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ABSTRACT Previously works on analysing imperfect electricity markets have employed conventional

game-theoretic approaches. However, such approaches necessitate that each strategic market player has full

knowledge of the operating parameters and the strategies of its rivals as well as the computational algorithm

of the market clearing process. This unrealistic assumption, along with the modeling and computational

complexities, renders such approaches less applicable for conducting practical multi-period and multi-

spatial equilibrium analysis. This paper proposes a novel multi-agent deep reinforcement learning (MA-

DRL) based methodology, combining multi-agent intelligence, the deep policy gradient (DPG) method, and

an innovative long short term memory (LSTM) based representation network for optimizing the offering

strategies of multiple self-interested generation companies (GENCOs) as well as exploring the market

outcome stemming from their interactions. The proposed approach is tailored to align with the nature of the

examined problem by posing it, for the first time, in multi-dimensional continuous state and action spaces,

enablingGENCOs to receive accurate feedback regarding the impact of their offering strategies on themarket

clearing outcome, and devise more profitable bidding decisions by exploiting the entire action domain, and

thereby facilitates more accurate equilibrium analysis. The proposed LSTM-based representation network

extracts discriminative features which further improves the learning performance and thus promises more

profitable offerings strategies for each GENCO. Case studies demonstrate that the proposed method i)

achieves a significantly higher profit than state-of-the-art RLmethods for a single GENCO’s optimal offering

strategy problem and ii) outperforms the state-of-the-art equilibrium programming models in efficiently

identifying an imperfect market equilibrium with / without network congestion. Quantitative economic

analysis is carried out on the obtained equilibrium.

INDEX TERMS Deep neural networks, deep reinforcement learning, electricity markets, equilibrium

programming, imperfect competition, multi-agent intelligence, strategic offering.

NOMENCLATURE

A. INDICES AND SETS
t ∈ T Index and set of trading days.

h ∈ H Index and set of hours.

n,m ∈ M Indexes and set of nodes.

Mn Set of nodes connected to node n through

a transmission line.

The associate editor coordinating the review of this manuscript and
approving it for publication was Qiuhua Huang.

i ∈ I Index and set of generation companies (GENCO).

i− Index of GENCOs other than i.

j ∈ J Index and set of demands.

In, Jn Set of GENCOs and demands connected to

node n.

b ∈ B Index and set of generation blocks.

B. PARAMETERS
NH Length of market horizon.

Fn,m Cpacity of transmission line (n,m) (MW).
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xn,m Reactance of transmission line (n,m) (p.u.).

λGi,b Marginal cost of block b of GENCO i (£/MWh).

oi Upper limit of strategic offering variable of

GENCO i.

gi,b Maximum power output limit of block b of

GENCO i (MW).

RUi ,RDi Ramp up / down limit of GENCO i (MW).

Dj,h Power input of demand j at hour h (MW).

C. VARIABLES
θn,h Voltage angle at node n and period h (rad).

oi,h Strategic offering variable of GENCO i at hour h.

gi,h,b Power output of block b of GENCO i

at hour h (MW).

λn,h Locational marginal price at node n

hour h (£/MWh).

I. INTRODUCTION

A. BACKGROUND AND MOTIVATION

The main motivation behind the deregulation of the elec-

tricity industry involves the unbundling of vertically inte-

grated utilities and the introduction of competition in the

generation and supply sectors of the industry in order to

reduce the total system costs [1]. However, electricitymarkets

are still characterized by a small number of large players.

Therefore, these markets are better described as imperfectly

rather than perfectly competitive. In this setting, market

players do not necessarily act as price-takers. In particular,

generation companies (GENCOs) occupying a large share

of the market and / or strategically located in the transmis-

sion network are able to manipulate the electricity prices

and increase their profits beyond the competitive equilibrium

levels, through strategic offering. In other words, they act as

price-makers and do not reveal their actual operating charac-

teristics in their offers to the market but rather misreport them

to increase their economic profits. This results in adverse

consequences including increased prices and loss of market

efficiency [1], [2].

Game-theoretic modeling approaches constitute the most

common ones in the literature to study imperfect electricity

markets. These approaches, depending on the modeling of

one GENCO’s behavior in relation to the behavior of his

competitors, can be broadly classified into two categories:

i) single GENCO’s optimization models, which neglect the

strategic interaction with the other GENCOs (i.e. treating the

latter’s strategies as fixed parameters) and ii) equilibrium pro-

grammingmodels, which take into consideration the strategic

interactions of all GENCOs.

In the first category, the decision-making process of a sin-

gle strategic GENCO is usually modelled through a bi-level

optimization model [3]–[5] which captures the interaction

between the strategic player (modelled in the upper level

(UL)) and the competitive clearing of the market (modelled

in the lower level (LL)). Bi-level optimization problems are

usually solved after transforming them to single-level math-

ematical programs with equilibrium constraints (MPEC),

through the replacement of the LL problem by its equivalent

Karush-Kuhn-Tucker (KKT) optimality conditions. An alter-

native approach to the above problem is to model the market

clearing price at each hour as a function of the demand using

a price-quota curve (or an inverse demand curve) [6]. How-

ever, the parameters of this function are determined based on

exogenous data and therefore cannot accurately capture the

impact of GENCOs’ offering strategies on the formation of

the market clearing prices, as opposite to the case with bi-

level optimization models where the prices are endogenously

determined in the LL problem.

In the second category, equilibrium programming models

are employed when each GENCO takes into account the

strategic behavior of its competitors. Such models aim at

analysing the market outcome stemming from the interac-

tions of multiple price-making GENCOs. The Bertrand (for

modeling price game) [7], Cournot (for modeling quantity

game) [8] and supply function equilibrium (SFE) models [9]

constitute different imperfect equilibrium models reported

in the literature. Furthermore, different computational tech-

niques have been developed for computing the imperfect

equilibrium. Authors in [10]–[13] formulate the problem

by replacing each GENCO’s MPEC problem by its KKT

optimality conditions and and concatenate them together,

resulting in a set of nonlinear constraints known as equilib-

rium problem with equilibrium constraints (EPEC). An iter-

ative diagonalization algorithm (DIAG) is used in [14]–[17]

to identify the imperfect equilibrium, in which each GENCO

solves its own MPEC problem treating the strategies of the

rest of the GENCOs as fixed, until the algorithm converges

to a fixed market outcome. Furthermore, authors in [18]

introduce the concept of extremal market equilibrium and

formulate it into a mixed integer linear program (MILP)

which provides an approximation of original EPEC

problem.

Despite the theoretical soundness of the conventional

game-theoretic modeling approaches, they suffer from sev-

eral drawbacks. First of all, the inherent non-convexities and

non-linearities presented in these models (due to the vast

number of complementarity conditions and the mixed-integer

linearization of some bilinear terms in these models [19]) ren-

der them very hard and computationally expensive to solve.

