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Abstract—The exponential increase in transistor count due to
technological progress has resulted in an increase in complexity
and processing power of on-chip elements. Recently a stage has
been reached where it is not practical anymore to increase the
core size, and as a consequence the number of cores, processing
elements or peripherals is being increased instead. In this study
we focus on improving the efficiency of a network between
those processing elements using alternative routing strategies. We
focus on a multi-path slot allocation method in networks with
static resource reservations, in particular networks on chip (NoC)
employing time-division multiplexing (TDM). The simplicity of
these networks makes it possible to implement this routing
scheme without significant hardware overhead. Our proposed
method, although displaying large variations between test cases,
provides significant overall gains in terms of allocated bandwidth,
with an average gain across all tests of 29% against an exhaustive
search of single-path routes, and gains of 47% when compared
to other single-path routing algorithms.

I. INTRODUCTION

In systems of increasing complexity, modularization is an

essential procedure for allowing timely development. Modu-

larization however relies on the ability of interconnecting the

modules into complete systems. Networks on chip [1], [2]

are an emerging paradigm for on-chip communication which

simplifies the design of large systems and provides a scalable

solution for connecting the on chip processing elements, mem-

ories and peripherals. As the interconnect has an increasing

influence on the overall performance of the design, optimizing

the networks on chip is an important direction of research.

The amount of allocated resources obviously has a direct

influence on the achieved performance, however it is also of

major importance how efficiently the available resource are

used, as the simple increase in path width or router count also

has the negative effect of increasing the area. From large-scale

packet-switched networks we have learned that a major limit

on efficiency is represented by congestion, while in circuit-

switched networks the limitation consists of blocking during

allocation and underutilizing the allocated channels.

We perform our study using the NoCs that employ a time-

division-multiplexing (TDM) scheme for allocating bandwidth

for connections, in particular the Æthereal NoC. To limit the

employed hardware resources, minimal buffering is provided,

circuit-switched network flits having to depart from a router

in the immediate next slot after arrival. This results in low

end-to-end latencies, but requires an efficient slot allocation

scheme for allocating time slots over the TDM shared links.

In this paper we propose a multi-path routing technique that

performs slot allocation, at the same time ensuring in-order

delivery of packets. The method is used to improve utilization

by taking advantage of the additional routing freedom provided

by the multi-path approach, and is based on established

algorithms known to be optimal in several respects. We show

that, in some cases, a multi-path allocation scheme may offer

significantly increased bandwidth over classical single-path

approach when used on top of the same underlying network.

In order to minimize the cost and reduce the impact of our

method on the already existing hardware implementation in

Æthereal we use the static time slot allocation scheme to

ensure in-order packet delivery.

The rest of the paper is organized as follows. In the follow-

ing section we present related work, and usage of multi-path

routing in other domains than networks-on-chip. In section

III we give a description of our own proposed algorithms,

followed by an analysis of required hardware resources in

section IV. Experimental results are presented in section V

while the last section presents our conclusions.

II. RELATED WORK

A sizable amount of research has been invested in opti-

mizing routing algorithms in both large scale and on-chip

networks, of which a significant portion was dedicated to

deadlock-free routing [3], [4], [5], [6].

In large scale networks, multi-path routing has already

been in use for a long time, for example in Internet traffic

engineering [7]. This problem is different for NoCs where in-

order delivery is a requirement, because re-ordering buffers

are expensive in comparison to off-chip networks.

The problem of multi-path routing in networks with re-

source reservation e.g. asynchronous transfer mode or ATM

was studied by Cidon et al. [8], [9], and was shown to provide

a benefit in terms of connection establishing time, while having

mixed results from the bandwidth point of view.

Multi-path routing in NoCs has been previously proposed in

[10], but because of the routing mechanism employed however,

a more complex approach is required in order to ensure in-

order delivery. Our solution ensures the delivery of packets in

the right order without the need of additional hardware, by

precomputing the packet schedule at design time.

Multi-path routing is also found in the various forms of

adaptive routing or other forms of non-deterministic routing

[11], largely addressed by studies of multiprocessors and now

also applied to networks-on-chip [12], [13], [14], [15], [16].

The target of these studies is mainly guaranteeing deadlock



freedom while maximizing utilization, but without explicitly

addressing the costs of in-order delivery.

Our study targets NoCs that support resource reservation

using Time-Division-Multiplexing, in particular the Æthereal

network [17]. Our algorithm performs both routing and slot

allocation.

