
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

 

Multi-Party Trust Computation in Decentralized Environments

Dimitriou, T. and Michalas, A.

 

This is a copy of the author’s accepted version of a paper subsequently published in the 

proceedings of the International Conference on New Technologies, Mobility and Security 

(NTMS), Istanbul 7-10 May 2012.

It is available online at:

https://dx.doi.org/10.1109/NTMS.2012.6208686

© 2012 IEEE . Personal use of this material is permitted. Permission from IEEE must be 

obtained for all other uses, in any current or future media, including 

reprinting/republishing this material for advertising or promotional purposes, creating 

new collective works, for resale or redistribution to servers or lists, or reuse of any 

copyrighted component of this work in other works.

The WestminsterResearch online digital archive at the University of Westminster aims to make the 

research output of the University available to a wider audience. Copyright and Moral Rights remain 

with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely 

distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

https://dx.doi.org/10.1109/NTMS.2012.6208686
http://westminsterresearch.wmin.ac.uk/
repository@westminster.ac.uk


Multi-Party Trust Computation in Decentralized
Environments

Tassos Dimitriou
Athens Information Technology

19.5 km Markopoulo Ave., 19002, Peania
Athens, Greece

Email: tdim@ait.edu.gr

Antonis Michalas
Athens Information Technology, Greece

and
Aalborg University, Denmark

Email: amic@ait.edu.gr

Abstract—In this paper, we describe a decentralized privacy-
preserving protocol for securely casting trust ratings in dis-
tributed reputation systems. Our protocol allows n participants to
cast their votes in a way that preserves the privacy of individual
values against both internal and external attacks. The protocol
is coupled with an extensive theoretical analysis in which we
formally prove that our protocol is resistant to collusion against
as many as n− 1 corrupted nodes in the semi-honest model.

The behavior of our protocol is tested in a real P2P network
by measuring its communication delay and processing overhead.
The experimental results uncover the advantages of our protocol
over previous works in the area; without sacrificing security,
our decentralized protocol is shown to be almost one order of
magnitude faster than the previous best protocol for providing
anonymous feedback.

Index Terms—Decentralized Reputation Systems, Security,
Voter Privacy, Anonymous feedback

I. INTRODUCTION

During the last decade, within the field of greatly de-
veloped online communities, unknown users may exchange
information while keeping their identity hidden. However, the
difficulty of gathering (reliable) evidence about unidentified
transaction partners makes it hard to decide if a user is
legitimate or corrupted. It is also difficult to differentiate
between a high and a low quality service provider. As a result,
the topic of trust is receiving significant attention in both the
academic community and the e-commerce industry [7].

A well known technique used to prevent interaction with
malicious or unreliable users is Reputation systems, which
rates the behavior of each user, based on the quality of the
provided service(s), and gives information to the community
in order to decide whether to trust an entity in the network.

However, a relatively unexplored aspect of reputation sys-
tems is that of feedback providers’ privacy. Only some reputa-
tion and trust establishment schemes deal with the problem of
securing the ratings (or votes) of participating nodes. This lack
of privacy can lead to several problems, including the proper
operation of the network. Additionally, the absence of schemes
that provide privacy in decentralized environments, such as
ad hoc networks, is even greater. For example, it has been
observed in [10] that users of a reputation system may avoid
providing honest feedback in fear of retaliation, if reputation
scores cannot be computed in a privacy-preserving manner. In
response to that, eBay has decided to change the feedback

policy so that sellers can no longer leave negative/neutral
feedback for buyers, claiming that “it will help buyers leave an
honest feedback” [5]. Hence, developing anonymous feedback
reputation protocols is essential to online communities and
electronic marketplaces, especially in decentralized environ-
ments that offer new challenges and opportunities for research.

Contribution: In this work we present a protocol that
preserves the privacy of votes in decentralized environments.
The protocol allows n participants to securely cast their ratings
in a way that preserves the privacy of individual votes against
both internal and external attacks. More precisely, we analyze
the protocol and prove that it is resistant to collusion even
against up to n− 1 corrupted insiders. The insights we obtain
from this analysis allow us to refine the protocol and come
up with a lighter version that is equally secure and uses
only standard cryptographic mechanisms. This lighter protocol
compares favorably with protocols for secure multi-party sum
computation and we consider it as another important contribu-
tion of this work. Finally, the whole analysis is coupled with
extensive experimental results that demonstrate the protocol’s
validity and efficiency over previous works in the area.

