting with honest majority. These
techniques are further improved in Trident [18] and extended to the four-party setting. SecureNN
[62] provides three- and four-party protocols for a variety of NN functions under the same security
assumption as ABY3. Their protocols are asymmetric, where parties have dedicated roles in a
computation. This work is improved upon with FALCON [63] by adding malicious security with
honest majority and combining the techniques from SecureNN and ABY3.

ASTRA [17] is a three-party framework that uses SS over the ring Z2k under both semi-honest
and malicious security assumptions. Similar to SecureNN, protocols are asymmetric. BLAZE [55]
builds upon this work in a similar setting. Abspoel et al. [5] applies the MP-SPDZ [39] framework for
secure outsourced training of decision trees. Their system operates under the three-party, honest-
majority assumption with RSS. The Manticore framework [15] provides support for real-number
arithmetic under full-threshold semi-honest security. Dalskov et al. [21] were the first to address
quantized NN inference using secure multi-party computation. Their system is built into MP-
SPDZ and benchmarked on the MobileNets [35] network architecture. Keller et al. [40] conducts
quantization-based training and inference with three parties and one semi-honest corruption.
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3 Preliminaries

3.1 Secure Multi-Party Computation

We consider a secure multi-party setting with n computational parties, out of which at most t can
be corrupt. We work in the setting with honest majority, i.e., t > n/2 and semi-honest participants
and use simulation-based security (see Appendix B for detail).

As customary with SS techniques, the set of computational parties does not have to coincide
with (and can be formed independently from) the set of parties supplying inputs in the computation
(input providers) and the set of parties receiving output of the computation (output recipients).
Then if a computational party learns no output, the computation should reveal no information
to that party. Consequently, if we wish to design a functionality that takes secret-shared input
and produces shares of the output, any computational party should learn nothing from protocol
execution.

3.2 Secret Sharing

A SS scheme allows one to produce shares of secret x such that access to a predefined number of
shares reveals no information about x. In the context of secure multi-party computation, each of
the n participants receives one or more shares xi and in the case of (n, t) threshold SS schemes,
possession of shares stored at any t or fewer parties reveals no information about x, while access
to shares stored at t + 1 or more parties allows for reconstruction of x. Of particular importance
are linear SS schemes, which have the property that a linear combination of secret shared values
can be performed locally on the shares. Examples of linear SS schemes include additive SS with
x =

∑
i xi (as used in Sharemind [14] with n = 3 and in SPDZ [26] with any n), Shamir SS which

realizes (n, t) secret sharing with t < n/2 and represents a share as evaluation of a polynomial on
a distinct point, and RSS discussed next.

3.3 Replicated Secret Sharing

Our techniques utilize RSS [36] which has an associated access structure Γ. An access structure
is defined by qualified sets Q ∈ Γ, which are the sets of participants who are granted access, and
the remaining sets of the participants are called unqualified sets. In the context of this work we
only consider threshold structures in which any set of t or fewer participants is not authorized to
learn information about private values (i.e., they form unqualified sets), while any t + 1 or more
participants are able to jointly reconstruct the secret (and thus form qualified sets). RSS can be
defined for any n ≥ 2 and any t < n. To secret-share private x using RSS, we treat x as an element
of a finite ring R and additively split it into shares xT such that x =

∑
T∈T xT (in R), where T

consists of all maximal unqualified set of Γ (i.e., all sets of t parties in our case). Then each party
p ∈ [1, n] stores shares xT for all T ∈ T subject to p 6∈ T . In the general case of (n, t)-threshold
RSS, the total number of shares is

(
n
t

)
with

(
n−1
t

)
shares stored by each party, which can become

large as n and t grow. In what follows, we use notation [x] to mean that (private) x is secret shared
among the parties using RSS.

Example. In the (4, 2) setting, T consists of 6 sets T = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}
and thus there are 6 corresponding shares for every secret-shared x. Then party 1 stores shares
x{2,3}, x{2,4}, x{3,4}, party 2 stores x{1,3}, x{1,4}, x{3,4}, etc.

The parties will need to perform computation on secret shared values. The first important
property of RSS is that it is linear. For example, to add [a] and [b], party p computes aT + bT
(in R) for each T ∈ T that p stores. A number of other operations, such as multiplications,
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reconstructing a value from its shares, etc., are interactive. We consequently describe in Section 4
the way we realize these operations. An important optimization on which we rely is non-interactive
evaluation of a pseudo-random function (PRF) using RSS in the computational (as opposed to
information-theoretic) setting as proposed in [20]; see Section 4 for detail.

In what follows, we use the notation ← to denote output of randomized algorithms, while the
notation = refers to deterministic assignment.

4 Basic Protocols

Recall that RSS enjoys the linear property. In addition to adding secret-shared values, we use the
ability to add/subtract known integers to a secret-shared value [a] and multiply a secret-shared
value [a] by a known integer. Addition [a] + b converts b to [b] without using randomness (e.g., we
could set one share to b and the remaining shares to 0 to maintain

∑
T∈T bT = b). Multiplication

c = [a]·b sets cT = aT ·b (in R) ∀T ∈ T .
For convenience and without loss of generality, we let n = 2t + 1. When n > 2t + 1, 2t + 1

parties can carry out the computation on a reduced set of shares in such a way that there is no
need to involve the remaining parties in the computation.

4.1 Random Number Generation

We will be using two types of random number generation, which we discuss here.

4.1.1 PRG

Invocation of [a1], [a2], . . . ← PRG([s]) is realized by independently executing a PRG algorithm
on each share of s without interaction between the parties. Because the output of PRG([s]) is
private, we expect it to produce a sequence of secret-shared values (represented as ring elements).
Furthermore, in our construction we only call the PRG to obtain random (secret-shared) ring
elements. This means that calling PRG(sT ) to produce pseudo-random aT will result in PRG([s])
generating [a], where a is pseudo-random as well because a =

∑
T∈T aT (in R). This is similar to

evaluating a PRF on a secret-shared key in the RSS setting without interaction in [20].
PRG(sT ) can be realized internally using any suitable algorithm, as long as it is consistent

among the computational parties. For example, because of the speed of AES encryption on modern
processors, one might implement PRG(sT ) = PRF(sT , 0)||PRF(sT , 1)||. . ., where PRF : R×{0, 1}κ →
R is a PRF instantiated with AES.

Let G = PRG([s]). When the output of G is not consumed all at once, we use notation G.next
to retrieve the next (secret-shared) element from G. Similarly, if GT = PRG(sT ), notation GT .next
refers to the next pseudo-random share output by GT .

4.1.2 PRandR

[a]← PRandR() computes a secret-shared random element of ring R. We implement this function
by executing PRG([k]).next, where k is a system-wide key. The key k is set up at the system
initialization time (in the form of secret shares) and does not change throughout program execution.

4.2 Multiplication

Multiplication [c] ← [a]·[b] is realized using the fact that [a]·[b] =
∑

T1,T2∈T aT1 ·bT2 (in R). Note
that for any (T1, T2) pair, there will be a party holding shares T1 and T2, and thus performing this
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operation involves local multiplication and addition over different choices of T1, T2. More formally,
let mapping ρ : T × T → [1, n] denote a function that for each pair (T1, T2) ∈ T 2 dedicates a party
p ∈ [1, n] responsible for computing the product aT1 ·bT2 (clearly, p must possess shares T1 and T2).
For performance reasons, we also desire that ρ distributes the load among the parties as fairly as
possible.

As a result of this (local) computation, the parties hold additive shares of the product a·b = c,
which needs to be converted to RSS for consecutive computation. This conversion was realized in
early publications [49, 9] by having each party create replicated secret shares of their result and
distribute each share to the parties entitled to knowing it (i.e., party p receives shares from each
party for each T ∈ T subject to p 6∈ T ). This results in each participant creating

(
n
t

)
shares and

sending
(
n−1
t

)
of them to each party. Consequentially, each participant adds the values received for

share T and stores the sum as cT , for each T in its possession.
More recent work, e.g., [7] and others traded information-theoretic security (in the presence

of secure channels) for communication efficiency by having the parties generate shared (pseudo-
)random values. We pursue this direction as well. However, if this idea is applied naively, it results
in unnecessarily high overhead. In particular, if we instruct each party p to generate all shares for
its secret, some shares will be known to more than t participants and thus do not contribute to
secrecy. Instead, our solution eliminates shares that p does not possess and thus do not contribute
to secrecy. Thus, our construction utilizes key material consistent with the setup of the RSS scheme.
In particular, we use the same key setup as in PRSS, where kT is known by all p 6∈ T . Then when
a party needs to generate a pseudo-random share associated of its value for share T , the party will
draw it from the PRG seeded with kT .

We, however, note that multiple participants may need to draw from the PRG seeded with kT
to produce shares of their values, and it is generally not safe to use the same secret to protect
multiple values, which is also the case in our application. Instead, multiple elements might be
drawn from the PRG (seeded with kT ) to protect different values, and consistent use of the PRG
with each seed can be setup by the participants ahead of time so that that information is public
knowledge.

In addition to mapping ρ, our multiplication protocol uses another mapping χ : [1, n] → T ,
which for each party p specifies the share T (subject to p 6∈ T ) that p communicates (with all other
shares of p’s value being produced as pseudo-random elements). As before, we desire to choose the
values of χ(p) as to evenly distribute the load and communication.

The above intuition leads us to the optimized n-party multiplication protocol given as Proto-
col 1. After computing its private value v(p) according to ρ, each party p distributes it into

(
n−1
t

)
additive shares (one of which is communicated while others are computed using PRGs). After-
wards, each party sets its cT as a sum of t+ 1 shares (computed or received) of values v(p′) for each
party p′ entitled to shares cT . This matches the fact that each share aT of secret a is maintained
by t + 1 parties. Correctness is achieved by ensuring that in Protocol 1 two different participants
p and p′ with access to shares T consistently associate the values that they draw from GT with
shares belonging to different parties by always processing the values in the increasing order of par-
ticipants’ IDs. Preparation of the shares in Protocol 1 is done on lines 10–16, where a participant
either masks its share with a pseudo-random value because it is used by another party or forms its
own shares and the value to be transmitted.