Furthermore, such modeling and computational challenges

are exacerbated in the multi-period and network-constrained

framework investigated in this paper since the number and

dimension of the decision variables (and therefore the com-

plexity of the optimization problems) are increased consid-

erably on the account of modeling these practical aspects of

the market. Secondly, such approaches assume that GENCOs

have full knowledge of the operating parameters and the

strategies of its competitors as well as the computational

algorithm of the market clearing process, which generally

constitute a very limiting and unrealistic assumption. Lastly,

such approaches discard the benefits (or the accumulated

experiences) of learning from GENCOs’ repeated (daily)

interactions with the market clearing process [20].
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Driven by the extensive complexity of the electricity mar-

kets and the high importance for a competitive economy,

significant efforts have been made in developing new mod-

eling approaches to facilitate more efficient and accurate

equilibrium analysis. A very promising one of which is

the agent-based and reinforcement learning (RL) approach,

which recently has attracted increasing research attention,

driven by the rapid advancements in artificial intelligence.

In this modeling framework, strategic GENCOs (agents) are

capable of learning their optimal strategies (actions) by uti-

lizing experiences acquired from repeated interactions with

the market clearing process (environment). In other words,

GENCOs do not rely on any knowledge of the computational

algorithm of the market clearing process and the operating

parameters and offering strategies of their competitors, but

only on their own operating parameters, the observed market

clearing outcomes (e.g. the clearing prices and dispatches)

and the publicly available information on the market condi-

tion (e.g. the load forecasts). Furthermore, such approaches

avoid the significant modeling and computational complexity

posed by traditional equilibrium programming models.

In this area, previous works [21]–[29] have employed con-

ventional Q-learning algorithm and its variants [30]. This type

of algorithms, however, suffers severely from the curse of

dimensionality since it relies on look-up tables to approxi-

mate the action-value function for each possible state-action

pair. This necessitates that the learning problem being set up

in discrete state and action spaces, rendering it intractable as

the number of possible states / actions grows large or their

spaces are continuous. In the examined market problem,

however, states of the environment and agents’ actions are

not only continuous, but also multi-dimensional (due to the

multi-period nature of the problem). In this context, naïve

discretization of the state space significantly reduces the

accuracy of the state representation of the environment, dis-

torting the feedback GENCOs receive regarding the impact of

their offering strategies on the clearing outcome, On the other

hand, naïve discretization of the action space may adversely

change the feasible action domain, leading to sub-optimal

offering strategies. Furthermore, this issue associated with

single GENCO’s optimization problem may also adversely

affect the determination of the market equilibrium as the

latter takes into account the interaction of multiple strategic

GENCOs, rendering the respective equilibrium analysis less

meaningful.

In the context of addressing such dimensionality

challenges, authors in [31] proposed the deep Q net-

work (DQN) method which employs a deep neural net-

work (DNN) to approximate the action-value function, and

has achieved expert human-level performance in playing

Atari 2600 games. However, although previous work has

validated good performance of the DQN method in problems

with continuous state spaces, it exhibits less satisfactory

performance in problems with continuous action spaces

since the employed DNN is trained to produce discrete

action-value estimates rather than continuous actions [32].

This significantly impedes its effectiveness in tackling the

examined market problem, since the GENCOs’ actions are

continuous and multi-dimensional.

B. SCOPE AND CONTRIBUTIONS

This paper aims at addressing the limitations of state-of-

the-art game-theoretic and RL methods by proposing a

novel multi-agent deep reinforcement learning (MA-DRL)

based methodology, namely, the deep policy gradient (DPG)

methodwith an innovative Long-short TermMemory (LSTM)

based representation network, for optimizing the offering

strategies of multiple self-interested GENCOs as well as

exploring the market outcome stemming from their interac-

tions. Case studies demonstrate the value of the proposed

methodology by comparing it against state-of-the-art game-

theoretic and RL methods in facilitating multi-period, multi-

spatial market equilibrium analysis.

More specifically, the novel contributions of this paper are

outlined below:

- A novel MA-DRL based methodology, namely MA-

DPG-LSTMmethod, combining multi-agent intelligence and

a DPG-LSTM method, is developed to address the examined

problem. The proposed approach is tailored to align with the

nature of the examined problem by establishing it in multi-

dimensional continuous state and action spaces, enabling

strategic GENCOs to receive accurate feedback regarding

the impact of their bidding decisions on the market clearing

outcome, and devise more profitable bidding decisions by

exploiting the entire action domain. To the best of the authors’

knowledge, this is the first time that an equilibrium program-

ming problem is addressed with the consideration of both

multi-dimensional continuous state and action spaces using

a MA-DRL based approach.

- An LSTM-based representation network is proposed to

extract discriminative features from raw data on the mar-

ket condition and clearing outcome, which contributes to

enhancing the learning performance of the proposed method.

Furthermore, an experience reply buffer has been proposed to

break the temporal correlations existed in the consecutively

generated training samples and enhance sampling efficiency.

- Case studies on a test market with day-ahead horizon

and hourly resolution, operating over the IEEE Reliability

Test System demonstrate that, for a single GENCO’s optimal

offering strategy model, the proposed method achieves a

significantly higher profit than state-of-the-art RL methods

(Q-learning, DQN, and DPG) and approximates very closely

the profit obtained by the conventional bi-level/MPEC

approach which provides the benchmark solution.

- For the computation of the imperfect market equilib-

rium, case studies demonstrate that the proposed method out-

performs state-of-the-art equilibrium programming models

(EPEC, diagonalization, and MILP approaches) in efficiently

identifying a multi-period and / or multi-spatial imperfect

market equilibrium. Quantitative economic analysis is con-

ducted on the obtained equilibrium in the absence / presence

of network congestion.
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C. PAPER STRUCTURE

The rest of this paper is organized as follows. Section II

presents the formulation of examined market modeling

problem. Section III details the proposed MADRL-based

methodology. Section IV presents case studies validating

the proposed methodology. Section IV presents case studies

validating the proposed methodology. Finally, Section V dis-

cusses conclusions and future work of this work.

II. MARKET MODELING PROBLEM FORMULATION

A. PROPOSED MULTI-AGENT MARKET ARCHITECTURE

The examined market is modeled as a multi-agent system

with GENCOs as agents. Before a trading day t begins,

the market operator (MO) announces the 24-hour load fore-

cast for day t + 1. On day t , GENCOs are required to

submit their supply offers to the MO. Based on the collected

supply offers, the MO performs the market clearing (refers

to the market clearing model presented in Section II-C).

Subsequently, theMO publishes the market clearing outcome

comprising of locational marginal prices (LMP) and genera-

tion dispatches to the GENCOs.

B. GENERATION COMPANY MODEL

For clarity reasons and without loss of generality, we assume

that each GENCO owns a single generation unit. However,

the model can be readily extended to allow GENCOs owing

multiple generation units. The variable production cost of

GENCO i at hour h is represented by a piece-wise linear cost

function as:

Ci,h,b(gi,h,b) = λGi,bgi,h,b (1)

By taking the derivative on both side of (1), the marginal

cost (2) expresses the step-wise offer curve (consisting of a

number of blocks) that GENCO i submits to the market at

each trading day.