Organization of the paper: In Section II, we review some
of the most important schemes that provide private trust ratings
in decentralized environments. In Section III, we describe the
problem of secure trust aggregation and we define the basic
terms that we use in the rest of the paper. In Section IV,
we present StR, our main protocol, while in Section V we
provide a security discussion in which we show the resistance
of our protocol against numerous attacks. Section VI describes
the more efficient version of StR. In Section VII, we present
experimental evidence that shows the effectiveness of our
protocol, and, finally, Section VIII concludes this paper.

II. RELATED WORK

A limited number of reputation and trust establishment
schemes deal with the problem of securing the vote(s) of each
individual node. The difficulties of building reputation systems
that can also preserve privacy can be found in [3]. Three works
that work on the problem of computing ratings in decentralized
reputation systems are those of [9], [6], [4].

Pavlov et al. [9] showed that when n − 1 malicious nodes
collude with the querying node to reveal the vote of the re-



maining node then perfect privacy is not feasible. Furthermore,
they proposed three protocols that allow voting to be privately
provided in decentralized additive reputation systems. The first
protocol is not resilient against collusion of nodes and can be
used when dishonest peers are not an issue. The other two
protocols are based on a probabilistic peers’ selection scheme
and are resistant to collusion of up to n − 1 peers only with
a certain degree of probability. Hasan et al. [6] proposed a
privacy preserving protocol under the semi-honest adversarial
model. It’s main difference from Pavlov’s protocols is that
each Ui sends her shares to at most k < n− 1 nodes that are
considered “trustworthy” by Ui.

Dolev et al. [4] proposed two main decentralized schemes
where the number of messages exchanged is proportional to
the number n of participants (however, the length of each
message is O(n)). The first protocol AP (and its weighted
variant WAP) assumes that the querying agent Aq is not
compromised while the next protocol, namely MPKP (and
its weighted variant MPWP) assumes that any node can act
maliciously. The weakness of Dolev’s protocols is the fact that
unnecessary and inefficient computations are taking place.

One cannot help but notice the relevance of this problem to
secure multi-party computation, where a number of distributed
entities collaborate to compute a common function of their
inputs while preserving the privacy of these inputs. One such
well known example is the secure sum protocol [2], which uses
randomization to securely compute the sum of the individual
inputs. This protocol is a natural fit for the problem at hand but
it suffers from a number of attacks and falls prey to honest-
but-curious insiders which can easily infer the private input of
any entity.

The protocols in [9], [6], [4] can be thought as attempts
to recover from the security inefficiencies of secure sum,
properly applied to the context of reputation management. Our
final protocol, shown in Section VI, not only improves upon
these schemes but can also be applied directly for secure sum
computation, refining earlier results in this area [11].

III. PROBLEM STATEMENT & DEFINITIONS

We start by providing a definition of decentralized additive
reputation systems as described in [9].

Definition 1: A Reputation System R is said to be a Decen-
tralized Additive Reputation System if it satisfies the following
two requirements:

1) Feedback collection, combination and propagation are
implemented in a decentralized way.

2) Combination of feedbacks provided by nodes is calcu-
lated in an additive manner.

In this paper, we focus on the following problem:

Problem Statement: A querying node Aq , receives a ser-
vice request from a target node At. Since Aq has incomplete
information about At, she asks other nodes in the network to
give their votes about At. Let U = {U1, · · · , Un} be the set
of all nodes that will provide an opinion to Aq . The problem
is to find a way that each vote (vi) remains private while at

the same time Aq would be in position of understanding what
voters, as a whole, believe about At, by evaluating the sum
of all votes (

∑n
i=1 vi).

Similar to existing work in the area, all the protocols that
are presented in this paper assume that the adversary is semi-
honest. In the semi-honest adversarial model, malicious nodes
correctly follow the protocol specification. However, nodes
overhear all messages and may attempt to use them in order to
learn information that otherwise should remain private. Semi-
honest adversaries are also called honest-but-curious.

For the needs of our protocol, we assume that the reader
is familiar with the concept of public key cryptography. Each
node (Aq , Ui, i ∈ [1, n]) has generated a public/private key
pair (kAq/KAq , kUi/KUi). The private key is kept secret,
while the public key is shared with the rest of the nodes.
These keys will be used to secure message exchanges between
the nodes, hence the communication lines between parties are
assumed to be secure. Our first protocol also relies on the use
of homomorphic encryption for the collection of votes by the
querying agent Aq . The vote of Ui concerning At is denoted by
vi. The notation E(.) will refer to the results of the application
of an homomorphic encryption function that Aq can decrypt
with her private key. Pailler’s Cryptosystem [8] is an example
of cryptosystem where the trapdoor mechanism is based on
such a homomorphic function.