In this protocol, each party on average sends t ring elements and draws
(
n−1
t

)
−1+(n−1)

(
n−2
t

)
−t

pseudo-random ring elements (which is (t + 1)(
(
n−1
t

)
− 1) when n = 2t + 1).1The latter can be

explained by using
(
n−1
t

)
− 1 pseudo-random shares for its value being re-shared and

(
n−2
t

)
shares

1It is possible to distribute the load evenly among the parties by appropriately setting the χ function.
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Protocol 1 [c]← [a]·[b]
// pre-distributed values are [k] and public maps ρ and χ
// define GT = PRG(kT )

1: each p ∈ [1, n] does the following
2: let Sp = {T ∈ T | p 6∈ T};
3: v(p) =

∑
T1,T2∈T ,ρ(T1,T2)=p aT1bT2 (in R);

4: for T ∈ Sp do
5: cT = 0;

6: v
(p)
χ(p) = v(p);

7: end for
8: for p′ ∈ [1, n] in order do
9: for T ∈ Sp do

10: if (p′ 6= p) ∧ (p′ 6∈ T ) ∧ (χ(p′) 6= T ) then
11: cT = cT + GT .next (in R);
12: else if (p′ = p) ∧ (χ(p) 6= T ) then
13: z = GT .next;
14: cT = cT + z (in R);

15: v
(p)
χ(p) = v

(p)
χ(p) − z (in R);

16: end if
17: end for
18: end for
19: send v

(p)
χ(p) to each p′ 6∈ χ(p) (other than itself);

20: for p′ ∈ [1, n] such that p 6∈ χ(p′) do

21: after receiving v
(p′)
χ(p′) from p′, set cχ(p′) = cχ(p′) + v

(p′)
χ(p′) (in R);

22: end for
23: cχ(p) = cχ(p) + v

(p)
χ(p) (in R);

24: return [c];

that it has in common with any other party except the t values that it receives with a symmetric
communication pattern. (Recall that each party maintains

(
n−1
t

)
shares of a secret and has

(
n−2
t

)
shares in common with any other party). When the communication pattern is not symmetric,
the overall amount of work and communication remains unchanged, but it may be distributed
differently. Thus, we refer to the average work and communication in that case.

Compared to other results, the three-party version of our protocol matches communication
of recent multiplication from [7], which is available only for three parties and improves on com-
munication of Sharemind’s three-party multiplication from [41] by a factor of 2. For multi-party
multiplication it can be desirable to use a different communication pattern when a king reconstructs
a protected value and communicates it to others (as in, e.g., [24]) which scales better as n grows.
However, our version has lower communication when n = 3, uses fewer rounds, and n cannot be
large with RSS.

Example. With three parties, we could have party 1 (in possession of shares {2} and {3})
compute (and add) products a{2}b{2}, a{2}b{3}, and a{3}b{2}, party 2 (in possession of shares {1}
and {3}) compute products a{3}b{3}, a{1}b{3}, and a{3}b{1}, and party 3 (in possession of shares
{1} and {3}) compute products a{1}b{1}, a{1}b{2}, and a{2}b{1}. This defines mapping ρ. Also let
χ(1) = {2}, χ(2) = {3}, and χ(3) = {1}. This, for example, means that when party 1 divides

its computed value v(1) into shares v
(1)
{2} and v

(1)
{3}, the latter is computed using a PRG, while the
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mappings:

1

3

2

u = a{3}b{3} + a{1}b{3} + a{3}b{1}

2→ {3}
3→ {1}{1}, {3} → 2

{2}, {1} → 3

{3}, {1} → 2

{1}, {2} → 3

{2}, {2} → 1
{2}, {3} → 1

{3}, {2} → 1
{3}, {3} → 2

ρ : {1}, {1} → 3

v{2}

u{3}

w{1}

output:
c{2} = v{2} + G2.next
c{3} = v{3} + u{3}

v{3} = G3.next, v{2} = v − v{3}
v = a{2}b{2} + a{2}b{3} + a{3}b{2}

computation:
G2 = PRG(k{2}),G3 = PRG(k{3})
a{2}, a{3}, b{2}, b{3}

input:

G1 = PRG(k{1}),G2 = PRG(k{2})
a{1}, a{2}, b{1}, b{2}

computation:
w = a{1}b{1} + a{1}b{2} + a{2}b{1}
w{2} = G2.next, w{1} = w − w{2}
output:
c{1} = G1.next + w{1}
c{2} = v{2} + w{2}

input:

G1 = PRG(k{1}),G3 = PRG(k{3})

input:
a{1}, a{3}, b{1}, b{3}

computation:

u{1} = G1.next, u{3} = u− u{1}
output:
c{1} = u{1} + w{1}
c{3} = u{3} + G3.next

γ : 1→ {2}

Figure 1: Sample three-party multiplication [a]·[b]; arithmetic is in R.

Operation Rounds
(3, 1) setting (n, t) setting

Comm Crypto ops Comm Crypto ops

PRG([s]).next and PRandR() 0 0 2 0
(
n−1
t

)
Mul([a], [b]) 1 1 2 t (t+ 1)

((
n−1
t

)
− 1
)

Open([a]) 1 1 0 t 0

MulPub([a], [b]) 1 2 2 n− 1 t
(
n−1
t

)
DotProd(〈[a1], . . . , [aN ]〉, 〈[b1], . . . , [bN ]〉) 1 1 2 t (t+ 1)

((
n−1
t

)
− 1
)

Table 1: Performance of basic RSS operations with computation and communication per party.

former is being sent to party 3 (i.e., the other party entitled to have that share). An illustration of
the multiplication protocol with these mappings in the three-party setting is given in Figure 1.

We state security of multiplication as follows, with its proof available in Appendix B:

Theorem 1. Multiplication [c] ← [a]·[b] is secure according to definition 1 in the (n, t) setting
with t = (n − 1)/2 in the presence of secure communication channels and assuming PRG is a
pseudo-random generator.

The computation associated with multiplication can be generalized to compute the dot-product
of two secret-shared vectors DotProd(〈[a1], . . . , [aN ]〉, 〈[b1], . . . , [bN ]〉), or evaluate any other multi-
variate polynomial of degree 2, using the same communication and the same number of crypto-
graphic operations as in multiplication. For that purpose, we only need to change the computation
in step 3 of the multiplication protocol. For example, for DotProd, we modify step 3 to compute
v(p) =

∑
T1,T2∈T ,ρ(T1,T2)=p

∑N
i=1 a

i
T1
biT2 (in R), while the rest of the steps remain unchanged.

Table 1 shows performance of these and other basic protocols for the general (n, t) and the
(3,1) settings. Communication is measured as the number of ring elements sent by each party and
computation is the number of cryptographic operations (i.e., retrieval of the next pseudo-random
element using a PRG) per party.
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1

3

mappings:

2

a = a{1} + a{2} + a{3}

2→ ({1}, 1)
3→ ({2}, 2)

a{3}

a{2}

output:

input:
a{2}, a{3}

a = a{1} + a{2} + a{3}

a{1}, a{2}
output:

input:

output:
a = a{1} + a{2} + a{3}

input:a{1}, a{3}

a{1}

ν : 1→ ({3}, 3)

Figure 2: Sample three-party Open([a]); arithmetic is in R.

4.3 Revealing Private Values

4.3.1 Open

Reconstruction of a secret shared value a = Open([a]) amounts to communicating missing shares
to each party so that the value could be reconstructed locally from all shares. Recall that there are(
n
t

)
total shares and each party holds

(
n−1
t

)
of them. Thus, during this operation each party is to

receive d =
(
n
t

)
−
(
n−1
t

)
missing shares.

Our next observation is that when n is not small, the value of d will exceed n and transmitting
d messages to each party is not needed. Since the value is reconstructed as the sum of all shares,
it is sufficient to communicate sums of shares instead of the individual shares themselves. Recall
that [a] can be reconstructed by t+ 1 parties. This means that it is sufficient for a participant to
receive one element (i.e., a sum of the necessary shares) from t other parties.

As before, we would like to balance the load between the parties and ideally have each party
transmit the same amount of data. This means that we instruct each party to send information to
t other parties according to another agreed upon mapping ν : [1, n] → (T , [1, n])d. For each party
p, this mapping will specify which of p’s shares should be communicated to which other party.
The mapping ν will then define computation associated with this operation: each p computes∑

T,ν(p)=T,p′ aT (in R) for each p′ 6= p present in the mapping and sends the result to p′.
Similar to other SS frameworks, simply opening the shares of a maintains security of the com-

putation (in the sense that no information about private values is revealed beyond the opened value
a). This is because we maintain that at the end of each operation secret-shared values are repre-
sented using random shares. In particular, it is clear that the result of PRG([s]).next and PRandR()
produces random shares; shares are properly re-randomized during multiplication of [a] and [b],
and shares of [a] + [b] and [a]− [b] are random if the shares of [a] and [b] are random themselves.

Example. With n = 3, we could have ν(1) = ({3}, 3), ν(2) = ({1}, 1), and ν(3) = ({2}, 2),
which corresponds to ν(p) = ({p− 1}, p− 1) (where p− 1 = 3 for p = 1), which corresponds to the
communication pattern in Figure 2.

