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ABSTRACT
The multi—variate optimal fingerprint method for the detection of an externally
forced climate change signal in the presence of natural internal variability is ex-
tended to the attribution problem. To determine whether a climate change signal
which has been detected in observed climate data can be attributed to a particular
climate forcing mechanism, or combination of mechanisms, the predicted space—time
dependent climate change signal patterns for the candidate climate forcings must be
specified. In addition to the signal patterns, the method requires input information
on the space-time dependent covariance matrices of the natural climate variability
and the predicted signal pattern errors. The detection and attribution problem is
treated as a sequence of individual consistency tests applied to all candidate forcing
mechanisms, as well as to the null hypothesis that no climate change has taken
place, within the phase space spanned by the predicted climate change patterns. As
output the method yields a significance level for the detection of a climate change
signal in the observed data and individual confidence levels for the consistency of
the retrieved climate change signal with each of the forcing mechanisms. A statist—
ically significant climate change signal is regarded as consistent with a given forcing
mechanism if the statistical confidence level exceeds a given critical value, but is
attributed to that forcing only if all other climate change mechanisms are rejected
at that confidence level. The analysis is carried out using tensor notation, with a
metric given by the natural-variability covariance matrix. This clarifies the relation
between the covariant signal patterns and their contravariant fingerprint counter-
parts. The signal patterns define the vector space in which the climate trajectories
are analyzed, while the fingerprints are needed to project the climate trajectories
onto this space. I

1 Introduction

There is mounting evidence that the global warming due to increasing atmo-
spheric greenhouse gas concentrations predicted by state—of—the—art coupled ocean—
atmosphere global circulation models (CGCMS) is beginning to emerge from the
background noise of natural climate variability (cf. summary in IPCC Second Assess-
ment Report, Santer et al, 1995b). However, much of the evidence is still qualitative
or circumstantial. There have been relatively few attempts to assign a quantitative
measure to the probability that a climate change signal distinct from natural climate
variability can be detected in observed climate data.

A basic obstacle for quantitative signal—to-noise analyses is that they require in-
formation on the space-time structure of both the predicted climate signal and the
climate variability. While the predicted signal properties can be inferred from model
computations, the estimation of the required space—time covariance structure of nat—
ural climate variability from model simulations and observations is more difficult.
Thus although general multi—variate theories for the optimal detection of a space-
time dependent climate change signal in the presence of natural climate variability
noise have now been developed (Hasselmann, 1979, Bell, 1982, 1986, Hasselmann,
1993, referred to in the following as H, North et al, 1995, North and Kim, 1995),



gives a summary of the results and presents some conclusions.

2 The detection problem

We review in this section briefly the multi—fingerprint method of multi-variate climate
change detection, following the approach of H for the general space-time dependent
problem, but returning — for better illustration of the interrelationship between
fingerprint and signal patterns — t0 the co- and contra-variant tensor notation of
Hasselmann’s (1979) earlier analysis of the spatial signal—to—noise problem (see also
Thacker, 1995).

Terminology

We shall use the term climate change in the following to denote the response of the
climate system to external forcing, as opposed to natural internal climate variability
generated by interactions within the climate system. According to this terminology,
climate variations due to volcanic activity or variations in the solar constant are
classed as (natural) climate change, rather than as climate variability. An alternat—
ive terminology refers to these variations also as natural variability, climate variab-
ility being regarded as a superposition of externally forced and internally generated
components, the term climate change being reserved for anthropogenic climate modi—
fications only. However, for the detection and attribution problem our definitions
will be found to be more convenient. Thus climate change in our terminology can
be of either natural or of anthropogenic orgin, while climate variability is always
natural. The definition loses precision if interactions between climate change and
internal natural climate variability are considered, but in our applications we shall
regard the climate state to first order simply as a linear superposition of climate
change and climate variability.

The present definitions are more consistent than alternative earlier attempts
to distinguish between climate change and climate variability on the basis of time
scales, or in terms of climate change ‘events’ as opposed to ‘continuous’ climate fluc—
tuations. In practice, the time scales of internal climate variability and externally
forced climate change overlap, so that for a given finite time scale it is not possible to
distinguish between ‘events’ and ‘continuous fiuctuations’. Indeed, the impossibility
of distinguishing between externally generated climate change and internal climate
variability on the basis of time scale considerations alone is the essence of the de—
tection and attribution problem.