IV. SPLITTING THE RANDOM VALUES (STR)
In this section, we present our main protocol (StR) in which

we use both homomorphic encryption and random numbers to
secure the privacy of votes for each node.

During the initialization step, Aq creates the set U with all
voters, orders them in a circle Aq → U1 → · · · → Un and
sends to each Ui the identity of its successor in the circle. Each
Ui splits its random number ri into n pieces and shares one
with the rest of the nodes. Then, it creates a blinded vote and
adds it to the sum of previous votes by using the homomorphic
property of Paillier’s cryptosystem [8]. At the end, the last
node Un forwards to Aq the sum of all n votes encrypted
with the public key of Aq . Upon reception, Aq decrypts the
result and finds the sum of all votes. A detailed description of
StR follows below.

First round: During the initialization step, Aq sends to
all nodes the list of all voters U . Each node Ui generates a
random number ri and splits it into n integers in such a way
that the ith share will be encrypted with the public key of Ui.
So, if U1 has generated a random number r1, the shares will
be

r1 = r1,1, {r1,2}kU2
, · · · , {r1,n−1}kUn−1

, {r1,n}kUn
.

The next step for each Ui is to distribute the shares to the
remaining n − 1 nodes in U . This means that each Ui will
receive the following n− 1 messages
{r1,i}kUi

, · · · , {ri−1,i}kUi
, · · · , {rn−1,i}kUi

, {rn,i}kUi
.

Since all n − 1 numbers that Ui received are encrypted with
her public key, she decrypts them and calculates the blinded
vote bi which is equal to



bi = vi + ri − (
n∑

j=1

rj,i). (1)

When all nodes (in parallel) compute their blinded votes, the
second round begins.

Second round: U1 calculates E(b1) and sends it to U2. U2

adds b2 to E(b1) by using the additive homomorphic property
(E(b1) · E(b2) = E(b1 + b2)) of Paillier’s cryptosystem and
sends E(b1 + b2) to U3. At the end of this round Aq will
receive from Un the following: E(

∑n
i=1 bi) = E(

∑n
i=1 vi).

Upon reception, Aq decrypts the message, finds the sum of all
votes and divides by n in order to find the average of votes.
A concise description of StR is shown in Algorithm 1.

Algorithm 1 StR Protocol
Aq generates and distributes U = {U1, · · ·Un}
Round 1 - All nodes in parallel
for all Ui ∈ U do

Ui generates ri.
Ui calculates the n-shares: ri = ri,1 + . . .+ ri,n
for all Uj ∈ U \ {Ui} do

Ui sends {ri,j}kUj
to Uj

end for
Ui receives all shares destined to it and calculates the blinded
vote bi = vi + ri −

(∑n
j=1 rj,i

)
.

end for
Round 2 - All nodes sequentially
for i = 1 to n do

Ui obtains
∏i−1

j=1 E (bj) from Ui−1 (or E(0) from Aq , if i = 1).
Ui encrypts bi with kAq to obtain E(bi).
Ui calculates the homomorphic product

∏i−1
j=1 E (bj) · bi

Ui sends
∏i

j=1 E(bj) = E(
∑i

j=1 bj) to Ui+1 (or E(
∑n

i=1 vi)
to Aq , if i = n).

end for

V. SECURITY ANALYSIS

In this section we analyze the behavior of StR in the
presence of corrupted agents. First, we will consider the case
of a well-behaving query agent Aq . Such an agent respects
the privacy of participating users and does not form malicious
coalitions with corrupted agents in the set U (however, among
the agents in U there can be corrupted ones). Then, in Section
VI, we will proceed to discuss the case where Aq is malicious
as well. This will also lead to the development of an even
more efficient but equally secure version of StR.