4.3.2 MulPub

Functionality c = MulPub([a], [b]) refers to multiplying two secret-shared [a] and [b] and opening
their product c. The reason why we are discussing this functionality is because in the past this
operation could be implemented more efficiently than multiplication followed by an opening in
alternative SS frameworks (e.g., see [16]), and we pursue a similar direction here. In the protocol
we present here, MulPub is realized using a single round without increasing communication cost.
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mappings:

1

3

2

c = c(1) + c(2) + c(3)

input:
a{1}, a{3}, b{1}, b{3}

computation:
v(2) = a{3}b{3} + a{1}b{3} + a{3}b{1}
c(2) = v(2) + G1.next− G3.next
output:
c = c(1) + c(2) + c(3)

{1}, {3} → 2
{2}, {1} → 3

{3}, {1} → 2

{1}, {2} → 3

{2}, {2} → 1
{2}, {3} → 1

{3}, {2} → 1
{3}, {3} → 2

ρ : {1}, {1} → 3

c(1)

c(2)

c(2)

c(1)

c(3)

c(3)

v(1) = a{2}b{2} + a{2}b{3} + a{3}b{2}

computation:

c(1) = v(1) + G2.next + G3.next
output:
c = c(1) + c(2) + c(3)

a{2}, a{3}, b{2}, b{3},G2,G3

input:

input:
a{1}, a{2}, b{1}, b{2},G1,G2

computation:
v(3) = a{1}b{1} + a{1}b{2} + a{2}b{1}
c(3) = v(3) − G1.next− G2.next
output:

G1,G3

Figure 3: Sample three-party MulPub([a], [b]); arithmetic is in R.

Executing multiplication followed by Open would double the number of rounds.
In multiplication, after computing a product, each locally computed value is no longer random

and needs to be re-randomized prior to opening it. In our RSS setting, we realize this by relying
on pseudo-random values locally computed by the parties. In particular, similar to other building
blocks, we associate a secret key kT with each T ∈ T (i.e., this is the same key shares used with
PRandR() and multiplication) and use pseudo-random values GT .next to protect the share of the
product that each party locally computes, prior to that party revealing its randomized value to all
others. To ensure that the product reconstructed by the parties is correct, we need to make sure
that the sum of all blinding pseudo-random values equals to 0. In the three-party case, this can
be accomplished by adding some pseudo-random values and subtracting others, as illustrated in
Figure 3. With larger n and t we must be careful to draw new elements from each PRG to ensure
that values released by different parties are protected using proper randomness without reusing
them. This is similar to the logic used in multiplication. Then to realize this logic and ensure that
all blinding factors add to 0, when multiple values are sampled from GT , the last blinding value is
set to the sum of all previously drawn elements multiplied by −1 (in R). We provide a detailed
description of MulPub in Protocol 2. GT and Sp are defined as in multiplication.

In this algorithm, each party draws the same number of elements from each GT in its possession
to ensure that after single execution of this algorithm all parties are in the same state (by any given
party may discard some of the computed values). Similar to the computation in multiplication, we
order the parties based on the values of their IDs. Because any given share T is stored at t + 1
parties, there are t calls to each GT per invocation of this operation. Then the participant with
the lowest ID among the parties with access to T (j = 0) uses the first element of GT to protect
its value v(p) and disregards the t− 1 other elements, the participant with the next lowest ID uses
the second element, etc. The participant with the highest ID among those with access to T (j = t)
computes the sum of all t elements drawn from GT and subtracts the sum from its v(p). Correctness
follows from the fact that the sum of all blinding values over all parties and all shares is equal to
0, i.e., c =

∑
p c

(p) =
∑

p v
(p) (in R).

To show security, we prove the following result:
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Protocol 2 c← MulPub([a], [b])

// pre-distributed values are [k] and public map ρ

1: each p ∈ [1, n] does the following:
2: v(p) = c(p) =

∑
T1,T2∈T ,ρ(T1,T2)=p aT1bT2 (in R);

3: for T ∈ Sp do
4: let j be the number of parties p′ < p such that p′ 6∈ T ;
5: for i = 0 to t− 1 do
6: z = GT .next;
7: if j = t then c(p) = c(p) − z (in R);
8: else if i = j then c(p)=c(p)+z (in R);
9: end if

10: end for
11: end for
12: send c(p) to all other parties;
13: c = c(p);
14: for i = 1 to n− 1 do
15: upon receiving c(p′) from distinct p′, set c = c+ c(p′) (in R);
16: end for
17: return c;

Theorem 2. The protocol MulPub([a], [b]) is secure according to definition 1 in the (n, t) setting
with t = (n− 1)/2 assuming PRG is a pseudo-random generator.

Before proceeding with the proof, we demonstrate intuition behind it on the three-party example
in Figure 3. Let zT denote the output of GT .next. Then party 1 transmits c(1) = v(1) + z{2} + z{3},

party 2 transmits c(2) = v(2) + z{1} − z{3}, and party 3 transmits c(p) = v(3) − z{1} − z{2}, where

c = v(1) + v(2) + v(3) and each v(i) needs to be protected (arithmetic is in R). Without loss
of generality, let party 3 be corrupt. Then party 3 (with access to z{1} and z{2}) can compute

v(1) + z{3}, v
(2) − z{3}, and the output of the computation c, but no information about v(1) or v(2)

(assuming security of the PRG) other than their sum v(1) + v(2). The latter, however, is already
computable by party 3 using the output c and its share v(3), which reveals no extra information
about a and b beyond their product. The full proof is given in Appendix B.

Similar to multiplication, MulPub can be generalized to evaluate any (multi-variate) polynomial
of degree 2 and open the result.

4.4 Inputting Private Values

There will be a need to enter private values into the computation and we discuss the corresponding
protocols in this section. We start with a general case when a participant who is not a computational
party supplies their input into the computation and consequently discuss an optimized version when
the input owner is one of the computational parties.

The input owner holds a private value a which will be represented as an element of ring R.
The input owner will need to generate replicated shares that correspond to a and send them to
the computational parties. This will be the easiest way to proceed when there is only one element
to share. However, when someone is sharing a vector of elements, we can save on communication
by using pseudo-random shares. All shares except one for any element can be pseudo-random and
computed locally by computational parties after obtaining a PRG seed. This means that among all
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Protocol 3 [a1], . . . , [am]← Input(a1, . . . , am)

1: for T ∈ T \ {T ∗} do
2: input owner generates random kT and sends it to each p ∈ T ;
3: end for
4: for i ∈ [1,m] do
5: for T ∈ T \ {T ∗} do
6: each p 6∈ T sets share ai,T = PRG(kT ).next;
7: end for
8: input owner computes ai,T ∗ = ai −

∑
T∈T \{T ∗} PRG(kT ).next (in R) and sends it to p 6∈ T ∗;

9: each p 6∈ T ∗ sets share ai,T ∗ to the value received from input owner;
10: end for
11: return [a1], . . . , [am];

shares T ∈ T , one is marked as special and is denoted as T ∗. The corresponding share is computed
by the input owner and is communicated to all parties with access to that share. The construction
is given as Protocol 3.

When the input owner is one of the computational parties, we can capitalize on the fact that
the parties already have pre-distributed PRG seeds. We denote the input party as p∗. Note that
p∗ has access to a subset of the PRG seeds corresponding to the shares it is entitled to have access
to, but not to all seeds. While we could generate new seeds for each T such that p∗ ∈ T and
make it available to all p 6∈ T and p∗, these seeds will be accessible to more than t parties and
do not contribute to security. Therefore, we instead choose to set such shares to 0 and use only
shares accessible to p∗. As a result, T ∗ will be such that p∗ 6∈ T ∗, the parties will set shares
aT = PRG(kT ).next for each T such that p 6∈ T and T 6= T ∗, share T ∗ will be computed as
aT ∗ = a −

∑
T s.t. p 6∈T ∧T 6=T ∗ aT (in R) by p∗ and communicated to all p 6∈ T ∗, and all remaining

shares aT are set to 0.
All variants use a single round. When a single input is shared by an external party, the input

owner simply generates all
(
n
t

)
shares and communicates them to the computational parties (each

share is stored by t+1 participants). This cost (which becomes sharing of a PRG seed) is amortized
among all inputs when sharing multiple inputs. The additional cost per input for the input owner
becomes generation

(
n
t

)
− 1 pseudorandom ring elements and communicating the last, computed

share to t + 1 computational parties, i.e., the total communication is t + 1 ring elements. Each
computational party needs to generate

(
n−1
t

)
or
(
n−1
t

)
−1 pseudo-random ring elements. When the

input is shared by a computational party, there is no setup cost. The input owner need to generate(
n−1
t

)
− 1 pseudo-random elements (i.e., similar to the number of shares it stores per shared value)

and communicate the computed share to t other parties. Each other party computes
(
n−2
t

)
(i.e.,

the number of shares it has in common with the data owner) or
(
n−2
t

)
− 1 pseudo-random ring

elements. As will be relevant later, when a computational party is sharing a ring element in the
(3,1) setting, the input owner communicates a single ring element to another party (and only one
pseudo-random element is computed by the input owner and the remaining computational party).

Security can be shown as before (see Appendix B for the proof):

Theorem 3. Input is secure according to definition 1 in the (n, t) setting with t = (n− 1)/2 in the
presence of secure communication channels and assuming PRG is a pseudo-random generator.
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5 Composite Protocols

While the previous operations can be instantiated to work with any finite ring, the techniques in
this section work only in a ring Z2k for some k. Ring Z2k (for an appropriate choice of k) is the
primary reason for supporting secure computation over rings because it allows us to utilize native
CPU instructions for ring operations.

The goal of this work is to enable efficient general-purpose computation over rings Z2k , we
therefore focus on major building blocks which can be consequentially used to compose a protocol
for arbitrary functionalities including machine learning tasks. Of central importance to this effort
is the development of comparison protocols (for both less-than comparison and equality testing
functionalities), which are known to be difficult to design in a framework where the elementary
techniques are based on arithmetic gates. Others include bit decomposition and truncation (i.e.,
division by a power of 2). Combined together, these techniques can enable Boolean, integer, fixed-
point, and even floating-point arithmetic, as well as array and related operations, giving the ability
to compose general-purpose protocols.

Because a number of protocols for common operations over Z2k have already been developed,
some of the constructions that we mention in this sections are adaptations of prior protocols to
our setting and we defer their specification to the appendix. In particular, Appendix A provides
specification of random bit generation protocol, RandBit, that produces a bit shared in Z2k and a
more recent version from [31], edaBit, that generates a number (k in our case) of random bits ri
shared in Z2 together with a representation of the bits as an integer r =

∑k
i=1 2iri shared in Z2k .

The former can be computed in a single round, while the latter uses noticeably lower communication
per bit, but the round complexity is logarithmic in k and t.