We consider a vector time series ¢a(t) of climate data, which we assume can be
represented as a superposition

¢a = 452 + (in (1)

of a climate change signal qbä and a natural—variability component (id. The index
a refers to different types of climate data, e.g. temperature or precipitation, and
to the location or averaging region of the data. The data set can represent either
observed data or synthetic data from a model simulation. The climate vector d),l
need not represent a dynamically complete description of the climate state. In fact,



the covariance matrix Cij- Thus the Operations of index raising and lowering are
defined by

X'": = Cifffj'" (6)

The definition of the climate trajectory vector as a covariant vector is arbitrary in
the present context. The role of co- and contravariant variables can be interchanged.
We adopt here the original assignments of Hasselmann (1979).

For each trajectory 1b there exists a constant probability surface p2(1‚-b) =
Cijrfliiflj = const 2 Cijwiwj which contains the vector 1b. We consider then the
integral

P = /_ p(«2)')d«ß1mdvß„ (7)p2>p2

of the n—dimensional probability density over the region figwj) > p2(¢) outside the
surface p2(121) 2 {32(10) = const. If R, is small, 5%, say, the null hypothesis that
1b represents a realization of the natural variability ensemble is said to be rejected
with a risk of 15p. Conversely, a climate change signal is said to have been detected
in the data at a significance level of P = (1 — Pp) (95%).

Reduction of the detection space

In practice, this straightforward statistical detection test can be applied successfully
only if the vector dimension n of the climate state trajectory is small. Unfortunately,
the situation is normally just the reverse: the discretization of a set of time series
of gridded climate data will normally yield a vector lb of very high dimension. The
problem or many dimensions is that even a relatively large climate change signal
1&3 relative to the noise component in some given but unknown direction in phase
space cannot be detected in the presence of noise distributed over a large number
of other components. For successful detection and attribution, the dimension of the
detection space must be strongly reduced — ideally to a single dimension by specifying
the direction of the anticipated climate change signal, or to a small number of climate
change patterns if more than one candidate forcing mechanism is considered.

The impact of the number of dimensions on the detection power can best be
demonstrated by transforming to ortho-normal variables

w; = TM (8)
w” = raw, (9)

where T1] denotes the transposed inverse of the transformation matrix Ti] ,

Tijl = 6;. (10)

In the ortho—normal system, the covariance matrix and its inverse are transformed
to the unit co— and contra—variant matrices Iij and I”, respectively,

0;,- = <d21ß3>= Tim-‘0“ =' 1.,- (11)
0W = <1/3’iq/3'J‘ >= TWO“ = 1”. (12)



The optimal fingerprint

In the ortho—normal coordinate system, it is self-evident from the isotropic symmetry
of the problem that if the signal lies in the direction of the first coordinate, the uni—
variate detection test should also be carried out with respect to the first coordinate.
How does this result transform to a signal 1/)? oriented in some given guess-pattern
direction 9, in an arbitrary coordinate system? To estimate the amplitude of the
signal from the observed data 1/; in the general case we write

1% = dgi +111; (18)
where the coefficient d (the detection variable) is determined by the scalar multiplic—
ation of the observed data with a suitably defined fingerprint f,

d = firm, (19)
and wir is a residual which we wish to minimize.

It is common practice in many applications to determine the coefficient d by
minimizing the mean square error E, < (1/292 >. However, in the present case
this is not appropriate. Firstly, the mean square error is not invariant with respect
to linear transformations to other variables. Secondly, our goal for the purpose
of detection is to not to maximize the explained variance in a particular reference
system, but rather to maximize the squared signal-to-noise ratio d2/ < d2 > for an
arbitrary reference system, where J = fir/3,- is the detection variable determined by
the natural climate variability in the absence of a climate change signal. Since the
signal-to—noise ratio is independent of the scaling of d, for detection applications we
need to determine only the direction of the fingerprint. It was shown in H, and is
shown again trivially below (see also Hasselmann, 1979), that the maximization of
the signal-to-noise ratio yields the fingerprint

fi = Cijgj Egl- (20)

where the signal pattern and fingerprint can be normalized, without loss of general—
ity, such that

017-9i = 1, 0r (21)
Cijflf] = fi9i=1- (22)

Thus the optimal fingerprint represents the contravariant counterpart of the covari-
ant guess pattern. (We nevertheless use different symbols for the fingerprint and
signal rather than distinguishing the two only by the position of the index to em-
phasize the basic difference in the role of the two patterns. In the detection literature
this distinction is sometimes overseen.)