Theorem 1 (Uncompromised Aq): Assume an honest-but-
curious adversary ADV corrupts at most k < n users out of
those in the set U . Then ADV cannot infer any information
about the votes of the legitimate users.
Proof. We will prove the privacy of the StR protocol using
a standard simulation argument. In particular, we will show
that for any adversary that corrupts (or controls) a subset of
the participating users, there exists a simulator that, given the
corrupted parties data and the final result, can generate a view
that, to the adversary, it is indistinguishable from a real execu-
tion of the protocol. This guarantees that whatever information
the adversary can obtain after attacking the protocol can be

actually generated by herself, using the simulator. As a result,
no useful information about legitimate users’ data is leaked.

Let C = {Ui1 , Ui2 , . . . , Uik} denote the set of compromised
users, where k < n. Let also viewC denote the views of the
protocol for all users in C, including their votes {vi1 , vi2 ,
. . . , vik}, their random numbers {ri1 , ri2 , . . . , rik} and the
sequence of messages E(

∑i1
j=1 bj), . . . , E(

∑ik
j=1 bj) received

by each one of them during the second round of the protocol,
where by definition bi = vi + ri − (

∑n
j=1 rj,i).

A simulator has access to the shares of the random numbers
ri,j , i ̸= j that ended up in corrupted users during the first
round but cannot possibly generate the exact sequence of
encrypted sums since it does not know the private data of
legitimate users. So, the simulator will have to replace the pri-
vate data with random quantities αi and compute E(b′i) for all
i = 1, . . . , n, where b′i = bi, if Ui is corrupted/compromised
and b′i = αi, otherwise. The simulator can now replace
E(

∑il
j=1 bj) with E(

∑il
j=1 b

′
j).

To complete the analysis we need to argue that if there exists
an adversary A that distinguishes between the encryption
of the observed values E(

∑il
j=1 bj) and the random ones

E(
∑il

j=1 b
′
j) produced by the simulator, then there is an

adversary B that can attack the semantic security of E(·).
Such an attacker B would operate as follows: Its input is

a sequence of values E(xi), i = 1, . . . , n and its goal is
to determine whether the values xi correspond to the values
provided by the users, or is simply a sequence of random
values αi. Adversary B, using the homomorphic property of
E(), computes E(

∑il
j=1 xj) and provides the encryption of the

partial sums E(
∑i1

j=1 xj), . . . , E(
∑ik

j=1 xj) as input to A. It
then returns whatever answer A returns.

Obviously B would be able to break the semantic security
of E() with the same probability that A could distinguish
between the real views and the random values produced by
the simulator. Since E() is assumed to be semantically secure,
such A cannot exist. Hence the security of the StR protocol
is guaranteed provided at most k < n users are compromised,
but Aq is not. �

VI. A MORE EFFICIENT STR
In this section we will consider the case where node Aq

is compromised as well. Since Aq knows the private key and
Aq has been compromised by ADV (or is member of the
colluding group), Aq can simply decrypt any communicated
message. Hence we cannot rely on the semantic security
property of the underlying cryptosystem. In this scenario the
security is therefore solely based on the randomness which
is used to blind the individual votes. This also suggests that
during the second round the nodes can send the blinded votes
directly to Aq without having to go around the ring, thus
increasing the efficiency of the algorithm, as we will see in the
experimental section. The new protocol is shown in Algorithm
2. Round 2 is a degenerate one and can clearly be combined
with Round 1.

The more efficient StR also provides an improvement over
previous protocols in the field of secure multi-party sum com-



putation [11]. In particular, in [11], a distributed protocol is
presented that requires O(n2) sequential computations around
a ring of nodes. Our protocol is completely parallelized and
does not even require placing the nodes around a ring.

Algorithm 2 Improved StR
Aq generates and distributes U = {U1, · · ·Un}
Round 1 - All nodes in parallel
for all Ui ∈ U do

Ui generates ri.
Ui calculates the n-shares: ri = ri,1 + . . .+ ri,n
for all Uj ∈ U \ {Ui} do

Ui sends {ri,j}kUj
to Uj

end for
Ui waits until it receives all shares destined to it and calculates
the blinded vote bi = vi + ri −

(∑n
j=1 rj,i

)
.

end for
Round 2 - All nodes in parallel
for i = 1 to n do

Ui sends bi to Aq

end for
Upon reception of all votes, Aq computes

∑n
i=1 bi =

∑n
i=1 vi

In what follows we prove the security of the more efficient
version of StR.