The same technique can also be applied to other TDM

networks described in the literature, like the Nostrum network

[18], aSoC [19] and the TDM test delivery in [20] and perhaps

also to networks using space division circuit switching like

[21].

The authors of [22] propose a graph coloring algorithm to

solve a slot allocation problem in a similar network imple-

mentation but with more relaxed constraints regarding timing.

A solution for performing mapping, routing, slot allocation

in the Æthereal networks, currently in used by the tool flow

was presented in [23].

III. PROPOSED ALGORITHMS

We propose and demonstrate a multi-path routing technique

within the framework of Æthereal [17]. The Æthereal network

offers a combination of packet and circuit switching mecha-

nisms in the form of and guaranteed-throughput and (optional)

best-effort services. As multi-path routing for packet-switched

NoCs has already been addressed in the literature [10] our

focus is on the circuit-switching like guaranteed services (GS).

In GS mode, the user requests dedicated channels between

two IPs. A global, periodic schedule is created for the entire

network at design time, and TDM slots are allocated to each

connection according to the requested bandwidth. Packets are

always forwarded immediately at each router and the schedule

ensures that conflicts are not possible.

A. Pathfinding algorithm

We show that connections of larger bandwidth can be

established over a network with preexisting traffic using the

multi-path approach when compared to the standard single-

path method. For GS traffic, the allocated bandwidth is directly

related to the number of time slots that have been allocated to

each connection, thus conferring the problem a discrete nature.

The problem of finding a set of paths of maximum capacity

between two nodes in a graph has an established solution in

the Maximal Flow Algorithm [24]. We use a variation of the

flow algorithm, which also ensures that the total length of the

paths found is minimal.

As mentioned before there are restrictions in the way the

slots can be allocated on a given path. Each GS flit arriving

at a network router will have to depart in the immediately

following time slot, as no buffering is provided to store

more than one flit. To adapt the algorithm to this additional

requirement, we represent the network as a directed graph

when each network node (router or network interface) is

split into s nodes, where s is the number of time slots. The

generated nodes are connected in a way which reflects the

delay of traversing a network link and crossbar, as presented

Fig. 1. Splitting nodes in a graph, s = 5

in Figure 1. From the link from router A to router B, a flit

departing from slot Ai will arrive to B in slot B(i+1) mod s.

The flow algorithm considers each edge as having a capacity

for transporting a commodity between two nodes. In our

problem the commodity is represented by network flits and

the capacity is always 1 as one edge represents one timeslot.

We call flow the utilized capacity of each edge. The incoming

and outgoing flow at each node must balance out at each node,

in a way similar to Kirchhoff’s Current Law, except for nodes

marked as source and destination.

The flow algorithm starts on a graph with zero flow, and then

iteratively increases the flow between source and destination,

along augmenting paths which are determined based on the

edge capacity which is still not utilized. If the augmenting

paths are always chosen so that they have minimal cost, then

the total flow is also guaranteed to have minimal cost [25].

As the already allocated flow increases and links become

saturated, augmenting paths steadily increase in cost, until no

further increase in flow is possible.

In general, any path finding algorithm can be used for

determining an augmenting path, with one observation: the

flow algorithm must be able to displace previously allocated

flows to make room for new ones. For this, in addition

to normal edges that are not yet saturated, the path-finding

algorithm is allowed to traverse links used by previously found

paths in the reverse direction, thus canceling out the flow

on that segment. The cost of such traversal is negative, as

the segment will be removed both from the previous and the

current path.

An example is presented in figure 2. Assume that in the first

iteration of the pathfinding algorithm, a flow was allocated on

the A-B-E-F path. Clearly such a choice is unfortunate because

it blocks all other paths from A to F. A new path will then

be found in the form A-D-(E-B)-C-F. The common part (the

B-E segment) will be erased from both solutions and the first

two segments of the second augmenting path will be combined

with the last one of the first augmenting path and vice versa.