MCi,h,b(gi,h,b) = λGi,b (2)

GENCOs generally exercise market power through either

submitting offers higher than their true marginal costs (i.e.

economic withholding) or offering less that than their true

generation capacity (i.e. physical withholding) to the mar-

ket [2]. In this paper, GENCO can exercise market power

considering a combination of both economic and physical

withholding, in which case the strategic marginal cost func-

tion is expressed by (3), where the value of the decision

variable 1 ≤ oi,h ≤ oi,∀h represents the strategic behavior

of GENCO i at hour h.

MCs
i,h,b(gi,h,b) = oi,hλ

G
i,b (3)

If oi,h = 1, GENCO i behaves non-strategically and reveals

its truemarginal costs λGi,b,∀b to theMO at hour h. Otherwise,

if 1 < oi,h ≤ oi, GENCO i behaves strategically and reveals

higher than its true marginal costs (oi,h ∗ λGi,b,∀h,∀b) to the

market at hour h. GENCO i should determine the value of

oi,h at hour h by optimally trading off higher market prices

and lower electricity production. In other words, a higher

oi,h contributes to increasing market prices at h, but at the

same time it contributes to decreasing the quantity sold by

GENCO i at h, since GENCOs with lower submitted offers

may replace i in the merit order. The DRL method presented

in Section III-E provides an effective tool for individual price-

maker GENCO to learn an optimal offering strategy oi,h from

its repeated interactions with the market clearing process,

based solely on its own operating parameters and the publicly

available information announced by the MO.

In a multi-agent context, multiple self-interested profit-

driven GENCOs tend to behave non-cooperatively with a

target of exercising their individual market power, the nature

of market competition in this context is oligopoly (as each

GENCO usually owns a relatively large market share) and

can be modeled as a non-zero-sum stochastic game [22], for

which the underlying state transition is a Markov Chain and

can be modeled as aMarkov Decision Process (MDP).

C. MARKET OPERATOR MODEL

The modeled market is a pool-based, energy-only market

with a day-ahead horizon and hourly resolution. Following

the model employed in [4]–[6], [9]–[12], [14]–[18], [22],

[24]–[26], [28], [29], the market is cleared through the solu-

tion of an network-constrained economic dispatch problem

(4)-(11) target at minimizing the total generation cost; in

order to account for the effect of the transmission network,

the market clearing process incorporates a DC power flow

model which yields LMP λn,h for each node n and hour h.

min
V LL

∑

i,h,b

oi,hλ
G
i,bgi,h,b (4)

where

V LL = {gi,h,b, θn,h} (5)

subject to:

∑

j∈Jn

Dj,h −
∑

i∈In,b

gi,h,b +
∑

m∈Mn

θn,h − θm,t

xn,m
= 0,∀n,∀h (6)

0 ≤ gi,h,b ≤ gi,b,∀i,∀h,∀b (7)

−RDi ≤
∑

b

gi,h,b −
∑

b

gi,(h−1),b ≤ R
U
i ,∀h < NH (8)

−Fn,m ≤
θn,h − θm,h

xn,m
≤ Fn,m,∀n,∀m ∈ Mn,∀h (9)

−π ≤ θn,h ≤ π,∀n,∀h (10)

θ1,h = 0,∀h (11)

The MO’s objective (4) is to minimize the perceived total

system production costs as revealed by the GENCOs’ supply

offers. This optimization is subject to nodal demand-supply

balance constraints (6) (the dual variables of which constitute

the LMPs at each node and each time period), generation

capacity limits (7), time-coupling ramp rate constraints (8).

Limits on transmission line capacities and voltage angles of

nodes are enforced through constraints (9)-(10), respectively.

Finally, constraint (11) identifies n = 1 as the reference node.
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III. PROPOSED MULTI-AGENT DEEP REINFORCEMENT

LEARNING METHODOLOGY

A. RL BACKGROUND

As discussed in Section II, the market outcome with com-

petiting strategic GENCO agents is oligopolistic and can be

modeled as a MDP in which the learning behavior of each

agent is governed by an RL algorithm. In this context, each

adaptive agent interacts with a stochastic environment by

sequentially selecting actions over a sequence of time steps,

in order to maximize a cumulative reward.

Before introducing the proposed methodology, the pre-

liminaries of MDP and RL are first presented in this

section. An MDP compromises: 1) a state space S;

2) an action space A; 3) a transition dynamics distribu-

tion with conditional transition probability p(st+1|st , at ),

satisfying the Markov property, i.e., p(st+1|st , at ) =

p(st+1|s1, a1, ..., st , at ) in state-action spaces; and 4) a reward

function r : S ×A→ R.

The decision as to which action at is chosen in a certain

state st is governed by a stochastic policy π : S → P(A),

where P(A) is a set of probability measures on A and

π (at |st ) is the conditional probability at at associated with

the policy. The agent employs its policy to interact with the

MDP and emit a trajectory of states, actions and rewards:

s1, a1, r1, ..., sT , aT , rT over S × A × R. The return Rt =
∑T

l=t γ
(l−t)r(sl, al) is the total discounted reward from time-

step t onwards, where γ ∈ [0, 1] is the discount factor

that is used to trade off the importance between immediate

and future rewards. The agents’ goal through RL is to form

an optimal policy that maximises the cumulative discounted

reward from the start state t = 1, denoted by the performance

function J (π ) = E
[

R1|π
]

, then we can write it as an

expectation:

J (π ) =

∫

S

ρπ (s)

∫

A

π (a|s)r(s, a)dads

= Es∼ρπ ,a∼π [r(s, a)] (12)

where ρπ (s) denotes the discounted state distribution gov-

erned by the policy π .

B. RL FORMULATION OF THE MARKET MODELING

PROBLEM

In this section, we detail the RL formulation of the examined

market modeling problem, the key elements associated with

which are outlined as follows:

1) Agent: Each strategic GENCO i constitutes the agent.

2) Environment: The environment is represented by the

day-ahead market clearing algorithm carried out the MO,

as formulated in the optimization problem (4)-(11).

3) State: The state vector si,t serves as a feedback signal for

GENCO i regarding the influence of its offering strategy on

the status of the environment and is comprised of the market

clearing outcome for trading day t−1 and the load forecast of

day t+1 (both information is publicly available to GENCO i

on day t). Specifically, si,t = [gi,1:NH , λi,1:NH , di,1:NH ] ∈

Si is a 3 × NH -dimensional continuous vector where

gi,1:NH ∈ [0,
∑

b gi,b] and λ(n:i∈In),1:NH ∈ [0, λmax] represent,

respectively, the generation dispatches of GENCO i and the

LMPs for day t−1; and d1:NH =
∑

jDj,1:NH denotes the total

system demand forecast announced by MO for day t + 1.

4) Action: The action ai,t = [oi,1:NH ] ∈ Ai (encoded

in output layer of the proposed DPG network (Fig. 1)) of

GENCO i is a NH -dimensional continuous vector where

oi,h ∈ [1, oi] represents the NH strategic offering decisions

of GENCO i submitted to MO on day t .

