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Complex molecules often have many structures (conformations) of the reactants

and the transition states, and these structures may be connected by coupled-mode

torsions and pseudorotations; some but not all structures may have hydrogen

bonds in the transition state or reagents. A quantitative theory of the reaction

rates of complex molecules must take account of these structures, their coupled-

mode nature, their qualitatively different character, and the possibility of

merging reaction paths at high temperature. We have recently developed a

coupled-mode theory called multi-structural variational transition state theory

(MS-VTST) and an extension, called multi-path variational transition state

theory (MP-VTST), that includes a treatment of the differences in the multi-

dimensional tunneling paths and their contributions to the reaction rate. The

MP-VTSTmethod was presented for unimolecular reactions in the original paper

and has now been extended to bimolecular reactions. The MS-VTST and MP-

VTST formulations of variational transition state theory include multi-faceted

configuration-space dividing surfaces to define the variational transition state.

They occupy an intermediate position between single-conformation variational

transition state theory (VTST), which has been used successfully for small

molecules, and ensemble-averaged variational transition state theory (EA-

VTST), which has been used successfully for enzyme kinetics. The theories are

illustrated and compared here by application to three thermal rate constants for

reactions of ethanol with hydroxyl radical—reactions with 4, 6, and 14 saddle

points.
I. Introduction

The progress in density functionals that allows a quantitative treatment of the poten-
tial energy surfaces of complex reactions1–3 places new demands on reaction rate
theory for maintaining a high level of accuracy in the treatment of the dynamics.
Complex molecules often have many structures (conformations) of the reactants
and the transition states, and these structures may be connected by coupled-mode
torsions and pseudorotations; some but not all structures may have hydrogen bonds
in the transition state or reagents. A quantitative theory of the reaction rates of
complex molecules must take account of these structures, their coupled-mode
nature, their qualitatively different character, and the possibility of merging reaction
paths at high temperature.
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Transition state theory4,5 (TST) provides an efficient way to obtain thermal reac-
tion rate constants. Transition state theory has a long history, and it is widely under-
stood to be a very general theory of reaction rates.4–10 Early doubts about the
reasonableness of its assumptions have been largely erased by incorporating varia-
tional transition states and multidimensional tunneling approximations and by
comparing the results to accurate quantum mechanical calculations on simple reac-
tions and to experiment, especially kinetic isotope effects, for a variety of processes,
both simple and complex.9–13 Advances in electronic structure theory have allowed
one to obtain accurate enough potential energy surfaces that the hope of calculating
absolute reaction rates is sometimes achieved for simple systems and is becoming
within reach for more and more complicated systems. Practical methods have
been proposed for defining sequences of generalized transition states and optimizing
variational transition states within the sequences.14–25 At this stage of theoretical
development, the chief sources of concern, aside from the accuracy of the potential
energy surface, when applying transition state theory to practical problems are issues
such as the choice of reaction coordinate, the treatment of anharmonicity, and
ensemble averaging over all contributing structures of the reactants and the gener-
alized transition states.
Reactions of small molecules without torsions often have only a single conforma-

tion of the reactants and a single conformation of the transition state. Textbook
presentations of transition state theory are often limited to this case, and the relevant
partition functions are often treated as products of separable translational, rota-
tional, vibrational, and electronic contributions, with the vibrational modes treated
independently of each other and of rotation.26 At the other extreme are complex
reactions in solution or in enzymes. Here one must deal directly with free energies
and free energies of activation that correspond to essentially uncountable numbers
of conformations of the reagents, solvent molecules, and possibly catalysts. Interme-
diate between these extremes are gas-phase reactions of molecules with torsions.
Here, as compared to small-molecule kinetics, there can be an appreciable confor-
mational contribution to the free energies, and some vibrational modes may be
strongly coupled to one another and to overall rotation. However, as compared
to reactions in liquids or in enzymes, the number of conformations, although large,
is countable. We have recently developed two formulations27,28 of variational tran-
sition state theory, including multidimensional tunneling contributions, that are
applicable to the case of gas-phase molecules with nonseparable torsions. We pre-
sented them in their most primitive form, and we applied the first27 to reactions
with up to 262 distinguishable conformations of the transition state29 and the second
to a reaction with four distinguishable conformations of the transition state.28

The first new formulation of TST is a coupled-mode theory called multi-structural
variational transition state theory27 (MS-VTST), and the second, multi-path VTST28

(MP-VTST), extends it to multiple reaction paths to include a more complete treat-
ment of the differences in the multi-dimensional tunneling paths and their contribu-
tions to the reaction rate. The new theories use a multi-faceted configuration-space
dividing surface to define the variational transition state. Note that MP-VTST and
MS-VTST both include the contribution of all the reaction paths to the total reactive
flux, but MS-VTST does this in a more approximate way. MS-VTST is a special case
of MP-VTST. MS-VTST has been presented elsewhere27 and applied to unimolecu-
lar27,28 and bimolecular reactions.30,31 The MP-VTST was presented for and applied
to unimolecular reactions.28 Here we present MP-VTST for bimolecular reactions,
explain the additional approximations that reduce it to MS-VTST, and then apply
both MP-VTST and MS-VTST to three reactions.
We will also discuss the challenges in applying TST to calculate thermal rate

constants accurately, especially for complex systems. A key challenge is interfacing
methods for calculating potential energy surfaces to dynamical steps requiring a
semi-global potential energy surface, such as the treatment of variational effects,
quantum effects, and anharmonicity. Some calculations in the literature have

View Article 
60 | Faraday Discuss., 2012, 157, 59–88 This journal is ª The Royal Society of Chemistry 2012

http://dx.doi.org/10.1039/c2fd20012k


D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
in

ne
so

ta
 -

 T
w

in
 C

iti
es

 o
n 

20
 J

an
ua

ry
 2

01
3

Pu
bl

is
he

d 
on

 2
9 

Fe
br

ua
ry

 2
01

2 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

2F
D

20
01

2K

Online
achieved good agreement with experimental data without considering all or some of
these important effects or by using inaccurate potential energy surfaces because the
agreement between experiments and calculations is sometimes achieved by error
cancellation in the calculations, but to make theory reliably predictive one cannot
rely on error cancellation, and we need to understand the possible sources of error
and the best available strategies to mitigate these errors.
The reactions studied in the present work are three hydrogen abstraction reactions

of the various sites of ethanol with hydroxyl radicals,

CH3CH2OH + OH ! CH3CHOH + H2O (R1a)

CH3CH2OH + OH ! CH2CH2OH + H2O (R1b)

CH3CH2OH + OH ! CH3CH2O + H2O (R1c)

These reactions are important elementary steps in biofuel combustion and have
been extensively studied experimentally32–41 and theoretically.40,42,43 The overall reac-
tion rate constant, k1, is the sum of k1a, k1b, and k1c, and the IUPAC44 recommen-
dation for this quantity is 6.70 � 10�18 T2 exp(511/T) cm3molecule�1s�1 over the
temperature range 216–599 K. The branching ratios are less well established.39

Although these reactions have been studied by several groups using TST,40,42,43 there
is still much to learn, and in the present work we will present a more detailed analysis
and discussion of these reactions based on our newly developed multi-path and
multi-structural versions of VTST, and we will use these reactions as examples to
show the challenges in obtaining accurate thermal rate constants of complex poly-
atomic systems using state-of-art electronic structure and dynamics methods.

II. Computational methods

II. A. Electronic structure methods

The conformational structures of ethanol, the hydroxyl radical, and the saddle points
are optimized by various density functionals including M08-HX,45 M08-SO,45

M05-2X,46 and M06-2X.47 The 6-31+G(d,p) basis set is used for all geometry optimi-
zations and for the straight direct dynamics calculations except that the ma-TZVP48

basis set is used for M08-HX and M08-SO calculations for R1a to test the sensitivity
to basis set.
The first grid used for density functional integrations is a pruned grid based on 99

radial shells around each atom and 974 angular points in each shell. This grid is used
for the optimization and frequency calculation for all the stationary points and for
the reaction paths of R1a and R1c. The reaction paths for R1b require a finer grid,
and we used a grid that has 96 radial shells around each atom and a spherical
product angular grid having 32 q points and 64 4 points in each shell.
The best estimate (BE) classical barrier height is obtained by a two-step proce-

dure. The first step is to estimate the complete basis set (CBS) limit of the
coupled-cluster singles and doubles method with quasiperturbative inclusion of con-
nected triples (CCSD(T)).49 The second step is to add a finite basis set (FBS) correc-
tion for a higher-level (HL) treatment of electron correlation energy. Thus

View Article 
V‡
BE ¼ V‡

CBS(CCSD(T)) + DV‡
FBS (1)

DV‡
FBS ¼ V‡(CCSDT(2)Q/FBS) � V‡(CCSD(T)/FBS) (2)
This journal is ª The Royal Society of Chemistry 2012 Faraday Discuss., 2012, 157, 59–88 | 61
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where V‡ denotes the classical barrier height. Usually the CBS limit is obtained by
extrapolating a few finite basis set results, but here we used a more efficient method,
namely CCSD(T)-F12b50,51 with a may-cc-pVQZ52 basis set, to approximate the
CCSD(T)/CBS limit. We also calculated CCSD(T)-F12a/aug-cc-pVTZ energies to
check the convergence with respect to the basis set.
The FBS correction accounts for the effect of higher excitations by using the