The final solution consists of the paths A-B-C-F and

A-D-E-F and has a cost of 3+3 = 6 so we can conclude that

the contribution of the second path to the cost was 3, which is

the sum of the cost of the “normal” edges A-D, D-E, B-C, C-F

and the negative cost of the reverse edge E-B, 4 + (−1) = 3.
There is one characteristic of the Æthereal networks which

further complicates the problem. Flits belonging to the same

connection, traveling in consecutive time slots along the same

path do not need to repeat the routing header, and as a result

the useful payload to packet size ratio is improved. In order

to deal with this additional optimization criterion we employ



Fig. 2. Flow displacement, a) during search for augmenting path b) after the
addition of the new path

a heuristic: once an augmenting path is found by the flow

algorithm, we try to allocate more slots along the same route,

if of course the new slots are available. This modification does

not interfere with the proper functioning of the flow algorithm,

because there is no restriction on the path finding algorithm

we employ, and the allocated paths are of the same cost as the

last path that was produced.

B. In-order delivery

A common problem of routing algorithms that offer several

alternative paths to the destination is that it creates a possi-

bility for packets to arrive in another order than they were

transmitted. This represents a significant problem in NoCs,

because the cost of on-chip buffering for reordering the packets

might be prohibitive. The guaranteed services offered by the

Æthereal NoC present an opportunity here because TDM slots

are statically reserved and the sequence of arrivals can be

controlled at design time.

The result produced by the flow algorithm is not guaranteed

to contain only routes delivering the packets in the right order.

The different delays of the shorter and longer routes may result

in packet reordering. Our solution is to discard some of the

routes, so that all remaining paths provide in-order delivery.

We present here an algorithm for the selection of routes to be

discarded.

The problem can be formulated as a Monotonic Subse-

quence Problem [26], for which optimal solutions exist with

polynomial time complexity. The paths are ordered by slot

departure time and the solution must comprise a subsequence

with only increasing arrival times. Several modifications are

again needed in order to take into account the particularities

of our problem. Because consecutive slots have a different

payload efficiency, the items in the sequence need to be

weighted, and, the algorithm needs to take into account the

wrap-around that occurs at the end of the slot table. In some

respects the wrap-around is similar to the problem described

in [27]. The first requirement does not introduce significant

changes into the algorithm, but for the second, the algorithm

will have to be applied repeatedly in a window which slides

over the set of paths.

The algorithm is based on dynamic programming, and

consists of generating partial solutions that are optimal with

respect to our optimization criteria, and sufficient for ensuring

the optimality of larger solutions. A formal description of the

algorithm is given in Algorithm 1. The selection method is

optimal in that it delivers the largest bandwidth possible for the

given set of paths, which does not imply that the combination

of flow and discarding algorithms is optimal.

Data: list of paths sorted by departure time, having known
bandwidth and arrival time

Result: reduced set of paths with in-order delivery

s← number of time slots;
Duplicate paths p1...pn as pn+1...p2n with delay s;
solution← ∅;
for ∀i ∈ {1, 2, ...n} do

consider set Q={pi...pi+n−1};
Q← Q \ {pj ∈ Q |pj arrives later than pi+n−1};
/* Q is the working window */

initialize t1...t2n, t∅ = 0;
for ∀pj ∈ Q do

best← ∅;
for ∀pq ∈ Q, q < j do

/* find best partial solution to

base current solution on */

if pq arrives before pj and tq > tbest then
best← i;
predecessorj ← q;

end
end
tj ← tbest+ bandwidth of pj ;
/* tj stores the bandwidth of the best

partial solution having pj as last

element */

if tj is best solution so far then
solution←solution reconstructed by following the
chain of predecessors of j;

end
end

end
Algorithm 1: In-order path selection

C. Algorithm complexity

In asymptotic notation (”big O” notation) [28], the multi-

path approach has a higher complexity than the single path

one. Intuitively, since multi-path implies that several paths

have to be found, the solution is expected to be several times

slower. In practice, the performance depends on which single

path algorithm our method is compared to. As the single-path

version may use different heuristics, its complexity varies.

Let’s consider a simple implementation of the Dijkstra

algorithm [29] for the single path solution. A reasonable

implementation using priority queues for maintaining a sorted

list of nodes as a complexity of O(V logV + ElogE) where

V is the number of vertices (network nodes) and E is the

number of edges (network links). This does not take into

account the fact that the heuristic has to check S available

time slots for each traversed edge, so a fair estimate would be

O(V logV + ElogE + ES).

For the flow algorithm, a reasonable implementation would

be the Edmonds-Karp algorithm [25], which is further simpli-

fied by the fact that all edges have a capacity of 1, and all

edge costs have a value of 1. With this restriction, finding a

single augmenting path can be done in complexity O(E). On
the other hand, the graph size is increased by a factor S, and

at most S augmenting paths have to be found, which leads

to a complexity of O(ES2). The same-path heuristic may be

implemented in different ways, but the most effective solution



Fig. 3. Distributed routing architecture. The schedule ensures that no two
packets will be delivered to the same link at the same time

is to integrate it with the normal path-finding used by the flow

algorithm, by ensuring that the order of visiting links is the

same that was used for the previous path. This approach would

not increase the algorithm complexity.