5) Reward: The reward ri,t of the GENCO i resultant

from its offering strategy ai,t is set to be its economic

profit proi (13), given by the difference between its revenue

in the market and its operating cost.

proi =
∑

h,b

(λ(n:i∈In),hgi,h,b − λGi,bgi,h,b) (13)

C. BENCHMARK RL ALGORITHMS

1) Q-LEARNING

A popular method for RL is to make use of the action value

function (or the Q-value function) Qπ (s, a) = E
[

R1|s1 =

s, a1 = a;π
]

which forms an estimation of the expected total

discounted reward given an action at , at state st , and following

FIGURE 1. Workflow of proposed DPG-LSTM method.
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the policy π from the succeeding states onwards. An optimal

policy can be derived from the optimal Q-valuesQ∗(st , at ) =

maxπ Q
π (st , at ) by selecting the action corresponding to the

highest Q-value in each state. The Q-value function can be

described as a recursive format according to the Bellman

equation [30]:

Q(st , at ) = E[rt + γQ(st+1, π(at+1|st+1))] (14)

The Bellman equation indicates that the action value func-

tion under the current policy can be decomposed in terms

of itself. Namely, Q-value can be updated by bootstrapping,

i.e. we can improve the estimate of Q by using the current

estimate of Q through dynamic programming. This serves

as the foundation of Q-learning [33], a form of temporal

difference (TD) learning [30]. The update of Q-value after

taking action at in state st and observing the reward rt and

resulting state st+1 is:

Q(st , at ) = Q(st , at )+ αδt (15)

δt = rt + γ maxat+1 Q(st+1, at+1)− Q(st , at ) (16)

where α ∈ [0, 1] is the step size, δt represents the correction

for the estimation of the Q-value function (known as the TD

error), and rt + γ maxat+1 Q(st+1, at+1) represents the target

Q-value at time step t .

2) DEEP Q-NETWORK

To address the curse of dimensionality of Q-learning in multi-

dimensional continuous state space (Section I-A), the DQN

method [31] employs a DNN, parameterized by θ , which

takes as input a continuous state st and outputs an estimate

for the Q-value function (i.e. Q(st , at ) ≈ Q(st , at |θ )) for

each discrete action and, when acting, selects the maximally

valued output at a given state. The training of the DNN is

based on minimizing the following loss function representing

the mean-squared TD error:

L(θ ) = E[
(

rt + γ maxat+1 Q(st+1, at+1|θ )− Q(st , at |θ )
)2
]

(17)

D. PROPOSED DEEP POLICY GRADIENT NETWORK

Although DQN method has good performance in problems

with continuous state spaces, its performance in problems

with continuous action spaces is not satisfactory because the

employed DNN is trained to produce discrete action-value

estimates rather than continuous actions, which significantly

hinders its effectiveness in addressing the examined market

modeling problem, since market agents’ actions are continu-

ous and multi-dimensional.

In view of such challenges, policy gradient methods

are preferred driven by their ability to handle continuous

actions [32]. The main idea behind policy gradient method is

to adjust the parameter θ in the direction of the performance

gradient ∇θJ (πθ ), which is defined in the policy gradient

theorem [30], [32]:

∇θJ (πθ ) =

∫

S

ρπ (s)

∫

A

∇θπθ (a|s)Q
π (s, a)dads

=

∫

S

ρπ (s)

∫

A

πθ (a|s)
∇θπθ (a|s)

πθ (a|s)
Qπ (s, a)dads

=

∫

S

ρπ (s)

∫

A

πθ (a|s)∇θ logπθ (a|s)Q
π (s, a)dads

= Es∼ρπ ,a∼πθ
[∇θ logπθ (a|s)Q

π (s, a)] (18)

According to (18), to derive the policy gradient, one first

needs to take samples of a ∼ πθ (a|s) and compute the

estimated gradient as ∇θ logπθ (a|s)Q
π (s, a). Moving a in

the direction indicated by this gradient increases the log-

probability of choosing that a proportionate to the associated

action value function Qπ (s, a). In this paper, we use the

simple return Rt to estimate the value of Qπ (st , at ).

To this end, the deep policy gradient (DPG) network πθ is

a DNN, parameterized by θ , which takes as input a state st
and performs the policy improvement task which updates the

policy with respect to the estimated performance function J

and outputs πθ (at |st ),∀at ∈ A which denotes the probability

of take action at at state st . To update the DPG network,

the policy gradients are placed at the network’s output layer

and then back-propagated through the network.

Concerning the way of the policy improvement,

the approach employed in the Q-learning and DQN meth-

ods (Section III-C) involves a greedy maximization of the

Q-value function, i.e., π (st+1) = argmaxat+1 Q(st+1, at+1).

However, it is constructive to emphasize that in multi-

dimensional continuous action spaces, greedy policy

improvement becomes intractable as it necessitates maximiz-

ing the Q-value function globally. To address this challenge,

the DPG network poses a more computationally friendly

alternative which is to update agents’ policy in the direction

of the gradient of the performance function J , rather than

globally maximising the Q-value function.

During the learning process, state samples are generated

as the agent sequentially interacts with the environment,

suggesting that these samples are temporally correlated

and does not meet the independently and identically dis-

tributed requirement of modern deep learning algorithms.

To resolve this issue, an experience reply buffer R [31] is

employed. This buffer is a cache of size KR with a first-

in-first-out queue rule which stores previous experiences

(an experience is a transition tuple (st , at , rt )). We then

sample uniformly aminibatch ofK trajectories of experiences

(s
(k)
1 , a

(k)
1 , r

(k)
1 , ..., s

(k)
T , a

(k)
T , r

(k)
T ),∀k = 1, ...,K (a trajectory

is an episode with T sequential time steps) to update DPG

network parameters. Mixing recent with past experiences

contributes to reducing the temporal correlations existing

in the replayed experiences. Furthermore, the experience

replay allows samples to be reused, and thereby enhances the

sampling efficiency.

To this end, considering a sampled minibatch of K tra-

jectories of experiences, the policy gradient can be
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FIGURE 2. Structure of standard RNN cell and a LSTM cell.

expressed as:

∇θJ (πθ ) =
1

K

K
∑

k=1

[( T
∑

t=1

∇θ logπθ (a
(k)
t |s

(k)
t )

)

R
(k)
1

]

(19)

where R
(k)
1 =

∑T
l=1 γ (l−1)r

(k)
l is the total discount reward

accumulated from the starting state of each trajectory. The

following update is subsequently applied to update the

weights of the DGP network, where α indictates the learning

rates of the gradient decent algorithm:

θ ← θ + α · ∇θJ (πθ ) (20)

E. PROPOSED DPG-LSTM METHOD

Extracting discriminative features from raw state data is an

imperative step toward improved learning performance of the

proposed DPG network. In the examined market modeling

problem, the perceived state of each GENCO i is a 3 × NH -

dimensional vector comprising the NH generation dispatch

of GENCO i, LMPs, and load forecasts. This raw data can

be converted to multi-variate time-series data with NH hours,

each is characterized by three features, i.e. gi,h, λ(n:i∈In),h,

and dh. To effectively extract and interpret useful features

of this time-series data, we propose a representation network

as depicted in Fig. 1. The latter incorporates a Long Short-

Term Memory (LSTM) network [34] which has gained sig-

nificant research interest recently owning to its remarkable

capability of capturing the long-range temporal dependen-

cies of time-series data [34] compared to conventional feed-

forward neural networks (i.e. DNN) and Recurrent Neu-

ral Networks (RNN). As such, LSTM networks have most

recently received success in assorted power system/smart grid

applications, such as electricity load [35] and electricity price

forecasting [36].