CCSDT(2)Q
53 method with a finite basis set. The basis set for use in eqn (2) can

be smaller than that for eqn (1) because the higher-level corrections show faster
basis set convergence. The finite basis set used in eqn (2) is the maug-cc-pVDZ54

basis set. To check this assumption, we also calculate DV‡
HL by using a

smaller basis set, cc-pVDZ.
Restricted open-shell Hartree–Fock orbitals are used for all the coupled cluster

calculations. In all coupled cluster calculations (CCSD(T), CCSD(T)-F12a,
CCSD(T)-F12b, and CCSDT(2)Q), correlation of core electrons is not included.
To gauge the importance of multi-reference character in the stationary-point elec-

tronic wave functions, we computed the T1 diagnostic.
55 It has been suggested that

significant multi-reference character, and hence a concomitant higher than usual in-
accuracy of CCSD(T) calculations, is indicated by a T1 diagnostic of 0.02 or greater
for closed-shell systems55 and by a T1 diagnostic of 0.045 or greater for open-shell
systems.56–58

For computing vibrational partition functions, all Hessians and force constants
(in either internal or Cartesian coordinates) are multiplied by l2ZPE, where lZPE is a
previously determined scale factor59 that, when the frequencies computed from
scaled Hessians are used in the harmonic oscillator (HO) formula, should make
the zero-point energy more accurate. The scale factor accounts for systematic errors
in the electronic structure method but also, significantly, for the difference (on
average) between zero-point energies computed by the HO formula and those
including anharmonicity. For this reason, when results given below are labeled as
HO or local harmonic (LH), the label and the language refer to the use of the HO
formulas; the results themselves are quasiharmonic because of the use of scaling
to account (approximately) for anharmonicity. But this mainly includes the anhar-
monicity in the high-frequency modes because it is the high-frequency modes that
dominate the zero-point energy. Anharmonicity due to low-frequency torsions is ac-
counted for by the method discussed in the next subsection.
All the density functional calculations were performed by the Gaussian 0960

package with theMNGFM version 5.161 module. The CCSD(T)-F12a/b calculations
were carried out by theMolpro62 program, and theNWChem63 program was used for
CCSDT(2)Q calculations.

View Article 
II. B. Partition functions

Ethanol and the transition states of the three reactions each have multiple conforma-
tional structures (minima or saddle points, respectively, on the potential energy
surface) caused by internal rotations (torsions). We will treat the anharmonicity
associated with these torsions by the multi-structural method including torsional an-
harmonicity64 (MS-T). In the MS-T calculations, the translational partition function
and electronic partition function are separable from the conformational–rotational–
vibrational partition function.
The MS-T method can be applied to both stable species and transition states. We

will label a general species as a, which can be a reactant (Ri with i ¼ 1 or 2) or the
saddle point ‡. A reactant has F vibrational modes, where F is the number of internal
coordinates, and a transition state, being a hypersurface dividing reactants from
products, has only F� 1 vibrations. In general, let j label the distinguishable confor-
mational structures of a species, and let J be the total number of such conforma-
tional structures. We will use k and K to denote the structure number and number
of structures when we are specifically referring only to the transition state. A
62 | Faraday Discuss., 2012, 157, 59–88 This journal is ª The Royal Society of Chemistry 2012
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transition state with K structures is a multifaceted dividing surface with K facets.
Because we use curvilinear coordinates,17 facet k is a curved hypersurface locally
orthogonal to the reaction path through saddle point k, as shown in Fig. 1. We
will let Ua

j denote the equilibrium potential energy of structure j; for transition states
it is the lowest potential energy in facet k. The structure with the lowest value of Ua

j

or Ua
k for a given species a is labeled j ¼ 1 or k ¼ 1, and Ua

1 is set equal to zero. Then
all other Ua

j are measured with respect to Ua
1. Throughout the entire article all parti-

tion functions for species a are calculated with the zero of energy at Ua
1. We will

denote the (zero-point-inclusive) ground-state energy of structure j as ~Ua
j .

The conformational–rotational–vibrational partition function is calculated as

QMS-T; a
con�rovib ¼

XJ
j¼1

QS; a
j (3)

where QS,a
j is the contribution of structure j of species a and is given by64

QS; a
j ¼ QSS�HO; a

rovib;j Za
j

Yta
s¼1

f aj;s (4)

where ta is the number of torsions in species a, Za
j is a factor for guiding the MS-T

scheme to the correct high-temperature limit (within the parameters of the model),
faj,s is a torsional anharmonicity factor based on the internal coordinates, which in
conjunctionwithZa

j adjusts the harmonic partition function of structure j for the pres-
ence of the torsional motion s, and the single-structure (SS) rotational-vibrational
partition function of structure j using the harmonic oscillator approximation is

QSS–HO,a
rovib,j ¼ Qrot,a

j exp(�Ua
j /kBT)Q

HO,a
j (5)

where Qrot,a
j is classical rotational partition function of structure j, kB is Boltzmann’s

constant, T is temperature, and QHO,a
j is the local-harmonic-oscillator vibrational

partition function calculated at structure j.
We define the MS-T torsional anharmonicity factor for each species as

FMS�T; a ¼ QMS�T; a
con�rovib

QSS�HO; a
rovib; 1

(6)

View Article 
Fig. 1 Multi-faceted dividing surfaces: conventional transition state in red; variational transi-
tion state in blue.
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http://dx.doi.org/10.1039/c2fd20012k


D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

M
in

ne
so

ta
 -

 T
w

in
 C

iti
es

 o
n 

20
 J

an
ua

ry
 2

01
3

Pu
bl

is
he

d 
on

 2
9 

Fe
br

ua
ry

 2
01

2 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

2F
D

20
01

2K

Online
where QSS–HO,a
rovib,1 is the single-structure rotational-vibrational partition function calcu-

lated at the global minimum (structure 1 by definition). Torsional anharmonicity has
two aspects. First, the torsions usually generate multiple structures. Second, low
barriers along the torsional potential energy profiles mean that the contributions
of the structures cannot simply be added together as independent quasiharmonic
oscillators, but rather one must account for the merging of the wells as the available
energy exceeds the torsional barriers. To separate the effects of multiple-structure
anharmonicity, FMS,a, from torsional-potential anharmonicity, FT,a, we write eqn
(6) as

FMS–T,a ¼ FMS,aFT,a (7)

where

FMS; a ¼ QMS�LH; a
con�rovib

QSS�HO; a
rovib; 1

(8)

FT; a ¼ QMS�T; a
con�rovib

QSS�LH; a
rovib; 1

(9)

We define a reaction torsional anharmonicity factor for a bimolecular reaction as

FMS�T ¼ FMS�T;‡

FMS�T;React1FMS�T;React2
(10)

where React1 and React2 are the two reactants of a bimolecular reaction. For
the reactions studied in the present work, the OH radical has no torsion so that
FMS–T,OH ¼ 1, and the torsional anharmonicity activation factor can be written as

FMS�T ¼ FMS�T;‡

FMS�T; ethanol
(11)

The MS-T partition functions were calculated by the MSTor65,66 program.
The overall partition function of species a is obtained by multiplying QMS–T,a

con�rovib by
the electronic partition function Qa

elec and the translational partition function.

II. C. Dynamics: MP-VTST

First we establish notation by considering single-structure VTST, which can be
written as

kVTST ¼ kBT

h

Q
‡
elec

FR
trans

Q2
i¼1

QRi

elecQ
SS�HO; Ri

con�rovib; 1

exp
�� V ‡=kBT

�
kGQSS�HO; ‡

con�rovib; 1 (12)

where h is Planck’s constant; FR
trans is a relative translational partition function per

volume of the two reactants; V‡ is the classical barrier height, that is, the potential
energy of the lowest-energy saddle point relative to the lowest reactant; k is a
tunneling transmission coefficient that accounts multidimensional tunneling and
nonclassical reflection; and G is a recrossing transmission coefficient given by the
ratio of the flux through the dynamical bottleneck along the reaction path and the
flux through the conventional transition state dividing surface at saddle point k ¼
1. Note that all quantities in eqn (12) except kB, h, and V‡ depend on temperature,
but dependence on temperature is not shown as an argument in this article. When
eqn (12) is applied with k set equal to unity, the result is called canonical variational

View Article 
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theory (CVT), and when it is applied with a multidimensional tunneling (MT)
approximation, it is called CVT/MT where MT can be ZCT, SCT, LCT, mOMT,
or LAT (denoting respectively the zero-curvature tunneling approximation,67 the
small-curvature tunneling approximation,68 the large-curvature tunneling approxi-
mation,69–72 the microcanonically optimized multidimensional tunneling approxima-
tion,72 and the least-action tunneling approximation73,74). The CVT result is
sometimes called quasiclassical to denote that quantum effects are included on the
bound motions of the transition state but not on the reaction coordinate.
The meaning of the recrossing coefficient G is illustrated by writing eqn (12) as

kVTST ¼ kBT

h

Q
‡
elec

FR
trans

Q2
i¼1

QRi

elecQ
SS�HO;Ri

con-rovib;1

exp
��V ‡=kBT

�
kQSS�HO; VTS

con�rovib; 1 (13)

where VTS denotes that the partition function is evaluated not at the saddle point
but rather at the canonical variational transition state; thus we say that G accounts
for variational effects. In particular, G is the special case with k ¼ 1 of

