
Open access to the Proceedings of
the 15th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by USENIX.

Multi-Path Transport for RDMA in Datacenters
Yuanwei Lu, Microsoft Research and University of Science and Technology of China;

Guo Chen, Hunan University; Bojie Li, Microsoft Research and University of Science and
Technology of China; Kun Tan, Huawei Technologies; Yongqiang Xiong, Peng Cheng,

and Jiansong Zhang, Microsoft Research; Enhong Chen, University of Science and
Technology of China; Thomas Moscibroda, Microsoft Azure

https://www.usenix.org/conference/nsdi18/presentation/lu

This paper is included in the Proceedings of the
15th USENIX Symposium on Networked

Systems Design and Implementation (NSDI ’18).
April 9–11, 2018 • Renton, WA, USA

ISBN 978-1-939133-01-4

Multi-Path Transport for RDMA in Datacenters

Yuanwei Lu†�, Guo Chen¶∗, Bojie Li†�, Kun Tan‡, Yongqiang Xiong�, Peng Cheng�,
Jiansong Zhang�, Enhong Chen†, Thomas Moscibroda�

†University of Science and Technology of China,
�Microsoft Research, ¶Hunan University, ‡Huawei Technologies, �Microsoft Azure

Abstract
RDMA is becoming prevalent because of its low la-

tency, high throughput and low CPU overhead. How-

ever, current RDMA remains a single path transport

which is prone to failures and falls short to utilize the

rich parallel paths in datacenters. Unlike previous multi-

path approaches, which mainly focus on TCP, this pa-

per presents a multi-path transport for RDMA, i.e. MP-

RDMA, which efficiently utilizes the rich network paths

in datacenters. MP-RDMA employs three novel tech-

niques to address the challenge of limited RDMA NICs

on-chip memory size: 1) a multi-path ACK-clocking
mechanism to distribute traffic in a congestion-aware

manner without incurring per-path states; 2) an out-of-

order aware path selection mechanism to control the level

of out-of-order delivered packets, thus minimizes the

meta data required to them; 3) a synchronise mechanism

to ensure in-order memory update whenever needed.

With all these techniques, MP-RDMA only adds 66B to

each connection state compared to single-path RDMA.

Our evaluation with an FPGA-based prototype demon-

strates that compared with single-path RDMA, MP-

RDMA can significantly improve the robustness under

failures (2x∼4x higher throughput under 0.5%∼10%

link loss ratio) and improve the overall network utiliza-

tion by up to 47%.

1 Introduction
Modern datacenter applications require high through-

put and low latency networks to meet the increasing

demands from customers. Compared with conven-

tional software transport, Remote Direct Memory Ac-

cess (RDMA) implements the entire transport logic in

hardware network interface card (NIC) and allows di-

rect access to remote memory, mostly bypassing CPU.

Therefore, RDMA provides ultra-low latency (∼1μs)

and high throughput (40/100Gbps) with little CPU over-

head. Nowadays, RDMA has been deployed in data-

centers at scale with RDMA over Converged Ethernet

(RoCE) v2 [26, 49]. Existing RDMA is a single path

transport, i.e., an RDMA connection only flows along

one network path. This single path transport is prone

to path failures and also cannot utilize the rich parallel

∗This work was done when Guo Chen was a full-time employee at

Microsoft Research.

paths in modern datacenters [8, 9, 41]. While many ap-

proaches have been proposed to enhance TCP to support

multi-path, none has considered RDMA. In this paper,

we propose a multi-path transport for RDMA.

However, RDMA is completely implemented in NIC

hardware which has very limited computing resource and

on-chip memory (e.g., only a few mega-bytes). Although

NIC could upload local states in host memory, swapping

data between on-chip memory and host memory has a

cost and frequent swapping would significantly down-

grades performance [32, 33] (also see §2.3). As a con-

sequence, the key design goal for a multi-path RDMA

transport is to minimize the memory footprint, which in-

curs three challenges.

First, a multi-path transport should track the con-

gestion states on each path, so that it can perform

congestion-aware load distribution. However, these

states grow linearly with the number of sending paths.

This may cause a considerable memory overhead even

when a modest number of paths are used for one RDMA

connection. For example, if we adopt a multi-path trans-

port similar to MPTCP [41], we may add 368 bytes if 8

sub-flows are used. 1 However, the size of these extra

states is already 50% more than the entire states of one

connection in current RoCE design. 2 As a result, 33.3%

fewer concurrent connections can be supported only us-

ing on-chip memory, which leads to more frequent swap-

ping and downgrades the performance.

Second, multi-path will cause packets to arrive out-of-

order at the receiver. Consequently, the receiver needs

additional metadata to track whether a packet has arrived

or not. However, if the paths conditions vary greatly,

the size of the metadata could be large. Fig. 1 gives the

99.9% tail of the out-of-order degree (OOD) 3 of a net-

work under various scenarios (more details in § 5.2.1).

For example, consider the case that one path has de-

graded to 1Gbps (e.g., due to hardware failures caused

link rate auto-negotiation [9, 27]), while other paths re-

1Each sub-connection needs to maintain states including rcv nxt,
snd nxt, snd una, snd ssthresh, snd cwnd, srtt, rttvar, rtt seq,

map data seq, map subseq, map data len, ...
2Mellanox ConnectX Linux driver [43] maintains all the states of

an RDMA connection in a 248B mlx4 qp context.
3We define the out-of-order degree (OOD) here as the maximal dif-

ference between the sequence number of an out-of-order arrived packet

and the expected packet sequence number.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 357

main at a normal speed of 40Gbps. If a bitmap structure

is used, the size of the bitmap would be 1.2KB. If we

naively use fewer bits, any packet with a sequence num-

ber out of the range of the bitmap has to be dropped. This

would reduce the performance greatly as the throughput

is effectively limited by the slowest path. A core design

challenge is to keep high performance even if we can

only track very limited out-of-order packets.

Finally, the receiver NIC does not have enough mem-

ory to buffer out-of-order packets but has to place them

into host memory as they arrive. Therefore, the data in

host memory may be updated out-of-order. This may

cause a subtle issue as some existing applications implic-

itly assume the memory is updated in the same order as

the operations are posted [20, 22, 48]. For example, a

process may use a WRITE operation to update a remote

memory, and then issues another WRITE operation to

set a dirty flag to notify a remote process. If the second

WRITE updates memory before the first WRITE, the re-

mote process may prematurely read the partial data and

fails. While retaining the memory updating order is triv-

ial for single-path RDMA, it requires careful design in

multi-path RDMA to avoid performance downgrade.

This paper presents MP-RDMA, the first multi-path

transport for RDMA that addresses all aforementioned

challenges. Specifically, MP-RDMA employs a novel

multi-path ACK-clocking mechanism that can effectively

do congestion-aware packets distribution to multiple

paths without adding per-path states. Second, we design

an out-of-order aware path selection algorithm that pro-

actively prunes slow paths and adaptively chooses a set

of paths that are fast and with similar delays. This way,

MP-RDMA effectively controls the out-of-order level so

that almost all packets can be tracked with a small sized

bitmap (e.g., 64 bits). Finally, MP-RDMA provides an

interface for programmers to ensure in-order memory

update by specifying a synchronise flag to an operation.

A synchronise operation updates memory only when all

previous operations are completed. Therefore, two com-

munication nodes can coordinate their behaviors and en-

sure application logic correctness.

We have implemented an MP-RDMA prototype in

FPGA, which can run at the line rate of 40Gbps. We

evaluate MP-RDMA in a testbed with 10 servers and 6

switches. Results show that MP-RDMA can greatly im-

prove the robustness under path failures (2x∼4x higher

throughput when links have 0.5%∼10% loss rate), over-

all network utilization (∼47% higher overall throughput)

and average flow completion time (up to 17.7% reduc-

tion) compared with single-path RDMA. Moreover, MP-

RDMA only consumes a small constant (66B) amount

of extra per-connection memory, which is comparable to

the overhead (∼60B) added by DCQCN [49] to enhance

existing single-path RDMA.

In summary, we make the following contributions: 1)

We present MP-RDMA, the first transport for RDMA

that supports multi-path. 2) We have designed a set

of novel algorithms to minimize the memory footprint,

so that MP-RDMA is suitable to be implemented in

NIC hardware. 3) We have evaluated MP-RDMA on an

FPGA-based testbed as well as large-scale simulations.

2 Background and motivation
2.1 RDMA Background

RDMA enables direct memory access to a remote sys-

tem through NIC hardware, by implementing the trans-
port entirely in NIC. Therefore RDMA can provide low

latency and high throughput with little CPU involvement

on either local or remote end. RoCE v2 [4–6] introduces

UDP/IP/Ethernet encapsulation which allows RDMA to

run over generic IP networks. Nowadays, production

datacenters, e.g. Microsoft Azure and Google, have de-

ployed RoCE at scale [26, 39, 49]. Hereafter in this pa-

per, unless explicitly stated otherwise, we refer RDMA

to RoCE v2.

In RDMA terminology, an RDMA connection is iden-

tified by a pair of work queues, called queue pair (QP).