The structure of a LSTM cell and a standard RNN cell

is compared in Fig. 2. Given a temporal input sequence

[x<1:NH>] of length NH , an RNN generates a sequence of

output activation (or hidden) values [z<1:NH>] by iterating the

following recursive equation:

z<h> = gt (Wz[z
<h>, x<h>]+ bz) (21)

where gt (·) denotes the hyperbolic tangent activation func-

tion,Wz is the matrix of weights and bz is the vector of biases

of appropriate sizes for the RNN cell.

LSTM network extends RNN with memory cells in order

to store and output information, and thereby facilitating the

learning of temporal dependencies for long duration of time.

The idea of a LSTM network is based on a mechanism that

defines the behavior of each individual memory cell, referring

to as gating. The cell state of the LSTM network is denoted

as c<h>. The LSTMnetwork then stores/removes information

to/from the cell, governed by the operation of different gates.

The equations expressing the operation of a LSTM cell are

outlined below:

c̃<h> = gt (Wc[z
<h−1>, xh]+ bc) (22)

Ŵu = gσ (Wu[z
<h−1>, xh]+ bu) (23)

Ŵf = gσ (Wf [z
<h−1>, xh]+ bf ) (24)

Ŵo = gσ (Wo[z
<h−1>, xh]+ bo) (25)

c<h> = Ŵu ⊙ c̃
<h> + Ŵf ⊙ c̃

<h−1> (26)

y<h> = z<h> = Ŵo ⊙ g
t (c<h>) (27)

where Wc, Wu, Wf , Wo are the matrices of weights and bc,

bu, bf , bo are vectors of bias of appropriate sizes for the

LSTM cell. Equation (22) represents the input information.

Equations (23)-(25) represent the operation of the update

(or input), forget, and output gates where gσ (·) denotes the

sigmoid activation function. Equation (26) dictates the update

of the memory cell state. The update Ŵi and forget Ŵf gates

control, respectively, how much information to be written to

the current cell state c<h> and how much information to be

retained from the previous cell state c<h−1>. Equation (27)

indicates the output y<h> of the LSTM cell which in this case

is the same as the output activation z<h> and is governed by

the output gate Ŵo.

The overall workflow of the proposed DPG-LSTMmethod

is illustrated in Fig. 1. The output layer of the LSTM network

is a densely-connected layer with each neuron expresses

the extracted features from raw data on generation dispatch,

LMP, and load forecast. This layer is then connected to indi-

vidual GENCO’s DPG network (Section III-D). In stochastic

continuous control RL problems, it is standard to represent

the probability distribution of agent’s action with a Normal
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distribution N (µ, σ 2), and predict the mean µ and the vari-

ance σ 2 of it with a DNN as the function approximator,

referred to as a Gaussian Policy. In this context, the DPG

network, parameterized by θ , takes the extracted feature vec-

tor as an input and outputs the Gaussian policy for each

action dimension. As illustrated in Fig. 1, each GENCO i then

selects its offering strategy by sampling from the obtainedNH
Normal distributions according to:

πθi (ai,h|si) ∼ N
(

µh, σ
2
h

)

, ∀h = 1, . . . ,NH . (28)

F. DETERMINING OLIGOPOLISTIC MARKET EQUILIBRIUM

WITH PROPOSED MA-DPG METHODOLOGY

The DPG-LSTM method enables each individual GENCO

to learn its optimal offering strategy (Fig. 1). In order to

determine the Nash Equilibrium (NE) under the participa-

tion of multiple strategic GENCOs, we propose a multi-

agent DRL methodology, namely MA-DPG-LSTM (Fig. 1),

which facilitates simultaneous learning of mutiple GENCOs’

offering strategies and the analysis of the market outcome

stemming from their interaction. In this case, each GENCO

holds an experience reply bufferRi which separately records

the experiences of GENCO i gathered from its repeated inter-

action with the market clearing process (4)-(11). The policy

gradient of GENCO i and the udapte of its DPG network can

be expressed as (29) and (30), respectively.

∇θiJ (πθi ) =
1

K

K
∑

k=1

[( T
∑

t=1

∇θi logπθi (a
(k)
i,t |s

(k)
i,t )

)

R
(k)
i,1

]

(29)

θi ← θi + α · ∇θiJ (πθi ) (30)

The MA-DPG-LSTM method is outlined in Algorithm 1.

The relationship between multi-agent RL solution and NE

is briefly discussed as follows. RL adopts differential learning

mechanism to achieve Bellman optimality, which means RL

is capable of learning the sub-game optimization substructure

including NE [37]. However, in practice, it proves signifi-

cantly challenging to gauge how close a collection of agents’

strategies to a NE in large-scale games such as the market

equilibrium problem investigated in this paper, due to the

cost in training. As a result, researchers generally resort to

convergence to control termination of the training process.

In the case where the proposed MA-DPG-LSTM method

achieves convergence for all GENCOs (i.e. the offering strate-

gies of all GENCOs remain constant (given some tolerance)

with respect to the previous iteration), the diagonalization

technique can be subsequently employed to verify whether

the convergence state is a NE [13]. This method works by

sequentially checking, for each GENCO i, whether its offer-

ing strategy (and profit) at convergence coincide with the

respective solutions of itsMPECproblem (Section I-A), hold-

ing the offering strategies of the rest of the GENCOs fixed

and equal to their values at convergence. If the above holds

for all GENCOs, then such convergence state corresponds by

definition to a pure strategy NE of the oligopolistic market,

Algorithm 1 Proposed MA-DPG-LSTM Methodology

1: Initialize policy parameters θi for each GENCO i with

random weights.

2: Initialize experience reply buffer Ri for each GENCO i,

minibatch size K ,

3: for episode e = 1 : E do

4: for GENCO i = 1 : I do {in parallel}

5: Selects random offer in its action space.

6: end for

7: The MO solves the market clearing problem (4)-(11)

and announces the clearing outcome. The latter, along

with the load forecast for day 1 is used as the initial

state si,0 of GENCO i for the current episode.

8: for trading day t = 1 : T do

9: for GENCO i = 1 : I do {in parallel}

10: Selects its offer ai,t using (28) according to its

current policy πθi .

11: end for

12: Based on the collected supply offers (ai,t , ..., aI ,t ),

the MO solves problem (4)-(11) and broadcasts the

market clearing outcome. This, along with the load

forecast for day t + 1 serve as the new state si,t+1
for each GENCO i.

13: for GENCO i = 1 : I do {in parallel}

14: Evaluate its profit / reward ri,t using (13).

15: Stores, in its experience buffer Ri, experience

(si,t , ai,t , ri,t ).

