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ABSTRACT 

 This paper deals with a realistic multi-period liner ship fleet planning problem by 

incorporating stochastic dependency of the random and period-dependent container 

shipment demand. This problem is formulated as a multi-period stochastic programming 

model with a sequence of interrelated two-stage stochastic programming problems 

characterized ship fleet planning in each single period. A solution method integrating 

dual decomposition and Lagrangian relaxation method is designed for solving the 

developed model. Numerical experiments are carried out to assess applicability and 

performance of the proposed model and solution algorithm. The results further 

demonstrate importance of stochastic dependence of the uncertain container shipment 

demand. 
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1. INTRODUCTION 

A liner container shipping company (or container shipping liners) usually operates 

a heterogeneous fleet of ships with different size on couples of ship routes forming a 

shipping network with a regular service schedule, to transport containers among ports. 

Liner container shipping companies have been seeking for the optimization technology to 

create cost-effective plans for operating and upgrading their ship fleets. These plans aim 

to make capacity of a liner ship fleet effectively match container shipment demand. 

However, in a multi-period planning horizon, port to port container shipment demands 

could differ from one period to another. To cope with the period-dependent container 

shipment demand pattern, a liner container shipping company has to adjust its ship fleet 

plan including ship fleet size, mix and deployment, period-by-period, which is referred to 

in this paper as the multi-period liner ship fleet planning (MPLSFP) problem. 

Traditional MPLSFP begins with a forecasted or estimated container shipment 

demand pattern for each single period using some demand forecasting techniques such as 

regression and time series models. However, a forecasted container shipment demand 

pattern as a necessary input of the MPLSFP problem can never be forecasted with 

complete confidence. It is almost impossible to precisely match estimated demand with 

the one realized. In other words, uncertainty of estimated container shipment demand 

should be incorporated into the MPLSFP problem. In reality, the container shipment 

demand at one period has effect on the future demand, which indicates that the container 

shipment demand is dependent on the demand in previous periods. Therefore, it is 

realistic and necessary to take the uncertainty and stochastic dependency of container 

shipment demand into account in the MPLSFP problem. It should be pointed out that the 
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port-to-port container shipment demand is the hardest to estimate accurately, in 

comparison to other parameters such as miscellaneous costs and revenues.  

Container transshipment operation should be also taken into account in the 

MPLSFP problem because transshipment of containers at hub ports is a typical container 

operation strategy adopted by liner container companies nowadays. As a consequence, 

about one third of the laden container throughput in the world in 2010 is made up of 

transshipped containers (Vernimmen, Dullaert, and Engelen, 2007). Container 

transshipment operation enables liner shipping companies to use large ships, calling at 

hub ports due to economies of scale in ship size (Cullinance and Khanna, 1999).  

To the best of our knowledge, the MPLSFP problem taking into account container 

transshipment operations and stochastic dependency of random and period-dependent 

container shipment demand, is a new research issue with practical importance. This 

MPLSFP problem significantly expands the research scope of the classical MPLSFP 

problem which deals with the deterministic container shipment demand without container 

transshipment operations. The objective of this study is to tackle the MPLSFP problem 

with container transshipment and stochastic dependency of container shipment demand 

by building an appropriate optimization and designing an efficient solution method.  

1.1 Literature review 

Multi-period/long-term ship fleet planning problems have been studied for several 

decades. However, most of these studies make the assumption of deterministic shipment 

demand. Nicholson and Pullen are the pioneers in the field, developing a dynamic 

programming model for a ship fleet management problem that aimed to find the best sale 

and replacement policy, with the objective of maximizing the multi-period company 
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assets (Nicholson and Pullen, 1971). They proposed a two-stage decision strategy: the 

first stage determines a priority order for selling a ship, based on its assessment of the net 

contribution to the objective function if it is sold in each year, regardless of the rate at 

which charter ships are taken on; the second stage uses the dynamic programming 

approach to find the optimal level of chartering for a given priority replacement order. An 

integer linear programming model was proposed for a multi-period liner ship fleet 

planning problem looking to determine the optimal fleet size, mix and ship-to-route 

allocation (Cho and Perakis, 1996). In this model, the fleet size and mix decisions are 

made at the beginning of the planning horizon and do not change within the planning 

horizon. In other words, the fleet size and mix decisions are the same for all the periods 

in the planning horizon. Therefore, it cannot characterize a realistic dynamic decision 

strategy: the fleet size, mix and ship-to-route allocation should be adjustable period-by-

period, since the container shipment demand is period-dependent. In other words, it is 

more rational and practical to assume that the fleet size, mix and ship-to-route allocation 

are period-dependent (dynamic) decisions rather than static ones. The multi-period liner 

shipping problem proposed by Cho and Perakis (1996) was reformulated as a dynamic 

programming model by Xie, Wang and Chen (2000). The multi-period planning horizon 

was divided into a number of single periods (each single period being one year). For each 

period, they used integer linear programming approach to determine the fleet size, mix 

and ship-to-route assignment incurring minimal cost. However, the annual operating cost 

and transportation capacity of each ship on each route were assumed constant. This 

assumption is unrealistic because the costs are voyage-dependent. For example, a ship 

sailing 20 voyages on a given route over a given year would certainly incur greater 
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annual operating costs and have a greater transportation capacity than a ship that sails ten 

voyages on the same route. Recently, Meng and Wang (2011) proposed a realistic 

MPLSFP problem and formulated this problem as a scenario-based dynamic 

programming model. However, as well as the deterministic container shipment demand 

assumption, these studies reviewed above do not take container transshipment operations 

into account. 