In the present co- and contravariant notation the result (20)-(22) follows immedi—
ately from the argument indicated above that in the special case of an ortho—normal
reference system, C,“ = I” 2 unit matrix, the fingerprint and signal pattern must
have the same directions for reasons of isotropic symmetry:

fu- 2 wg; = c'ijgg, (23>
7



of the guess patterns (applying the summation convention also to the indices 1/ of the
p guess patterns), the condition that the quadratic form ‚0T2 = p2(1‚bT)‚ cf. eq.(4), for
the residual is minimized (maximizing also the multi—variate signal-to-noise ratio for
the coefficient vector d = (d") ) yields as determining equations for the coeflicients
d" of the retrieved climate change signal the set ofp linear equations

Duudiu =si (V:1‚-.-‚P)‚ (29)

where _ „ _

ft = 013n (= 9,3) (30)
denotes the fingerprint of the V’th guess pattern, in analogy with the definition (20)
in the single pattern case, and

Dm = fßgm' = Cijguigm- (31)
The solution can be expressed in a concise form by introducing the operations of

index raising and lowering also for Greek guess-pattern indices, using as metric the
matrix Dy” defined by the scalar products of the signal patterns. Introducing the
covariant multi—pattern detection coefficients, given, in analogy with the definition
for the scalar single—pattern detection coefficient d, eq.(19), by

du = fir/Ii, (32)

the contravariant detection coefficients may be expressed as

d" = D'mfßwi = Jeni/1i, (33)

where DW‘ denotes the inverse of Du”,

DWDM : 6K. (34)

It follows from eq.(33) that DU“ represents the covariance matrix of the natural
variability components d“ of the contravariant detection coefficients,

DU“ =<d“d“>= fwfm <¢i¢j >= fuigi‘, (35)

while
- _ ‘

Dvu =< My >= mg wint- >= figm- (36)
represents the corresponding covariance matrix of the natural variability contribu-
tion of the covariant detection coefficients.

Depending on the context, the multi—pattern detection problem is seen to lead
to a detection vector which can appear either in a co- or a contravariant form with
respect to the metric Dwr We shall refer to the contravariant detection coefficients
d“, which appear in the original representation (28) of the climate trajectory in
terms of the signal patterns, as pattern amplitudes. The covariant detection coeffi-
cients du, defined by the straightforward generalization, eq.(32), of the expression
(19) for the scalar detection variable, will be termed simply the detection variables.
The detection variables are the variables which arise naturally in the multivariate



attributed to internal natural climate variability. For the attribution problem we
need to consider now further hypotheses regarding the cause of a detected climate
change. We assume there exist generally several candidate mechanisms 1/ = 1,. . . ‚p,
each of which is characterized by a predicted climate change signal. In contrast to
the detection problem, where we needed to know only the normalized directions g,
of the signal patterns, we specify now also the predicted amplitudes a“ of the signals.

To decide whether the climate change signal mal) inferred from observations is
consistent with a given signal Ihm") predicted from a model simulation, we must assign
to each predicted climate change signal an error covariance matrix — in analogy with
the natural variability covariance matrix required for the detection test. We assume
again that the error distributions are Gaussian. The consistency of the retrieved
climate change signal with the predicted signal is then tested by comparing the
difference between the two signals with the differences which could be expected
from the estimated signal errors. We shall be concerned only with the distinction
between different signals in the space spanned by the p predicted signal patterns.
Thus we need consider only the projection of the signal pattern errors in this signal
pattern space.

We assume that the p predicted Signal patterns are linearly independent and
therefore do indeed span a p-dimensional space. However, we can allow also addi-
tional forcing mechanisms which generate climate change signals lying in this space
(for example, by explicitly considering linear combinations of the p basic forcing
mechanisms, such as a combined greenhouse gas and aerosol forcing, cf. Hegerl et
al, 1996b). If the pattern amplitudes of such linearly combined climate change sig—
nals are prescribed, the attribution (or consistency) tests can be applied in the same
way to these signals as to the p base signals. Formally, one needs only to replace one
of the original base signals by the linear combination selected for the consistency
test (note that the signal patterns g, are assumed to be normalized by eq.(21), but
are not necessarily orthogonal).