Gk ¼
expð �max

s
GT ;kðsÞ=RTÞ

exp
�
� G

‡
T ;k=RT

� (14)

where GT,k is the molar generalized free energy of activation75–77 at temperature T
and location s along the minimum-energy path (MEP) through saddle point k, s is
the signed distance from saddle point k along that path, G‡

T,k is the value of GT,k

at s ¼ 0, and R is the gas constant.
We account for quantum mechanical effects on the reaction coordinate motion by

the transmission coefficient k. There are two kinds of primary quantum mechanical
effects on reaction coordinate motion. First, systems with an energy below the effec-
tive barrier height may tunnel through the barrier. Second, systems with energies
above the effective barrier, which would be transmitted with unit probability if reac-
tion-coordinate motion were governed by classical mechanics, may be reflected by
scattering off the barrier; this is a kind of diffraction, and we call it nonclassical
reflection. Because tunneling is usually more important than nonclassical reflection
(because the Boltzmann weighting is larger at tunneling energies than at energies
above the barrier), we usually call k the tunneling transmission coefficient. In MS-
VTST andMP-VTST, we treat k by the ground-state tunneling approximation intro-
duced15,75 in the single-structure version of the theory. In general notation, k is the
special case with k ¼ 1 of

kk ¼

ÐN
0

dEPkðEÞexpð � E=kBTÞ
ÐN
0

dEPQC
k ðEÞexpð � E=kBTÞ

(15)

where E is the energy of reaction-coordinate motion, Pk is the quantal probability of
transmission from reactants to products in the ground-vibrational state along reac-
tion path k (which is the reaction path through saddle point k), and PQC

k is the
approximation to Pk implied by quasiclassical CVT. Therefore PQC

k is a Heaviside
step function at E ¼ ~UVTS

k , which yields

kk ¼
ðN
0

dEPkðEÞexp
h
�
�
E � ~U

VTS

k

�.
kBT

i
(16)

where ~UVTS
k is the zero-point-inclusive energy ~Uk at the maximum generalized free

energy of activation determined in eqn (14), and where

~Uk ¼ Vk(s) + 3Gk (s) (17)

View Article 
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where Vk and 3Gk are respectively the potential energy and zero-point vibrational
energy along path k. Note that ~UVTS

k depends on T because the location of the
CVT transition state depends on T. Let VAG

k denote the maximum zero-point-inclu-
sive energy along reaction path k. Then we can note that kk differs from unity for
three reasons: (i) because Pk is larger than zero for at E0 # E # VAG

k (where E0 is
the quantum threshold energy), which is called tunneling, (ii) because Pk is smaller
than unity for E > VAG

k , which is called nonclassical reflection, and (iii) because
sometimes ~UVTS

k s VAG
k , which causes vibrationally adiabatic classical reflection

for ~UVTS
k < E < VAG

k . Of these three, tunneling is usually the most significant, and
so we often call kk a tunneling transmission coefficient. It will be convenient for
the discussion in Section II. D. to label the lowest-energy VAG

k as VAG
a . Note that

the quantum threshold energy E0 is the lowest energy at which it is possible to
have tunneling, and it is max[ ~U1(s ¼ �N), ~U1(s ¼ N)] for a bimolecular reaction.
We can combine the recrossing and tunneling effects by defining a generalized

transmission coefficient as

gk ¼ kkGk (18)

where Gk is a recrossing transmission coefficient given by the ratio of the flux
through the dynamical bottleneck along path k and flux through the conventional
transition state dividing surface at saddle point k.
Next we consider multi-path variational transition state theory with multidimen-

sional tunneling (MT) for calculating the reaction rate constants. The general idea is
illustrated in Fig. 1. The facets of a multi-faceted dividing surface are orthogonal the
reaction paths through each of the conformations of the transition state. For a bimo-
lecular reaction, the full MP-VTST rate constant at temperature T is

kMP�VTST=MT ¼ kBT

h

Q
‡
elec

FMS-T;R exp
�� V ‡=kBT

�XK
k¼1

kkGkQ
S;‡
k (19)

whereFMS–T,R is the reactant partition function per unit volume in the center-of-mass
frame given by

FMS�T;R ¼ FR
trans

Y2
i¼1

QRi

elecQ
MS�T;Ri

con�rovib (20)

Without any additional approximations, we can rearrange eqn (19) as follows:

kMP–VTST/MT ¼ hgiFMS–TkSS–TST (21)

where kSS-TST is the single-structure conventional transition state rate constant in the
harmonic approximation:

kSS-TST ¼ kBT

h

Q
‡
elecQ

SS-HO;‡
rovib;1

FSS-HO;R
exp
�� V ‡=kBT

�
(22)

and where we have defined

FSS�HO;R ¼ FR
trans

Y2
i¼1

QRi

elecQ
SS-HO;Ri

rovib;1 (23)

and

hgi ¼
PK
k¼1

kkGkQ
S;‡
k

PK
k¼1

Q
S;‡
k

(24)
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where the latter may be called an averaged generalized transmission coefficient. In
our original application28 we made the approximation of replacing QS,‡

k by QSS–OH,‡
rovib,k

in eqn (24), but there is no good reason to do that, so here and in the future we
will use eqn (24). We also noted that one could replace the full average of eqn
(24) by a partial average:

hgiP ¼
PP
k¼1

kkGkQ
S;‡
k

PP
k¼1

Q
S;‡
k

(25)

where P < K.
Note that we have factored the rate constant into a single-structure local harmonic

rate constant times a correction, where we will substitute a quasiharmonic treatment
for the harmonic one. Alternatively, although not done here, one could factor the
rate constant into a single-structure rate constant that takes some account of
torsions times a correction.
When we apply MP-VTST with all kk equal to unity, we call the result MP-CVT.

When kk is included, the result is called MP-CVT/MT, for example, MP-CVT/SCT.
If we set the averaged generalized transmission coefficient to unity, eqn (19) is

reduced to the multi-structural conventional transition state theory (MS-TST) rate
constant without tunneling:

kMS-TST ¼ FMS�T kBT

h

Q
‡
elecQ

SS-HO;‡
rovib;l

FMS-T;R exp
�� V ‡=kBT

�
(26)

The single-structure canonical variational theory rate constant is

kSS–CVT ¼ G1k
SS–TST (27)

In some cases, it is a good approximation to approximate hgi using a single reac-
tion path. This would be the case, for example, if all the Gk and kk have similar values
and therefore one path can be used to represent all the paths. Another case where
this approximation would be good is when QS,‡

1 is much larger than all the other
QS,‡

k such that flux along the lowest-energy path dominates the reaction. The
lowest-energy saddle point usually has a larger QS,‡

k than any of the other transition
state structures, especially at low temperature where the kk differ most significantly
from unity. If we set P¼ 1 in eqn (25), the MP-VTST/MT rate constant is reduced to
the MS-VTST/MT rate constant27

kMS�VTST ¼ G1ðTÞk1ðTÞ kBT
h

Q
‡
elecQ

MS�T;‡
con�rovib

FMS-T;R exp
�� V ‡=kBT

�
(28)

We previously pointed out27,28 that when one takes P ¼ 1, one can use any repre-
sentative structure of the transition state, not necessarily the lowest-energy one (as
done here); the changes to the formulas are straightforward. If we set G1 ¼ k1 ¼ 1
and evaluate the conformational-rovibrational partition functions by the local
harmonic28,65 approximation, then eqn (28) reduces to eqn (17) of an earlier paper.78

Finally we consider the calculation ofGk and kk. The calculation of these quantities
requires the calculation of a reaction path through saddle point k. We calculate these
quantities using the methods previously developed79 for SS-CVT/MT calculations, in
particular, using the quasiharmonic approximation defined in subsection II. A.
In the present work, we calculated kk using the small-curvature tunneling68 (SCT)

approximation. The calculation of Gk, kk, and kSS–TST are carried out using the
POLYRATE80 program, and the calculation of QS,‡

k was carried out with theMSTor
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program. In the direct dynamics calculations, MEPs in isoinertial coordinates are
calculated using a reorientation of dividing surface (RODS) algorithm.81