There have been some studies concentrating on the short-term liner ship fleet 

planning problems (see Ronen 1983, 1993; Christiansen, Fagerholt and Ronen, 2007; 

Christiansen et al. 2007). Perakis and Jaramillo (1991) proposed a linear programming 

model for a liner ship fleet planning problem. Later, they realized that the linear 

programming model may yield a real rather than an integer number of ships deployed on 

a ship route (Jaramillo and Perakis, 1991). They built an integer linear programming 

model for the same problem (Powell and Perakis, 1997). This model was improved and 

extended by S. Wang, T. Wang, and Meng (2011). It is noted that, once again, these 

studies all make the assumption of deterministic container shipment demand and fail to 

consider container transshipment. Meng and Wang (2010) developed a chance 

constrained programming model for a short-term liner ship fleet planning problem with 

uncertain container shipment demand. This uncertain container shipment demand can 

actually be transformed to deterministic demand. Moreover, container transshipment 

operations are not allowed in the model. 

Mourão, Pato, and Paixão (2001) made the first attempt to consider the liner ship 

fleet deployment problem with container transshipment operations in a hypothetical hub-

and-spoke (H&S) network with one pair of ports and two ship routes - one feeder route 
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and one main route. All containers had to be transshipped at the hub port in the feeder 

route. Their model is too simple to reflect realistic ship fleet deployment. Wang and 

Meng (2012) studied a fleet deployment problem with transshipment and fixed container 

shipment demand. Meng and Wang (2012) investigated a fleet deployment problem with 

transhipment and week-dependent container demand. Nevertheless, the container demand 

in each week was assumed to be known. Meng, T. Wang, and S. Wang (2012) examined 

a fleet planning problem with transhipment uncertain demand. However, there was only 

one planning period and the demand was constant in the period. Some other researchers 

all addressed liner shipping service network design with container transshipment 

operations, including liner ship fleet deployment to some extent (Agarwal and Ergun, 

2008), shipment demand assignment and empty container repositioning in liner shipping 

(Song et al., 2005; Dong and Song, 2009), liner shipping service optimization with reefer 

containers (Cheaitou and Cariouz, 2012). They all assumed deterministic container 

shipment demand.  

Compared to the few relevant studies on the MPLSFP problem with uncertain 

container shipment demand, much research has been devoted to other problems under the 

assumption of uncertain multi-period demand, such as capacity expansion problems 

(Ahmed and Sahinidis, 2003), airline fleet composition and allocation problem (Listes 

and Dekker, 2005), multi-site production planning problem (Leung et al., 2007), portfolio 

management problems (Celikyurt and Özekici, 2007; Gülpinar and Rustem, 2007), and 

others. Their objectives are to minimize or maximize the expected value of a key variable, 

such as cost or profit, over a multi-period planning horizon, which is defined as the sum 

of the cost or profit in each single period. However, research methodologies used by 
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these studies seldom involved the stochastic dependency of the uncertain multi-period 

demand. Shapiro and Philpott (2007) did in fact mention the dependency of uncertain 

demand in a multi-stage stochastic programming problem. Unfortunately, no application 

or study involving stochastic dependency has been reported so far. 

1.2 Contributions 

Although container transshipment operations and stochastic dependency of the 

period-dependent container shipment demand should have significant impact on liner 

ship fleet planning, they are not well addressed by the existing studies according to the 

above literature review. This paper will fist show that the procedure to determine a liner 

ship fleet plan with random and period-dependent container shipment demand can be 

formulated a decision tree. It proceeds to model the proposed MPLSFP problem by using 

the stochastic programming approach. A solution method will be designed for solving the 

stochastic programming model developed in this study.  

The contributions of this study are threefold: firstly, a realistic MPLSFP problem 

that can deal with container transshipment operations and stochastic dependency of the 

period-dependent uncertain container shipment demand is proposed. Secondly, a 

workable novel way for a liner container shipping company to make a multi-period liner 

ship fleet plan is put up. Thirdly, the proposed MPLSFP problem is formulated as a 

multi-period stochastic programming model comprising a series of interrelated stochastic 

programming models developed for each period in the multi-period planning horizon.  

This remainder of this paper is organized as follows. Section 2 illustrates a ship 

route coding scheme and analyzes the stochastic dependency of the random period 

dependent container shipment demand and defines the MPLSFP problem Section 3 
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elaborates the procedure for determining a liner ship fleet plan as a decision tree, and 

builds a multi-period stochastic programming model for the proposed MPLSFP problem. 

Section 4 designs a solution method for solving the multi-period stochastic programming 

model. Section 5 gives numerical experiments to illustrate the model and solution method. 

Conclusions are presented in Section 6.  