We also describe a comparison algorithm for computing [a] ≤ [b], which is commonly imple-
mented by determining the most significant bit of the difference between a and b and denoted by
MSB. Performance of these protocols is summarized in Tables 2 and 11.

Truncation is a necessary building block when working with fixed-point values or simulating
fixed-point computation using integer arithmetic and permits us to minimize the ring size. Starting
from [16], probabilistic truncation of input a by m bits that produces ba/2mc+u, where u is a bit, is
significantly faster than precise truncation that rounds down. It is biased towards rounding to the
nearest integer to a/2m and is sufficient for our purpose. The protocol we present, TruncPr([a],m),
is a constant-round solution that combines the approach from [?, 21] with edaBits from [31] and
inherits from [31] the requirement that input a is 1 bit shorter than the ring size, i.e., MSB(a) = 0.
We use notation [x]` to denote that SS is over Z2` .

The truncation protocol, given as Protocol 4, uses related random values r and r̂, bit decom-
position of which are known, where r =

∑k−1
i=0 2iri is a full-size random value and r̂ =

∑k=1
i=m 2iri

is the portion remaining after truncating m bits. We thus modify the edaBit protocol to produce
those values simultaneously. Each [r] and [r̂] is computed as a sum of t + 1 integers, so we must
compensate for two types of carries: (i) addition of m least significant bits in r will produce carry
bits into the next bits which are not accounted for in r̂ and (ii) while the carry bits past the k bits
are automatically removed in the ring when computing r, these bits remain in r̂ due to its shorter
length. Because we compute the bitwise representation of r using bitwise addition protocol BitAdd,
we can also extract the carry bit into any desired position which is already computed during the
addition. The logic of the truncation protocol necessitates the removal of the (k − 1)th bit. For
this reason, we capture carries into the mth and (k − 1)th positions and denote those bits from
the ith call to BitAdd as cri,m and cri,k−1, respectively (line 10). We subsequently convert the
2 log(t+ 1) carry bits and the most significant bit of r, denoted as bk−1, from shares over Z2 to Z2k

using binary-to-arithmetic sharing protocol B2A (from [23]). All interactive operations except the
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Protocol 4 [a/2m]k ← TruncPr([a]k,m)

1: for p = 1, . . . , t+ 1 in parallel do

2: party p samples r
(p)
0 , . . . , r

(p)
k−1 ∈ Z2 and computes r(p) =

∑k−1
j=0 r

(p)
j 2j and r̂(p) =

∑k−1
j=m r

(p)
j 2j ;

3: simultaneously execute [r(p)]k ← Input(r(p), k), [r̂(p)]k ← Input(r̂(p), k), and

[r
(p)
i ]1←Input(r

(p)
i , 1) for i=1, . . ., k with p being the input owner;

4: end for
5: [r]k =

∑t+1
p=1[r(p)]k; [r̂]k =

∑t+1
p=1[r̂(p)]k;

6: s = t+ 1;
7: for i = 1, . . . , dlog(t+ 1)e do
8: for j = 1, . . . , bs/2c in parallel do
9: ` = j + s·(i− 1);

10: 〈[r(j)
1 ]1, . . ., [r

(j)
k−1]1〉, [cr`,m−1]1, [cr`,k]1

←BitAdd(〈[r(2j−1)
1 ]1, . . ., [r

(2j−1)
k−1 ]1〉,

〈[r(2j)
1 ]1, . . ., [r

(2j)
k−1]1〉);

11: if s mod 2 = 0 then s = s/2;
else

12: 〈[r( s+1
2

)

1 ]1, . . . , [r
( s+1

2
)

k−1 ]1〉=〈[r(s)
1 ]1, . . ., [r

(s)
k−1]1〉;13: s = (s+ 1)/2;

14: end if
15: end for
16: end for
17: [b0]1, . . ., [bk−1]1 = [r

(1)
0 ]1, . . ., [r

(1)
k−1]1;

18: [bk−1]k, 〈[cr`,m]k, 〉, 〈[cr`,k−1]k〉
←B2A([bk−1]1, 〈[cr`,m]1〉, 〈[cr`,k−1]1〉) for `=1, . . . , t;

19: [r̂]k = [r̂]k − [bk−1]k·2k−m−1 +
∑t

`=1([cr`,m]k − [cr`,k−1]k2
k−m−1);

20: c← Open([a]k + [r]k);
21: c′ = (c/2m) mod 2k−m−1;
22: [b]k = (c/2k−1) + [bk−1]k − 2(c/2k−1)[bk−1]k;
23: return c′ − [r̂]k + [b]k · 2k−m−1;

last one (line 20) can be precomputed. Security follows from the protocol logic as specified in prior
work and from security of the building blocks.

It is also possible to use the above protocol to truncate an input [a] by a private number of bits
[m] as outlined in [21]: Let M be some public upper bound on m. Protocol TruncPriv([a], [m],M)
then needs to securely compute [2M−m] · [a] and can subsequently call TruncPr([2M−m · a],M). A
performance summary is given in Table 2.

6 Neural Network Applications

Today it is typical to benchmark secure multi-party frameworks on machine learning applications,
e.g., NN inference. We briefly introduce NN basics and describe two mechanisms for improving
efficiency of secure NN inference.

A neural network is a series of interconnected layers consisting of neurons. Each neuron has an
associated weight and bias used for computation on some input data and outputs a prediction based
on that data. A NN network layer takes the form y = g(xW+b), where x is the input vector from
the previous layer, W is the weight tensor, b is the bias vector, and g is some activation function.
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Protocol Rand. Protocol Rounds Communication

MSB([a]k)
RandBit log(k − 1) + 3 2t(k + 3)
edaBit log(t+ 1)(log(k) + 1) + log(k − 1) + 4 t2(log(k) + 1) + 7t+ 1/2

TruncPr([a]k,m)
RandBit 2 t(2k + 1)
edaBit log(t+ 1)(log(k) + 1) + 4 t2(log(k) + 2/k + 4) + t(1/k + 4) + 1/2

Convert([a]k, k, k
′)

RandBit log(k) + 4 2t(k + k′) + t(log(k) + 2)
edaBit log(t+ 1)(log(k) + 1) + log(k) + 3 t2(log(k) + 1) + t(2k′ + log(k) + 3)

Table 2: Performance of composite protocols with communication measured in the number of ring
elements sent per party over Z2k+2 for RandBit and Z2k for edaBit(k).

Protocol 5 [a]k′ ← Convert([a]k, k, k
′), where k′ > k

1: [r]k, [r0]1, . . . , [rk−1]1 ← edaBit(k);
2: c← Open([a]k − [r]k);
3: [a0]1, . . . , [ak−1]1 ← BitAdd(c, [r0]1, . . . , [rk−1]1);
4: for i = 0 to k − 1 in parallel [ai]k′ ← B2A([ai]1, k

′);
5: return [a]k′ =

∑k−1
i=0 [ai]k′2

i;

Sample activation functions are Rectified Linear Unit (ReLU), which on input x = (x1, . . . , xN )
computes y = (y1, . . . , yN ) where each yi = max(0, xi), and its variant ReLU6 which computes
yi = min(max(0, xi), 6).

6.1 Share Conversion

Conventional NN evaluation uses floating-point arithmetic, while secure evaluations for performance
reasons typically employ fixed-point computation or emulate it on integers. If inputs are represented
in the form of fixed-length integers, the values will grow with each layer that performs matrix
multiplication. This can impact on performance because comparison-based activation and pooling
operations have cost linear in the bitlength of ring elements. For this reason, it can be advantageous
to start with a smaller ring size and increase it mid-computation to accommodate longer values.

This approach involves converting secret-shared [a]k over Z2k to a different representation [a]k′

over Z2k′ for k′ > k. Conversion techniques between certain types of fields are known [27], but they
do not apply to our case. Simply casting k-bit shares to k′-bit shares for k′ > k affects correctness
because the overflow due to share addition is not reduced modulo 2k. Thus, the task is to leave k
least significant bits of the value and erase the remaining bits in a longer share representation. One
way to achieve this is to invoke truncation as ([a]·2k′−k) � 2k

′−k or [a] − ([a] � k)2k. However,
because computing precise truncation is costlier for rings than fields, we design a more efficient
version based on bit decomposition. In particular, we perform bit decomposition of [a]k into shares
of bits in Z2, convert the bit shares to Z2k′ , and reassemble [a]k′ .

This procedure is denoted by Convert and given as Protocol 5 using edaBits. An equivalent
version can be constructed using RandBit. It is based on bit decomposition from [23] and uses
Boolean to arithmetic conversion, B2A, from Z2 to Z2k′ and bitwise integer addition, BitAdd.
Performance is summarized in Table 2.

6.2 Quantized Neural Networks

To improve efficiency of NN inference, it is common to use quantized weights and activation values,
which makes the resulting models suitable for deployment in constrained environments and is a
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well-studied field (see, e.g., [34]). We outline the standard quantization approach from [37] and
its privacy-preserving realization from [21] for quantized TFLite models and consequently describe
our optimizations.

For a vector x, each real-valued xi is represented as xi = m(x̄i − z), where m ∈ R is the
scale and z and x̄i are 8-bit integers with z being the zero point. Given an input column vector
x = (x1, . . . , xN ) and a row vector w = (w1, . . . , wN ) of W with quantization parameters (m1, z1)
and (m2, z2), respectively, the dot product of x and w, y =

∑N
i=1 xiwi, is specified with quantization

parameters (m3, z3). Since y ≈ m3·(ȳ− z3), xi ≈ m1·(x̄i − z1), and wi ≈ m2·(w̄i − z2), quantized ȳ
is computed as

ȳ ≈ z3 +m1m2/m3·
N∑
i=1

(x̄i + z1)·(w̄i − z2) = z3 +m·s.

Computing s requires integer-only arithmetic and is guaranteed to fit in 16 + logN bits. The scale
m = m1m2/m3 is a small real number. It can be written asm = 2−em′ with normalized m′ ∈ [0.5, 1)
which informs the value of e and represented as a 32-bit integer m′′, where m′ ≈ 2−31m′′.