Theorem 2 (Compromised Aq): Assume an honest-but-
curious adversary ADV corrupts Aq and at most k < n − 1
users out of those in the set U . Then ADV cannot infer any
information about the votes of the legitimate users.
Proof. Here, we consider the extreme case where all nodes
collaborate with a corrupted Aq except for two nodes Uk, Ul

which are considered legitimate.
To prove that StR protects the privacy of legitimate users,

even if Aq is compromised, we need to look at the data
exchanged in StR. Recall that during the first round, each node
will receive n−1 shares from the remaining nodes of U . Since
n − 2 nodes are compromised, at the end of round one, the
adversary will know all the n · (n − 2) shares of the n − 2
compromised nodes plus the n−4 shares that Uk and Ul have
sent to the compromised ones.

From the four remaining shares, rk,k and rl,l will be known
only to Uk and Ul, since these are part of the shares they keep
for the calculation of their blinded votes bk, bl. Additionally,
the last two remaining shares (rl,k, rk,l) will be known only
to Uk, Ul since they are encrypted with their corresponding
public keys and then exchanged between them. Since we have
assumed that these two nodes are legitimate, they will not
reveal the value of these shares to any other node.

To ease the analysis, in the following expressions we have
circled the variables that the adversary has not been able to
compromise:

bk =
vk+

rk−(r1,k+· · ·+ rk,k+· · ·+ rl,k+· · ·+rn,k)
(2)

and

bl =
vl+

rl−(r1,l+· · ·+ rl,l+· · ·+ rk,l+· · ·+rn,l).
(3)

However, considering the fact that rk, rj are equal to the
sum of the corresponding shares, i.e. rk =

∑n
j=1 rk,j and

rl =
∑n

j=1 rl,j , we obtain that

rk − rk,k =
∑
j ̸=k

rk,j and rl − rl,l =
∑
j ̸=l

rl,j .

Plugging these last two expressions to Equations (2) and
(3), we obtain

bk =
vk+

∑
j ̸=k,l

(rk,j − rj,k) +
rk,l − rl,k(4)

and

bl =
vl+

∑
j ̸=k,l

(rl,j − rj,l)−
rk,l − rl,k. (5)

Treating the last term (rk,l − rl,k) as a single unknown
quantity, we see that it is impossible to correctly calculate the
exact values vk, vl since the adversary, even with the help of
Aq , ends up with a system of two equations and three unknown
variables (the case is analogous when there are more than 2
legitimate users). We conclude that the protocol remains secure
as long as there exist at least two nodes that are legitimate. �

VII. EXPERIMENTAL RESULTS

This section presents the implementation of StR, as well
as a comparison with Dolev’s Multiple Private Keys Protocol
(MPKP) [4]. We have implemented both protocols in Java
and we used JADE 4.0.1 [1] for the communication of the
agents. All agents (nodes of the protocols) were connected to
the Internet through a NetFasteR IAD 2 router over a 24Mbps
ADSL line.

A. Processing Time

The first phase of our experiments involved measuring the
processing time of StR. For the encryption and decryption, we
used the RSA cryptosystem for encrypting the random shares
with a key length equal to 1024 bits. Figure 1a displays the
results following 1000 test runs in a computer with a 1.6GHz
CPU and 1GB DDR RAM, where each node has to i) encrypt
the n − 1 shares to be transmitted, and ii) decrypt the n − 1
shares received, where n ranges from n = 5 to n = 100.
As is evident from the graph, the required processing time is
negligible and does not constitute any real burden to nodes of
the StR protocol.

Notice that this is not the case for Dolev et al.’s protocol.
Decryption of the homomorphic values is inefficient because
it requires a trial-end-error decryption in order to compute the
encrypted trust ratings. Thus, processing time depends not only
on n but also on the allowable range of trust values (details
omitted due to space restrictions). Despite this inefficiency,
we treat both times as comparable and we focus only on the
communications aspects of both protocols.

B. Communication Delay

1) First Round: By default, JADE uses the Message Trans-
port Protocol (MTP) for the communication between nodes.
During the first phase of our experiments, we wanted to
measure the communication delay for the first round of StR.
For that purpose, we created nodes in different computers



[Processing time required by StR] [Communication Delay of

1st round of StR] [Communication Delay for StR and Dolev

]

Fig. 1. Experimental Results — Processing Overhead & Communication Delay

that generated n encrypted shares (1024 bits long each);
these were sent in parallel as single messages to each of
the n − 1 remaining nodes, where n was incremented from
n = 5 to 100 in steps of 5. As expected, the delay did
not increase in a strictly linear manner, since the overhead
processing of collecting the shares and computing the masked
vote bi = vi + ri − (

∑n
j=1 rj,i) increased with the number of

nodes. Figure 1b illustrates the delay in seconds as a function
of the number of nodes n.