It should be noted that transition state theory assumes that the internal states of
the reactants are in local equilibrium, where the word ‘‘local’’ in this context means82

that the products need not be present in their equilibrium population. Therefore, for
unimolecular reactions in a liquid, transition state theory assumes that the coupling
of the solvent to the reacting solute is strong enough to maintain an equilibrium pop-
ulation of reactants,10,83 and for bimolecular reactions it also assumes that diffusion
is fast enough to maintain a local equilibrium concentration of reacting partners in
the vicinity of each reactant molecule. For unimolecular reactions in the gas phase,
transition state theory yields what is conventionally called the high-pressure limit (in
which the pressure is high enough to maintain local equilibrium of reactant states),
although it is actually a plateau reached before one enters the suprahigh-pressure
regime.22 For gas-phase bimolecular reactions, the rate constant is only well defined
if84 the time for reaction is much greater then the time for establishment of local
equilibrium among the reactant states, which in turn is much higher than the time
for passage of a system through the transition state region of phase space; that is,
the system must be in the high-pressure limit but not the suprahigh pressure limit.
The rate evaluated by transition state theory corresponds to a high enough pressure
that energy transfer collisions repopulate the reactive states of the reactants to main-
tain a thermal distribution, but a more general statement about the pressure regime
to which the TST rate constant applies requires a consideration of possible interme-
diates, and we will defer this discussion to subsection II. D.
It is important to note that the validity of the equilibrium assumption of transition

state theory is a function of the more than just the total pressure. Consider again that
the basic assumption in transition state theory is that the conformational states of
the reactants are in local equilibrium with each other, and this equilibrated pool
of states of the reactants and the transition state are in quasiequilibrium during
the reaction. When this assumption is applied to MS-VTST andMP-VTST, it means
that the interconversion between the conformations of reactant is much faster than
the chemical reaction, and one sometimes morphs this into a statement that torsional
barriers of reactants are much smaller than the barriers of chemical reaction.
However, that is an oversimplification, as seen by considering the reaction of ethanol
with hydroxyl radical. The torsional barriers of ethanol are as high as�3 kcal mol�1,
which makes them similar to or even larger than the reaction barriers studied in the
present work. But under the experimental conditions where the reaction has been
studied, the concentration of hydroxyl radical is much lower than that of ethanol,
and it is reasonable to assume that the conformations of ethanol are in quasiequili-
brium during the reaction. Therefore MS-VTST and MP-VTST are still applicable
for these reactions.
In general we label the reactant conformations by j ¼ 1, 2,., J and we label the

transition state conformations by k¼ 1, 2,., K, and we note that for a unimolecular
reaction, one can rewrite the rate constant of eqn (17) as

kMP-VTST ¼
PK
k¼1

sk

R
(29)

where

R ¼
XJ
j¼1

rj (30)

rj ¼ QR
elecQ

S,R
j (31)
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and

sk ¼ kBT

h
Q

‡
elecexp

�� V ‡=kBT
�
kkGkQ

S;‡
k (32)

Note that the barrier V‡ in eqn (32) is the energy difference between the lowest-
energy saddle point (i.e., lowest-energy conformation of the transition state) and
the lowest-energy conformation of the reactant, and the relative energy of conforma-
tion k is included in QS,‡

k via the Boltzmann factor of eqn (5).
It is interesting to compare eqn (29) to the so called generalized Winstein–Holness

(GWH) equation,85–87 which is given by

kGWH ¼
XJ
j¼1

Pjk
½ j � (33)

where we have denoted the equilibrium population of conformer j by

Pj ¼ rj

R
(34)

and we have associated a rate constant, k[ j ], with each conformation of reactants.
(When there are two conformers of the reactant and two transition-state structures,
the GWH equation reduces to the Winstein–Holness (WH) equation.) Eqn (33) can
be derived from eqn (29) if we set

k½ j � ¼
X
k3jðkÞ

kBT

h

Q
‡
elec

rj
exp
�� V ‡=kBT

�
kkGkQ

S;‡
k (35)

where the sum is over those k that appear in a j(k) for the j on the left hand side, and
if we assume that two different conformers of the reactant never lead to the same
conformer of the transition state; then we may associate a unique reactant
conformer j(k) with each transition state conformer k. (If more than one reactant
conformer reacts through the same transition state conformation, then more than
one j(k) has the same k.) But this assumption—made to obtain eqn (33)— is not
consistent with TST or with the local equilibrium condition of eqn (34). Transition
state theory assumes that the rate constants for interconverting conformers of the
reactant are larger than the rate constants for chemical reaction—in order to assure
local equilibrium. But consider a case where local equilibrium is maintained because
the barriers for interconversion of reactant conformers are lower than the barriers to
reaction. Since the reaction in such a case is dominated by states with energies higher
than the conformational barriers, one cannot associate a given transition state
conformer with a unique path originating from a specific reactant conformer. If
the barriers between reactant structures are high, they should be considered as
two different reactants, not as conformers of a single reactant. Furthermore, eqn
(33) is wrong in the general case. Consider, for example, a case with two similar
conformations of the reactants and one conformation of the transition state. Then
k[2] z k[1], and eqn (33) predicts a rate constant equal to �k[1], but the correct answer
is�k[1]/2. (Note, as an aside, that the Curtin–Hammett principle does not suffer from
this error, although some derivations88 of it do suffer from it because they are based
on the GH equation, which is inconsistent, i.e., wrong.)
However, transition state theory can be formulated to handle multiple conformers

properly, and that is what we have done in MS-VTST and MP-VTST. Unlike the
GWH equation, we do not assume that one can identify one-to-one connections
between transition state conformations and reactant conformations. Furthermore
our treatment remains valid even in the regime that torsions are better descried as
hindered rotors than as a collection of individual conformational states. The fact
that the MS-VTST and MP-VTST methods do not require one to map the routes
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between the conformations of the saddle point and the conformations of the reactant
or reactants is a key advantage of the correct formulation of transition state theory.
The MS-VTST and MP-VTST methods fully account for the very likely reactive
events in which the molecular system crosses from one reaction valley to another
on the route to the transition state, contrary to the claim87 that TST cannot handle
this or the assumption88 that this does not occur.

View Article 
II. D. The treatment of intermediates

Consider a bimolecular gas-phase reaction of A with B, with a pre-reactive interme-
diate:

A + B ! AB ! AB‡ ! P (36)

where AB is an intermediate complex, AB‡ is the transition state, and P is the
product. The reaction rate may be written as

d½P�
dt

¼ kbimol½A�½B� (37)

where, as usual, brackets denote concentrations. If the reactants A and B are in qua-
siequilibrium with the transition state (where quasiequilibrium is the same as equi-
librium except that products and transition state species arising from products are
missing), then it may be reasonable to assume that they are also in local equilibrium
with AB. In that case, we can also write

d½P�
dt

¼ kunimol½AB� (38)

where

kunimol ¼ kbimol/K (39)

and K is the equilibrium constant for A + B!AB. Because TST assumes local equi-
librium on the reactant side of the transition state, the reaction rates computed by
TST are consistent with eqn (39). Because of eqn (39), the VTST rate constant
with k ¼ 1 is independent of whether we use eqn (38) or (37). (A related but some-
what different issue is whether the canonical treatment is adequate. We note that in
the case that ~UVTS is below the reactant ZPE (or in fact whenever it is below VAG

a ), the
improved canonical variational transition state theory75,89–91 (ICVT) can be used to
exclude the contribution of the states with total energies lower than the VAG

a in the
partition function.) However, when we incorporate tunneling, the ground-state
tunneling approximation depends on whether or not we assume that the complex
is equilibrated, so further considerations are needed, as discussed next.
TST has the requirement that the pressure must be high enough to establish local

equilibrium among the states of A and the states of B even if the concentration of
AB is not at local equilibrium. Notice that local equilibrium among the states of A
and the states of B is easily achieved in the presence of an inert gas. Inert gas collisions
can equilibrate A and B by bimolecular collisions, but thermalization of AB
complexes requires termolecular collisions involving at least one A and at least one B.
Notice that the local equilibrium for configurations (such as those corresponding

to AB) between A + B and AB‡ is generated in two ways. First is by nonreactive
collisions with other constituents of the gas. Second, even without collisions with
other bodies, is by uninterrupted evolution of the reactant local equilibrium distri-
bution toward the transition state as governed by the Liouville equation.84 There
is, however, an important difference between these two mechanisms. The former
populates all states between A + B and AB‡. The latter populates only those states
that can be reached by conservation of energy and angular momentum. We will
70 | Faraday Discuss., 2012, 157, 59–88 This journal is ª The Royal Society of Chemistry 2012
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focus on the energetic criterion. If the complex has states of lower energy than the
lowest-energy state of A + B, then those states cannot be populated without termo-
lecular collisions. If termolecular collisions are insufficient to populate the low-
energy states of AB, then those states will be missing.
For the reactions studied in this article, all the ~UVTS

k are higher than the reactant
ZPE. In this article, we consider the low-pressure limit in which the system reaches
local equilibrium only by the Liouville equation. Therefore the states with total ener-
gies lower than the lowest-energy state of ethanol + OH are not used for tunneling
calculations because of the ground-state tunneling approximation (which deserves
re-examination in this light, as discussed below). However, if one calculates kunimol

followed by setting kbimol equal to Kkunimol, which is the high-pressure limit, then
those states will be present in the tunneling calculation, and the calculated tunneling
contribution will be larger.
We evaluated the termolecular collision rate ktermol by using the method in ref. 92

and the method in ref. 93 and 94. The two methods predict values of ktermol, the rate
constant for termolecular collision of ethanol, OH, and helium, that differ by two
orders of magnitude. If we assume the third body in termolecular collision in ethanol
+ OH reaction is helium and its partial pressure is 40 torr, our calculated bimolec-
ular rate constant at 298 K is in the middle of the values of ktermol[He] evaluated by
the two methods. These rough estimates are insufficient to assess the role of pre-reac-
tive collision complexes under the experimental conditions that have been used to
study the reaction of ethanol with hydroxyl. A more reliable treatment of the role
of the complex AB under experimental conditions and the fall off in rate constant
from the high-pressure plateau is to solve the master equation,22 which is beyond
the scope of the present article. Therefore we simply report calculations in the
low-pressure limit.