Two-dimensional convolutions typically add a quantized bias b̄ once the dot product is com-
puted. This is handled by setting the scale of the bias to m1m2 and the zero-point to 0, such that
the the bias can be added to s prior to scaling. The last step of a convolution layer is to apply
an activation function such as ReLU6. In a quantized NN, this functions as a clamping operation
which eliminates values outside of range [0, 255] and uses m3 = 6/255 and z3 = 0. This guarantees
correct range while maximizing precision with 8-bit quantized values. Going forward, m3 becomes
m1 for the next layer and thus all intermediate layers share the same m1 = m3 = 6/255. Other acti-
vation functions such as sigmoid would be handled differently, but we only consider clamping-based
functions since they are often sufficient.

To compute a convolution layer securely, the model owner needs to enter private quantization
parameters into the computation. This includes all zero points zi, modified scale m′′, and integer
scale adjustment 2M−e−31, where M is an upper bound set to 63. After privately computing the
dot product [s] + [b̄], the result is multiplied by [m′′] and need to be truncated by private amount
31 + e. The truncation is accomplished by multiplying the scaled dot product by [2M−n−31] and
[m·s] and consequently truncating by M bits. Lastly, after adding [z3] locally, clamping the result
to the interval [0, 255] is performed using two comparisons.

A limitation of [21]’s approach is that it required large scaling factors and consequently a large
ring size of k = 72 for working with real numbers, using M -bit truncation with M = 63. We
propose a modified approach where we fold the scales into other aspects of the layer computation
and conduct smaller truncation at the end of each layer, which guarantees compact representation
of intermediate results.

Let superscript 〈i〉 denote the layer number. Starting from layer 0, the entire layer computation
(dot product, scaling, and clamping) can be interpreted as computing 0 ≤ ȳ〈0〉 ≤ 255, where

ȳ〈0〉 =
m
〈0〉
1 m

〈0〉
2

m
〈0〉
3

·((
N∑
i=1

(x̄
〈0〉
i −z

〈0〉
1 )·(w̄〈0〉i −z

〈0〉
2 )) + b̄〈0〉),

and z
〈i〉
3 was observed to be 0 for all layers except the last one. Because m

〈0〉
3 = 6/255, we can scale

the equation to redefine ȳ〈0〉 as

ȳ〈0〉 =
N∑
i=1

(x̄
〈0〉
i −z

〈0〉
1 )·(w̄〈0〉i −z

〈0〉
2 )+b̄〈0〉,
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where 0 ≤ ȳ〈0〉 ≤ 6/m
〈0〉
1 m

〈0〉
2 . Now, our clamping operation can use these bounds, with the upper

bound being privately entered by the model owner to avoid division. As before, the output of this
layer becomes the input for the subsequent layer, i.e., x̄〈i〉 = ȳ〈i−1〉. Our modified incoming vector,

denoted x̂〈1〉, is coupled with an additional scaling factor of (255m
〈0〉
1 m

〈0〉
2 )/6, such that

x̄〈1〉 = 255m
〈0〉
1 m

〈0〉
2 x̂〈1〉/6 = δ〈1〉x̂〈1〉.

Using x̄〈1〉 = δ〈1〉x̂〈1〉 gives us

ȳ〈1〉 = (
N∑
i=1

(x̂
〈1〉
i − z

〈1〉
1 /δ〈1〉)·(w̄〈1〉i − z

〈1〉
2 )) + b̄〈1〉/δ〈1〉

with 0 ≤ ȳ〈1〉 ≤ 6/(δ〈1〉m
〈1〉
1 m

〈1〉
2 ). This expression can be evaluated securely without needing fixed-

point multiplication or large truncation, and all bounds are computed by the model owner prior to
privately entering them in the computation.

Evaluating subsequent layers in this fashion causes the outputs to grow by factor δ〈i+1〉, which
can be computed as

δ〈i+1〉 = δ〈i〉255m
〈i〉
1 m

〈i〉
2 /6

with δ〈0〉 = 1. However, we can ensure values remain small by truncating the output ȳ〈i+1〉 by `〈i〉

bits. With the right choice of `〈i〉 we are able to maintain the necessary accuracy, and the value of
δ〈i+1〉 consequently becomes

δ〈i+1〉 = δ〈i〉·255m
〈i〉
1 m

〈i〉
2 /(6·2`〈i〉).

The maximum number of bits we can truncate in a layer needs to comply with constraint

δ〈i〉 · 255m
〈i〉
1 m

〈i〉
2 /(6·2`〈i〉) ≥ 1,

which leads to `〈i〉 ≤
⌊
log2(255δ〈i〉m

〈i〉
1 m

〈i〉
2 /6)

⌋
. Once again, these values are independent of the

input data and become a part of the model. We thus can use TruncPriv outlined in Section 5 for
truncation by a private amount. The net result is that we are able to use a significantly smaller
bound M and consequently substantially shorter ring size k. In practice, the coefficients introduced
in our methodology can reasonably be folded into the scaling factors m themselves.

Other layers such as average pooling can be approximated by substituting the division by some
integer d with truncation by blog dc bits, and softmax can be replaced with argmax when computing
the final prediction. These changes can slightly impact the scaling factors, but have no impact on
the accuracy.

7 Performance Evaluation

We implemented the protocols described in this work and evaluate their performance. We run
both micro-benchmarks to evaluate the individual operations as well as offer evaluation of machine
learning applications.

The implementation was done in C++. We use AES from the OpenSSL cryptographic library [1]
to instantiate the PRF and also to implement secure communication channels between each pair of
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Protocol
Batch Size

1 10 102 103 104 105 106

LAN

Field (30 bits) 0.113 0.165 0.426 1.27 10.5 105 1,118
Field (60 bits) 0.117 0.167 0.436 1.28 11.8 120 1,271
Ring (30 bits) 0.083 0.084 0.113 0.188 1.16 10.1 105
Ring (60 bits) 0.086 0.086 0.109 0.251 2.11 19.7 192

WAN

Field (30 bits) 14.8 14.9 15.1 17.4 33.6 256 2,517
Field (60 bits) 14.9 14.9 15.2 17.8 50.7 335 3,752
Ring (30 bits) 14.4 14.4 14.4 14.8 16.9 103 928
Ring (60 bits) 14.4 14.4 14.4 15.1 32.1 184 1,739

Table 3: Performance of multiplication protocols in milliseconds.

Protocol
Matrix Size

10× 10 100× 100 500× 500 1000× 1000

LAN

Field (30 bits) 0.556 191 18,219 1.68·106

Field (60 bits) 0.547 207 19,138 1.75·106

Ring (30 bits) 0.0987 2.45 284 3,682
Ring (60 bits) 0.510 3.87 333 4,903

WAN

Field (30 bits) 22.7 249 18,387 –
Field (60 bits) 22.9 365 19,285 –
Ring (30 bits) 14.5 20.1 634 17,675
Ring (60 bits) 14.7 34.3 917 18,915

Table 4: Performance of matrix multiplication in milliseconds.

the computational parties. We report the average execution time of 1000 executions for the micro-
benchmark experiments and the average time of 5 executions for the application experiments. The
runtimes are also averaged across the computation parties.

All experiments were run in a three-party setting. For LAN experiments, we used three 8-
core 2.1GHz machines with 64GB of RAM. They were connected via a 1 Gbps Ethernet link
with one-way latency of 0.15ms. For WAN benchmarks, we used two of the machines above and
one remote 2.4HGz machine. One-way latency between the remote and local machines was 23ms.
Although the machine configurations are slightly different, this should not introduce inconsistencies
in the experiments because our protocols are interactive and symmetric, and the computation time
depends on the communication links and performance of the slowest machine. All experiments use
a single core.

7.1 Micro-benchmarks

In this section we report performance of individual operations such as multiplication, matrix mul-
tiplication, random bit generation (RandBit and edaBit) and comparison (MSB). The experiments
used two bitlengths, k = 30 and k = 60, which allows us to use the unsigned and unsigned long

integer types, respectively, to implement ring operations.
Tables 3 and 4 report performance of multiplication and matrix multiplication, respectively. As

we strive to measure performance improvement when we switch computation from a field to a ring,
we compare performance of our protocols to those using Shamir SS in the same setting (i.e., semi-
honest security with honest majority) using PICCO implementation [65] with recent improvements
from [11]. The field size is set to accommodate 30- and 60-bit integers. Batch size denotes how
many operations were executed at the same time in a single batch.
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Protocol
Batch Size

1 10 102 103 104 105 106

LAN

Field (30 bits) 0.143 0.203 0.787 5.34 48.7 456 4,694
Field (60 bits) 0.144 0.228 0.95 6.34 57.1 569 6,012
Ring (30 bits) 0.103 0.105 0.144 0.404 3.20 32.1 337
Ring (60 bits) 0.100 0.109 0.170 0.723 6.57 66.2 656

WAN

Field (30 bits) 21.8 21.9 22.9 32.9 113 1,056 11,089
Field (60 bits) 21.8 21.9 23.4 35.4 126 1,414 15,870
Ring (30 bits) 21.8 21.8 21.8 22.2 26.8 170 1,534
Ring (60 bits) 21.8 21.8 22.6 22.7 53.3 308 3,040

Table 5: Performance of RandBit protocols in milliseconds.

Protocol
Batch Size

1 10 102 103 104 105 106

LAN

Ours (30 bits) 0.60 0.65 1.23 3.53 19.0 179 1,762
Ours (60 bits) 0.73 1.08 1.35 6.33 38.7 484 4,173
MP-SPDZ (32 bits) 21.6 19.2 20.1 20.9 24.1 194 1,884
MP-SPDZ (64 bits) 28.0 29.0 28.8 29.0 35.2 287 2,736

WAN

Ours (30 bits) 102 102 102 105 148 935 8,751
Ours (60 bits) 117 117 117 123 259 1,881 18,688
MP-SPDZ (32 bits) 871 878 885 889 907 8,762 87,485
MP-SPDZ (64 bits) 1,331 1,339 1,352 1,365 1,382 13,219 131,350

Table 6: Performance of edaBit protocols in milliseconds, compared to MP-SPDZ [3].