A QP consists of a send queue and a receive queue which

are both maintained on NICs. When an application initi-

ates an RDMA operation (also called a verb) to send or

retrieve data, it will post a work queue element (WQE) to

NIC’s send queue or receive queue, respectively. More-

over, to notify the application for operation completion,

there is also a completion queue (CQ) associated with

each QP. On completing a WQE, a completion queue el-

ement (CQE) will be delivered to the CQ. There are four

commonly used verbs in RDMA: SEND, RECV, WRITE

and READ. Among these, SEND and RECV are two-
sided, meaning that SEND operation always requires a

RECV operation at the other side. READ and WRITE

are one-sided operations, meaning that applications can

directly READ or WRITE pre-registered remote memory

without involving remote CPU.

RDMA transport is message-based, i.e. an RDMA

operation is translated into a message for transmission.

Then an RDMA message will be divided into multiple

equal-sized segments which are encapsulated into UD-

P/IP/Ethernet packet(s). In RoCEv2, all RDMA pack-

ets use an identical UDP destination port (4791), while

the UDP source port is arbitrary and varies for different

connections, which allows load-balancing. An RDMA

header is attached to every packet. The header contains a

packet sequence number (PSN) which provides a contin-

uous sequence number for the RDMA packets in a con-

nection. At the receiver side, RDMA messages are re-

stored according to PSN. Moreover, an RDMA receiver

may generate an ACK or a Negative ACK (NACK) to

notify the sender for received or lost packets.

358 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

RDMA transport requires a lossless network provided

by priority-based flow control (PFC) [1, 19]. Specifi-

cally, PFC employs a hop-by-hop flow control on traf-

fic with pre-configured priorities. With PFC, when a

downstream switch detects that an input queue exceeds

a threshold, it will send a PAUSE frame back to the

upstream switch. While PFC can effectively prevent

switches from dropping packets, the back-pressure be-

havior may propagate congestion and slow down the en-

tire network. Thus, end-to-end congestion control mech-

anisms have been introduced into RoCE. For example,

DCQCN [49] enhances RoCE transport with explicit

congestion notification (ECN) and quantized congestion

notification (QCN) [30] to control congestion.

2.2 Need for Multi-Path Transmission
Current RDMA transport mandates a connection to

follow one network path. Specifically, packets of one

RDMA connection use the same UDP source and des-

tination ports. There are two major drawbacks for such

single-path transmission.

First, single path transmission is prone to path fail-

ures. Some minor failures along the path can greatly

affect the performance of upper-layer applications. For

example, silent packet loss is a common failure in data-

center [18, 27]. Since RDMA transport is implemented

in hardware which typically lacks resources to realize so-

phisticated loss recovery mechanism, it is very sensitive

to packet loss. As a result, a small loss rate (e.g., 0.1%)

along the transmission path can lead to dramatic RDMA

throughput degradation (e.g., <∼60%) [49].

Second, single path falls short to utilize the overall net-

work bandwidth. Equal Cost Multi-Path (ECMP) rout-

ing is currently the main [26, 44, 45] method to bal-

ance RDMA traffic among the datacenter network fab-

rics. Basically, ECMP hashes different connections to

different paths. However, as many prior studies pointed

out [15, 26], ECMP is not able to balance traffic well

when the number of parallel paths is large [7, 25] due to

hash collisions. While some part of the network is highly

congested, the rest may often have a low traffic load, re-

ducing the overall network utilization. Therefore, it is

important to spread traffic in finer granularity than flow

among multiple paths to achieve high network utiliza-

tion [15, 41].

In literature, a set of mechanisms have been pro-

posed to distribute traffic in finer-grained ways to ef-

ficiently utilize the rich network paths in datacenters

[8, 9, 14, 15, 21, 28, 34, 40–42]. Unfortunately, most of

these previous arts only consider TCP traffic, and none of

them explicitly discuss RDMA (see §6 for more discus-

sions). As we will show in §2.3, RDMA is quite different

from TCP in many aspects. Therefore, in this paper, we

design the first multi-path transport for RDMA.

100

101

102

103

104

Normal ECN
 mis-config

 Link
 downgrade

O
O

O
 D

eg
re

e
99

.9
 p

ct
l

Figure 1: Out-of-order degree
under different scenarios.

 0

 10

 20

 30

 40

 8 16 32 64 128 256 512 1024Ap
pl

ic
at

io
n

G
oo

dp
ut

 (G
bp

s)

of concurrent connections
Figure 2: Goodput of concurrent
MLNX CX3 Pro WRITEs.

2.3 Challenges for Multi-Path RDMA
RDMA is implemented in NICs. But usually, on-chip

memory in NIC is small and expensive. Populating large

memories in NIC hardware is very costly. Not only mem-

ory blocks require many transistors and may occupy a

large die area, but also significantly increase the power

consumption, which may cause further issues like cool-

ing. Thus NICs usually serve as a cache of host memory

to store the connection states. If a cache miss happens,

RDMA NIC needs to access the host memory via PCIe.

Frequent cache misses lead to NIC throughput degrada-

tion due to the PCIe bus latency and the contention on

the bandwidth. To illustrate the impact of cache misses

on application goodput, we use 4 clients with Mellanox

ConnectX 3 Pro NICs to initiate RDMA WRITEs to a

single server and measure the total goodput. Fig. 2 shows

that when the number of concurrent connections is larger

than 256, application goodput would drop sharply. This

is because to perform WRITE operations, the receiv-

ing NIC needs to access corresponding connection states

(QP context). When the number of connections is larger

than 256, not all states can be stored in NIC’s memory.

With more concurrent connections, cache misses occur

more frequently. This result conforms with previous

work [32, 33]. Thus, to avoid performance degradation

caused by frequent cache misses, the memory footprint

for each RDMA connection should be minimized to sup-

port more connections in on-chip memory. This key

uniqueness of RDMA brings several challenges for de-

signing MP-RDMA as aforementioned (§1).

3 MP-RDMA design
3.1 Overview

MP-RDMA is a multi-path transport for RDMA while

effectively addresses the challenge of the limited on-chip

memory in NIC hardware. MP-RDMA employs a novel

ACK-clocking and congestion control mechanism to do

congestion-aware load distribution without maintaining

per-path states (§3.2). Moreover, it uses an out-of-order

aware path selection mechanism to control the out-of-

order degree among sending paths, thus minimizes the

meta data size required for tracking out-of-order pack-

ets (§3.3). Finally, MP-RDMA provides a synchronise
mechanism for applications to ensure in order host mem-

ory update without sacrificing throughput (§3.4).

MP-RDMA assumes a PFC enabled network with

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 359

Ethernet
Header IP Header UDP Header

VP ID (Src Port)

MSN (3B) iPSN (3B)

synchroniseReTx

RoCEv2 Data
Headers

(a) MP-RDMA data packet header

Ethernet
Header IP Header UDP Header RoCEv2 ACK

Headers

SACK (PSN) ECE

AACK (3B)

synchroniseReTx

Echo VP ID (Src Port)

(b) MP-RDMA ACK packet header

Figure 3: MP-RDMA packet header format. Fields with red bold
text are specific for MP-RDMA.

RED [24] supported. It reuses most of the existing/re-

served fields (with thin border) in the UDP and RoCE

v2 headers. It extends the existing headers by certain

fields (with thick border) (Fig. 3). MP-RDMA controls

the transmission paths of a packet by selecting a specific

source port in the UDP header and let ECMP pick up

the actual path. Since packets with the same source port

will be mapped to the same network path, we use a UDP

source port to identify a network path, which is termed as

a Virtual Path (VP). Initially, the sender picks a random

VP for a data packet. Upon receiving a data packet, the

receiver immediately generates an ACK which encodes

the same VP ID (Echo VP ID field). The ACK header

carries the PSN of the received data packet (SACK field)

as well as the accumulative sequence number at the data

receiver (AACK field). ECN signal (ECE field) is also

echoed back to the sender.

The data of a received packet is placed directly into

host memory. For WRITE and READ operations, the

original RDMA header already embeds the address in

every data packet, so the receiver can place the data ac-

cordingly. But for SEND/RECV operations, additional

information is required to determine the data memory

placement address. This address is in a corresponding

RECV WQE. MP-RDMA embeds a message sequence
number (MSN) in each SEND data packet to assist the

receiver for determining the correct RECV WQE. In ad-

dition, an intra-message PSN (iPSN) is also carried in

every SEND data packet as an address offset to place the

data of a specific packet within a SEND message.

Next, we zoom into each design component and elab-

orate how they together can achieve high performance

with a small MP-RDMA on-chip memory footprint.

3.2 Congestion control and multi-path
ACK-clocking

As aforementioned, MP-RDMA performs congestion

control without maintaining per-path states, thus mini-

mizing on-chip memory footprint. MP-RDMA uses one

congestion window for all paths. The congestion con-

trol algorithm is based on ECN. MP-RDMA decreases its

cwnd proportionally to the level of congestion, which is

similar to DCTCP [49]. However, unlike DCTCP that es-

timates the level of congestion by computing an average

ECN ratio, MP-RDMA reacts directly upon ACKs. As

packets are rarely dropped in an RDMA network, react-

ing to every ACK would be precise and reliable. More-

over, it is very simple to implement the algorithm in hard-

ware. MP-RDMA adjusts cwnd on a per-packet basis:

For each received ACK:

cwnd ←
{

cwnd +1/cwnd if ECN = 0

cwnd −1/2 if ECN = 1

Note that on receiving an ECN ACK, cwnd is decreased

by 1/2 segment instead of cutting by half.