The in-order path selection algorithm has a running time

of O(k3) where k is the number of paths, which is bounded

by the number of slots S, hence the worst-case complexity is

O(S3).

IV. HARDWARE IMPLEMENTATION

As mentioned in section III we address the guaranteed ser-

vices mode of operation of the Æthereal networks. For GS the

network supports two possible implementations, distributed

routing and source routing. In this section we will present

implementation considerations regarding both cases.

A. Distributed routing

In the distributed routing architecture [17], all routers pos-

sess a slot table and are synchronized at flit level, which allows

them to operate in lock-step. During each time-slot, a flit is

routed to a pre-defined destination, based on the contents of

the slot table. Routers are unaware of the final destination of

flits, but only of one crossbar traversal. The final destination

of a packet thus depends only on the time it was inserted into

the network, as shown in Figure 3.

One of the advantages of this technique is that a header does

not have to be sent along each flit in order to determine its

destination thus increasing the size of the useful payload. The

disadvantage is that slot tables need to be distributed across

all routers, and a configuration mechanism has to be provided.

The routing is completely oblivious to the number of routes

that are used, and our technique can be applied without any

change to the hardware.

B. Source routing

In the source routing architecture, a single word header is

added to the first flit of a sequence, which stores the entire

route to the destination. Subsequent consecutive flits from GS

traffic, following the same route do not need to repeat the

header. We have considered in our experiments the overhead

of including the header when multiple routes are used.

The source network interface is then responsible not only

for determining the path the packets will follow, but also for

ensuring that no collisions will occur with other GS packets.

On the other hand, the advantage is that the route is not solely

determined by flit entry time into the network, but as long as

a) b)

Fig. 4. Hardware implementations: a) directly storing routes in the slot table,
b) with separate tables of routes

collision avoidance is ensured, several channels may use the

same time slots.

An approach that takes advantage of this new feature is

to let outgoing channels of an NI share the beginning of the

path before they diverge toward their specific destinations. This

approach was proposed in [30] under the name of channel

trees.

We propose two multi-path routing implementations, one

consisting of storing the route that should be used during

each time slot, side-by-side into the same memory block and

indexed with the same value as the slot-table, and another

having separate tables storing the routes and only a route id

be stored for each time slot. The two solutions are presented

in figure 4.

The first solution is more efficient when routes are relatively

short or the time slots are few, while the second is favorable

when few different routes are in use. The second solution also

has the advantage of being compatible with channel trees. The

overhead is limited to the storage space the extra route id and

storage space for the routes themselves, which amounts to tens

to hundreds of bits per network interface, depending on the

number of channels, routes and size of the slot table.

The changes in figure 4b have been implemented in hard-

ware, and synthesized using Synopsys tools. We have found

the overhead to be of 7.5% in terms of area for a network

interface kernel with 4 channels and 16-word buffers, when

4 distinct paths are supported for each channel. It should

be noted that this is probably an overestimate, as in a real

design it may not be necessary to use multi-path routing

for all channels, and 4 distinct paths is already in the upper

range of expected usage. In terms of speed, we do not expect

any negative impact, since the tables are generally static and

reading can be pipelined to any extent found necessary.

V. EXPERIMENTAL RESULTS

For the purpose of evaluating the benefits of our proposal,

the Æthereal tool flow [23] has been extended in the following

way. The new algorithms were added to the existing tools at

source-code level and integration has been performed in order

to use the same data structures.