II. E. Dual-Level strategy

The computation of kk and Gk can be expensive because it requires the calculation of
a reaction path and the Hessians required for generalized normal mode analyses
along that path. In a direct dynamics calculation, a reaction path is usually calcu-
lated with a density functional that gives a barrier height close to the accurate (or
best estimate) barrier height. However, the difference, dV‡

corr, between the barrier
height V‡

DFT calculated by this density functional and the best estimated barrier
height V‡

BE is usually nonzero. To account for this difference, we multiply the
computed MP-VTST and MS-VTST rate constants by exp(�dV‡

corr/kBT) where

dV‡
corr ¼ V‡

BE � V‡
DFT (40)

This kind of correction should be used only when dV‡
corr is quite small (for

instance, less than a few tenths of a kcal mol�1). When dV‡
corr is larger, although

the barrier is corrected, the reaction path used to calculate tunneling and recrossing
effects could be quite inaccurate.

III. Results and discussion

III. A. Geometries and energies of saddle points

We calculated barrier heights of saddle points 1 and 2 of reaction R1a using the
M08-SO/ma-TZVP and M08-HX/ma-TZVP methods. These methods respectively
yield �0.13 and 1.00 kcal mol�1 for the barrier of reaction R1a. The former is in
good agreement with our best estimate (which is 0.05 kcal mol�1, as shown in
Table 1). To check the geometry effect on calculated barrier heights, we calculated
the barrier height by the M08-SO/ma-TZVP//M08-HX/6-31+G(d,p) method, which
gives a barrier �0.10 kcal mol�1; this value with the double zeta geometry is in good
agreement with the value of �0.13 kcal mol�1 obtained with the consistently
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Table 1 Energiesa (kcal mol�1) of ethanol and saddle points at geometries optimized by M08-

HX/6-31+G(d,p) method

Species Structure

CCSD(T) BE

T1
fTZb QZc DZd maug-DZe

ethanol + OH trans 0.00 0.00 0.00 0.00 0.010

g+/g�g 0.12 0.11

R1a saddle point 1, 2 0.21 0.35 0.12 0.05 0.026

3, 4 0.23 0.39 0.026

R1b saddle point 1, 2 2.16 2.29 2.03 2.02 0.026

3, 4 2.23 2.38 2.13 2.10 0.025

5, 6 2.51 2.68 0.025

7, 8 2.61 2.74 0.026

9, 10 4.70 4.83 0.026

11, 12 5.00 5.12 0.025

13, 14 5.52 5.63 0.026

R1c saddle point 1, 2 3.31 3.60 2.42 2.74 0.042

3, 4 3.51 3.79 0.046

5, 6 3.93 4.19 0.039

a All relative energies in this article include a spin–orbit energy �0.20 kcal mol�1 for OH

radical, and all energies in this table are zero-point exclusive. b The CCSD(T)-F12a/aug-cc-

pVTZ method. c The CCSD(T)-F12b/may-cc-pVQZ method. d The cc-pVDZ basis set is

used in eqn (2). e The maug-cc-pVQZ basis set is used in eqn (2). f Calculated by UCCSD/

may-cc-pVQZ method. g These are the two gauche structures.
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optimized triple zeta geometry optimization mentioned above. Therefore we
conclude, as expected, that no significant error is incurred by using the geometries
optimized by the smaller basis set. We therefore performed the rest of the geometry
optimizations and all the reaction-path calcuations with the smaller basis set.
We performed an exhaustive conformational structure search for the saddle points

of the three reactions by generating guessed conformations based on a set of grids of
torsional angles, and we optimized these conformational structures using the M08-
HX/6-31+G(d,p) method. Four distinguishable structures (2 pairs of mirror images)
were found for the transition state of reaction R1a. Reaction R1b has 14 saddle
points (seven pairs of mirror images), and reaction R1c has six saddle points (three
pairs of mirror images). Ethanol has three conformational structures. The structures
of the saddle points are shown in Fig. 2–4. Previous theoretical studies40,42,43 only
considered one saddle point for each reaction in their calculations, and torsions
were modeled by a one-dimensional approximation40,43 or approximated as
harmonic oscillators.42 Because the Cartesian coordinates are not available in
previous reports,40,42,43 we do not compare our optimized geometries with previous
work, and the comparison of our calculated barrier heights with other previous work
leaves some questions unanswered, especially for R1b since it has several saddle
points with similar energies and conformations.
Single-point energies of all the conformational structures (ethanol, hydroxyl radical,

and saddle points) optimized by theM08-HX/6-31+G(d,p)methodwere calculated by
CCSD(T)-F12a/aug-cc-pVTZ and CCSD(T)-F12b/may-cc-pVQZ, respectively. The
total energy of the all-trans structure of ethanol infinitely separated from hydroxyl
radical is taken as the zero of energy, and the relative energies of all the conformational
structures are given in Table 1. The relative energies include a �0.20 kcal mol�1 spin-
orbit energy for thehydroxyl radical.We corrected thebarrier heights calculatedby the
CCSD(T)-F12b/may-cc-pVQZ method using eqn (1) and (2). By applying two basis
sets, cc-pVDZ and maug-cc-pVDZ, in the FBS corrections, we checked the conver-
gence of the high-level correction with respect to adding diffuse basis functions.
72 | Faraday Discuss., 2012, 157, 59–88 This journal is ª The Royal Society of Chemistry 2012
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Fig. 2 Conformations of ethanol and saddle points of reaction R1a. Only one structure of
each pair of mirror images is shown.
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In Table 1, the CCSD(T)-F12b/may-cc-pVQZ energies are considered to be the
highest quality CCSD(T)/CBS method, and they are used as the CBS result in eqn
(1). As shown in Table 1, for R1a and R1b the energy differences between saddle
points calculated by aug-cc-pVTZ and may-cc-pVQZ are under 0.2 kcal mol�1,
whereas those for R1c saddle point energies are under 0.3 kcal mol�1, and the differ-
ences for reactants are 0.01 kcal mol�1. We only performed the CCSDT(2)Q calcu-
lations for a few low-energy conformations of ethanol and the saddle points due
to the very large computational cost. The high-level FBS correction (eqn (2)) with
the larger (maug-cc-pVDZ) basis set lowers the CCSD(T) barrier heights of the three
reactions by �0.3 kcal mol�1 for R1a and R1b and by 0.9 kcal mol�1 for R1c.
Furthermore, for R1c the two high-level FBS corrections differ by 0.3 kcal mol�1,
which indicates that a larger basis set needs to be used in eqn (2) which is not afford-
able with our available computational resources. The large size of the CCSDT(2)Q
correction and the large T1 diagnostic values (see Table 1) indicate that the R1c
saddle points have significant multi-reference character. Our values for T1 for the
saddle points of R1c are consistent with the value of 0.044 reported by Galano
et al.95 with a different basis set.
Fig. 3 Saddle points of reaction R1b. Only one structure of each pair of mirror images is
shown.
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Fig. 4 Saddle points of reaction R1c. Only one structure of each pair of mirror images is
shown.
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According to the figures in the papers, the studies by Galano et al.42 and Xu et al.43

both used saddle point 1 or 2 (shown in Fig. 2.) for reaction R1a and used saddle
point 5 or 6 (shown in Fig. 4) for reaction R1c. Saddle point 1 or 2 of reaction
R1a is the lowest-energy saddle point of that reaction according to the CCSD(T)-
F12b/may-cc-pVQZ method. However, saddle point 5 or 6 of reaction R1c is the
highest-energy conformation, and it is higher than the lowest-energy saddle point
of R1c by 0.6 kcal mol�1. The saddle points of reaction R1b can be categorized
into two groups, i.e., hydrogen-bonded structures (structures 1–8 in Fig. 3) and
non-hydrogen-bonded structures (structures 9–14 in Fig. 3). The structures in
each group are similar in energy. In general, the non-hydrogen-bonded structures
are higher than the hydrogen-bonded structures by 2–3 kcal mol�1. The structures
Table 2 Calculated zero-point exclusive barrier heightsa (kcal mol�1) with various density func-

tionals using the 6-31+G(d,p) basis set

Saddle point M08-HX M08-SO M06-2X M05-2X

R1a (1, 2) 0.17 �0.87 �0.51 �0.13

R1b (3, 4) 0.31 �0.81 �0.47 �0.18

R1b (1, 2) 1.86 0.24 1.03 1.32

R1b (3, 4) 1.57 0.26 0.85 1.13

R1b (5, 6) 2.03 0.67 1.22 1.44

R1b (7, 8) 2.37 0.80 1.56 1.88

R1b (9, 10) 5.42 4.05 4.51 4.63

R1b (11, 12) 5.55 4.15 4.68 4.86

R1b(13, 14) 6.24 4.95 5.37 5.64

R1c (1, 2) 2.55 0.69 0.55 1.24

R1c (3, 4) 2.66 0.85 0.70 1.39

R1c (5, 6) 3.47 1.45 1.27 1.85

a The energy of trans-ethanol plus hydroxyl radical is taken as zero of energy.
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for R1b used in the works by Galano et al.42 and Xu et al.43 are one of the hydrogen-
bonded structures according to the hydroxyl group orientation shown in their
figures. The structures of the saddle points used in the work by Sivaramakrishnan
et al.40 are not clear since neither figures nor coordinates are provided in the paper.
However they40 do remark about R1b saddle points that ‘‘Our calculations find that
the H-bonded saddle point lies 1.4 kcal mol�1 higher in energy than the geometry of
Xu and Lin and also has significantly less entropy.’’ This remark is contradictory to
our findings and also is contradictory with the common expectation that an H bond
usually lowers conformational energy. Even if the previous studies used the lowest-
energy saddle point, they would still incur error from using only one structure42 or
from including other structures only by uncoupled one-dimensional treatments of
torsions.40,43