MP-RDMA employs a novel algorithm called multi-
path ACK-clocking to do congestion-aware packets dis-

tribution, which also allows each path to adjust its send-

ing rate independently. The mechanism works as fol-

lows: Initially, the sender randomly spreads initial win-
dow (IW) wise of packets to IW initial VPs. Then, when
an ACK arrives at the sender, after adjusting cwnd, if
packets are allowed, they are sent along the VP car-
ried in the ACK. In § 3.2.1, fluid models show that with

per-packet ECN-based congestion control and multi-path

ACK clocking, MP-RDMA can effectively balance traf-

fic among all sending paths based on their congestion

level. It is worth noting that MP-RDMA requires per-

packet ACK, which adds a tiny bandwidth overhead (<
4%) compared to convention RDMA protocol.

MP-RDMA uses a similar way as TCP NewReno [23]

to estimate the inflight packets when there are out-of-

order packets being selectively acked. 4 Specifically, we

maintain an inflate variable, which increases by one for

each received ACK. We use snd nxt to denote the PSN of

the highest sent packet and snd una to denote the PSN of

the highest accumulatively acknowledged packet. Then

the available window (awnd) is:

awnd = cwnd + in f late− (snd nxt − snd una).

Once an ACK moves snd una, in f late is decreased by

(ack aack− snd una). This estimation can be temporar-

ily inaccurate due to the late arrival of the ACKs with

SACK PSN between the old snd una and new snd una.

However, as awnd increases only one per ACK, our ACK

clocking mechanism can still work correctly.

3.2.1 Fluid model analysis of MP-RDMA
Now we develop a fluid model for MP-RDMA con-

gestion control. For clarity, we first establish a single-

path model for MP-RDMA to show its ability to control

4Alternatively, we could use a sender-side bitmap to track sacked
packets. But the memory overhead of this bitmap could be large for

high-speed networks. For example, for 100Gbps network with 100μs
delay, the size of the bitmap can be as large as 1220 bits.

360 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the queue oscillation. Then a multi-path model is given

to demonstrate its ability in balancing congestion among

multiple paths. We assume all flows are synchronized,

i.e. their window dynamics are in phase.

Single-path model. Consider N long-lived flows travers-

ing a single-bottleneck link with capacity C. The fol-

lowing functions describe the dynamics of W (t) (con-

gestion window), q(t) (queue size). We use R(t) to

denote the network RT T , F(t) to denote the ratio of

ECN marked packets in the current window of pack-

ets. d is the propagation delay. We further use R∗ =
d+average queue length/C to denote the average RTT.

MP-RDMA tries to strictly hold the queue length around

a fixed value, thus R∗ is fixed:

dW
dt

=
1−F(t −R∗)

R(t)
− W (t)

2R(t)
F(t −R∗) (1)

dq
dt

= N
W (t)
R(t)

−C (2)

R(t) = d +
q(t)
C

(3)

The fix point of Equation (1) is: W (t) = 2(1−F)
F . The

queue can be calculated as q=NW (t)−CR, which gives:

q(t) =
N(1−F)

F
− Cd

2
(4)

MP-RDMA requires RED marking at the switch [24]:

p =

⎧⎪⎨
⎪⎩

0 if q � Kmin

Pmax
(q−Kmin)

Kmax−Kmin
if Kmin < q ≤ Kmax

1 if q > Kmax

(5)

Combining Equation (4) and (5) yields the fix point so-

lution (q,W,F). We consider two different ECN mark-

ing schemes: 1) standard RED [24]; 2) DCTCP RED

(Kmax = Kmin,Pmax = 1.0). With standard RED mark-
ing, MP-RDMA achieves a stable queue with small
oscillation. If DCTCP RED is used, as MP-RDMA

doesn’t use any history ECN information, MP-RDMA

can be modeled as a special case of DCTCP with g = 1.

As a result, The queue oscillation would be large [11].

We use simulations to validate our analysis. 8 flows

each with output rate 10Gbps, compete for a 10Gbps bot-

tleneck link. RTT is set to 100μs. For standard RED, we

set (Pmax,Kmin,Kmax)= (0.8,20,200). For DCTCP RED,

we set (Pmax,Kmin,Kmax) = (1.0,65,65). According to

Fig. 4, with standard RED, MP-RDMA’s queue length

varies very little compared with theoretical results. And

the queue oscillation is much smaller than DCTCP RED.

Full throughput is achieved under both marking schemes.

Multi-path model. Now we develop the multi-path

model. Let V Pi denote ith VP. We assume V Pi has a

 0

 20

 40

 60

 80

 1 1.002 1.004 1.006 1.008 1.01

Q
ue

ue
 (P

ac
ke

ts
)

Time (s)

Kmin = 20, Kmax = 200, Pmax = 0.8
Kmin = Kmax = 65, Pmax = 1.0

Theory

Figure 4: Queue oscillation.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 2 4 6 8 10

EC
N

 M
ar

ki
ng

 R
at

io

Time (ms)

Path 1
Path 2

Path 3
Path 4

Figure 5: ECN marking ratio.

virtual cwnd denoted by wi, which controls the num-

ber of packets on V Pi. And the total cwnd is given as

cwnd = ∑i wi. We use ε to denote the fraction part of

cwnd, i.e. ε = cwnd −�cwnd�. We assume ε has a uni-

form distribution from 0 to 1 (denoted as U [0,1)). 5

An ECN ACK from V Pi will reduce cwnd by 1/2 seg-

ment. There could be two situations: If ε ≥ 1/2, a new

packet can still be clocked out on path V Pi; otherwise,

after reduction, the new cwnd will prevent a packet from

sending to V Pi. Since ε is subject to U(0,1), an ECN

ACK reduces wi by one with probability 50%. On the

other hand, a non-ECN ACK increases cwnd by 1/cwnd.

If the growth of cwnd happens to allow one additional

packet, V Pi would get two packets. As ε is subject to

U(0,1), such chance would be equal for each incoming

non-ECN ACK, i.e. 1/cwnd. In other words, a non-ECN

ACK increases wi by one with probability wi/cwnd.

Based on the above analysis, we can establish the fluid

model for our multi-path congestion control. Since a VP

is randomly mapped to a physical path, statistically each

physical path may get an equal number of VP for a long-

lived MP-RDMA connection. Consider N flows, each

flow distributes their traffic to Mv virtual paths, which are

mapped onto Mp physical paths. We use Path(j) to de-

note the set of virtual paths that are mapped onto physical

path j. Then we have the model:

(i = 0,1, ...,Mv −1; j = 0,1, ...,Mp −1)

dwi

dt
=

wi(t)
cwnd ∗Ri(t)

[1−Fi(t −R∗
i)]−

wi(t)
2Ri(t)

Fi(t −R∗
i)

(6)

dq j

dt
= N

∑i∈Path(j) wi

R j
−Cj (7)

R j(t) = d j +
q j(t)
Cj

(8)

Also, each physical path j has its own RED marking

curve as in Eq. (5). Eq. (6) yields the fix point solu-

tion: Fi =
2

cwnd+2 . As Fi only depends on the total cwnd,

this indicates that the marking ratio Fi of each VP will

be the same, so will the physical path marking ratio. In

5We note that this assumption cannot be easily proven as the con-

gestion window dynamics are very complicated, but our observation

on both testbed and simulation experiments verified the assumption.

Later we will show that based on this assumption, our experiments and

theoretical analysis results match each other very well.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 361

other words, MP-RDMA can balance the ECN mark-
ing ratio among all sending paths regardless of their
RTTs, capacities and RED marking curves. In data-

centers where all equal-cost paths have same capacities

and RED marking curves, MP-RDMA can balance the

load among multiple paths.

We use simulations to validate our conclusion. 10

MP-RDMA connections are established. Each sends at

40Gbps among 8 VPs. The virtual paths are mapped

randomly onto 4 physical paths with different rates, i.e.
20Gbps, 40Gbps, 60Gbps and 80Gbps. The network

base RTT of each path is set to 16μs. For RED mark-

ing, all paths has the same Kmin = 20 and Kmax = 200,

but with Pmax set to different values, i.e. 0.2, 0.4, 0.6 and

0.8. Fig. 5 shows the ECN marking ratio of the 4 phys-

ical paths. ECN marking ratios of the 4 physical paths

converge to the same value which validates our analysis.

3.3 Out-of-order aware path selection
Out-of-Order (OOO) is a common outcome due to the

parallelism of multi-path transmission. This section first

introduces the data structure for tracking OOO packets.

Then we discuss the mechanism to control the network

OOO degree to an acceptable level so that the on-chip

memory footprint can be minimized.

3.3.1 Bitmap to track out-of-order packets
MP-RDMA employs a simple bitmap data structure at

the receiver to track arrived packets. Fig. 6 illustrates the

structure of the bitmap, which is organized into a cyclic

array. The head of the array refers to the packet with

PSN = rcv nxt. Each slot contains two bits. According

to the message type, a slot can be one of the four states:

1) Empty. The corresponding packet is not received. 2)

Received. The corresponding packet is received, but not

the tail (last) packet of a message. 3) Tail. The packet

received is the tail packet of a message. 4) Tail with
completion. The packet received is the tail packet of a

message that requires a completion notification.