16: Sample uniformly, from Ri, a minibatch of

K trajectories of accumulated experiences

(s
(k)
i,1 , a

(k)
i,1 , r

(k)
i,1 , ..., s

(k)
i,T , a

(k)
i,T , r

(k)
i,T ).

17: Update its DPG-LSTM network so as to update

its policy πθi using (29) and (30).

18: end for

19: end for

20: end for

since none of the GENCOs can increase their profits by

unilaterally modifying their offering strategies.

Lastly, as discussed in the literature, existence and

uniqueness of Nash equilibria are not generally guaranteed

[11]–[17], [24], [25], [27]. However, an equilibrium has

proven to be reached within a relatively small number of

iterations in every examined case study (Section V). This

finding, along with the fundamental contribution of this work

on developing a MA-DRL based methodology to facilitate

practical multi-period and multi-spatial equilibrium analysis

in imperfect electricity markets, sets a detailed analysis of

the determined equilibrium solutions out of the scope of this

paper.

IV. CASE STUDIES

A. TEST SYSTEM DATA AND IMPLEMENTATION

In this section, we validate the proposed MA-DPG-LSTM

method in a test market with day-ahead horizon and hourly
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resolution, operating over the IEEE Reliability Test System

(RTS) [38] whose network topology is shown in Fig. 3.

FIGURE 3. Network Topology of the IEEE RTS.

The market includes 10 GENCOs, with their location,

marginal cost, maximum power output limit (assuming that

one generation block is used), and ramp up / down limits

provided in Table 1. The upper limits of the strategic offering

variable of all GENCOs is assumed oi = 2,∀i. The mar-

ket also includes 17 demands, with their location and relative

size (expressed as% of the total system demand and assuming

that it remains identical for every time period) presented

in Table 2. Fig. 4 presents the total demand profile of the

system.

TABLE 1. Characteristics of GENCOs.

To facilitate the analysis on the impact of network con-

gestion, the RTS network is divided into two areas where

nodes 1-13 and 24 correspond to the northern area while

nodes 14-23 correspond to southern area. The northern area is

characterized by cheaper generation and the largest demand

centres are located in the southern area. This setting resem-

bles a realistic situation for the Great Britain (GB) system

[16], [17] where the northern / southern areas correspond to

Scotland / England, respectively.

TABLE 2. Characteristics of demands.

FIGURE 4. Total demand profile of the system.

It is worth mentioning that compared to the test systems

examined in previous works [7]–[18], [21]–[29] (which rep-

resent state-of-the-art equilibrium programming papers in the

literature), the examined test system in our paper involves the

highest i) number of strategic GENCOs (10); ii) number of

demand participants (17); and iii) number of time period (24).

Taking into account all these points, the examined case study

included present more complex cases with respect to this real-

world electricity markets.

In order to validate the performance of the proposed DRL

method, we compare it with Q-learning, DQN, and the orig-

inal DPG methods which constitute the state-of-the-art RL

methods in the power systems / smart grid literature. Their

implementations are briefly discussed as follows.

1) Q-LEARNING

The RL problem must be calibrated in discrete state and

action spaces (Section I-A) in order to apply Q-learning.

In the examined market modeling problem, the states and

actions correspond to the hourly LMPs and the hourly offer-

ing decisions respectively.We discretize the continuous states

and actions in 100 integer values. Therefore, each GENCO i

employs 24 look-up tables, each of size 100 × 100, to store

and update the Q-values for state-action pairs at each hour h.

Note that it is impractical to use a single look-up table of size

10024 × 10024 to store the Q-values associated with differ-

ent daily state-action pairs under the assumed discretization.

Note also that although more state features (e.g. the gener-

ation dispatch) can be considered, it leads to exponentially

increasing number of rows in the look-up table, rendering the

problem intractable.

2) DQN

The DQN method makes use of a DNN as a function approx-

imator that provides the Q-value estimate for each discrete

action and, when acting, selects the action corresponding to

the highest Q-value at a given state. In the examined market
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modeling problem, the state is represented as a time-window

of two adjacent hours, i.e., hour identifier h, dispatch of the

GENCO i, LMP, and demand forecast at hours h − 1 and h,

resulting in 7 neurons in the input layer of the DNN. The

continuous action space is discretized in the same fashion as

in Q-learning, resulting in 100 neurons in the output layer of

the DNN.

For the proposed DPG-LSTM method, the representation

network features two LSTM layers with 8 and 16 neurons

respectively. As shown in Fig. 1, a 384-dimension feature

vector is extracted from the raw data comprising of generation

dispatch, LMP, and demand forecast. This refined feature

vector is subsequently fed into the input layer of the DPG net-

work. The latter has two hidden layers with 128 and 64 neu-

rons respectively and employ the rectified non-linearity

(ReLU) [39] as activation function. The two output layers

of the DPG network both have 24 neurons and encode the

mean and standard deviation of the action, employing the

sigmoid and softplus [39] as activation functions. Theweights

of the LSTM-based representation network and the DPG

network are initialized with xavier initialization [39]. The

Adam optimizer [39] is used for training the neural network

weights with a learning rate α = 10−3. The discount factor γ

is set to be 0.95. We train with a minibatch size of 32 and an

experience replay buffer of size 128.

The examined RL methods have been implemented in

Python with Tensorflow 1.12.0 [40]. The market clear-

ing algorithm (4)-(11) and all the examined game-theoretic

approaches (MPEC, EPEC, DIAG, and MILP) have been

implemented using Xpress Optimizer Python interface [41].

The case studies have been carried out on a computer with a

6-core 3.50 GHz Intel(R) Xeon(R) E5-1650 v3 processor and

32 GB of RAM.

B. COMPARISON OF PERFORMANCE OF RL AND MPEC

METHODS: SINGLE GENCO’S STRATEGIC OFFERING

PROBLEM

The aim of this section lies in comparing the performance

of different RL methods in terms of the quality (i.e. the

profitability) of the learned offering strategy. In this context,

we focus on a single GENCO’s optimal strategic offering

problem. In the examined case studies, this corresponds to

GENCO 7 of Table 1 while the rest of the GENCOs are

assumed to be price-takers (i.e. oi,t = 1,∀i ∈ I\{7},∀t).

For the sake of comparison clarity, this section considers a

case where the network capacity limits are neglected.We ran-

domly generate 10 different seeds, and for each seed each

RL method is trained for 100 episodes, where an episode is

composed of 20 time steps (Algorithm 1).

Fig. 5 illustrates the episodic average reward (i.e. the profit

calculated using (13)) with 10 different random seeds for each

of four examined RL methods and for the benchmark method

where GENCO 7 directly optimizes its offering strategy

through the state-of-the-art MPEC method (Section I-A).

The lines and the shaded area depict the mean and standard

deviation of the average reward over the 10 different random

FIGURE 5. Episodic average reward over 10 different random seeds for
the examined RL and MPEC methods.

seeds. As shown in Fig. 5, the average profit is comparatively

low during the initial phase of learning, suggesting that

GENCO 7 is accumulating more experiences by randomly

exploring different actions. As the learning continues and

more experiences being accumulated, the average reward

turns positive and keeps incr easing and eventually reaches

convergence for all four RL models. This is reflected in the

stabilized average reward as well as the decreased standard

deviation as the learning approaches to the end (Fig. 5).