2. PROBLEM STATEMENT 

Consider a liner container shipping company operating a set of ship routes 

denoted by  1,..., ,...,r R  serving a set of ports denoted by  1, , ,p P   , in a 

multi-period planning horizon   is divided into T periods denoted by  1,..., ,...,t T . 

Indices R, P and T are the number of liner ship routes, ports and periods, respectively, 

and r, p and t denote a specific ship route, port and single period, respectively. The length 

of one single period can be determined according to the changes in container shipment 

demand forecasted in the multi-period planning horizon; for example, one period could 

be one year.  Each ship route r  can be expressed by the port calling sequence (or 

itinerary):  

 1 2 1rm
r r r rp p p p     (1) 

where i
rp   ( 1, , ri m  ) is the ith port of call on ship route r  and rm  is the number of 

port calls on this route. The ship route coding scheme shown in Eq. (1) describes the 

unique characteristic of a liner shipping route: a loop with a given port calling order.  

[Figure 1 is inserted here] 

For example, Figure 1 depicts a liner shipping route between Pusan port and Singapore 

port. A ship serving this liner shipping route first calls at Pusan (PS) followed by 

Shanghai (SH), Yantian (YT), Hong Kong (HK), Singapore (SG), Yantian (YT), and 

A0066384
Highlight



9 
 

finally returns to Pusan (PS). According to Eq. (1), it can be expressed by the port calling 

sequence: 

             1 2 3 4 5 6 1PS SH YT HK SG YT PSr r r r r r rp p p p p p p      (2) 

To facilitate formulation of the feature that the first port and last port called at on 

a given liner shipping route are the same, we define a generalized mod operator as 

follows: 

 
 mod ,      

 mod 
,                

r r
r

r r

i m i m
i m

m i m


  

 (3) 

The voyage from port i
rp   to  1 mod ri m

rp   is called leg i  ( 1,2,..., 1ri m  ) of the ship route 

r , denoted by the pair of ordered ports  1 mod, ri mi
r rp p   , and leg rm  stands for the 

voyage from port call rm
rp  to port call 1

rp .  

2.1 Container route with container transshipment operations 

Let   ,o d o d   = ,  be the set of origin-to-destination (O-D) port pairs 

with container shipment demand. Given the set of ship routes  , the liner container 

shipping company can predetermine a set of candidate container routes to transport 

containers between an O-D port pair  ,o d  , denoted by the set od . A container 

route od odh   is either a part of one particular ship route or a combination of several 

ship routes and delivers containers from the origin port o  to the destination port 

d .  

[Figure 2 is inserted here] 

For example, there are two possible container routes from Jakarta (JK) to 

Shanghai (SH) shown in Figure 2:  
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        Ship Route 1 Ship Route 3JK SH 1 2 2 3
1 1 1 3 3JK SG SG SHh p p p p     (4) 

    Ship Route 2JK SH 1 2
2 2 2JK SHh p p    (5) 

The first container route JK.SH
1h , makes up of with two ship routes and involves container 

transshipment operations: containers are loaded at the first port of call of ship route 1 

(Jakarta) and delivered to the second port of call of ship route 3 (Singapore). At 

Singapore port, these containers are discharged and reloaded (transshipped) to a ship 

deployed on ship route 3, and transported to the destination port, Shanghai. However, the 

second container route JK.SH
1h  provides a direct delivery service via ship route 2, without 

container transshipment.  

A container route contains all of the information on how containers are 

transported including origin, destination, ports of call along the route and any 

transshipment ports. An O-D port pair may be served by several container routes, thus 

containers between the O-D port pair could be split among these container routes. For the 

sake of presentation, let   be the set of all of the predetermined container routes for all 

of the O-D port pairs, namely,  

 
 ,

od

o d 

 


�   (6) 

2.2 Stochastic dependency of period-dependent random container shipment demand 

Let od
t  be the number of containers in terms of TEUs (twenty-foot equivalent 

units) to be transported between an O-D port pair  ,o d   in a particular single 

period t . The uncertainty of container shipment demand in the period t is 

formulated by a set of discrete demand scenarios denoted by  1,..., ...,t ts S . For each 
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scenario  ts , values for the container shipment demand between each port pair in 

period t  are specified. Associated with each scenario ts  is a probability that the 

scenario could happen, denoted by t
sp  satisfying 

1
1tS t

ss
p


 . In other words, the 

container shipment demand between each port pair in a particular period, namely 

  ξ , ,od
t o d t   , is assumed to be a discrete random variable taking  a limited 

number of possible values with known occurrence probabilities.  

It is reasonable to assume that the container shipment demand in period t is only 

dependent on that in the previous period. Hence, the scenario ts  is dependent on the 

scenario 1ts  . Let t
s sp   be the conditional probability that scenario s occurs in period t 

given that scenario s  happened in period t–1, t
sp  can be calculated by: 

 1 1

1
= tSt t t

s s s ss
p p p 

 
  (7) 

Since scenario ts  occurs in period t with conditional probability t
s sp  , given 

that scenario 1ts   occurs in period t-1, all the scenarios in the whole T-period 

planning horizon can be depicted as a scenario tree with T layers, where each layer 

corresponds to a single period. Take the liner ship route shown in Figure 1 as an example. 