When a packet arrives, the receiver will check the PSN

in the packet header and find the corresponding slot in

the bitmap. If the packet is the tail packet, the receiver

will further check the opcode in the packet to see if the

message requires a completion notification, e.g., SEND

or READ response. If so, the slot is marked as Tail with
completion; Otherwise, it is marked as Tail. For non-tail

packets, the slots are simply set to Received. The re-

ceiver continuously scans the tracking bitmap to check if

the head-of-the-line (HoL) message has been completely

received, i.e., a continuous block of slots are marked

as Received with the last slot being either Tail or Tail
with completion. If so, it clears these slots to Empty and

moves the head point after this HoL message. If the mes-

sage needs a completion notification, the receiver pops a

WQE from the receive WQ and pushes a CQE in the CQ.

Msg2

LHead: PSN = rcv_nxt

R TC R T E R E TC

Msg1

...

Lead: PSN rcv_nxt

R TC R T E R E TC

Msg1 Msg2

E: Empty
R: Received
T: Tail
TC: Tail with completion

Slot states

Figure 6: Data structure to track OOO packets at the receiver.

snd_una snd_oohsnd_ool snd_nxtsnd_retx

Figure 7: MP-RDMA window structure at the sender.

3.3.2 Out-of-order aware path selection
MP-RDMA employs only limited slots in the track-

ing bitmap, e.g., L = 64, to reduce the memory footprint

in NIC hardware. Therefore, if an out-of-order packet

holds a PSN larger than (rcv nxt + L), the receiver has

to drop this packet, which hurts the overall performance.

MP-RDMA controls the degree of out-of-order packets

(OOD) by a novel path selection algorithm, so that most

packets would arrive within the window of the tracking

bitmap. The core idea of our out-of-order aware path se-

lection algorithm is to actively prune the slow paths and

select only fast paths with similar delay.

Specifically, we add one new variable, snd ooh, which

records the highest PSN that has been sacked by an ACK.

For the sake of description, we define another variable

snd ool = snd ooh−Δ, where Δ≤ L is a tunable parame-

ter that determines the out-of-order level of MP-RDMA.

The algorithm works as follows: When an ACK arrives
at the sender, the sender will check if the SACK PSN is
lower than snd ool. If so, the sender reduces cwnd by
one and this ACK is not allowed to clock out a packet to
the VP embedded in the ACK header.

The design rationale is straightforward. We note that

snd ooh marks an out-of-order packet that goes through

the fast path. In order to control the OOD, we need

to prune all slow paths that causes an OOD larger than

Δ. Clearly, an ACK acknowledges a PSN lower than

snd ool identifies such a slow path with the VP in the

header. Note that PSN alone may not correctly reflect

the sending order of a retransmitted packet (sent later but

with lower PSN). Therefore, to remove this ambiguity,

we explicitly tagged a bit in packet header to identify a

retransmitted packet and echoed back in its ACK (ReTx

in Fig. 3). For those ReTx ACKs, we simply regard their

data packets have used good paths.

3.4 Handling synchronise operations
As discussed in §2, NIC hardware does not have

enough memory to store out-of-order packets and has

to place them into host memory. One possible way is

to allocate a separate re-ordering buffer in host mem-

ory and temporarily store the out-of-order packets there.

When the HoL message is completely received, the NIC

can copy the message from the re-ordering buffer into

the right memory location. This, however, causes a sig-

nification overhead as a packet may traverse PCIe bus

362 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

twice, which not only consumes double PCIe bandwidth

resource but also incurs a long delay. We choose to di-

rectly place out-of-order packets’ data into application

memory. This approach is simple and achieves optimal

performance in most cases. However, to support applica-

tions that rely on the strict order of memory updates, e.g.,
key-value store using RDMA WRITE operations [20],

MP-RDMA allows programmers to specify a synchro-
nise flag on an operation, and MP-RDMA ensures that a

synchronise operation updates the memory only after all

previous operations are completed.

One straightforward approach is to delay a synchro-

nise operation until the initiator receives acknowledge-

ments or data (for READ verbs) of all previous opera-

tions. This may cause inferior performance as one ad-

ditional RTT will be added to every synchronise opera-

tion. We mitigate this penalty by delaying synchronise

operations only an interval that is slightly larger than the

maximum delay difference among all paths. In this way,

the synchronise operations should complete just after all

its previous messages with high probability. With the

out-of-order aware path selection mechanism (§3.3), this

delay interval can be easily estimated as

Δt = α ·Δ/Rs = α ·Δ/
(

cwnd
RT T

)
,

where Δ is the target out-of-order level, Rs is the sending

rate of the RDMA connection and α is a scaling fac-

tor. We note that synchronise messages could still arrive

before other earlier messages. In these rare cases, to en-

sure correctness, the receiver may drop the synchronise

message and send a NACK, which allows the sender to

retransmit the message later.

3.5 Other design details and discussions
Loss recovery. For single-path RDMA, packet loss

is detected by the gap in PSNs. But in MP-RDMA,

out-of-order packets are common and most of them are

not related to packet losses. MP-RDMA combines loss

detection with the out-of-order aware path selection al-

gorithm. In normal situations, the algorithm controls

OOD to be around Δ. However, if a packet gets lost,

OOD will continuously increase until it is larger than

the size of the tracking bitmap. Then, a NACK will

be generated by the receiver to notify the PSN of the

lost packet. Upon a NACK, MP-RDMA enters recovery

mode. Specifically, we store the current snd nxt value

into to a variable called recovery and set snd retx to the

NACKed PSN (Fig.7). In the recovery mode, an incom-

ing ACK clocks out a retransmission packet indicated by

snd retx, instead of a new packet. If snd una moves be-

yond recovery, the loss recovery mode ends.

There is one subtle issue here. Since MP-RDMA en-

ters recovery mode only upon bitmap overflow, if the

application does not have that much data to send, RTO

is triggered. To avoid this RTO, we adopt a scheme of

FUSO [18] that early retransmits unacknowledged pack-

ets as new data if there is no new data to transmit and

awnd allows. In rare case that the retransmissions are

also lost, RTO will eventually fire and the sender will

start to retransmit all unacknowledged packets.

New path probing. MP-RDMA periodically probes

new paths to find better ones. Specifically, every RTT,

with a probability p, the sender sends a packet to a new

random VP, instead of the VP of the ACK. This p bal-

ances the the chance to fully utilize the current set of

good paths and to find even better paths. In our experi-

ment, we set p to 1%.

Burst control. Sometimes for a one returned ACK,

the sender may have a burst of packets (≥2) to send, e.g.,
after exiting recovery mode. If all those packets are sent

to the ACK’s VP, the congestion may deteriorate. MP-

RDMA forces that one ACK can clock out at most two

data packets. The rest packets will gradually be clocked

out by successive ACKs. If no subsequent ACKs return,

these packets will be clocked out by a burst timer to ran-

dom VPs. The timer length is set to wait for outstanding

packets to be drained from the network, e.g. 1/2 RTT.

Path window reduction. If there is no new data to

transfer, MP-RDMA gracefully shrinks cwnd and reduce

the sending rate accordingly following a principle called

“use it or lose it”. Specifically, if the sender receives an

ACK that should kick out a new packet but there is no

new data available, cwnd is reduced by one. This mech-

anism ensures that all sending paths adjust their rates in-

dependently. If path window reduction mechanism is not

used, the sending window opened up by an old ACK may

result in data transmission on an already congested path,

thus deteriorating the congestion.

Connection restart. When applications start to trans-

mit data after idle (e.g. 3 RTTs), MP-RDMA will restart

from IW and restore multi-path ACK clocking. This is

similar to the restart after idle problem in TCP [29].

Interact with PFC. With our ECN-based end-to-end

congestion control, PFC will seldom be triggered. If

PFC pauses all transmission paths [26, 49], MP-RDMA

will stop sending since no ACK returns. When PFC re-

sumes, ACK clocking will be restarted. If only a sub-

set of paths are paused by PFC, those paused paths will

gradually be eliminated by the OOO-aware path selec-

tion due to their longer delay. We have confirmed above

arguments through simulations. We omit the results here

due to space limitation.

4 Implementation
4.1 FPGA-based Prototype

We have implemented an MP-RDMA prototype using

Altera Stratix V D5 FPGA board [12] with a PCIe Gen3

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 363

MP-RDMA Library

Application

Application
Data Buffer

MP-RDMA
Transport Logic

Host

FPGA

40G Ethernet Port

ToR Switch

MP-RDMA
Transport Logic

FPGA

40G Ethernet Port

DMA

PCIe

Figure 8: System architecture.

x8 interface and two 40G Ethernet ports. Fig.8 shows the

overview of the prototype architecture. There are two

major components: 1) MP-RDMA transport logic, and

2) MP-RDMA library. The entire transport logic is im-

plemented on FPGA with ClickNP framework [35]. We

have developed 14 ClickNP elements with ∼2K lines of

OpenCL code. Applications call MP-RDMA library to

issue operations to the transport. FPGA directly DMAs

packet data from/to the application buffer via PCIe.