Table 2 lists the calculated energies of the saddle points with various density func-
tionals using the 6-31+G(d,p) basis set. The purpose of using such a small basis set
with density functional theory is to find an efficient and affordable method for direct

View Article 
Fig. 5 The lowest-energy vibrationally adiabatic ground-state potential energy ~U1 curves for
each of reactions R1a–R1c. The ~U1 curves of reaction R1b are calculated by using density func-
tional integration grids that have 96 radial shells around each atom and a spherical product
angular grid having 32 q points and 64 4 points in each shell in the integrations. The ~U1 curves
of R1a and R1c are calculated by using density functional integration grids that are pruned
from grids having 99 radial shells around each atom and 974 angular points in each shell.

This journal is ª The Royal Society of Chemistry 2012 Faraday Discuss., 2012, 157, 59–88 | 75
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Fig. 6 The highest ten frequencies along the reaction paths of R1a–R1c calculated by the
M08-HX/6-31+G(d,p) method. The frequencies are scaled by a factor of 0.972 by scaling all
Hessian elements as explained in the text. These paths are the lowest-energy paths of each reac-
tion. For the R1c reaction, two frequencies that remain almost constant between 2800 cm�1 and
3300 cm�1 are removed for better visualization.
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dynamics calculations. The barrier heights by the M08-HX/6-31+G(d,p) method are
in agreement with the best estimates of barriers within 0.2 kcal mol�1. Therefore the
M08-HX/6-31+G(d,p) method is used for straight direct dynamics calculations
except where specified otherwise.
III. B. Generalized normal modes

In order to calculate variational effects, we need to calculate GT,k as a function of s,
and in order to calculate tunneling probabilities we need to calculate ~Uk as a func-
tion of s. These are calculated in the quasiharmonic approximation from generalized
normal mode frequencies calculated in curvilinear coordinates17,96 (which means that
the facets of Fig. 1 are actually curved).
In our generalized normal mode analyses, a set of non-redundant internal coordi-

nates is used, in particular, 10 bond stretches, 13 bond angles, and 4 dihedral angles
(each dihedral angle corresponds to a torsion mode).
One interesting question is howmany torsions there are in the saddle points of R1a–

R1c. In this work, four internal rotations, namely those around the C1–O and C1–C2
76 | Faraday Discuss., 2012, 157, 59–88 This journal is ª The Royal Society of Chemistry 2012
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Table 3 Torsional anharmonicity factorsa of ethanol and three transition states

T/K FMS,E FT,E FMS-T,E FMS,R1 FT,R1 FMS-T,R1 FMS,R2 FT,R2 FMS-T,R2 FMS,R3 FT,R3 FMS-T,R3

200 2.6 1.2 3.1 4.4 1.1 4.8 6.7 1.1 7.4 4.4 1.2 5.1

250 2.7 1.2 3.3 4.4 1.1 4.9 7.4 1.1 8.4 4.9 1.2 5.9

298 2.7 1.2 3.4 4.4 1.1 5.0 8.4 1.2 9.8 5.3 1.2 6.6

300 2.7 1.2 3.4 4.4 1.1 5.0 8.5 1.2 9.9 5.3 1.2 6.6

400 2.8 1.3 3.6 4.4 1.2 5.3 11.9 1.2 13.9 5.9 1.3 7.8

500 2.9 1.3 3.7 4.4 1.3 5.7 16.4 1.1 18.2 6.3 1.4 8.7

600 2.9 1.3 3.7 4.4 1.3 6.0 21.3 1.0 22.2 6.7 1.4 9.4

700 2.9 1.3 3.7 4.5 1.4 6.2 26.4 1.0 25.6 6.9 1.4 10.0

800 2.9 1.2 3.6 4.5 1.5 6.5 31.5 0.9 28.3 7.1 1.5 10.4

900 3.0 1.2 3.6 4.5 1.5 6.7 36.4 0.8 30.4 7.3 1.5 10.7

1000 3.0 1.2 3.5 4.5 1.5 6.9 41.0 0.8 31.9 7.4 1.5 10.9

1500 3.0 1.0 3.0 4.5 1.7 7.4 60.3 0.6 34.0 7.9 1.4 10.8

1800 3.0 0.9 2.8 4.5 1.7 7.5 69.0 0.5 32.8 8.1 1.3 10.3

2000 3.0 0.9 2.7 4.5 1.6 7.4 74.0 0.4 31.7 8.1 1.2 9.9

2400 3.0 0.8 2.4 4.5 1.6 7.1 82.2 0.4 29.0 8.3 1.1 9.0

a Geometries and Hessians are calculated by the M08-HX/6-31+G(d,p) method and energies

are calculated by the CCSD(T)-F12b/may-cc-pVQZ method.

Table 4 Reaction torsional anharmonicity factors calculated by eqn (10)

T/K R1a R1b R1c

200 1.6 2.4 1.7

250 1.5 2.6 1.8

298 1.5 2.9 1.9

300 1.5 2.9 1.9

400 1.5 3.9 2.2

500 1.5 5.0 2.4

600 1.6 6.0 2.6

700 1.7 7.0 2.7

800 1.8 7.8 2.9

900 1.9 8.6 3.0

1000 2.0 9.2 3.1

1500 2.4 11.1 3.5

1800 2.7 11.7 3.7

2000 2.8 11.9 3.7

2400 3.0 12.1 3.8
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bonds of ethanol and those around the C/H (or O/H in R1c) and O/H partial
bonds, are treated with torsional anharmonicity. The bond angle between the two
partial bonds involving the transferringHatom isnot linear; theC/H/Obondangles
of saddle points ofR1aandR1bare in the range of 152 deg to 172 deg, and theO/H/
O bond angles of saddle points of R1c are 144� and 145�. A linear bend would corre-
spond to two degenerate or nearly degenerate vibrational modes and one less torsion,
but no such degenerate or nearly degenerate modes are observed in the normal mode
analyses. For example, the C/H/O bending motion in the structure in which this
angle is 172 deg is mostly distributed over two normal modes, in each of which it is
mixed with other motions, and these modes have frequencies of 1161 and 984 cm�1.
The three reactions considered here, especially R1a, have quite low barriers so that

the potential energy curves in the vicinity of saddle points change quite slowly, and
the locations of the maxima of the vibrationally adiabatic ground state potential
This journal is ª The Royal Society of Chemistry 2012 Faraday Discuss., 2012, 157, 59–88 | 77
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curves or of the low-temperature generalized free energy of activation profiles
depend sensitively on converging the frequency calculations. Therefore, to calculate
a converged vibrationally adiabatic ground-state potential energy curve, it is essen-
tial to use a sufficiently fine grid for integration in the density functional calcula-
tions. The vibrationally adiabatic ground-state potential curves for the lowest-
energy saddle points (k ¼ 1) of the three reactions are shown in Fig. 5, as calculated
with the grids specified in subsection II. A. These curves show that the maxima are
located at a significant distance away from the conventional transition state (s ¼ 0)
in all three reactions. For example, the maximum of the ~U1 curve for R1a is at s ¼
�0.14 �A and is higher than the conventional transition state by 0.9 kcal mol�1. The
variational transition states of R1a are located between�0.18 �A and�0.15 �A for the
temperatures 200–2400 K. Fig. 6 shows the ten largest frequencies calculated by the
M08-HX/6-31+G(d,p) method along the lowest-energy reaction paths of reaction
R1a–R1c. One frequency (dashed line in red in Fig. 6) changes dramatically in the
vicinity of saddle point, in particular, this frequency decreases by 800 cm�1 from s
¼ �0.2 �A to s ¼ 0. This frequency is the vibration of the breaking bond that is
turning into the vibration of the making bond.