For simplicity, consider two periods (say two years) and three O-D pairs: PS   SH, SH 

  YT, and YT   HK. Suppose that there are three discrete scenarios of container 

shipment demand in each year: L (low), M (medium) and H (high), as shown in Table 1.  

[Table 1 is inserted here] 

[Figure 3 is inserted here] 
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Figure 3 gives the scenario tree with two layers with respect to the scenarios for 

the two-year period. The value on each branch in the two-layer scenario tree is the 

probability or conditional probability of each scenario’s occurrence. Accordingly, the 

probabilities of each of the three scenarios in year 2 are computed as follows: 

2 1 2 1 2 1 2

2 1 2 1 2 1 2

2 1 2 1 2 1 2

0.7 0.6 0.2 0.5 0.1 0.1 0.53

0.7 0.3 0.2 0.3 0.1 0.2 0.29

0.7 0.1 0.2 0.2 0.1 0.7 0.18

H H M LH H H M H L

M H M LM H M M M L

L H M LL H L M L L

p p p p p p p

p p p p p p p

p p p p p p p

            

            

            

(8) 

2.3 Fleet size and mix strategies 

The liner container shipping company can use its own ships to transport 

containers, and may also charter ships from ship chartering market or purchase new ships 

to meet its container shipment demand. The company may also charter out some of its 

own ships, depending on their capacity in terms of TEUs. A fleet size and mix strategy 

associated with a particular period within the T-period planning horizon is defined as a 

plan comprising the number of ships to be chartered, the number of the company’s own 

ships to be chartered out, the number of its own ships to be used during the period and the 

number of new ships to be purchased.  In practice, the liner container shipping company 

has to order new ships advanced from a shipyard because the shipyard has limited 

shipbuilding capacity and can only deliver a limited number of ships each year. To 

simplify the problem, we assume that ship delivery time is zero. 

At the beginning of the period t , experts from the strategic development 

department of the liner container shipping company would propose several possible fleet 

size and mix strategies for the period, based on their experiences, and/or the available 

budget of the company for the period. It is thus assumed that there are a number of 
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suggested fleet size and mix scenarios at the beginning of each period t . There is an 

inherent and implicit relation between these strategies from one period to the next. For 

example, assuming that the liner container shipping company currently owns three ships 

named by A, B and C, the experts might propose two possible fleet size and mix 

strategies at the beginning of period t . Strategy 1 might be to use the existing three ships, 

while strategy 2 might be to purchase a new ship D to use as well. These two strategies 

would lead to two different states of the ship fleet at the beginning of the next period 1t  : 

in the first state, there are three ships in the fleet, while in the second state there are four. 

Each of these two states becomes a possible initial state of the fleet at the beginning of 

period 1t  . At the beginning of period 1t  , the experts will propose a group of possible 

fleet size and mix strategies with respect to each of these two ship fleet states. This 

strategy decision process will be repeated until the end of the last period T , that is, the 

beginning of period 1T  . The entire decision process of fleet size and mix strategies 

thus actually forms a decision tree containing T layers. 

2.4 Multi-period liner ship fleet planning problem 

The MPLSFP problem with container transshipment and uncertain container 

shipment demand aims to maximize the total expected profit reaped over the whole T-

period planning horizon by making an optimal joint ship fleet development and 

deployment plan. A joint fleet development and deployment plan consists of (i) a fleet 

size and mix strategy proposed by the experts at the beginning of each period (i.e., a fleet 

development plan), and (ii) a ship fleet deployment plan. A fleet deployment plan 

includes the allocation of the ships in the fleet to liner ship routes, the number of voyages 

by each ship on each liner shipping route r  required to maintain a given liner 
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shipping service frequency on the route, and the number of lay-up days allocated to each 

ship for maintenance. The objective of the ship deployment plan is expected profit 

maximization under various scenarios of container shipment demand, for each of the 

given fleet size and mix strategies. 

The rationale behind the adoption of this a period-by-period planning is that the 

liner container shipping company can flexibly adjust its ship fleet size and mix according 

to the varying container shipment demand in each period. As life time for a ship is 

limited life time, a ship fleet needs to be renewed when some old ships in the ship fleet 

reach their life time by purchasing or chartering in new ships. The adoption of period-by-

period planning thus also satisfies the physical requirement of the renewal of the fleet 

over time. We assume that the liner container shipping company makes its planning 

decisions at the beginning of each single period and this process is repeated until all the 

periods in the multi-period planning horizon have been covered. Therefore, the multi-

period ship fleet plan consists of a number of single-period ship fleet plans. At the end of 

the planning horizon, without loss of generality, we assume that all ships owned by the 

liner container shipping company are disposed of for their salvage values. 

3 MODEL DEVELOPMENT 

3.1 Decision tree for the fleet development plan 

To determine a ship fleet development plan in a T-period planning horizon, we 

introduce a dummy node O as the root of the decision tree to represent the current ship 

fleet state. That is, the decision tree grows from the root O. Each node in period t 

( 1, 2, , 1t T  ) can be regarded as a parent and will generate some offspring in period 

t+1, that is, the fleet size and mix strategies for the next period. Each parent and its 
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offspring are connected by an arc. It is noted that different parents may produce the same 

offspring. Each node of the decision tree, except the root, has a parent (which may not be 

unique). A parent n at period t and its offspring from period t = 1,…,T-1 to the end of the 

whole T-period planning horizon form a sub-tree, denoted by  t n . Each parent n, 

namely a non-terminal node in period t = 1,…,T-1, is the root of the sub-tree  t n . Thus 

0  denotes the entire tree over the whole T-period planning horizon. The set of paths 

from root O to a node n in period t, is denoted by  t n  and each path  tl n  

represents a development plan of fleet sizes and mixes for t periods. If n is a terminal 

node (i.e. a leaf), then path l corresponds to a development plan for all T periods. 