We observe that ring realization of multiplication in Table 3 is up to 10 times faster on the LAN
for a sufficiently large batch size compared to field, despite using the same amount of communication
and the need to repeat the computation twice (once for each share) with RSS. This indicates
that using native CPU instructions for secure arithmetic has remarkable advantage. On WAN, as
expected, performance is heavily dominated by the network latency for small batches and we gain
up to 2.7 times performance improvement for large batch sizes.

Matrix multiplication in Table 4 is performed in a single round using the necessary number of
dot-products. Because local work is the bottleneck, we see performance improvement by up to a
factor of 450 when we switch to a ring! Furthermore, performance improvement is well-pronounced
even for matrices of small size, as we have a 5.6-fold improvement for 10×10 matrices on the LAN.
(The largest matrix size could not be handled by the remote machine, but the times on LAN and
WAN are expected to be similar.)

Tables 5 and 6 provide random bit generation results. To support k-bit integers, ring-based
RandBit requires a (k + 2)-bit ring. Field-based RandBit from [16] does not increase the field size;
however, all uses of RandBit we are aware of are for operations such as comparisons that utilize
statistical hiding and, as a result, increase the field size by a statistical security parameter κ (typi-
cally set to 48 in implementations). For this reason, our field-based RandBit and MSB benchmarks
utilize 79- and 109-bit fields. Both versions of RandBit in Table 5 communicate the same number
of field or ring elements; however, the performance gain of the ring version grows as we increase
the batch size, reaching 15-fold improvement and indicating that local field-based computation is
the bottleneck. This is in large part due to the need to perform modulo exponentiation (see [16]).

The concept of edaBit is recent and for that reason in Table 6 we compare our implementation
to that reported in the original publication [31], available through MP-SPDZ repository [3]. Note
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Protocol
Batch Size

1 10 102 103 104 105 106

LAN

Field (30 bits) 1.43 3.77 22.5 211 2,351 24,349 256,785
Field (60 bits) 2.19 6.52 52.2 506 5,333 54,286 572,439
Ring (RandBit) (30 bits) 0.73 0.88 2.53 11.9 99.7 1,140 10,492
Ring (RandBit) (60 bits) 0.87 1.31 5.70 44.5 416 4,039 38,373
Ring (edaBit) (30 bits) 1.29 1.39 1.85 4.55 29.7 276 2,804
Ring (edaBit) (60 bits) 1.49 1.72 2.43 9.03 60.9 672 5,989
MP-SPDZ (32 bits) 27.7 31.9 31.6 30.0 37.3 268 3,113
MP-SPDZ (64 bits) 34.3 38.1 36.4 39.0 44.6 366 3,769

WAN

Field (30 bits) 153 158 198 615 5,265 54,798 573,482
Field (60 bits) 155 165 287 1,390 12,513 132,874 1,389,257
Ring (RandBit) (30 bits) 131 131 133 169 616 5,633 53,040
Ring (RandBit) (60 bits) 131 131 138 314 2,008 19,653 190,160
Ring (edaBit) (30 bits) 218 218 218 223 311 1,750 16,114
Ring (edaBit) (60 bits) 261 261 262 271 489 3,372 31,540
MP-SPDZ (32 bits) 1,204 1,206 1,206 1,310 1,445 10,350 88,930
MP-SPDZ (64 bits) 1,678 1,679 1,760 1,725 2,067 16,045 151,570

Table 7: Performance of MSB protocols in milliseconds.

that each edaBit corresponds to generating k random bits together with the corresponding k-bit
random integer. It is clear from the table that MP-SPDZ’s implementation is optimized for large
sizes and fast networks. In particular, it gives comparable runtime for batches of size 1 and 1,000.
Furthermore, our implementation is several times faster on a WAN for all sizes and becomes slightly
slower on LAN for the largest size. Note that the times we measured for MP-SPDZ are very different
from those originally provided in [31], which reported the ability to generate 7.18 million 64-bit
edaBits per second. This is 20 times faster than the fastest time per operation we record and stems
from the differences in hardware. In particular, experiments in [31] were run multi-threaded on
powerful AWS c5.9xlarge instances with 36 cores and a 10 Gbps link. This difference highlights
the need to reproduce experiments on similar hardware to draw meaningful comparisons about
performance of different algorithms.

Table 7 reports performance of multiple MSB protocols: field-based implementation from
PICCO, our ring implementations using RandBit and using edaBit, and edaBit-based implementa-
tion from MP-SPDZ. The gap between the first two shows the gain after switching from field-based
to ring-based arithmetic. Both of them make a linear in k number of calls to RandBit, but our
implementation executes BitLT over Z2, while field-based uses a fixed field for all operations. As a
result, our ring RandBit-based MSB is up to 24.5 times faster than the field version on LAN and up
to 10.8 on WAN. If we compare our RandBit and edaBit MSB implementations, the advantage of
the edaBit version is well pronounced starting from batch sizes of 100 on LAN and 1000 on WAN.
This is due to its substantially lower communication, but higher round complexity makes it slower
for small sizes. MP-SPDZ’s edaBit-based implementation in the same setting generally took longer
to run than our edaBit-based implementation, especially on WAN, but the gap between smaller and
larger ring sizes is smaller.

We also visualize time per operation with variable batch sizes on LAN in Figure 4. Multiplication
and RandBit sub-figures compare ring vs. field protocols, indicating a substantial gap as expected;
edaBit sub-figure compares our and MP-SPDZ implementations in the same setting; and MSB
sub-figure compares RandBit and edaBit variants.

It is also informative to compare our field vs. ring results with those of SPDZ. While SPDZ [26]
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Figure 4: LAN microbenchmarks results.

and its ring version SPDZ2k [19, 23] use a much stronger adversarial model and different type of SS,
we would like to know whether similar savings are achievable in different settings. [23] reports that
performance improved by a factor of 4.6–4.9 for multiplication and by a factor of 5.2–6.0 for RandBit-
based comparison on a 1Gbps LAN. The results are only provided as throughput improvement and
do not report different batch sizes. In our experiments we observed greater improvements, up to 10
times for multiplication and up to 24.5 improvement for MSB. This may be explained by the fact
that our techniques are more lightweight and perhaps switching to faster arithmetic makes less of
an impact in the SPDZ setting.

7.2 Machine Learning Applications

We next evaluate our protocols on machine learning applications and show that they exhibit good
performance. We consider NNs, quantized NNs, and support vector machine (SVM) evaluation, in
part to facilitate comparison to prior work.

7.2.1 Neural Networks

There are many different types of NNs, and for our standard benchmarking we chose the NN from
MiniONN [46] for the MNIST dataset [43] (Figure 12 in [46], Network B in [62], and Network C in
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Field MiniONN GAZELLE SecureNN FALCON [44] FALCON [63] [21] Ours

Batch Size 1 1 1 1 1 1 1 1 5 10 50
Latency 1798 9320 810∗ 130∗ 820 42∗ 67∗, 18∗ 99.8 77.4 74.4 74.6

Table 8: Performance of MNIST NN prediction in milliseconds. (*) denotes experiments on more
powerful hardware.

[63]), because it is a popular choice for evaluating privacy-preserving NN inference. The MNIST NN
evaluation (given as Protocol 9 in Appendix A for completeness) uses convolution, fully-connected
layers, an ReLU activation function, and max pooling of a window 2× 2 to compute the maximum
element in that window.

We use MiniONN’s implementation choices and, in particular, run the computation on integer
inputs. To avoid using floating-point arithmetic, [46] scaled inputs by a factor of 1000 and rounded
to the nearest integer. To compensate for the bitlength of the intermediate results growing with
each multiplication, [46]’s implementation ran the computation using a 37-bit modulus and avoided
the use of truncation. However, we determined that this size is too small and 49 bits are needed to
correctly evaluate the model, which we subsequently use. Our implementation achieves the same
99.0% precision as reported for this model in [47] (which corrects [46]).

While it is possible to perform the entire computation in Z249 , we observe that the initial
steps are of the largest size and use significantly shorter integers than 49 bits. Because the cost of
comparisons is linear in the bitlength of the ring elements, we can substantially improve performance
by starting computation on shorter values and converting the intermediate results to a larger ring
prior to multiplication that increases the size of the intermediate results. Therefore, we start
computation with 20-bit integers and increase the ring size by 10 bits at different points of the
computation(see Protocol 9 for detail).

Performance of MNIST NN inference with three parties (total time) is presented in Table 8.
We also ran the same computation over a field (using [65, 11]), which required a 89-bit modulus.
To closely mimic our ring-based implementation, this implementation computes with integers of
increasing sizes, but uses the same modulus throughout the computation. We also include runtimes
of two-party MiniONN [46], two-party Gazelle [38], two-party FALCON [44], SecureNN with custom
three-party arithmetic [62], three-party FALCON [63], and three-party Dalskov et al. [21] with two
types of truncation (TruncPr and TruncPrSp, respectively). All runtimes except our and field
implementations were taken from the respective publications and many of them do not result in
an accurate comparison due to the differences in the computing environment and implementations.
In particular, SecureNN and GAZELLE used more powerful hardware (AWS c4.8xlarge), the use
of multi-threading was not specified; FALCON [63] uses a similar configuration and multi-threads
all data-independent computation, which constitutes the bulk of the work; Dalskov et al. [21] used
even more powerful setup (AWS c5.9xlarge, multi-threaded, 10Gps connection), which in the
context of edaBit generation was more than an order of magnitude faster environment than ours.
This makes our solution attractive compared to the state of the art and the rapid progress with
PPML makes it clear that results a couple to a few years old become obsolete.