Table 1 summarizes all extra states incurred per con-

nection by MP-RDMA for multi-path transport com-

pared to existing RoCE v2. Collectively, MP-RDMA

adds additional 66 bytes. This extra memory footprint is

comparable to other single-path congestion control pro-

posals to enhance RoCE v2. For example, DCQCN [49]

adds ∼60 bytes for its ECN based congestion control.

4.2 Validation
We now evaluate the basic performance of the FPGA-

based prototype. We measure the processing rate and

latency for sending and receiving under different mes-

sage sizes. Specifically, the sending/receiving latency

refers to the time interval between receiving one ACK-

/data packet and generating a new data/ACK packet.

To measure the processing rate for sending logic,

we use one MP-RDMA sender to send traffic to two

MP-RDMA receivers, creating a sender bottleneck, vice

versa for measuring the receiving logic. As shown in

Fig.9, our implementation achieves line rate across all

message sizes for receiving. For sending, when message

size is smaller than 512 bytes, the sender cannot reach

the line rate. This is because sender logic is not fully

pipelined due to memory dependencies. However, our

sending logic processing rate is still 10.4%∼11.5% bet-

ter than commodity Mellanox RDMA NIC (ConnectX-3

Pro) [37, 38]. When message size is larger, i.e. >512B,

the sender logic can sustain the line-rate of 40Gbps. The

prototype also achieves low latency. Specifically, the

Table 1: MP-RDMA States

Functionality Variable Size (B)

Congestion control

cwnd 4

in f late 4

snd una 3

snd nxt 3

rcv nxt 3

OOO-aware

path selection

snd ooh 3

L 1

Loss recovery
snd retx 3

recovery 3

Path probing
MaxPathID 2

p 1

Tracking

OOO packets

bitmap data 16

bitmap head 1

Burst Control burst timer 3

Connection restart restart timer 3

Synchronise message α 1

RTT measurement srtt, rttvar, rtt seq 12

Total N/A 66

sending and receiving latency is only 0.54μs and 0.81μs

for 64B messages respectively.

5 Evaluation
In this section, we first evaluate MP-RDMA’s over-

all performance. Then, we evaluate properties of MP-

RDMA algorithm using a series of targeted experiments.

Testbed setup. Our testbed consists of 10 servers

located under two ToR switches as shown in Fig.10.

Each server is a Dell PowerEdge R730 with two 16-core

Intel Xeon E5-2698 2.3GHz CPUs and 256GB RAM.

Every server has one Mellanox ConnectX-3 Pro 40G

NIC as well as an FPGA board that implements MP-

RDMA. There are four switches connecting the two ToR

switches forming four equal-cost cross-ToR paths. All

the switches are Arista DCS-7060CX-32S-F with Tri-

dent chip platform. The base cross-ToR RTT is 12μs
(measured using RDMA ping). This means the band-

width delay product for a cross-ToR network path is

around 60KB. We enable PFC and configure RED with

(Pmax,Kmin,Kmax) = (1.0,20KB,20KB) as it provides

good performance on our testbed. The initial window

is set to be one BDP. We set Δ = 32 and the size of the

bitmap L = 64.

5.1 Benefits of MP-RDMA
5.1.1 Robust to path failure

1) Lossy paths. We show that MP-RDMA can greatly

improve RDMA throughput in a lossy network [27].

Setup: We start one RDMA connection from T0 to

T1, continuously sending data at full speed. Then, we

manually generate random drop on Path 1, 2 and 3.

We leverage the switch built-in iCAP (ingress Content-

364 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 10
 15
 20
 25
 30
 35
 40

 64 128 256 512 1024Th
ro

ug
hp

ut
 (G

bp
s)

Message Size (Byte)

MP-RDMA Receive
MP-RDMA Send

Mellanox CX3 Pro Send

Figure 9: Prototype ability.

T0 T1

L1 L2 L3L0

40G 40G

40G

Figure 10: Testbed Topology.

Aware Processor) [2] functionality to drop packets with

certain IP ID (e.g., ID mod 100 == 0). We compare the

goodput between MP-RDMA and single-path RDMA

(DCQCN). Each result is the average of 100 runs.

Results: Fig.11(a) illustrates that MP-RDMA always

achieves near to optimal goodput (∼38Gbps excluding

header overhead) because it always avoids using lossy

path. Specifically, the credits on lossy paths are gradually

reduced and MP-RDMA moves its load to Path 4 (good

path). However, DCQCN has 75% probability to trans-

mit data on lossy paths. When this happens, DCQCN’s

throughput drops dramatically due to its go-back-N loss

recovery mechanism. Specifically, the throughput of the

flow traversing lossy path drops to ∼10Gbps when the

loss rate is 0.5%, and drops to near zero when loss rate

exceeds 1%. This conforms with the results in [36, 49].

As a result, DCQCN can achieve only ∼17.5Gbps aver-

age goodput when loss rate is 0.5%. When the loss rate

exceeds 0.5%, DCQCN achieves only ∼25% average

goodput compared with MP-RDMA. Improving the loss

recovery mechanism (e.g., [36]) is a promising direction

to further improve the performance of MP-RDMA and

DCQCN, but it is not the focus of this paper.

2) Quick reaction to link up and down. We show

that MP-RDMA can quickly react to path failure and re-

store the throughput when failed paths come back.

Setup: We start one MP-RDMA connection from T0

to T1 and configure each path to be 10Gbps. At time

60s, 120s, and 180s, P1, P2, and P3 are disconnected

one by one. At time 250s, 310s, and 370s, these paths

are restored to healthy status one by one.

Results: Fig.11(b) shows that, upon each path fail-

ure, MP-RDMA quickly throttles the traffic on that path,

meanwhile fully utilizes other healthy paths. This is be-

cause there are no ACKs returning from the failed paths

which leads to zero traffic on those paths. While the

ACK clocking for healthy paths is not impacted, those

paths are fully utilized and are used to recover the lost

packets on failed paths. When paths are restored, MP-

RDMA can quickly fully utilize the newly recovered

path. Specifically, for each restored path, it takes only

less than 1s for this path to be fully utilized again. This

is benefited from the path probing mechanism of MP-

RDMA, which periodically explores new VPs and re-

stores the ACK-clocking on those paths.

 0

 10

 20

 30

 40

0 0.5% 1% 5% 10%

Ap
pl

ic
at

io
n

G
oo

dp
ut

 (G
bp

s)

 MP-RDMA DCQCN

(a) Adaptive to random drop.

 0

 10

 20

 30

 40

 0 60 120 180 240 300 360 420Ap
pl

ic
at

io
n

G
oo

dp
ut

 (G
bp

s)

Time(s)

(b) Reaction to paths failure.

Figure 11: MP-RDMA robustness.

5.1.2 Improved Overall Performance
Now, we show that with multi-path enabled, the over-

all performance can be largely improved by MP-RDMA.

1) Small-Scale Testbed. Now we evaluate the

throughput performance on our testbed.

Setup: We generate a permutation traffic [15, 41],

where 5 servers in T0 setup MP-RDMA connects to 5

different servers in T1 respectively. Permutation traffic

is a common traffic pattern in datacenters [26, 49] and in

the following, we use this pattern to study the though-

put, latency and out-of-order behavior of MP-RDMA.

We compare the overall goodput (average of 10 runs) of

all these 5 connections of MP-RDMA with DCQCN.

Results: The results show that MP-RDMA can well

utilize the link bandwidth, achieving in total 150.68Gbps

goodput (near optimal excluding header overhead). Due

to the coarse-grained per-connection ECMP-based load

balance, DCQCN only achieves in total 102.46Gbps.

MP-RDMA gains 47.05% higher application goodput

than DCQCN. Fig.12(a) shows the goodput of each

RDMA connection (denoted by its originated server ID)

in one typical run. The 5 flows in MP-RDMA fairly share

all the network bandwidth and each achieves ∼30Gbps.

However, in DCQCN, only 3 out of 4 paths are used for

transmission while the other one path is idle, which leads

to much lower (<20Gbps) and imbalanced throughput.

2) Large-Scale Simulation on Throughput. Now we

evaluate throughput performance at scale with NS3 [3].

Setup: We build a leaf-spine topology with 4 spine

switches, 32 leaf switches and 320 servers (10 under

each leaf). The server access link is 40Gbps and the

link between leaf and spine is 100Gbps, which forms

a full-bisection network. The base RTT is 16us. For

the single-path RDMA (DCQCN), we use the simulation

code and parameter settings provided by the authors. We

use the same permutation traffic [15, 41] as before. Half

of the servers act as senders and each sends RDMA traf-

fic to one of the other half servers across different leaf

switches. In total there are 160 RDMA connections. For

MP-RDMA, the ECN threshold is set to be 60KB.

Results: Fig.12(b) shows the goodput of each RDMA

connection. MP-RDMA achieves much better overall

performance than DCQCN with ECMP. To be specific,

the average throughput of all servers of MP-RDMA is

34.78% better than DCQCN. Moreover, the performance

across multiple servers is more even in MP-RDMA,

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 365

 0

 10

 20

 30

 40

 0 1 2 3 4Ap
pl

ic
at

io
n

G
oo

dp
ut

 (G
bp

s)

Server ID

 MP-RDMA DCQCN

(a) Small-scale testbed.