[Figure 4 is inserted here] 

Figure 4 schematically illustrates the decision tree. In Figure 4, let  

 1,...,t tN  be the set of nodes in period t , where tN  is the number of nodes in 

this set, and let  1,...,m m
t tN  be the set of strategies proposed for period t+1 which 

are generated from a particular strategy m proposed for period t where m
tN  represents the 

number of strategies of the set m
t . If each offspring node has a unique parent, we then 

have: 

 1 , 1,..., 1
t

m
t t

m
t T


  


   (9) 

 1
1

, 1,..., 1
tN

m
t t

m

N N t T


    (10) 

The following notation is used for the sake of presentation:  

KEEP
,t n :  set of company’s own ships to be used at the beginning of period t in strategy n 
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SOLD
,t n :  set of company’s own ships to be sold at the beginning of period t in strategy n 

OUT
,t n :  set of own ships to be chartered out at the beginning of period t in strategy n 

IN
,t n :   set of ships to be chartered in at the beginning of period t in strategy n 

NEW
,t n :  set of new ships bought at the beginning of period t in strategy n 

,t n :   set of ships that are used to deliver containers at the beginning of period t in 

strategy n 

For a node (strategy) n in period t, ships that can be used to deliver containers 

include the company’s own ships, which are kept in service, new ships purchased at the 

beginning of period t ( NEW
,t n   if no available new ships) and ships chartered in from 

ship chartering market. The set of ships used in strategy n to deliver containers is given 

by: 

 KEEP NEW IN
, , , , ,t n t n t n t n t         (11) 

The relationship between a parent m in period t and its offspring n in period t+1 (t 

= 1,…,T-1) is given by: 

 KEEP OUT NEW KEEP OUT SOLD
, , , 1, 1, 1, , 1,..., , 1,..., , 1,..., 1m

t m t m t m t n t n t n t tm N n N t T               (12) 

3.2 2SSP models for the ship fleet deployment plans 

In Section 3.1, each node n in period t  represents a fleet size and mix 

strategy proposed by the liner container shipping company’s experts, based on their 

experience and the available budget (the budget is used for investment in the chartering in 

or purchase of new ships). However, the decisions of how to properly deploy the ships in 

the fleet, as given by the fleet size and mix strategy n in period t , in order to 
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maximize the profit gained from shipping containers over period t, have not yet been 

determined. Four types of decision variables are now defined as follows:  

kr
nt :  binary variables equal to 1 if ship k is assigned to route r in strategy n of period t 

and 0 otherwise 

kr
ntx :   number of voyages sailed by ship k on route r in strategy n of period t 

k
nty :   number of lay-up days of ship k in strategy n of period t 

odh
sntz : number of containers carried by ships deployed on the container route od odh   

between O-D port pair  ,o d   under container shipment demand scenario s in 

strategy n of  period t 

Given (i) the set of ships under strategy n of period t, namely ,t n , (ii) the values 

of ξod
t  for a port pair  ,o d   under scenario ts  in period t , denoted by od

st , 

and (iii) the freight rate of transporting a container from its origin port o to its destination 

port d by container route h in period t ($/TEU), denoted by
odh

tf , the revenue gained from 

shipping containers along all possible routes in period t under container shipment demand 

scenario s is given by: 

  
 ,

od od

od od

h h od
t snt st

o d h

f z 
 
 

 

 (13) 

Other revenue gained in strategy n in the period t includes earnings from 

chartering out the company’s ships and the salvage value gained from selling its ships. 

This is given by the following:  

 
OUT SOLD
, ,

OUT SOLD

t n t n

kt kt
k k

c c
 

 
 

 (14) 
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where OUT
ktc  is the amount received for chartering out a particular ship k at the beginning 

of period t ($) and SOLD
ktc  is the amount received for selling out a ship k at the beginning of 

period t ($).  

The total costs incurred in strategy n of period t usually consist of the following 

components: container handling costs, the voyage costs of the ships in the fleet that are 

transporting containers, the lay-up costs of those ships undergoing maintenance, the cost 

of chartering in ships from other liner container shipping companies and the capital 

investment of purchasing new ships. The container handling costs incurred along a 

container route include the container loading cost at the origin port, the container 

discharging cost at the destination port and the container transshipment cost at 

transshipment ports (if any). Different container routes between any given O-D port pair 

may result in different container handling costs. For example, the container route shown 

in Eq. (4) and that in Eq. (5) both involve the container loading costs at JK and container 

discharging costs at SH, but the former incurs an additional transshipment cost at SG. Let 

odh
tc  ($/TEU) denote the container handling cost per TEU incurred on container route 

od odh   over the period t, then the total container handling cost can be calculated by 

the formula 

  
 ,

od od

od od

h h od
t snt st

o d h

c z
 

 
 