The training of DPG-LSTM and DPG initially exhibit rel-

atively larger variability compared to Q-learning and DQN.

This is because exploring in multi-dimensional continuous

action space (i.e. DPG and DPG-LSTM) is more challenging

than in discrete action space (i.e. Q-learning and DQN).

Nevertheless, as the learning process continues, DPG-LSTM

significantly outperforms the other two methods, obtaining

the highest average profit and exhibiting the smallest standard

deviation at convergence. In relative terms, DPG-LSTM

achieves 43.35% / 15.48% higher average profit and 63.87% /

49.31% lower standard deviation over Q-learning / DQN

respectively. Furthermore, the DPG-LSTM method approxi-

mates very closely the profit obtained by the MPEC method,

which in this case provides the benchmark solution (the

difference between the profits obtained by the two methods

is 0.90%). Finally, the DPG-LSTM method outperforms the

original DPG method without the LSTM-based representa-

tion network (Section III-D), achieving 4.43% higher profit.

The superior performance of DPG-LSTM can be explained

by i) its ability to model multi-dimensional continuous state

space and to extract discriminative features from time-series

state vector using the proposed LSTM-based representation

network, in contrast to discrete scalar states employed in

Q-learning, enabling GENCO to receive accurate feedback

regarding the impact of its offering strategies on the multi-

period market clearing outcome and ii) its ability to model

multi-dimensional continuous action space enabled by the

proposed DPG network, in contrast to the naïve discretiza-

tion approach employed in Q-learning and DQN, enabling

GENCO 7 to preserve more accurate information regarding

the entire action space.
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FIGURE 6. Episodic average profit for each of the 10 GENCOs in the oligopolistic market case without network congestion.

C. MULTI-PERIOD EQUILIBRIUM ANALYSIS:

UNCONGESTED NETWORK

This section concerns the analysis of the multi-period market

equilibrium where the network capacity limits are neglected

and therefore the network is not congested. An imperfect,

oligopolistic market is considered, where the offering strate-

gies of the GENCOs are determined based on the proposed

MA-DPG-LSTMmethodology. Fig. 6 illustrates the episodic

average profit for each of the 10 GENCOs in the oligopolistic

market case. It can be observed that the average profits for all

10 GENCOs reach stabilization in around 150 episodes. The

procedure of verification of NE presented in Section III-F) is

conducted and it is confirmed that the obtained convergence

state is indeed an NE since no GENCO sees any reason to

deviates its decision given the rest of the GENCOs do not

deviate from their decisions.

Fig. 7 illustrates the evolution of episodic average market

prices in the oligopolistic market case. The intense com-

petition among GENCOs contributes to the decreasing of

market prices during the off-peak periods, where the available

generation capacity is considerably larger than the demand.

However, during the peak period, driven by the increasing

slope of the GENCOs’ offering curves at higher demand

FIGURE 7. Evolution of the episodic average market prices in the
oligopolistic market case.

levels and the higher need to utilize available generation

capacity in the system, the market prices are increased due

to the GENCOs learn to exercise market power. Therefore,

peak periods are deemed the most critical ones concerning

the exercise of market power by strategic GENCOs [16], [17].

Table 3 presents the comparison of offering strategies and

generation dispatch of GENCOs 8 and 10 at hours 17-19 in

the oligopolistic market case. In the equilibrium, the most

costly unit GENCO 10 selects lower offering strategies than

GENCO 8 to sell more energy to the market (it is fully

dispatched at hours 17-19) whilst GENCO 8 exercises market

power to its largest extent and becomes the marginal unit

and sets the market prices at 16.4 £/MWh at hours 17-19.

These findings demonstrate the effectiveness of the proposed

MA-DPG-LSTM method in learning the optimal offering

strategies at different hours for GENCOs of different merit

orders in the oligopolistic equilibrium of the market.

TABLE 3. Offering strategies and generation dispatches of GENCOs 8 and
10 at hours 17-19 in the oligopolistic market case without network
congestion.

D. MULTI-PERIOD AND MULTI-SPATIAL EQUILIBRIUM

ANALYSIS: CONGESTED NETWORK

This section presents the analysis of the multi-period and

multi-spatial market equilibriumwhere the impact of network

congestion is accounted for. Fig. 8 illustrates the episodic

average profit for each of the 10 GENCOs in the oligopolistic

market case. Similar to the trend observed in Fig. 6, the aver-

age profit for all 10 GENCOs reaches stabilization in around

175 episodes. The verification of NE is analogously carried

out which confirms the convergence state is indeed an NE.
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FIGURE 8. Episodic average profit for each of the 10 GENCOs in the oligopolistic market case with network congestion.

TABLE 4. Offering strategies and generation dispatches of GENCOs 5, 7, 8, and 9 at hours 17-19 for cases U and C in the oligopolistic market case.

In order to analyze the impact of network congestion,

the following two cases are examined:

U: a case of oligopolistic market, where the network is not

congested, which is identical in Section IV-D;

C: a case of oligopolistic market, where the network

capacity limits are taken into account, in this case the lines

(11-14) and (13-23) connecting northern and southern areas

get congested during some peak periods, reflecting a real-

istic condition where network corridors connecting northern

and southern areas are congested due to the transmission of

northern cheaper generation to southern large demand centres

(Fig. 3, Tables 1 and 2).

Table 4 presents the offering strategies and generation dis-

patches of GENCOs 5, 7, 8, and 10 at the critical congestion

periods (hours 16-20) for cases U and C in the oligopolistic

market case. Fig. 9 illustrates the 24-hour LMPs at nodes 11,

13, 14 and 23 for cases U and C in the oligopolistic market

case.When the network is congested, the power flow from the

northern to southern area is limited, which reduces / increases

the dispatch of certain GENCOs located in the northern /

southern area. In the oligopolistic equilibrium of case C,

in the northern area, GENCOs 5 and 7 choose higher offering

strategies (than in case U) at the congested hours, as the

network capacity limit is restricting them from selling more

energy to the southern area.1 In this case, GENCOs 5 and 7

1Recall that the key in selecting the optimal offering strategy is to achieve
an advantageous trade-off between increasing the market prices and increas-
ing quantity sold to the market (Section II-B).

FIGURE 9. LMP at nodes 11, 13, 14, and 23 for cases U and C in the
oligopolistic market case.

constitute the marginal units and determine the LMPs at node

14 and 23 in the northern area, respectively. In the southern

area, driven by a combined effect of i) GENCO 10 (which is

the most expensive unit (Table 1)) chooses a higher offering

strategy and ii) the locational decoupling effect of congestion,

the LMPs at the congested hours in the southern area are

raised significantly but the energy sold by GENCO 10 is

reduced. Given the latter and the reduced import from the

northern area, GENCO 8 with lower marginal cost and higher

capacity undercuts GENCO 10 and produces more energy in

order to meet the southern demand. GENCO 8’s profitability

is consequently enhanced by benefiting from the high LMPs

set by GENCO 10 during the congested hours as well as

selling more energy to the market.
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As shown in Fig. 9, when the network is not congested,

the LMPs are identical at every node of the transmis-

sion network, while congestion in lines (11,14) and (13,23)

yields locational price differential between the two areas.