The consistency test described in the following is carried out for each forcing
mechanism separately. The outcome can be that one, none, or some sub-set of the
forcings is consistent with the inferred climate change. If the observations are found
to be consistent with exactly one forcing mechanism, and the null hypothesis that
the retrieved climate change signal is consistent with natural climate variability is
rejected, the retrieved climate change is attributed to that mechanism.

3.1 Consistency and attribution tests

Having retrieved the observed climate change signal

1b” = d“g„‚ (43)

with pattern amplitudes (1“ given by the solutions of eqs. (29), we investigate now
for each proposed forcing mechanism 1/ whether the retrieved signal is consistent

with the predicted climate change signal

wm : a(y)g(„) (44)

11



For the consistency test we apply the same approach as in the detection test.
The null hypothesis is replaced now by the consistency hypothesis, and the retrieved
pattern amplitude vector by the difference amplitude vector. Apart from this change
in terminology, the concepts are identical to those introduced for the detection test.
For any given amplitude difference vector 60,) there exists a surface p? = const which
contains the vector. We consider then the integral

— " ”1 . . . ~pPpE — -/fi§>p2 pE (€04) (160/) dem (51)

of the p-dimensional probability density p6 over the region fiflém) > pg(6(„)) outside
the surface {33(E(,,)) = p§(e(,,)) 2 must.

If P,,, is small, 5%, say, the hypothesis that the retrieved climate change signal
is consistent with the forcing mechanism 1! is said to be rejected with a risk of p,
or at a significance level of P E = (1 — Ppc) (95%).

We note that a positive outcome of the statistical detection test (i.e. the rejection
of the null hypothesis) is formally analagous to a negative outcome of the consistency
test (i.e. the rejection of the consistency hypothesis). A positive outcome of the
consistency test should therefore be expressed formally in the double negative form
that the retrieved climate change signal is not inconsistent with the proposed forcing
mechanism at a given significance level P. However, if the chosen significance level P
is high, 95%, say, this statement is rather weak (a high significance level is normally
chosen to yield a strong statement for the converse case that the attribution test
is rejected). To avoid the cumbersome double negative wording, while at the same
time conveying more accurately the statistical significance of a positive outcome of
a consistency test, we shall replace the statement that ‘a retrieved climate change
signal is not inconsistent with a given forcing mechanism at a significance level of P
(95%)’ by the simpler positive statement that ‘a climate change signal is consistent
with the forcing mechanism within the P (95%} confidence region’ (in analogy with
the terminology of power spectral analysis) or ‘at a confidence level of P (5%)’.
Note that the stringency of the consistency test increases with decreasing P or
increasing P. For P —> 0, the confidence region contracts to zero, requiring zero
error between the retrieved and predicted pattern amplitudes for a positive outcome
of the consistency test, while the confidence level P for a consistent signal increases
to 100%. For the acceptance of a consistency test as positive, it will generally
be advisable to select a consistency confidence level somewhat higher than 5%, of
the order of 10% - 20%. Still higher confidence levels, however, incur the risk of
erroneously rejecting valid attributions.

As outcome of the combined multi—pattern detection/attribution exercise we can
then assign a statistical significance level, defined by eq.(42), for the detection of a
climate change signal within the space spanned by the p predicted signal patterns;
and a consistency confidence level for each proposed climate change mechanism 12,
defined, in analogy with the risk associated with the null hypothesis, by eq.(51).

The result of the test will consist generally of one of the following combinations
(cf. Figure 1):

1. A statistically significant climate change signal a consisting of a superposition
of predicted climate change signals is detected in the observed data at a given
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5. The retrieved climate change signal 6 is not statistically significant and the
retrieved climate change signal is not consistent with any of the predicted
signals.

We note that the attribution of a detected climate change signal to a particular
forcing mechanism is successful only in the first of these possible outcomes.