 (15) 

The voyage costs of the ships in the fleet that are used to transport containers, plus 

lay-up costs of those ships undergoing maintenance, plus the costs of chartering in ships 

from other liner container shipping companies and the capital investment of purchasing 

new ships is given by: 
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IN NEW

, , , ,

IN NEW

t n t n t n t n

kr k
krt nt kt nt kt kt

r k k k k

c x e y c c
    

      
    

 (16) 

where krtc  is the voyage cost of operating a specific ship k on route r in period t 

($/voyage), kte  is the daily lay-up cost for a specific ship k in period t ($/day), IN
ktc  is the 

cost of chartering in a specific ship k at the beginning of period t ($), NEW
ktc  is the price of 

the new ship k at the beginning of period t ($). 

As mentioned earlier, the fleet deployment plan of a specific fleet size and mix 

strategy n in period t is dependent on the container shipment demand of the previous 

period 1t  . Therefore, given a fleet size and mix strategy n in period t which is produced 

by a parent m of in period t-1, the optimal fleet deployment plan under this given strategy 

n is dependent on the container shipment demand scenario s  over the previous period 

1t  , which can be formulated as a 2SSP model with the objective of maximizing the 

expected profit across all container shipment demand scenarios s in period t, denoted by 

,
,
m s

t nEP  . 

It is noted that the decision about kr
nt , kr

ntx   and k
nty  are made prior to a realization  

of the random container shipment demand. In reality, the number of containers 

transported between an O-D port pair  ,o d   assigned to a particular container route 

can be determined only after the realization of the random container shipment demand. 

We can thus break down the set of all the decision variables into two stages. The first-

stage decision variables are kr
nt , kr

ntx   and k
nty , and the second-stage variables are 

odh
sntz . 

Therefore, the 2SSP model is as follows:   

[2SSP] 
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  
OUT SOLD IN NEW

, ,, , , ,

, OUT SOLD IN NEW
, max

                    ,

t n t nt n t n t n t n

t

m s kr k
t n kt kt krt nt kt nt kt kt

r k kk k k k

t ts
s s

s

EP c c c x e y c c

p Q



     




     



      

 ξ v ξ ω

     



(17) 

subject to 

 ,, ,kr kr kr kr
nt nt nt t nx M r k          (18) 

 ,

,
t n

kr r
nt t

k

x N r


  




 

(19) 

 ,,t k
k nt t nt T y k      (20) 

 ,, ,kr kr k
nt nt t nx t y t r k         (21) 

 ,1,kr
nt t n

r

k


   


  (22) 

   ,0 , ,kr
nt t nx k r      

 
(23) 

 ,0,k
nt t ny k  

 
(24) 

   ,0,1 , ,kr
nt t nk r        (25) 

where, for succinctness,  kr kr k
nt nt ntx yv      contains all first-stage decision 

variables, Mkr represents the maximum number of voyages ship k can complete on route r 

during period t, r
tN  is the number of voyages required on route r during period t in order 

to maintain a given level of service frequency, t  is the duration of period t (days), t
kT  

represents the shipping season for ship k in period t (days), referring to the number of 

days within the planning horizon excluding the time for maintenance, krt  is the voyage 

time of ship k on route r (days/voyage), includes sailing time on sea (related to distance 

and average sailing speed) and time spent for container loading and discharging at ports 
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(related to port productivity and ship type).   is the set of positive integers. 

  ,tsQξ v ξ ω  is a function used for the following second-stage optimization problem, 

which depends on the first-stage decision variables and the realization of container 

shipment demand,ω , under scenario s. Its value is obtained by solving the following 

optimization problem: 

       
 ,

, max
od od od

od od

ts h h h od
t t snt st

o d h

Q f c z
 

   ξ v ξ ω
 

 (26) 

subject to 

  
 , ,

, 1, , , ,
od od

od od
t n

kr h h od
nt k ir snt st r t

k o d h

x V z i m r s
  

           
  

   (27) 

 
   

     
, ,

ξ , , ,
od

o d o d

od h od od od
st snt st st t

h

u z o d s 


     


   (28) 

  0, , , ,
odh od od

snt tz o d h s          (29) 

where kV  is the capacity of a particular ship k (TEUs), ρ
odh

ir  is a binary coefficient which 

equals 1 if a container route od odh   contains leg i of route r and otherwise equals 0 

and od
stu  denotes the number of mandatory containers that have to be transported between 

an O-D port pair  ,o d   under scenario s in period t.   

Eq. (17) is the objective function of the 2SSP model. Constraints (18) apply the 

big-M method to ensure that, if kr
tn  equals 0, then kr

tnx  equals 0; otherwise, if kr
tn were 

equal to 1 then kr
tnx  would be a positive integer. The value of Mkr can be given by 

kr krM t t    , where a    denotes the maximum integer not greater than a. Eqs. (19) 

give the number of voyages required on route r in order to maintain a given level of 

shipping frequency. For example, if a weekly liner shipping service is required on each 
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liner ship route during a planning horizon of six months, then 26r
tN  . Eqs. (20) 

provides the minimum number of lay-up days for ship k on route r. Constraints (21) 

indicate that the total voyage time for ship k on route r (sailing on the sea) plus its lay-up 

time should not exceed one single period. Constraints (22) ensure that each ship only 

serves on one route. Constraints (23) impose non-negative integer values on the decision 

variables kr
ntx  and constraints (24) require the decision variables k

nty  to be non-negative, 

respectively. Constraints (25) define the decision variables kr
tn  to be binary. 