View Article 
III. C. Torsional anharmonicity

The MS-T method is applied to ethanol and the transition states of the three reac-
tions to account the torsional anharmonicity. In the MS-T calculations, the geome-
tries and Hessians are calculated by the M08-HX/6-31+G(d,p) method and energies
are calculated by the CCSD(T)-F12b/may-cc-pVQZ method. Table 3 lists torsional
anharmonicity factors calculated by eqn (6), (8), and (9) for ethanol and the three
transition states. Table 4 lists the reaction torsional anharmonicity factors calculated
by eqn (10) for the three reactions.
The torsional anharmonicity factors FMS–T for rate calculations are based on M08-

HX/6-31+G(d,p) geometries and Hessians even though kk and Gk are calculated by
using other potential energy surfaces in some cases. Note that Hessians obtained by
these two methods are scaled by their scaling factors that were optimized36 for ob-
taining accurate zero-point energy. We compared the FMS–T factors obtained by
using the CCSD(T)-F12a/may-cc-pVQZ//M08-HX/6-31+G(d,p) to those obtained
by using the CCSD(T)-F12a/may-cc-pVQZ//M05-2X/6-31+G(d,p) potential energy
surfaces and found that they differ by less than or equal to 12%, which is similar to
or smaller than the uncertainties of the dynamics methods. Therefore we conclude
that it is an acceptable approximation to use slightly different potential energy
surfaces for anharmonicity and for dynamics calculations.
In our previous study,64 we calculated partition functions of ethanol by using the

one-dimensional (1-D) torsional eigenvalue summation (TES) method for its
torsional modes. In ethanol, the two internal rotations are nearly separable in
internal coordinates (note that the normal modes of the two torsions are mixtures
of the two torsions), therefore the 1-D TES method in internal coordinates is appli-
cable to ethanol. The partition functions calculated by the MS-T method in this
work and the TES method used in previous work30 differ by about 22% at 200 K,
7% at 1000 K, and 3% at 2000 K. These differences are acceptable for treatment
of the torsions.
The internal rotations of the saddle points are strongly coupled together except for

the methyl group rotation of the R1a and R1c saddle points. The local periodicities
of the strongly coupled torsions are calculated by Voronoi tessellation.64,65 Fig. 7
shows a contour plot of the two-dimensional torsional potential energy surface of
the R1a transition state. The two dimensions are the H–O–C1–C2 dihedral angle
and H–O–H–C1 dihedral angle. Potential energies are calculated by the M08-HX/
6-31+G(d,p) method. The other geometrical parameters are fixed at saddle point 1
of this reaction. There are two minima on the potential energy surface. Note that
C1 is a chiral center, and the mirror images of these two minima cannot be generated
78 | Faraday Discuss., 2012, 157, 59–88 This journal is ª The Royal Society of Chemistry 2012
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Fig. 7 Two-dimensional contour plot of the torsional potential energy surface of the R1a tran-
sition state. The abscissa is the H–O–C1–C2 dihedral angle (in degrees) and the ordinate is the
H–O–H–C1 dihedral angle (in degrees). The potential energy (in kcal mol�1) is calculated by the
M08-HX/6-31+G(d,p) method. The other geometrical parameters are fixed at their values for
saddle point 1.
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by internal rotations. Fig. 7 shows that two separate 1-D rigid scans cannot yield the
correct number of minima. Even if a relaxed scan can follow the minimum-energy
path between the two minima, two relaxed scans will give the same information,
and the partition function will be overestimated. Therefore the transition state of
R1a gives a clear example of the inapplicability of a one-dimensional separable
approximation. Nevertheless this approximation is widely used in the literature
and has also been used for this reaction.40

If we let LH-SS-CVT denote the single-structure results in the quasiharmonic
approximation, then the factors in Table 4 give the ratio of MS-CVT to LH-SS-
CVT, and they also give the ratio ofMS-CVT/SCT to LH-SS-CVT/SCT. These ratios
range from 1.5 to more than an order of magnitude (12.1) with a median value of 2.7.
Furthermore the factor is significantly different for each reaction and therefore has an
important effect on product ratios. Thusmulti-structural torsional anharmonicity is a
significant factor that should not be neglected even for this small-molecule reaction.

III. D. MS-VTST reaction rate

The rate constants for the three reactions are calculated by using M08-HX/6-
31+G(d,p) and M08-SO/6-31+G(d,p) potential energy surfaces, respectively. The
calculated total rate constants of the three reactions are plotted in Fig. 8 together
with experimental data. We also calculated the branching fraction of the three reac-
tions and plotted them in Fig. 9. The calculated rate constants are fitted to a phys-
ically motivated four-parameter expression. This expression and its corresponding
activation energy are

k ¼ A

�
T þ T0

300

�n

exp

 
� EðT þ T0Þ
R
�
T2 þ T 2

0

�
!

(41)

Ea ¼ E
T4 þ 2T0T

3 � T 2
0 T

2�
T2 þ T 2

0

�2 þ nR
T2

T þ T0

(42)
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Fig. 9 Calculated branching fractions by M08-HX/6-31+G(d,p) (in black) and M08-SO/6-
31+G(d,p) (in red) methods.

Fig. 8 Total reaction rates of R1a–R1c. The rate constants shown as black or blue solid,
dotted, and dashed lines are calculated using M08-HX/6-31+G(d,p) potential energy surfaces.
The rate constants shown as a red dashed line are calculated usingM08-SO/6-31+G(d,p) poten-
tial energy surfaces.
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where A, n, E, and T0 are fitting parameters. Eqn (41) is very similar to the eqn (8) in
our previous work,97 but it is more physically meaningful for an exoergic or ergoneu-
tral reaction because it leads to a finite rate constant when T approaches 0 K, as it
should in those cases.98 Furthermore the activation energy becomes 0 at T ¼ 0 K.
The rate constants obtained by using the M08-HX/6-31+G(d,p) potential energy
surfaces are

k1a ¼ 7:033� 10�14

�
T þ 664:9

300

�2:931

exp

�
� 1:470ðT þ 664:9Þ
RðT2 þ 4:421� 105Þ

	
(43)

k1b ¼ 9:273� 10�14

�
T þ 299:5

300

�2:702

exp

�
� 1:682ðT þ 299:5Þ
RðT2 þ 8:969� 104Þ

	
(44)
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k1c ¼ 1:278� 10�14

�
T þ 205:5

300

�3:160

exp

�
� 0:3278ðT þ 205:5Þ
RðT 2 þ 4:224� 104Þ

	
(45)

All rate constants are in units of cm3 molecule�1 s�1. The rate constants calculated
by using the M08-SO/6-31+G(d,p) potential energy surfaces are

k1a ¼ 3:996� 10�10

�
T þ 1035

300

��0:07942

exp

�
� 8:209ðT þ 1035Þ
RðT2 þ 1:072� 106Þ

	
(46)

k1b ¼ 2:910� 10�12

�
T þ 650:3

300

�1:185

exp

�
� 3:632ðT þ 650:3Þ
RðT2 þ 4:228� 105Þ

	
(47)

k1c ¼ 1:576� 10�14

�
T þ 575:4

300

�3:075

exp

�
� 0:3118ðT þ 575:4Þ
RðT 2 þ 3:311� 105Þ

	
(48)

The M08-HX/6-31+G(d,p) potential energy surfaces are chosen for rate calcula-
tions because—among the small-basis-set calculations—they give barrier heights
closest to our best estimates (see Tables 1 and 2). The MS-TST rate constants shown
in Fig. 6 agree very well with the experimental data. The MS-TST rate constants
include the multi-structural torsional anharmonicity, but they locate the reaction
bottlenecks at the conventional transition states that are often not the true dynam-
ical bottlenecks along the minimum energy paths, and also they do not include the
tunneling contributions. The MS-CVT/SCT rate constants are much lower than the
MS-TST rate constants, and they are very close to the MS-CVT rate constants.
Therefore the difference between the MS-CVT/SCT and MS-TST rate constants is
mainly caused by the variational effect. The combination of a dramatic increase
of one frequency and slow changes of potential energies in the vicinity of saddle
point causes significant variational effects, e.g., for reaction R1a, CVT rates are
lower than TST rates by a factor 10, 5, and 2 at T ¼ 200, 300, and 2400 K, respec-
tively. The rate constants calculated by the M08-SO/6-31+G(d,p) potential energy
surface have some uncertainties due to the sensitivity of the frequencies to grids,
as discussed in Section III B. Using a sufficiently large grid in density functional
frequency calculations is especially important for large systems because some small
uncertainty in each vibrational frequency can lead to large accumulated errors in
large systems that involve a large number of vibrational modes.
Tunneling contributions are not large for these hydrogen-transfer reactions

because they all have quite low barrier heights, especially for reaction R1a. Note
that the zero-point inclusive barrier of reaction R1a at the conventional transition
state (saddle point) is lower than the reactant zero-point inclusive energy. If only
the ground-state reaction and the low-pressure plateau (see subsection II. D) were
considered, there would be no tunneling because it is reasonable to assume that reac-
tants are not stabilized to a weakly bound reactant complex well at low or medium
pressure (e.g., a few hundred torr35,39 or lower40 for most experiments that have been
conducted). However, the variational transition states of reaction R1a are higher in
energy than the reactant by about 0.5 kcal mol�1; therefore a small amount of
tunneling is obtained by the SCT method, e.g., tunneling transmission coefficients
are 1.2 at 200 K and 1.1 at 300 K, respectively. We note that if the reactant complex
were equilibrated with reactants, the energy levels that are below the zero-point
energy of the reactants would also need to be considered in the tunneling calcula-
tions, which would lead to larger tunneling contributions. This is a good place to