One can consider various modifications of the test procedure outlined above.
Rather than determining the retrieved climate change signal in the p-dimensional
space of all proposed signal patterns, the detection and attribution test can be
carried out as a single-pattern analysis separately for each individual mechanism
(yielding the same set of possible test outcomes). This has the advantage of enhan-
cing the probability of detection of any given forcing signal. However, it provides
less discrimination between competing mechanisms when the signal patterns are not
orthogonal. The signal pattern a of Figure 1, for example, fails the consistency
test for the forcing mechanism 2 in the full signal pattern space, but would pass an
individual pattern consistency test for this process (as is apparent from a visual pro—
jection of the retrieved signal vector onto the direction of the signal pattern 2). Thus
in contrast to the two-pattern analysis, a unique attribution is no longer achieved
in this case using individual single pattern consistency tests (see also the similar
example discussed in Hegerl et al, 1996b)).

Another modification is suggested if one of the predicted signals is consistent
with a zero amplitude with acceptable probability, and the detection/attribution
test also returns a small amplitude for that signal. One can then repeat the test
leaving out that forcing mechanism, in the expectation that the significance and
confidence levels for the detection and attribution of the other signals are thereby
enhanced.

We note, however, that in our formulation of the attribution problem we have
not considered the possibility that a proposed forcing mechanism, once introduced,
simply does not exist. A proposed mechanism can only be rejected as not consist—
ent statistically with the observations, or the retrieved signal, although consistent
statistically with the predicted signal, can be so small that it is nevertheless not
distinguishable statistically from zero.

To establish an optimal trade-off between a high detection significance level (re—
quiring a small number of patterns) and the ability to discriminate between different
competing climate forcing mechanisms (requiring a larger number of patterns), one
can apply also a series of detection/attribution tests at different levels, each success-
ive level involving an increase in the number of patterns. A similar optimal trade-off
between statistical significance and the number of predictors has been applied in the
construction of a hierarchy of statistical linear prediction models from a finite data
set, cf. Barnett and Hasselmann (1979).

3.2 Maximum likelihood estimate of the climate change signal

If a detected climate change signal has been successfully attributed to a particular
forcing mechanism 1/, one may ask whether the climate change signal retrieved from
the observations is necessarily the best estimate of the climate change signal. The
retrieved signal is determined by projection of the observed climate trajectory onto
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climate change signal is always trivially consistent in this limit to the proposed for—
cing mechanism, since the retrieved climate change signal will always lie within the
very large error bounds of the prediction.

The opposite limit of large ELK} compared with DM)‘, i.e. very accurately determ—
ined differences between the predicted and retrieved pattern coefficients relative to
the statistical errors in the retrieved optimal—detection pattern coefficients, formally
yields the solution

dry, = 65m“), (54)
i.e. the maximum likelihood signal is identical to the predicted signal. However,
this limit is unaccessable, since the errors in the differences between the predicted
and retrieved pattern amplitudes are always larger, according to eq.(47), than the
statistical errors in the retrieved optimal-detection pattern coefficients. The largest
values of Egg) are obtained when the model errors M6,); vanish, so that eq.(47) yields

E63 2 Di”. In this case eq.(53) reduces to

2D„)\df\„) = du + Duo/WM' (55)

Multiplication from the left with DU“ yields the solution

da) = ä (d0 + 55¢”) , (56)

i.e. the maximum likelihood solution is given by the mean of the predicted and
original retrieved solution.

In practice, neither limiting case will apply, and the maximum likelihood solution
will lie somewhere between the original retrieved climate change signal and the
limiting, maximally modified solution (56) (cf. Figure 1, signal vector ml).

4 Summary and conclusions

The general multi—pattern optimal fingerprint method for the detection of a space—
time dependent climate change signal in the presence of natural climate variability
can be readily extended to the problem of attribution. A c0— and contra-variant
tensor notation, based on a metric given by the space-time dependent covariance
matrix Cij of the natural climate variability, simplifies the analysis considerably.
The optimal fingerprint patterns f; for detection are identified as the contravariant
counterparts of the covariant signal patterns, f3 = Cijguj = 9,1,. For the multi-
pattern problem it is useful to introduce a second metric Dy,“ defined by the scalar
products Dm = gm-gujCij, in the p—dimensional space of signal patterns 9%. The
covariant detection variables du = fir/J,- represent then the simplest set of coefficients
for establishing the detection significance level, while the contravariant coefficients
(1" = Dwdu, which require the inversion of the metric D1,”, define the amplitudes
of the signal patterns 9,, estimated from the observed data. The matrices Dun and
Du“ represent also the covariance matrices of the natural variability of the co— and
contravariant detection coefficients, respectively.
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