Eq. (26) is the objective function of the second-stage optimization problem. The 

left-hand sides of the constraints (27) are the total transportation capacity of ships 

deployed on the liner shipping route r . The right-hand sides are the total number of 

containers carried by ships sailing on leg i of route r , including the containers 

loaded at previously calling ports which have remained on the ships plus any containers 

loaded or transshipped at port i
rp . In other words, the constraints (27) ensure that the 

container flow on each leg carried on the ships does not exceed the ship capacity 

deployed on the route. The constraints (28) imply that the total number of containers 

assigned to all ship routes between an O-D port pair cannot exceed the corresponding 

container shipment demand. In practice, a liner container shipping company usually has 

contractual obligations with some shippers, meaning that a certain number of containers 

have to be shipped, while the rest are optional. The right-hand sides of constraints (28) 

are the realization of container shipment demand between an O-D port pair  ,o d   

under scenario s. Therefore, the right-hand inequality of constraints (28) ensures that the 

number of containers carried on the ships does not exceed the demand, while the left-
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hand inequality guarantees that the mandatory containers are shipped. Constraints (29) 

require that the decision variables 
odh

sntz  should be non-negative. According to Eqs. (27)-

(28), it can be seen that container shipment demand between some pairs of ports may not 

fully fulfilled. For the sake of presentation, the penalty cost is not imposed on the 

unfulfilled container shipment although it is straightforward to add the penalty cost into 

the objective function in Eq(26). 

After ,
,
m s

t nEP   is obtained by solving the 2SSP model above, we can then calculate 

the expected profit under strategy n in period t given strategy m was applied in period t-1, 

which is denoted by ,
m

t nEP   1,..., ; 1,..., tt T n N  , and given by: 

 
1

1 ,
, ,

t

m t m s
t n s t n

s

EP p EP







 


 (30) 

3.3 Multi-period stochastic programming model for the MPLSFP problem 

At the end of period T, the set of ships owned by the liner container shipping 

company under strategy n , denoted by 
,T n

 , includes ships that were kept, ships that 

were chartered out and ships that were bought at the beginning of period T : 

 KEEP OUT NEW

, , , ,
, 1,..., TT n T n T n T n
n N    
      (31) 

All ships owned by the liner container shipping company are disposed of at the 

end of period T for their salvage values, which is denoted by 
,T n

SV  . The objective of the 

MPLSFP problem is to find the best policy that maximizes the sum of the expected 

profits across the whole T-period planning horizon plus the salvage value. Here a policy 

refers to a path from the dummy root O to the leaf node  1,...,T Tn N    in the 

decision tree. Therefore, the best policy refers to the path from the dummy root O to a 
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leaf node n  in the decision tree, with the maximal sum of expected profits plus salvage 

values. The length of a path is, as usual, the sum of the length of the arcs that it contains. 

Let ,
,

n l
t n



�  be 1 if a path  Tl n   from the dummy root O to the leaf node n  

passes node n of period t, and 0 otherwise ( n  = 1,…,NT). The best path, with the 

maximal sum of expected profits across all period plus salvage value, that is, the optimal 

plan for the MPLSFP problem, is given by: 

 
     0

,
, , ,

1,

max
1 1T

T

m n lT
t n t n T n

t T
l n tn m
n

SVEP
Z

r r 


 
 

 






 



 

�  (32) 

where r is the discount rate for each period during the multi-period planning horizon. 

4 SOLUTION METHOD 

As shown in Figure 5, the expected profit on each arc contributes to the total 

profit along a given path from the dummy root O to a leaf node n . In order to find the 

path with the greatest total profits across all periods, the attribute of each arc, ,
m

t nEP , and 

the salvage value 
,T n

SV   have to be obtained. Once each ,
m

t nEP  is obtained, the path from 

the dummy root O to a leaf node n  with the maximal total profit can be found. Therefore, 

the key aspect of the solution method is to obtain ,
m

t nEP , that is to solve the 2SSP model. 

The following firstly proposes a solution method to deal with the 2SSP model in order to 

get ,
m

t nEP , and then describes an algorithm for finding the best path for the proposed 

MPLSFP problem in this paper. 

[Figure 5 is inserted here] 

4.1 Dual decomposition and Lagrangian relaxation method 
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It is noted that each 2SSP model under strategy n for period t involves a number 

of scenarios of the uncertain container shipment demand. Even when the first-stage 

decisions are given and fixed, tS  (t = 1,…, T) optimization models (26) have to be solved 

in order to obtain the expected value associated with this given set of fixed first-stage 

decisions.  