View Article 
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insert a caution about the ground-state tunneling approximation that has usually
been used for the transmission coefficient in past work and that is also used here.
The ground-state tunneling approximation assumes that the ground-state transmis-
sion coefficient is typical of all the transmission coefficients that make a significant
contribution to the reaction rate at temperatures low enough for tunneling to be
significant.15,90 However, for a case like the present one, this cuts off tunneling
due to the energetic threshold more severely than would be the case for higher-
energy states, and so actually one of those higher-energy states might be more
typical. This would not make a significant difference for reactions with high barriers,
but it is less valid for reactions with low barriers (small positive barrier or negative
barrier), such as the present one, for which using a higher-energy state to compute a
representative transmission coefficient would increase the calculated rate constant a
little at low temperature. We calculated the tunneling with the low energies present
and found that the MS-CVT/SCT rate constant for R1a would be increased by
factors of 1.8 and 1.2 at 298 and 500 K, respectively.
The MS-CVT/SCT rate constants by the M08-HX/6-31+G(d,p) method are much

lower than the experimental ones, although the barrier heights calculated by the
M08-HX/6-31+G(d,p) method agree very well with our best estimated values, and
important effects are taken into account in the dynamics calculations, in particular,
multi-structural torsional anharmonicity, the variational effect, and multi-dimen-
sional tunneling. What could cause this discrepancy between theory and experiment?
One possible cause is that our best estimates of barrier heights by coupled cluster
theory may be too high. Coupled cluster theory at the CCSD(T) level is usually
considered to have chemical accuracy, better than 1 kcal mol�1. In the present
case, the FBS correction using the CCSDT(2)Q method lowers the barrier heights
calculated by the CCSD(T) method, but the best estimates of the barriers may be still
higher than the accurate ones. Therefore we performed rate calculations using the
M08-SO/6-31+G(d,p) method, which gives 1 kcal mol�1 lower barrier than the
M08-HX/6-31+G(d,p) method. As shown in Fig. 8, the rate constants obtained by
the M08-SO/6-31+G(d,p) method agree with experimental data very well. We
conclude that the true barrier heights are between the values calculated by the
M08-HX/6-31+G(d,p) and M08-SO/6-31+G(d,p) methods.
Some other reasons for the discrepancy between theory and experiment could be

the presence of some stabilized pre-reaction complexes or imperfection of the
dynamics and the statistical methods. For example, vibrational modes except
torsional modes are still treated using a quasiharmonic approximation (harmonic
oscillator formulas with frequencies scaled to account for anharmonicity), torsional
barrier heights are obtained from local periodicities rather than calculated directly,
mode–mode coupling is not fully taken into account for nontorsional modes, and
tunneling contributions could be underestimated or overestimated by the SCT
method. Furthermore we assume that the torsional anharmonicity factor remains
the same at the variational transition state as at the conventional transition state.
The last-named issue is particularly troublesome in the present cases because we
observe a large variational effect for these reactions that is sensitive to the conver-
gence of the frequencies, but the reaction-path independence of the torsional anhar-
monicity factor has not been tested.

III. E. MP-VTST reaction rate

In the MP-VTST calculation of each reaction, the M08-HX/6-31+G(d,p) potential
energy surfaces are used and the recrossing and tunneling transmission coefficients
of all reaction paths are calculated explicitly. For comparison purposes, we also
calculate an averaged generalized transmission coefficient hgiP using eqn (25) by
considering some low-energy reaction paths for R1b. The calculated MP-CVT/
SCT rate constants for the three reactions respectively are
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k1a ¼ 8:265� 10�14

�
T þ 663:9

300

�2:869

exp

�
� 1:396ðT þ 663:9Þ
ðT2 þ 4:407� 105Þ

�
(49)

k1b ¼ 6:979� 10�14

�
T þ 327:6

300

�2:694

exp

�
� 1:890ðT þ 327:6Þ
ðT2 þ 1:073� 105Þ

�
(50)

k1c ¼ 1:285� 10�14

�
T þ 292:6

300

�3:123

exp

�
� 0:6030ðT þ 292:6Þ
ðT2 þ 8:562� 104Þ

�
(51)

The total MP-CVT/SCT rate constants of the three reactions are also plotted in
Fig. 8. The difference between MP-CVT/SCT rates and MS-CVT/SCT rates are
not noticeable at high temperatures, and they are about 15% at T ¼ 200 K.
Fig. 10 shows the recrossing transmission coefficients Gk, tunneling transmission

coefficients kk, and generalized transmission coefficients gk or hgi as calculated by
the M08-HX/6-31+G(d,p) method.
Reaction R1a has two pairs of saddle points that are close in energy with each

other. We find that hgi and g1 are very similar, and therefore a single reaction
path can represent the whole reaction very well for this reaction.
The saddle points are more diverse in energy and in geometry for reaction R1b

than for R1a and R1c. The corresponding reaction paths have quite different trans-
mission coefficients as shown in Fig. 10. We calculated the generalized transmission
coefficient g1 (corresponding to the reaction path corresponding the lowest-energy
saddle point), hgi8 (averaged over the eight reaction paths corresponding the eight
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Fig. 10 Recrossing transmission coefficient Gk, tunneling transmission coefficient kk, and
generalized transmission coefficient gk or hgi of each reaction that are calculated by the
M08-HX/6-31+G(d,p) method.
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Fig. 11 Calculated branching fractions by theMP-VTSTmethod (in black) and theMS-VTST
method (in red). In the MP-VTST calculations, transmission coefficients of all reaction paths
are explicitly calculated and the M08-HX/6-31+G(d,p) potential energy surfaces are used.
Notice that the two sets of results for R1c are not distinguishable on the plot because they
are in excellent agreement.
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lowest-energy saddle points), and hgi (averaged over all 14 reaction paths). At the
low temperature of 200 K, hgi8 and hgi are very close because the sum of the weights
of the eight lowest-energy paths is 94%, and the reaction is dominated by the reactive
flux through these eight saddle points. The difference between hgi8 and hgi becomes
larger at medium or high temperatures because the weight of those six highest-
energy paths increase rapidly when temperature increases. For instance, the weight
of the six highest-energy paths is 26% at 300 K, but it is 60% at 600 K. If we take the
full path-averaged MP-VTST rate constants (T ¼ 200–2400 K) as a benchmark for
reaction R1b, the MS-VTST (based on g1 calculated using the lowest-energy path)
rate constants have errors between 34% and 51%, and the MP-VTST rate constants
using hgi8 have errors between 4% and 22%.
The generalized transmission coefficients of the lowest-energy path of reaction

R1c are very close to the averaged ones except at low temperatures. The difference
between g1 and hgi is about 20% to 13% in the range of temperature from 200 to 250
K because the two highest-energy paths have relatively large tunneling transmission
coefficients, and the sum of the weights of these saddle points is 28%.
We plot the calculated branching fraction by the MS-VTST and the MP-VTST

methods in Fig. 11. The R1a and R1b branching fractions obtained by the MS-
VTST and the MP-VTST methods, respectively, differ by about 10%. The branching
fractions for R1c are almost the same by the two methods. The branching fractions
for R1a and R1b are in good agreement with a recent experiment41 in both magni-
tude and temperature dependence over the entire 300–600 K temperature range of
the measurement. The branching fraction for R1c has not been measured.41
IV. Concluding remarks

At this point we can recognize a hierarchy in the way that multiple structures and
variational transition states are treated in various formulations of transition state
theory. The most recent formulations, MS-VTST and MP-VTST (the latter formu-
lated previously for unimolecular reactions and here for bimolecular ones), occupy
an intermediate position between single-structure variational transition state
theory15,79,99, (called VTST, or, to emphasize the distinction, SS-VTST), which has
been used very successfully for small molecules, and ensemble-averaged variational
transition state theory100–102 (EA-VTST), which has been used successfully for
enzyme kinetics. EA-VTST is a multi-path method that could also be used for
nonenzymatic reactions in solution, which can also be treated by single-path
methods based on a potential of mean force.19,25
84 | Faraday Discuss., 2012, 157, 59–88 This journal is ª The Royal Society of Chemistry 2012
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Based on the reactions studied in this work, the MS-VTST method that uses a
transmission coefficient of a single reaction path to represent all reaction paths is
sometimes a good approximation to the MP-VTST method in which the transmis-
sion coefficients of all reaction paths or of the most important paths are calculated
explicitly. However, when a reaction has a set of saddle points that have diverse ener-
gies and geometries, the MP-VTST method with transmission coefficients averaged
(with appropriate Boltzmann weighting) over all reaction paths or over the lowest-
energy paths provides a better approach. More general conclusions on choosing the
MS-VTST or the MP-VTST and on the strategies of choosing reaction paths will
emerge as more diverse types of reactions are studied.
In general, one should be careful in viewing the agreement between experiment

and theory in reaction rate calculations. The present study shows an example where
agreement between theory and experimental data can be obtained by low-level calcu-
lations, while state-of-the-art theoretical methods lead to discrepancies. These
discrepancies show that further development of both electronic structure theory
and dynamics methods are needed to make reaction rate calculations more predic-
tive.
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