 0

 10

 20

 30

 40

 0 20 40 60 80 100 120 140 160Ap
pl

ic
at

io
n

G
oo

dp
ut

 (G
bp

s)

Server ID

 MP-RDMA DCQCN

(b) Large-scale simulation.

Figure 12: Overall throughput compared with DCQCN.

where the lowest connection throughput can still achieve

32.95Gbps. However, in DCQCN, many unlucky flows

are congested into a single path, leading to a very low

throughout (e.g., <15Gbps) for them.

3) Large-Scale Simulation on FCT.
Setup: We use the same leaf-spine topology and gen-

erate flow size according to a web search workload [10].

The source and destination of each flow are randomly

picked from all the servers. We further assume that flows

arrive according to a Poisson process and vary the inter-

arrival time of flows to form different levels of load.

Results: In this experiment, at start up, each con-

nection uses 54 virtual paths. As time goes by, a long

flow will result in using about 60∼70 virtual paths.

Fig. 13 shows the normalized FCT performance. For

average FCT, MP-RDMA is 6.0%∼17.7% better than

DCQCN. For large flows (>10MB), throughput is the

dominate factor. As MP-RDMA avoids hash colli-

sion, they achieve 16.7%∼77.7% shorter FCT than DC-

QCN. We omit the figure due to space limitation. For

small flows (<100KB), MP-RDMA also achieves a lit-

tle bit better FCT (3.6%∼13.3% shorter) than DCQCN

(Fig. 12(b)). This advantage is from finer grained load

balance and accurate queue length control of congestion

control (§3.2.1) in MP-RDMA.

5.2 MP-RDMA deep-dive
5.2.1 OOO-aware path selection

Now, we show MP-RDMA’s OOO-aware path selec-

tion algorithm can well control the OOO degree, and

achieve good application throughput.

Setup: We use the same traffic as in §5.1.2, and mea-

sure the OOO degrees in three different scenarios: 1)

Normal, in which all paths RED marking parameters are

configured as (Pmax,Kmin,Kmax) = (1.0,20KB,20KB); 2)

ECN mis-config, in which the RED of path 4 is mis-

configured as (Pmax,Kmin,Kmax) = (1.0,240KB,240KB);
3) link-degradation, in which path 4 degrades from

40Gbps to 1Gbps due to failure caused auto-negotiation.

Results: First we set bitmap length L to infinite to

cover the maximum OOD. Then, we evaluate how MP-

RDMA can control the OOD to different extent with dif-

ferent Δ. Fig. 14(a) shows the 99.9th percentile of OOD

using different Δ under various scenarios. OOO-aware

path selection can well control the OOD. Specifically,

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.4 0.5 0.6 0.7 0.8FC
T

(N
or

m
al

iz
ed

 to
 O

pt
im

al
)

Load

 MP-RDMA DCQCN

(a) Average FCT.

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.4 0.5 0.6 0.7 0.8FC
T

(N
or

m
al

iz
ed

 to
 O

pt
im

al
)

Load

 MP-RDMA DCQCN

(b) Small flows (< 100KB).

Figure 13: FCT performance compared with DCQCN.

 0
 50

 100
 150
 200
 250
 300
 350

32 64 96 128 160

O
O

O
 D

eg
re

e
99

.9
 p

ct
l

Δ

Normal
ECN mis-config
Link downgrade

(a) OOO control.

 0

 0.2

 0.4

 0.6

 0.8

 1

Normal ECN
 mis-config

 Link
 downgradeN

or
m

ai
liz

ed
 T

hr
ou

gh
pu

t

w/o OOO control
w/ OOO control

(b) Goodput.

Figure 14: Out-of-order control algorithm performance.

compared to MP-RDMA without OOO control, 6 Δ=32

can effectively reduce the OOD 99.9th by ∼5x and ∼50x

under ECN mis-configuration and link-degradation re-

spectively. A proper Δ can control the OOD to a small

range, which means that we can use a very small L in

practice under various network conditions.

Next, we consider a bitmap with L = 64. We set Δ=32

correspondingly. Fig. 14(b) shows the throughput nor-

malized to the ideal case when all connections fairly

share the full bandwidth. With OOO control, in ECN
mis-config case, MP-RDMA achieves optimal through-

put. Even in more extreme link-degradation case, the

overall application throughput is only 3.94% less than

the optimal. However, if MP-RDMA uses the same L=64

bitmap but without OOO control, its throughput signifi-

cantly degrades by 25.1% and 67.5% under these two

cases respectively, due to severe OOO.

5.2.2 Congestion-aware Path Selection
Now, we show MP-RDMA’s ability to do congestion-

aware traffic distribution.

Setup: We configure each path to 10G and start one

MP-RDMA long connection sending unlimited data at

the maximum rate. Normally, the traffic is evenly bal-

anced among the four parallel paths. Then after ∼30s,

we start another special MP-RDMA flow which is man-

ually forced to use only Path 4 (denoted as SP-RDMA).

The SP-RDMA flow will cause a sudden congestion on

Path 4. We evaluate how MP-RDMA perceives the con-

gestion and moves the load away from Path 4.

Results: Fig. 15 shows the throughput of the MP-

RDMA flows on each of the four paths. Before the SP-

RDMA flow joins, each path has a throughput stable at

∼10Gbps. After the SP-RDMA joins on Path 4, the

throughput of the MP-RDMA flows on Path 4 quickly

falls to near zero. Meanwhile, the throughput on other

6Without OOO control, the 99.9th OOD is 179 and 5324 for the two

abnormal scenarios, respectively.

366 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 2

 4

 6

 8

 10

 0 10 20 30 40 50Li
nk

 T
hr

ou
gh

pu
t (

G
bp

s)

Time(s)

path1
path2

path3
path4

Figure 15: Path selection.

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 90 180 270 360 450Ap
pl

ic
at

io
n

G
oo

dp
ut

 (G
bp

s)

Time(s)

c1
c2

c3
c4

c5
c6

c7
c8

Figure 16: MP-RDMA Fairness.

3 paths all remains at around 10Gbps. This indicates

that MP-RDMA can quickly perceive the congestion on

Path 4, and moves the load away from this path. Also,

since the congestion conditions on other paths remain un-

changed, MP-RDMA does not adjust the load on them.

Here we don’t focus on the fairness between SP-RDMA

and MP-RDMA connections.

5.2.3 Fairness of MP-RDMA
Setup: In this experiment, two physical servers un-

der one ToR establish multiple MP-RDMA connections

to another server under the same ToR creating a single

bottleneck. 8 MP-RDMA connections are started one by

one with an interval of 30s, and then leaves the network

one after another with the same time interval. We mea-

sure the application goodput of each connection.

Results: Fig. 16 shows that all flows evenly share the

network, and get the fair share quickly. Specifically, each

connection’s throughput quickly converges to ∼ 40
n Gbps,

when n varies from 1 to 8 and then 8 to 1. The Jain

fairness index [31] is within 0.996 - 0.999 (1 is optimal)

under various number of concurrent flows.

5.2.4 Incast
Next we evaluate MP-RDMA’s congestion control un-

der more stressed scenario, i.e., incast.

Setup: The traffic pattern mimics a disk recovery ser-

vice [49] where failed disks are repaired by fetching

backups from several other servers. Specifically, a re-

ceiver host initiates one connection with each of the N
randomly selected sender host, simultaneously request-

ing 1Gb data from each sender. Following the conven-

tion in DCQCN [49], we vary the incast degree from 1

to 9. The experiment is repeated five times. We evaluate

the overall application goodput at the receiver end.

Results: Fig. 17 shows that MP-RDMA achieves sim-

ilar near-optimal incast performance as DCQCN. To be

specific, when incast degree increases from 1 to 9, the

total goodput of the 5 connections remains stable, at

around 37.65Gbps. Note that MP-RDMA achieves a lit-

tle (∼3%) higher goodput than DCQCN. We cannot as-

certain the exact root cause of this, but we believe this

may be an implementation issue with the Mellanox NIC

instead of an algorithm issue with DCQCN.

5.2.5 Synchronise Mechanism Performance
In this section, we evaluate the impact of sychronise

mechanism on application performance.

 0

 10

 20

 30

 40

 1 2 3 4 5 6 7 8 9Ap
pl

ic
at

io
n

G
oo

dp
ut

 (G
bp

s)

Incast Degree

 MP-RDMA DCQCN

Figure 17: Incast performance.

 0

 0.2

 0.4

 0.6

 0 0.2 0.4 0.6 0.8 1

%
 o

f O
O

O
 s

yn
ch

ro
ni

se

α

 512KB 32KB

Figure 18: α impact.

Setup: The same permutation traffic in §5.1.2 is used

to emulate a typical network congestion. Synchronise
messages will be delayed for a while and then send out.

This results in burst traffic and causes large delay fluctua-

tions. We stress test the mechanism under the case when

the load is as high as 0.8. We first study the setting

of parameter α by measuring the amount of out-of-order

synchronise messages under different α . Then α is set

to a value that ensures all the synchronise messages are

in order. The average goodput for the 5 connections un-

der various ratio of synchronise messages are measured.