2) Second Round: While in StR only one message (the
blinded vote) is transmitted from each node to Aq , this is
not the case for Dolev’s protocol as each node must send
to the next one in the ring the result of the homomorphic
encryption. Thus, in this case, we wanted to calculate the
communication delay of transmitting a message of size 1024
bits long (the result of the homomorphic encryption) between
successive nodes in the list U . We have run 1000 experiments
in our JADE platform and we have found that, on average, the
time to sent a single message between two successive nodes
is approximately equal to 0.115 seconds.

We have summarized these findings in Figure 1c. This figure
shows a comparison for the communication delay of both
rounds of StR and Dolev’s protocol. While both protocols
show a quadratic behavior – Dolev’s protocol sequentially

propagates, for a total of n times, a large message of length
O(n), while in StR each node sends, in parallel, (n − 1)
messages of size O(1) – StR outperforms Dolev’s protocol.
This is something to be expected since during the first round
of StR time is saved by sending the shares in parallel and
not sequentially. Additionally, during the second round time
is saved by eliminating the need to visit the nodes in the ring.
Thus, the communication delay of StR for a list of up to one
hundred voters, is almost an order of magnitude smaller than
that of Dolev’s protocol (13.7sec vs. 124sec) and is expected
to be magnified even further for larger values of n.

VIII. CONCLUSIONS

In this work we presented StR, a decentralized privacy-
respecting scheme for securely casting trust ratings in additive
reputation systems. Our protocol has been formally proved
to be resistant to collusion even against as many as n − 1
malicious insiders. In the course of this work, we have also
presented a lighter, but equally secure protocol, that can be
thought as an independent contribution to the field of secure
multiparty sum computation. The effectiveness of StR was
demonstrated by conducting extensive experiments measuring
its communication delay and processing overhead in a real P2P
network, showing its superior performance over the previous
best protocol to date.



As part of our future research, we intend to consider defense
mechanisms that will effectively manage malicious adver-
saries, adversaries that deviate from the designated honest-
but-curious behavior examined here.

IX. ACKNOWLEDGEMENTS

This work has been funded by the European Community’s
FP7 project SafeCity (Grant Agreement no: 285556).

REFERENCES

[1] F. Bellifemine, A. Poggi, G. Rimassa, and T. Italia. Jade. Internal
Tecnhical Report. http://jade.tilab.com/

[2] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin and M. Y. Zhu. Tools
for Privacy Preserving Distributed Data Mining. In ACM SIGKDD
Explorations, 2003.

[3] R. Dingledine, N. Mathewson, and P. Syverson. Reputation in P2P
anonymity systems. Workshop on Economics of Peer-to-Peer Systems,
2003.

[4] S. Dolev, N. Gilboa, and M. Kopeetsky. Computing multi-party trust
privately: in o(n) time units sending one (possibly large) message at a
time. ACM Symposium on Applied Computing (SAC ’10), 2010.

[5] eBay. Buyer accountability. http://pages.ebay.com/services/forum/ sell-
erprotection.html.

[6] O. Hasan, L. Brunie, and E. Bertino. k-shares: A privacy preserving rep-
utation protocol for decentralized environments. 25th IFIP International
Information Security Conference (SEC 2010), 2010.

[7] A. Josang, R. Ismail, and C. Boyd. A survey of trust and reputation
systems for online service provision. Decision Support Systems, 43:618–
644, Oct 2007.

[8] P. Paillier. Public-key cryptosystems based on composite degree residu-
osity classes. In Advances in Cryptology, EUROCRYPT ’99, pp.223–238,
1999.

[9] E. Pavlov, J. S. Rosenschein, and Z. Topol. Supporting privacy in
decentralized additive reputation. Second International Conference on
Trust Management (iTrust 2004), pages 108–119, 2004.

[10] P. Resnick and R. Zeckhauser. Trust among strangers in internet
transactions: Empirical analysis of ebay’s reputation system. The
Economics of the Internet and E-Commerce, 11(3):129–158, 2002.

[11] Rashid Sheikh, Beerendra Kumar, Durgesh Kumar Mishra. A Distributed
k-Secure Sum Protocol for Secure Multi-Party Computations. In Journal
of Computing, Volume 2, Issue 3, March 2010.