Several other publications benchmarked NN predictions [52, 58, 6, 18, 17, 55, 51, 42, 57]. How-
ever, because they do not support or do not run MiniONN’s MNIST NN evaluation, we cannot
directly compare our performance. For example, while ABY3 [52] is said to use MiniONN’s MNIST
NN, evaluation is actually based on a different, simpler model used in Chameleon [58].
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Ours MP-SPDZ, [21]
α 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

ρ

128 3.17 6.36 9.91 13.4 3.77 8.22 12.7 16.5
160 5.04 10.2 15.4 20.6 5.26 11.1 17.5 25.1
192 6.80 14.8 22.4 30.3 6.82 15.6 24.4 34.2
224 9.88 20.0 30.2 40.8 9.92 20.0 30.6 45.2

Table 9: Performance of quantized MobileNets prediction in seconds.

Protocol
Integer Batch Size

size 1 5 10 50 100 250

Ours
30 15.0 4.80 3.39 2.08 1.77 1.59
60 19.8 7.03 5.55 3.60 3.31 3.20

SPDZ2k [23]
32 242 + 3055 162 + 3055 – – – –
64 362 + 10006 244 + 10006 – – – –

Field
30 276 265 – – –
60 635 628 – – –

Table 10: Performance of ALOI SVM classification in milliseconds.

7.2.2 Quantized Neural Networks

Benchmarks for quantized NNs were based on the MobileNets [35] architecture, which consists of 28
layers and 1000 output classes. The network alternates between 3× 3 depthwise convolutions and
1 × 1 pointwise convolutions. A resolution multiplier ρ scales the dimensions of the input image,
and a width multiplier α scales the size of the input and output channels. The models we used
are hosted on TensorFlow’s online repository [2] and are trained on the ImageNet [29] dataset. We
experimentally determined that an upper bound of M = 16 is sufficient for truncation by a private
value, since all computed `〈i〉s are ≤ 9 for all model configurations.

Performance of quantized MobileNet inference is presented in Table 9. For accurate comparison,
we executed [21]’s implementation on our machines using the same setting. Our methodology
from Section 6.2 allowed us to reduce the ring size from k = 72 to k = 30 or less, potentially
reducing the time by a factor of 2. The improvement that we observe in Table 9 is not drastic
and can be explained by the differences in the algorithms. In particular, Escudero et al. [32]
experimentally determined that [21]’s daBit implementation was superior to edaBits we use only
in a single setting, namely, for the semi-honest, honest majority setting over Z2k . In addition,
MP-SPDZ’s optimization for large computation also aids its efficiency. This demonstrates that our
quantized NN solution can aid efficiency.

7.2.3 Support Vector Machines

A support vector machine (SVM) is a type of a supervised learning classifier, where the computation
is parameterized by the number of classes q and features m. We choose to do SVM classification
and specifically run the computation for the ALOI dataset [33] to be able to compare performance
of our framework to that of SPDZ2k reported in [23]. In particular, SPDZ2k achieves security in
the malicious model with no honest majority over a ring – a much stronger security model than
ours – and we are interested in knowing the computational price of the differences in the security
assumptions.

SVM computation consists of a series of parallel dot products of the feature vector and support
matrix, followed by argmax computation of the resulting values. This computation is given as
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Protocol 10 in Appendix A, where argmax is computed in a hierarchical manner. The results of
our experiments for the ALOI dataset with 463 classes and 128 features are presented in Table 10.

We see that SPDZ2k ’s performance (combined offline and online) in the two-party setting is
about 200 times slower due to their significantly stronger security model. We also see that field-
based implementation is an order of magnitude slower and the times do not reduce as significantly
with the increased batch size as in our ring-based setting. This tells us that a single invocation of
SVM evaluation is network-bound over a ring, but this is not the case with field-based computation.

8 Conclusions

In this work we study multi-party threshold secret sharing over a ring in the semi-honest model
with honest majority with the goal of improving performance compared to field-based computation.
We design low-level operations for n-party replicated secret sharing over any ring and consequen-
tially build on them to enable general-purpose protocols over ring Z2k . Our implementation results
demonstrate that ring-based implementations of different operations are significantly faster than
their field-based equivalents with n = 3. This allows us to improve performance of different ap-
plications including privacy-preserving machine learning tasks. We specifically test performance of
neural network, quantized neural network and support vector machine classification and determine
that performance of our techniques is on par with the best custom three-party protocols for those
functions.
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A Additional Protocols

A.1 Random Bit Generation

Random bit generation is a crucial component of a variety of protocols including different types of
comparisons, bit decomposition, division, etc. Therefore, it is of paramount importance to support
this functionality for general-purpose computation. In this work we examine two variants: (i)
generating shares of a single bit as full-size ring elements and (ii) generating shares of k-bit random
r as full-size ring elements together with generating shares of individual bits of r in Z2.
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Protocol 6 [b]← RandBit()

1: [u]k+2 ← PRandR(k + 2);
2: [a]k+2 = 2[u]k+2 + 1;
3: e← MulPub([a]k+2, [a]k+2);
4: compute the smallest root of e modulo 2k+2 and denote it by c; compute the inverse of c modulo

2k+2 and denote it by c−1;
5: [d]k+2 = c−1[a]k+2 + 1;
6: for each T ∈ T , let share bT = dT /2;
7: return k least significant bits of each bT as [b]k;

Protocol Rounds Communication
RandBit() 1 n− 1
edaBit(k) log(t+1)(log(k)+1)+1 t2(log(k)+1)+t+1/2

Table 11: Performance of random bit generation protocols with communication measured in the
number of ring elements sent per party over Z2k+2 for RandBit and Z2k for edaBit(k).

The first variant, denoted RandBit, originated in [16] for field-based SS and was modified in [23]
to work in Z2k . We use the logic of [23] and adjust the algorithm to work in our setting. The result
is shown as Protocol 6.

To achieve 50% probability of each outcome of the output bit, the computation uses a larger ring
Z2k+2 for most steps of the protocol when the remaining computation uses ring Z2k . Consequently,
we use notation [x]` with variable ` to denote that shares and computation are over ring Z2` .
We also parameterize function PRandR by the desired bitlength and PRandR(`) denotes that the
function returns a random ring element from Z2` .

Correctness of Protocol 6 follows from [23] and security follows from the logic. That is, because
the protocol only discloses random e and otherwise uses secure building blocks, no information
about private values can be leaked. The protocol runs in one round using the same communication
as MulPub over Z2k+2 . To improve performance, in our implementation we compute the square root
and inverse operations on line 4 simultaneously.

The second variant of random bit generation is based on the computation described in [31] and
is denoted as edaBit(k), where the parameter k specifies the number of generated random bits as
well as the bitlength of their representation as integer r. It produces secret-shared k-bit integer r
together with shares of the individual bits of r in Z2. We use a simplified version with k being equal
to the bitlength of the ring elements (i.e., the ring is Z2k), which eliminates certain operations for
dealing with carry after addition. The construction is given as Protocol 7. The idea consists of
t + 1 parties (without loss of generality, we chose the first t + 1 parties for this role) each locally
generating k random bits and computing representation of those bits as a k-bit integer (line 2).
The bits are input into the computation using SS over Z2, while the integers are entered using
shares in Z2k (line 3). Because we use Input to generate shares over different rings, we specify the
second argument `, which indicates that the shares need to be produced in Z2` . The output that
the protocol produces is the sum of the t+ 1 random integers (without the carry bits) and its bit
decomposition is computed using bitwise addition BitAdd from [60] of the t+1 integers represented
as bits in a tree-like manner.
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Protocol 7 ([r]k, [b0]1, . . . , [bk−1]1)← edaBit(k)

1: for p = 1, . . . , t+ 1 in parallel do

2: party p samples r
(p)
0 , . . . , r

(p)
k−1 ∈ Z2 and computes r(p) =

∑k−1
j=0 r

(p)
j 2j ;

3: simultaneously execute [r(p)]k ← Input(r(p), k) and [r
(p)
i ]1 ← Input(r

(p)
i , 1) for i = 1, . . . , k

with p being the input owner;
4: end for
5: [r]k =

∑t+1
p=1[r(p)]k;

6: s = t+ 1;
7: for i = 1, . . . , dlog(t+ 1)e do
8: for j = 1, . . . , bs/2c in parallel do

9: 〈[r(j)
1 ]1, . . . , [r

(j)
k−1]1〉 ← BitAdd(〈[r(2j−1)

1 ]1, . . . , [r
(2j−1)
k−1 ]1〉, 〈[r(2j)

1 ]1, . . . , [r
(2j)
k−1]1〉);

10: if s mod 2 = 0 then
11: s = s/2;
12: else
13: 〈[r((s+1)/2)

1 ]1, . . . , [r
((s+1)/2)
k−1 ]1〉 = 〈[r(s)

1 ]1, . . . , [r
(s)
k−1]1〉;

14: s = (s+ 1)/2;
15: end if
16: end for
17: end for
18: [b0]1, . . . , [bk−1]1 = [r

(1)
0 ]1, . . . , [r

(1)
k−1]1

19: return ([r]k, [b0]1, . . . , [bk−1]1)

A.2 Comparisons

Less-than comparisons, [a] < [b], are traditionally computed using SS by determining the most
significant bit of the difference between a and b. Starting from [16], comparison protocols blind the
difference by adding a random integer bit decomposition of which is known, open the sum, truncate
all but one bit, and compensate for any carry caused by the addition. This logic was adapted to
the ring setting in [23] by using building blocks that work over Z2k . In the solution that we present
as Protocol 8, we incorporate the edaBit protocol from [31] for efficient random bit generation into
the construction of [23] adopted to the semi-honest setting. The presence of carry is determined
using sub-protocol BitLT which performs comparison of two bit-decomposed values, one of which
is given in the clear, using binary computation over Z2.

Security of the algorithm follows from prior work and the fact that we use a composition of
secure building blocks. In particular, the only values revealed in the protocol (in steps 4 and 9)
are information-theoretically protected using freshly generated randomness. The complexity of this
protocol and its prior version that makes calls to RandBit is given in Table 2.

To correctly implement comparison of two k-bit integers over ring Z2k , one would need to invoke
the MSB protocol 3 times. However, correctness is also guaranteed if we compare two (k − 1)-bit
integers over ring Z2k using a single call to MSB. We use the latter approach in our implementation
of machine learning algorithms.