The comparison was made against two single-path alloca-

tion algorithms available in the Æthereal tool flow. One, which

we will call the ”classic” algorithm consists of a heuristic with

polynomial running time, but without guarantees regarding the

quality of the solutions while the second algorithm performs

an exhaustive search, thus having an exponential running time

in the worst-case.
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TABLE I
ALLOCATED BANDWIDTH OF SINGLE AND MULTI-PATH ALGORITHMS, IN
WORDS/SLOT TABLE REVOLUTION AND AVERAGE NUMBER OF PATHS USED

Test Class. Exh. MP bf. MP w/ Gain paths
discard discard

4x4-16% 16.73 17.96 24.48 21.01 16.9% 2.91
4x4-25% 8.72 10.06 17.28 13.13 30.5% 3.22
4x4-40% 2.02 2.57 7.63 5.23 103% 2.22
6x6-16% 14.64 16.64 26.24 21.51 29.2% 4.07
8x8-16% 13.35 - 26.45 21.15 58.4% 5.00

Background traffic was generated, random in both space

and time. The source and destination were chosen with equal

probability from the set of all nodes, and the bandwidth

was chosen following a geometric distribution law capped by

the maximum link bandwidth supported by the network. The

background traffic was allocated using the classic algorithm

from the Æthereal tool flow, with slots allocated in contiguous

chunks where possible, subject to restrictions regarding slots

that were already in use, starting at a slot position chosen at

random.

On top of the background traffic we attempt to allocate

channels of the maximum possible bandwidth using each of

the algorithms. For the original algorithms in the Æthereal

tool flow, we determine the maximum using binary search,

while the flow algorithm produces the maximum directly.

The channels are then discarded and a new allocation is

performed. For all tests, the overhead of sending the source-

routing headers was taken into consideration.

The results are presented in Figure 5, in the form of relative

improvement of the proposed method, compared to the two

existing methods. The slot occupation due to background

traffic considered in our tests was 16,25 and 40% for the 4x4

mesh topology and 16% for the larger topologies.

The result already takes into account the bandwidth dis-

carded by Algorithm 1, but the loss is also represented for

comparison. It can be observed that the gain is higher for

scenarios with higher network occupation, as well as larger

networks which offer higher path diversity. The numerical

results are presented in table I, along with another important

measure, which is the average number of paths employed by
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the multi-path algorithm.

Figure 6 presents the results for all loads in the 4-by-4

mesh topology. Each of the points in the graph represents one

allocated channel, with the x coordinate being the bandwidth

allocated by the flow algorithm (ordering penalty included)

and the y coordinate the bandwidth allocated by the single

path approach.

The results show high variations from one test case to

another. For many cases, the single path algorithms and the

multi-path algorithm produce the same result. In a few cases,

the single-path offers a better solution (the points above the

diagonal). This is explained by the fact that the combination of

the two algorithms, the flow algorithm and the path selection

is not guaranteed to be optimal even though the individual

algorithms are. In the vast majority of cases the multi-path

algorithm performs better.

As the size of the network increases it can be observed

that the advantage of the multi-path approach compared to the

single-path solutions also increases. Figure 7 depicts a com-

parison of our solution with the classic single-path solution

from the Æthereal tool flow on a network with 8-by-8 mesh

topology. In this setting, the multi-path approach produces a

solution with more than twice the bandwidth of the single-path
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approach in roughly 34% of the test-cases.

Although the common approach is to perform the allocation

at design time, other authors have shown in [31] that it is also

feasible to compute the allocation at run-time, directly on the

embedded device. In order to perform allocation at run-time it

is important to have an computationally efficient, low-cost al-

location algorithm. The running times of the original Æthereal

algorithms as well as the new flow algorithm are presented in

Figure 8. Although asymptotically the flow algorithm has a

higher complexity, it has performed the fastest in our tests.

For the large 8x8 example, we did not find it feasible to run

the exhaustive search because of memory and time constraints.

In the case of the classic and flow algorithms it can also be

observed that the distance between the source and destination

nodes has little effect on execution time, while the duration of

the exhaustive search grows rapidly.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have studied the use of multi-path routing

in networks with fixed resource allocation like Æthereal.

Our tests confirmed that the multi-path technique, which was

shown to provide benefits in large-scale networks, can provide

a significant increase in delivered bandwidth. However it

should be noted that the present benchmarks are synthetic,

and only compare the performance of path finding algorithms

on individual connections. The efficiency of a complete al-

location flow based on the multi-path algorithm possibly in

combination with other algorithms has yet to be studied.

We have also presented the implications this method on the

implementation in hardware. The overhead is shown to be very

low: a 7.5% increase in area of the network interface kernels.

Regarded in the context of the entire network, the overhead

would be even smaller. When distributed slot tables are used

the overhead is nonexistent as no modification to the hardware

is necessary. Another concern is the complexity of the path-

finding algorithm, which is important if slot allocation is to be

performed at run-time. We have shown that, despite having a

larger complexity, in practice the multi-path algorithm can be

faster than single-path solutions.
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