Two different message sizes are evaluated, i.e., 512KB

(RDMA-based RPC application [48]) and 32KB (a more

challenging smaller size). The results are compared with

DCQCN, which achieves only ∼20Gbps in average (due

to ECMP hash collision). We also evaluate MP-RDMA

(Stop-Wait), in which a synchronise message is sent only

when all previous messages are completed.

Results: As shown in Fig 18, larger α leads to less

OOO synchronise messages. Under the same α , OOO is

severer for larger message size due to the more congested

network. When α is 1.0, no OOO occurs in our tests. As

such, we set α to 1.0 for the following experiment.

Fig. 19 shows the result for synchronise mechanism

impact on throughput. When message size is large (e.g.,
512KB), both MP-RDMA and MP-RDMA (Stop-Wait)

can achieve ∼30Gbps goodput, which is ∼48% higher

than single-path DCQCN across all synchronise ratios.

This is because the Δt for sending synchronise mes-

sages is ∼0.5 RTT for MP-RDMA and ∼1 RTT for MP-

RDMA (Stop-Wait). Both are rather small compared

with the transmission delay for a 512KB message. Thus

the impact of Δt is amortized. When message size is

smaller (i.e., 32KB), Δt is larger compared with the mes-

sage transmission delay. Thus the goodput drops as the

synchronise message ratio grows. However, with our op-

timistic transmission algorithm (§3.4), MP-RDMA still

achieves good performance. Specifically, MP-RDMA

gets 13%∼49% higher throughput than DCQCN under

0∼60% synchronise ratio. When the synchronise ra-

tio grows to 80%, MP-RDMA performs 16.28% worse.

Note that this is already the worst case performance for

MP-RDMA because the traffic load is at its peak, i.e.
100%. More results (omitted due to space limitation)

show that, when the load is lighter, MP-RDMA per-

forms very close to DCQCN under high synchronise ra-

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 367

 0

 10

 20

 30

 40

0% 20% 40% 60% 80%

G
oo

dp
ut

 (G
bp

s)

% of synchronise messages

 MP-RDMA
MP-RDMA (Stop-Wait)

DCQCN

(a) 512KB message.

 0

 10

 20

 30

 40

0% 20% 40% 60% 80%

G
oo

dp
ut

 (G
bp

s)

% of synchronise messages

MP-RDMA
MP-RDMA (Stop-Wait)

DCQCN

(b) 32KB message.

Figure 19: Synchronise mechanism performance.

tio. On the contrary, the naive MP-RDMA (Stop-Wait)

only achieves less than 50% throughput of MP-RDMA.

6 Related Work
Various multi-path transmission mechanisms propose

to utilize parallel network paths in datacenters [8, 9, 14,

15, 21, 28, 34, 40–42]. Most of them consider only TCP,

and cannot be directly used for RDMA.

Load-balance routing: Previous approaches such as

[8, 9, 14, 15, 21, 28, 34, 40, 42] propose to balance traffic

over a set of paths at the routing layer. In order to han-

dle out-of-order packets, some of them, e.g., [15, 28],

utilize a dedicated reordering buffer under the trans-

port layer. However, these schemes are hard to imple-

ment in NIC hardware. Other work, e.g., [9, 34], try to

proactively avoid out-of-order delivery. Most of them

utilize flowlets. If the inactive gap between flowlets

is long enough, flowlets can be distributed to different

paths without causing out-of-order. However, for RDMA

which is implemented in hardware and usually smoothed

with a rate-shaper, it is quite hard to find flowlets. To val-

idate this, we study the flowlet characteristics of RDMA

and compare it with TCP on our testbed. We measure the

size of flowlets with various inactive intervals. For each

experiment, we run 8 RDMA/TCP flows with size 2GB.

Fig. 20 shows that it is really difficult to observe flowlets

in RDMA traffic. When the inactive interval is larger

than 2μs, the flowlet size is strictly 2GB. In contrast,

TCP does have flowlets. When we set the inactive gap

to 100μs, we observe many flowlets with size ∼60KB.

We conclude that flowlet-based load balancing schemes

may not work well for RDMA traffic. A recent work [47]

reports that flowlet can be used to do load balance for

DCQCN traffic. This might be true for applications with

an on-off traffic pattern, but not for applications that are

throughput intensive. Moreover, as flowlets cannot guar-

antee out-of-order free, it’s not clear how out-of-order

RDMA packets would impact the performance in [47].

Multi-path transport: MPTCP modifies TCP to en-

able multi-path transmission [16,17,41]. The core idea is

to split the original transport into several sub-flows and

distribute packets among these sub-flows according to

their congestion states. Thereby MPTCP adds additional

states proportional to the number of sub-flows and ex-

plores a large re-ordering buffer at the transport layer to

handle out-of-order packets. As aforementioned, this de-

 0

 0.2

 0.4

 0.6

 0.8

 1

10 1K 100K 10M 1G

Fr
ac

tio
n

of
 d

at
a

by
te

s

Flowlet size (bytes)

100 us
500 us

(a) TCP.

 0

 0.2

 0.4

 0.6

 0.8

 1

10 1K 100K 10M 1G

Fr
ac

tio
n

of
 d

at
a

by
te

s

Flowlet size (bytes)

0.5 us
2 us

(b) RDMA.

Figure 20: Flowlet characteristics in TCP and RDMA.

sign adds considerable memory overhead and is difficult

to implement in hardware.

Generally, the multi-path ACK-clocking of MP-

RDMA resembles the PSLB algorithm [13] in the sense

that both schemes adjust their load on multiple paths in a

per-ACK fashion. However, MP-RDMA independently

adjusts the load on each path while PSLB dynamically

moves the load of slow paths to fast paths.

Recently Mellanox proposed a multi-path support for

RDMA [46]. However, it is just a fail-over solution

using two existing single-path RoCE connections (hot

standby). The goal and the techniques of the Mellanox

multi-path RDMA are completely different from MP-

RDMA, which is a new multi-path RDMA transport.

7 Conclusion
This paper presents MP-RDMA, a multi-path trans-

port for RDMA in datacenters. It can efficiently uti-

lize the rich network paths in datacenters while keep-

ing on-chip memory footprint low. MP-RDMA employs

novel multi-path ACK-clocking and out-of-order aware
path selection to choose best network paths and dis-

tribute packets among them in a congestion-aware man-

ner. In total, MP-RDMA requires only a small constant

(66B) amount of extra memory for each RDMA connec-

tion no matter how many network paths are used. Our

FPGA-based prototype validates the feasibility for MP-

RDMA’s hardware implementation. Our evaluations on

a small-scale testbed as well as large-scale simulation il-

lustrate the effectiveness for MP-RDMA in utilizing the

rich network paths diversity in datacenters.

Acknowledgements
We thank our shepherd Michael Freedman and the

anonymous reviewers for their valuable comments and

suggestions. We are grateful to Wei Bai, Ran Shu and

Henry Xu for their comments on the modeling. We thank

Larry Luo for his discussion to improve the quality of

the paper. Yun Wang, Wencong Xiao and Sukhan Lee

helped us to improve the writing. This research was par-

tially funded by the National Natural Science Foundation

of China (Grants No. U1605251).

368 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] 802.1Qbb - Priority-based Flow Control.

http://www.ieee802.org/1/pages/802.1bb.html.

[2] Arista 7050x and 7050x2 switch archi-

tecture (a day in the life of a packet).

https://www.arista.com/assets/
data/pdf/Whitepapers/Arista_7050X_
Switch_Architecture.pdf.

[3] Ns3: A discrete-event network simulator for inter-

net systems. https://www.nsnam.org/.

[4] InfiniBand architecture volume 1, general specifi-
cations, release 1.2.1. InfiniBand Trade Associa-

tion, 2008.

[5] InfiniBand architecture volume 2, physical specifi-
cations, release 1.3. InfiniBand Trade Association,

2012.

[6] Supplement to InfiniBand architecture specification
volume 1 release 1.2.2 annex A17: RoCEv2 (IP
routable RoCE). InfiniBand Trade Association,

2012.

[7] M. Al-Fares, A. Loukissas, and A. Vahdat. A

scalable, commodity data center network architec-

ture. ACM SIGCOMM Computer Communication
Review, 38(4):63–74, 2008.

[8] M. Al-Fares, S. Radhakrishnan, B. Raghavan,

N. Huang, and A. Vahdat. Hedera: Dynamic flow

scheduling for data center networks. In Proceed-
ings of the 7th USENIX Conference on Networked
Systems Design and Implementation, NSDI’10,

pages 19–19, Berkeley, CA, USA, 2010. USENIX

Association.

[9] M. Alizadeh, T. Edsall, S. Dharmapurikar,

R. Vaidyanathan, K. Chu, A. Fingerhut, V. T. Lam,

F. Matus, R. Pan, N. Yadav, and G. Varghese.

Conga: Distributed congestion-aware load balanc-

ing for datacenters. In Proceedings of the 2014
ACM Conference on SIGCOMM, SIGCOMM ’14,

pages 503–514, New York, NY, USA, 2014. ACM.