There are noteworthy differences in the design of protocols developed for a ring as opposed to
original protocols for a field. Certain operations such as prefix multiplication are not available in a
ring and we resort to logarithmic round building blocks when protocols over a field achieve constant
round complexity. In the context of comparison, a typical tool for realizing them was truncation
(i.e., right shift), the cost of which was linear in the number of bits truncated, but the modulus
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Protocol 8 [ak−1]k ← MSB([a]k), where a =
∑k−1

i=0 ai2
i ∈ Z2k

1: [r]k, [r0]1, . . . , [rk−1]1 ← edaBits(k);
2: [b]k ← RandBit();
3: [r′]k = [r]k − [rk−1]12k−1;
4: c← Open([a]k + [r]k);
5: c′ = c mod 2k−1;
6: [u]1 ← BitLT(c′, [r0]1, . . . , [rk−2]1);
7: [a′]k = c′ − [r′]k + 2k−1[u]1;
8: [d]k = [a]k − [a′]k;
9: e← Open([d]k + 2k−1[b]k) and let ek−1 be the most significant bit of e;

10: [ak−1]k = ek−1 + [b]k − 2ek−1[b]k;
11: return [ak−1]k;

had to be increased by a statistical security analysis to support such operations. In a ring, on the
other hand, there is no significant increase in the ring size, but the communication cost is linear in
the bitlength of the ring and not in the bitlength of the truncated portion. This brings different
trade-offs, but the availability of faster arithmetic in a ring will still lead to significant savings.

A.3 Machine Learning Applications

Protocol 9 shows the computation associated with evaluating the MNIST neural network model
from [46]. Protocol 10 provides computation associated with support vector machine evaluation on

Protocol 9 MNIST neural network evaluation

1: (Convolution) 28 × 28 input image, 5 × 5 window size, (1, 1) stride, 16 output channels:
Z16×576

220
← MatMult(Z16×25

220
,Z25×576

220
);

2: (ReLU) calculates ReLU for each entry of Z16×576
220

;

3: (Max Pooling) input Z16×576
220

and 1× 2× 2 window size, outputs Z16×12×12
220

;

4: (Conversion) Z16×144
230

← Convert(Z16×144
220

, 20, 30);

5: (Convolution) 5 × 5 window size, (1, 1) stride, 16 output channels: Z16×64
230

←
MatMult(Z16×400

230
,Z400×64

230
);

6: (ReLU) calculates ReLU for each entry of Z16×64
230

;

7: (Max Pooling) input Z16×64
230

and 1× 2× 2 window size, outputs Z16×4×4
230

;

8: (Conversion) Z16×16
240

← Convert(Z16×16
230

, 30, 40);

9: (Fully Connected) Connects 256 incoming nodes to 100 outgoing nodes : Z100×1
240

←
MatMult(Z100×256

240
,Z256×1

240
);

10: (ReLU) calculates ReLU for each entry of Z100×1
240

;

11: (Conversion) Z100×1
249

← Convert(Z100×1
240

, 40, 49);

12: (Fully Connected) Connects 100 incoming nodes to 10 outgoing nodes : Z10×1
249

←
MatMult(Z10×100

249
,Z100×1

249
);

13: return Z10×1
249

;

q classes and m features. For the ALOI SVM from [23], we use q = 463 and m = 128.
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Protocol 10 SVM classification, where q is the number of classes, m is the number of features,
fi,j is the feature vector, and bj are the biases

1: for each j = 1 to q in parallel do [cj ]← [bj ] +
∑m

i=1 DotProd([fi,j ], [xi]);
2: return ([aind], [ind])← ArgMax([c1], . . . , [cq]);

B Security Definitions and Proofs

We formulate (simulation-based) security in the presence of semi-honest participants as follows:

Definition 1. Let parties P1, . . ., Pn engage in a protocol Π that computes function f(in1, . . ., inn) =
(out1, . . ., outn), where ini and outi denote the input and output of party Pi, respectively. Let
VIEWΠ(Pi) denote the view of participant Pi during the execution of protocol Π. More pre-
cisely, Pi’s view is formed by its input and internal random coin tosses ri, as well as messages
m1, . . .,mk passed between the parties during protocol execution: VIEWΠ(Pi) = (ini, ri,m1, . . .,mk).
Let I = {Pi1 , Pi2 , . . ., Pit} denote a subset of the participants for t < n, VIEWΠ(I) denote the com-
bined view of participants in I during the execution of protocol Π (i.e., the union of the views
of the participants in I), and fI(in1, . . . , inn) denote the projection of f(in1, . . . , inn) on the co-
ordinates in I(i.e., fI(in1, . . . , inn) consists of the i1th, . . ., itth element that f(in1, . . . , inn) out-
puts). We say that protocol Π is t-private in the presence of semi-honest adversaries if for each
coalition of size at most t there exists a probabilistic polynomial time simulator SI such that
{SI(inI , fI(in1, . . . , inn)), f(in1, . . ., inn)} ≡ {VIEWΠ(I), (out1, . . . , outn)}, where inI =

⋃
Pi∈I{ini}

and ≡ denotes computational or statistical indistinguishability.

Proof of Theorem 1. Let I denote the set of corrupt parties. We consider the maximal amount
of corruption with |I| = t. Because the computation proceeds on secret shares and the parties do
not learn the result, no information should be revealed to the computational parties as a result of
protocol execution.

We build a simulator SI that interacts with the parties in I as follows: when a party p ∈ I
expects to receive a value from another party p′ 6∈ I in step 5 of the computation according to
function χ, SI chooses a random element of R and sends it to p. SI preserves consistency of the
view and ensures that when the same value is to be sent by p′ to multiple parties in I, all of them
receive the same random value. This is the only portion of the protocol where corrupt parties can
receive values (that the simulator produces), and the only portion of the protocol when a corrupt
party p may send a value to an honest party p′ is step 4, which SI receives on behalf of p′. All
other computation is local, in which SI does not participate.

We next argue that the simulated view is computationally indistinguishable from the real view.
First, note that the corrupt parties in I collectively hold shares aT , bT and keys kT (and thus can
compute values GT .next) for each T ∈ T such that ∃p ∈ I and p 6∈ T . This entitles the corrupt
parties to computing the corresponding shares cT , but the rest of the shares must remain unknown,
so that they are unable to compute c. Next, notice that when |I| = t, there is only one share
T ∗ = I such that all parties p ∈ I have no access to kT∗ and cT ∗ , while all parties p′ 6∈ I store
those values. Then there are two cases to consider: (1) If one or more parties p ∈ I receive χ(p′)’s
share of vp

′
from another party p′ 6∈ I (it must be the case that χ(p′) 6= T ∗), the received share

has been masked by a fresh pseudo-random element from GT ∗ , is therefore pseudo-random and
indistinguishable from random by any p ∈ I. (2) If no party p ∈ I receives a value from any given
p′ 6∈ I, indistinguishability is trivially maintained. �

Proof of Theorem 2. As before, let I denote the set of corrupt parties with |I| = t. We build
a simulator SI that interacts with the parties in I as follows: after SI extracts shares aT , bT , kT
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(T ∈ T such that ∃p ∈ I and p 6∈ T ) from the corrupt parties and receives the output c from the
trusted party, SI computes v(p) as prescribed by the protocol for each p ∈ I and also their sum
vI =

∑
p∈I v

(p) (in R). SI sets v(p) values for the remaining n− t parties to random elements of R
subject to

∑
p 6∈I v

(p) = c− vI (in R). SI , acting on behalf of party p 6∈ I, sends the corresponding

v(p) to each party in I.
To show that this simulation is indistinguishable from the real protocol execution, recall that

there will be at least one T , denoted by T ∗ = I, to which the parties in I have no access (and thus
correspondingly cannot distinguish the output GT ∗ from random elements of the ring). During real
protocol execution the parties in I receive t + 1 values c(p), one per p 6∈ I. With the knowledge
that the corrupt parties collectively have, they can remove the effect of all randomization except
the use of the output of GT ∗ . If we let zi,T ∗ denote the ith call to GT ∗ .next during the execution
of MulPub in Protocol 2, then the corrupt parties can recover t values of the form v(p) + zi,T ∗

with unique p and i and one value of the form v(p) −
∑t

i=1 zi,T ∗ for another p. The next thing
to notice is that any t (out of t + 1) of these values are pseudo-random and computationally
protect the corresponding v(p) values. The introduction of the remaining value reveals the sum of
all v(p)s, but not other information (i.e., the last value corresponds to the difference to make the
sum equal to c− vI). This means that substituting these values with random elements subject to∑

p 6∈I v
(p) = c−vI provides the same information to the corrupt parties and achieves computational

indistinguishability of the views. �

Proof of Theorem 3. It is straightforward to show security of the full version of Input when the
input owner is different from the computational parties. That is, the input owner creates proper
shares according to the SS scheme using a PRG. Thus, as long as security of the PRG holds, the
real view is computationally indistinguishable from a simulated view created without the use of
any secrets.

However, when the input owner is one of the computational parties, only a reduced set of
shares is produced. Thus, we need to evaluate the combined view of each coalition of t corrupt
participants. There are two important cases to consider: (i) input owner p∗ is a part of the coalition
and (ii) it is not.

When p∗ is a corrupt participant, building a simulator is trivial: the simulator simply receives
shares from the input owner on behalf of honest participants and terminates. Because inputs ai are
available to the corrupt parties, no information need to be protected and the real and simulated
views use identical values.

When there are t corrupt participants who are different from p∗, we simulate the view by
choosing a random value for ai,T ∗ and sending it to each corrupt p 6∈ T ∗. What remains to show is
that the t corrupt parties do not possess enough shares to reconstruct the secret and, as a result,
cannot learn any information about it. In more detail, p∗ distributes its secrets using only shares
T such that T ∈ T \ {T ∗}. However, because we use (n, t) threshold SS, there will be a share T
possessed by p∗ which is not available to any of the t corrupt parties I. Specifically that share is
available to all participants except corrupt minority I. This means that the corrupt parties will
not be able to reconstruct information about the private inputs and the real and simulated views
are indistinguishable as long as PRG’s security holds. �
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