More specifically, during periods of congestion (hour 16-20),

southern area (nodes 11 and 13) -featuring more costly gener-

ation and higher demand- exhibits a higher price than the one

observed in the case U, while northern area (nodes 14 and 23)

-featuring less costly generation and lower demand- exhibits

a lower price than the one observed in case U. Table 5 presents

the profits of GENCOs for cases U and C in the oligopolistic

market case. As can be observed, network congestion creates

a more favourable economic setting (i.e. higher profit) for

GENCOs in southern area and a less favourable setting (i.e.

lower profit) for GENCOs in northern area, as indicated by

the profit increments of GENCOs in Table 5.

TABLE 5. Profits of GENCOs for cases U and C in the oligopolistic market
case.

These findings demonstrate the effectiveness of the pro-

posedMA-DPG-LSTMmethod in learning the optimal offer-

ing strategies at different hours for GENCOs of different

merit orders in the oligopolistic equilibrium of the market.

E. COMPUTATIONAL PERFORMANCE COMPARISON

AGAINST CONVENTIONAL EQUILIBRIUM

PROGRAMMING METHODS

The aim of this section lies in comparing the computa-

tional performance of the proposedMA-DPG-LSTMmethod

against three conventional equilibrium programming mod-

els including the EPEC, DIAG, and MILP approaches

(Section I-A). Table 6 summerised the computational per-

formance of these approaches by presenting the total com-

putational time required by the examined four methods to

find a NE for cases U and C. As shown in Algorithm 1

(Section III-F), in each episode, each GENCO trains its own

DPG-LSTM model by interacting with the market clearing

process. The training process of each DPG-LSTM is imple-

mented in a paralleled fashion. If a convergence state is

observed and passes the NE verification test, the total com-

putational time required for reaching the convergence state

(indicated by the average profit for all 10 GENCOs reach

stabilization) is then recorded.

TABLE 6. Computational time (minutes) for finding a NE in each of the
examined cases. (*: No solution found after 24 hours of simulation).

It can be observed that the proposed MA-DPG-LSTM

method finds the NE for both cases U and C in approxi-

mately 13 and 15 minutes, respectively. This is while the

MILP approach fail to identify any NE after 24 hour of

simulation. Moreover, although EPEC and DIAG approaches

can eventually locate a NE, their computational intensity

is much higher than the proposed MA-DPG-LSTM method

(Table 6). The reason behind the unsatisfactory performance

of the MILP approach lies in the vast number of the binary

variables included in the model [18]. Also, the convergence

of branch and bound solvers highly depends on tuning the

disjunctive (or big-M) parameters introduced for pursing lin-

earity The inherent non-convexities and non-linearities pre-

sented in the EPEC formulation -driven by a large number

of complementarity constraints and the mixed-integer lin-

earization of the bilinear terms in the model- renders them

very hard and expensive to solve. For the DIAG approach,

at each iteration, multiple MPEC problems (which are non-

smooth and non-convex in nature) need to be solved, making

it very computational demanding as well. Furthermore, all the

aforementioned computational complexities are aggravated

in the examined multi-period, network-constrained market

modeling problem, rending these approaches less useful for

finding a NE. Lastly, although none of the examined methods

can theoretically guarantee their solution existence or con-

vergence to a NE [10], [11], [27], [42], case studies demon-

strate that MA-DPG-LSTM exhibits superior computational

performance in successfully and efficiently identifying a

NE in a multi-period and network-constrained electricity

market.

V. CONCLUSION AND FUTURE WORK

Existing literature largely resort to conventional game-

theoretic approaches for modeling and analyzing imperfect

electricity markets. However, such approaches exhibit severe

modeling and computational complexities and are thus very

hard and computationally expensive to solve. In addition,

they rely on complete knowledge of the techno-economical

characteristics and the strategies of the market players as

well as the computational algorithm of the market clear-

ing process, which piratically constitutes a very constrain-

ing assumption. Furthermore, such approaches overlook the

accumulated experiences of learning from GENCOs’ daily

repeated interactions with the market clearing.

In view of these limitations, this paper has proposed

a novel MA-DRL based methodology, combining multi-

agent intelligence and a DPG-LSTM method, to expedite
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practical multi-period and multi-spatial equilibrium analysis.

In contrast with state-of-the-art RL methods (Q-learning

and DQN), this approach conforms to the nature of the

examined problem in multi-dimensional continuous state and

action spaces, enabling GENCOs to receive accurate feed-

back regarding the impact of their offering strategies on

the market clearing outcome, and devise more profitable

bidding decisions by exploring the entire action domain.

Furthermore, the proposed LSTM-based representation net-

work further improves GENCOs’ profitability driven by

its ability to extract high-dimensional discriminative fea-

tures from raw data on the market condition and clearing

outcome.

Case studies on a test market with day-ahead horizon and

hourly resolution and operated over the IEEE RTS system

have validated the effectiveness of the proposed methodol-

ogy. Regarding the single GENCO’s optimal offering strat-

egy problem, the proposed DPG-LSTM method promises a

substantially higher profit than state-of-the-art RL methods

(Q-learning, DQN, and DPG) and approximates very closely

the profit obtained by the state-of-the-art MPEC method.

Concerning the equilibrium programming problem, the pro-

posed MA-DPG-LSTM method outperforms state-of-the-art

equilibrium programming models (EPEC, DIAG, and MILP)

in efficiently discovering an imperfect market equilibrium.

Quantitative economic analysis has been carried out on the

obtained equilibrium. In the casewithout network congestion,

results have demonstrated MA-DPG-LSTM is able to learn

the optimal offering strategies at different hours for GENCOs

of different merit orders. In cases with network congestion,

GENCOs located in the higher-priced area learn to evolve

their strategies by exploiting the price differential effect cre-

ated by the congestion, attaining higher profits albeit at the

expense of the profitability of the GENCOs located in the

lower-priced area.

Conventional equilibrium programming models in the

existing literature [10]–[17] neglect the complex unit com-

mitment constraints of the generation units, due to their

intrinsic inability to deal with binary decision variables in the

LL problem of the strategic GENCOs’ bi-level optimization

problems. However, these complex operating properties may

affect the market clearing outcome and consequently the

strategic decisions of the market players. In contrast, under

the proposedMA-DPG-LSTMmethod, the bi-level optimiza-

tion problem is not converted to a single-level, closed-form

MPEC. Instead, it is solved in a recursive fashion where

strategic GENCOs gradually learn their optimal offering

strategies from repeated interactions with the market clearing

process. It therefore avoids the derivation of the equivalent

KKT optimality conditions of the LL problem and is capable

of addressing the aforementioned challenge of incorporating

non-convex operating characteristics into the market clearing

process. Future work aims at extending the proposed MA-

DPG-LSTM method to investigate the strategic behaviour of

GENCOs as well as the market outcomes stemming from

their interactions.
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