[10] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,

P. Patel, B. Prabhakar, S. Sengupta, and M. Srid-

haran. Data center tcp (dctcp). In Proceedings
of the ACM SIGCOMM 2010 Conference, SIG-

COMM ’10, pages 63–74, New York, NY, USA,

2010. ACM.

[11] M. Alizadeh, A. Javanmard, and B. Prabhakar.

Analysis of dctcp: stability, convergence, and fair-

ness. In Proceedings of the ACM SIGMETRICS

joint international conference on Measurement and
modeling of computer systems, pages 73–84. ACM,

2011.

[12] Altera. Stratix v fpgas. https:
//www.altera.com/products/
fpga/stratix-series/stratix-v/
overview.html.

[13] J. Anselmi and N. Walton. Decentralized propor-

tional load balancing. SIAM Journal on Applied
Mathematics, 76(1):391–410, 2016.

[14] T. Benson, A. Anand, A. Akella, and M. Zhang.

Microte: Fine grained traffic engineering for data

centers. In Proceedings of the Seventh COnference
on emerging Networking EXperiments and Tech-
nologies, page 8. ACM, 2011.

[15] J. Cao, R. Xia, P. Yang, C. Guo, G. Lu, L. Yuan,

Y. Zheng, H. Wu, Y. Xiong, and D. Maltz. Per-

packet load-balanced, low-latency routing for clos-

based data center networks. In Proceedings of
the Ninth ACM Conference on Emerging Network-
ing Experiments and Technologies, CoNEXT ’13,

pages 49–60, New York, NY, USA, 2013. ACM.

[16] Y. Cao, M. Xu, and X. Fu. Delay-based congestion

control for multipath tcp. In 2012 20th IEEE Inter-
national Conference on Network Protocols (ICNP),
pages 1–10. IEEE, 2012.

[17] Y. Cao, M. Xu, X. Fu, and E. Dong. Explicit multi-

path congestion control for data center networks.

In Proceedings of the ninth ACM conference on
Emerging networking experiments and technolo-
gies, pages 73–84. ACM, 2013.

[18] G. Chen, Y. Lu, Y. Meng, B. Li, K. Tan, D. Pei,

P. Cheng, L. L. Luo, Y. Xiong, X. Wang, et al. Fast

and cautious: Leveraging multi-path diversity for

transport loss recovery in data centers. In 2016
USENIX Annual Technical Conference (USENIX
ATC 16). USENIX Association, 2016.

[19] Cisco. Priority flow control: Build reliable layer

2 infrastructure. http://www.cisco.com/
en/US/prod/collateral/switches/
ps9441/ps9670/white_paper_
c11-542809_ns783_Networking_
Solutions_White_Paper.html.

[20] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakr-

ishnan, and R. Sears. Benchmarking cloud serving

systems with ycsb. In Proceedings of the 1st ACM
symposium on Cloud computing, pages 143–154.

ACM, 2010.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 369

[21] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella.

On the impact of packet spraying in data center net-

works. In INFOCOM 2013.

[22] A. Dragojević, D. Narayanan, M. Castro, and

O. Hodson. Farm: fast remote memory. In 11th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14), pages 401–414,

2014.

[23] S. Floyd, A. Gurtov, and T. Henderson. The

newreno modification to tcp’s fast recovery algo-

rithm. 2004.

[24] S. Floyd and V. Jacobson. Random early detection

gateways for congestion avoidance. IEEE/ACM
Transactions on Networking (ToN), 1(4):397–413,

1993.

[25] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,

C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sen-

gupta. Vl2: A scalable and flexible data center net-

work. In SIGCOMM ’09, 2009.

[26] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye,

and M. Lipshteyn. Rdma over commodity ether-

net at scale. In Proceedings of the 2016 conference
on ACM SIGCOMM 2016 Conference, pages 202–

215. ACM, 2016.

[27] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang,

D. Maltz, Z. Liu, V. Wang, B. Pang, H. Chen, et al.

Pingmesh: A large-scale system for data center

network latency measurement and analysis. vol-

ume 45, pages 139–152. ACM, 2015.

[28] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter,

and A. Akella. Presto: Edge-based load balanc-

ing for fast datacenter networks. ACM SIGCOMM
Computer Communication Review, 45(4):465–478,

2015.

[29] A. Hughes and J. Touch. J. heidemann,” issues in

tcp slow-start restart after idle. Work in Progress, 1,

1998.

[30] IEEE. Ieee 802.1qau - congestion notification.

http://www.ieee802.org/1/pages/
802.1au.html.

[31] R. Jain, A. Durresi, and G. Babic. Throughput fair-

ness index: An explanation. Technical report, Tech.

rep., Department of CIS, The Ohio State University,

1999.

[32] A. Kalia, M. Kaminsky, and D. G. Andersen. De-

sign guidelines for high performance rdma sys-

tems. In 2016 USENIX Annual Technical Confer-
ence (USENIX ATC 16), 2016.

[33] A. Kalia, M. Kaminsky, and D. G. Andersen. Fasst:

Fast, scalable and simple distributed transactions

with two-sided (rdma) datagram rpcs. In 12th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), pages 185–201,

GA, 2016. USENIX Association.

[34] N. Katta, M. Hira, A. Ghag, C. Kim, I. Keslassy,

and J. Rexford. Clove: How i learned to stop wor-

rying about the core and love the edge. In Proceed-
ings of the 15th ACM Workshop on Hot Topics in
Networks, pages 155–161. ACM, 2016.

[35] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu,

Y. Xiong, and P. Cheng. Clicknp: Highly flexible

and high-performance network processing with re-

configurable hardware. In Proceedings of the 2016
conference on ACM SIGCOMM 2016 Conference,

pages 1–14. ACM, 2016.

[36] Y. Lu, G. Chen, Z. Ruan, W. Xiao, B. Li, J. Zhang,

Y. Xiong, P. Cheng, and E. Chen. Memory ef-

ficient loss recovery for hardware-based transport

in datacenter. In Proceedings of the First Asia-
Pacific Workshop on Networking, pages 22–28.

ACM, 2017.

[37] Mellanox. Connectx-3 pro en single/dual-port

adapters 10/40/56gbe adapters w/ pci express

3.0. http://www.mellanox.com/page/
products_dyn?product_family=162&
mtag=connectx_3_pro_en_card.

[38] Mellanox. Roce vs. iwarp competitive anal-

ysis. http://www.mellanox.com/
related-docs/whitepapers/WP_RoCE_
vs_iWARP.pdf.

[39] R. Mittal, N. Dukkipati, E. Blem, H. M. G. Wassel,

M. Ghobadi, A. Vahdat, Y. Wang, D. Wetherall, and

D. Zats. Timely: Rtt-based congestion control for

the datacenter. acm special interest group on data
communication, 45(4):537–550, 2015.

[40] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah,

and H. Fugal. Fastpass: A centralized zero-queue

datacenter network. In ACM SIGCOMM Computer
Communication Review, volume 44, pages 307–

318. ACM, 2014.

[41] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh,

D. Wischik, and M. Handley. Improving datacenter

performance and robustness with multipath tcp. In

Proceedings of the ACM SIGCOMM 2011 Confer-
ence, SIGCOMM ’11, pages 266–277, New York,

NY, USA, 2011. ACM.

370 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[42] J. Rasley, B. Stephens, C. Dixon, E. Rozner, W. Fel-

ter, K. Agarwal, J. Carter, and R. Fonseca. Planck:

Millisecond-scale monitoring and control for com-

modity networks. ACM SIGCOMM Computer
Communication Review, 44(4):407–418, 2015.

[43] L. C. Reference. Linux/include/linux/mlx4/qp.h.

http://lxr.free-electrons.com/
source/include/linux/mlx4/qp.h.

[44] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C.

Snoeren. Inside the social network’s (datacenter)

network. In ACM SIGCOMM Computer Commu-
nication Review, volume 45, pages 123–137. ACM,

2015.

[45] A. Singh, J. Ong, A. Agarwal, G. Anderson,

A. Armistead, R. Bannon, S. Boving, G. Desai,

B. Felderman, P. Germano, et al. Jupiter rising: A

decade of clos topologies and centralized control

in google’s datacenter network. ACM SIGCOMM
Computer Communication Review, 45(4):183–197,

2015.

[46] M. Technologies. Multi-path rdma.

https://www.openfabrics.org/

images/eventpresos/workshops2015/
DevWorkshop/Tuesday/tuesday_04.
pdf.

[47] E. Vanini, R. Pan, M. Alizadeh, P. Taheri, and

T. Edsall. Let it flow: Resilient asymmetric load

balancing with flowlet switching. In NSDI, pages

407–420, 2017.

[48] M. Wu, F. Yang, J. Xue, W. Xiao, Y. Miao, L. Wei,

H. Lin, Y. Dai, and L. Zhou. G ra m: scaling graph

computation to the trillions. In Proceedings of the
Sixth ACM Symposium on Cloud Computing, pages

408–421. ACM, 2015.

[49] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lip-

shteyn, Y. Liron, J. Padhye, S. Raindel, M. H.

Yahia, and M. Zhang. Congestion control for large-

scale rdma deployments. In ACM SIGCOMM Com-
puter Communication Review, volume 45, pages

523–536. ACM, 2015.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 371