In order to effectively solve a 2SSP model under strategy n for period t (n = 

1,…,Nt; t = 1,…,T), the dual decomposition and Lagrangian relaxation method proposed 

by [31] is used because it can decompose the 2SSP model into tS  sub-problems based on 

the scenarios of container shipment demand. In order to do that, the first-stage variables 

are copied for each scenario. Such duplication might result in a new problem: the first-

stage decision variables vs for each scenario s (s = 1,…,St) could be different. However, 

the first-stage decision variable vector vs (s = 1,…,St) in the 2SSP model should be 

independent of uncertain container shipment demand because they are made prior to 

knowing the exact market demand. Therefore, the non-anticipativity constraints 

 1 2 1, ,
tS t T   v v v  are added, to guarantee that the first-stage decisions in 

period t do not depend on the scenarios. The non-anticipativity constraints are 

implemented through the equation 
t

s s

s

H v 0


 (t = 1,…, T) where sH is a suitable 

matrix with    1 2 +t tn tnS K R K   rows and 2 +tn tnK R K  columns ( tnK  is the cardinality 

of set ,t n , namely the number of ships; 2 +tn tnK R K  is the number of first-stage decision 

variables kr
ntx , k

nty  and kr
nt ) for s = 1,…,St  defined as follows: 
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     

   

1 2 3

1

, , , , , , , , , , , , ,

, , , , , ,t tS S

      

    

H I 0 0 H I I 0 0 H 0 I I 0

H 0 I I H 0 0 I

   

 

 (33) 

where I and 0 are the square unity matrix and zero matrix of size 2 +tn tnK R K , respectively. 

Let λ  be a    1 2 + -dimensionalt tn tnS K R K  vector of Lagrangian multiplier associated 

with the non-anticipativity constraints. The resulting Lagrangian relaxation is as follows: 

[LRt,n] 

  
  

OUT SOLD IN NEW
, , , ,

, ,

OUT SOLD IN NEW

, max
,

t n t n t n t n

t

t n t n

kt kt kt kt
k k k kt s s

t n s s krs ks ts s
s krt nt kt nt

r k k

c c c c

LR p
c x e y Q

   




  

   
 

  
    
 

   


   ξ

λ λ H v
v ξ ω

   



  

 (34) 

subject to constraints (18)-(24) and (27)-(29) for each scenario of container shipment 

demand. This Lagrangian relaxation model LRt,n can be further decomposed into tS  

separate mixed-integer linear programming problems according to the tS  container 

shipment demand scenarios, namely: 

    , ,

t

s
t n t n

s

LR LR


 λ λ


 (35) 

where  

 
  

OUT SOLD IN NEW
, , , ,

, ,

OUT SOLD IN NEW

, max
,

t n t n t n t n

t n t n

kt kt kt kt
k k k ks t s s

t n s s krs ks ts s
krt nt kt nt

r k k

c c c c

LR p
c x e y Q

   



  

   
 

  
    
 

   

   ξ

λ λ H v
v ξ ω

   

  

 (36) 

subject to constraints (18)-(24) and (27)-(29) associated with the sth  scenario of container 

shipment demand. 

Each subproblem shown in Eq. (36) can be solved efficiently using an 

optimization solver such as CPLEX for solving the integer linear integer programming 
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broblems. It is straightforward to demonstrate that  ,t nLR λ , the objective function value 

of the LRt,n model with respect to a given Lagrangian multiplier λ , is an upper bound on 

the optimal value of Eq.(17). The best or tightest upper bound is found by solving the 

Lagrangian dual: 

[LDt,n]  , ,mint n t nLD LR
λ

λ  (37) 

which is solved by the subgradient method, a brazen adaptation of the gradient method in 

which gradients are replaced by subgradients. It shown that 
t

s s

s




H v


 is the subgradient 

of (34) where sv  is the optimal solution of the sth subproblem (36) (Carøe and Schultz, 

1999). With this subgradient, the LRt,n model can be solved using the following 

subgradient method: 

Step 0:  Give an initial Lagrangian multiplier vector  1λ . Let the number of iterations 

1h  . 

Step 1:  Calculate the subgradient  

t

s hs

s




H v


 by solving the subproblem shown in Eq. 

(36) with respect to the Lagrangian multiplier vector  hλ . 

Step 2:  Update the Lagrangian multiplier vector according to the formula: 

  1

t

s hh h h s

s






  λ λ H v


 (38) 

where h  is a positive scalar step size, and given by the following formula  

(Fisher, 1981):  

 1/h h   (39) 
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Step 3:  If the following criterion is fulfilled, the algorithm is terminated. Otherwise, let 

1h h   and go to Step 1. 

       1
, , ,

h h h
t n t n t nLR LR LR   λ λ λ  (40) 

where   is a given threshold value. 

It is noted that the global convergence of this subgradient method has been proved 

in (Pojak, 1967), namely  , ,
h

t n t nLR LDλ  , if 0h   and 
0

h

h



 . Obviously, 

the step size adopted in this study fulfills the condition. Therefore, the dual 

decomposition method proposed in this study is theoretically convergent. 

4.2 Longest path algorithm for the MPLSFP problem 

Once the attribute of each arc has been obtained using the solution method 

described in Section 4.1, the next step is to find the longest path from the dummy root O 

to a leaf node, with the maximal profit (summed across all arcs contained in this path) 

plus salvage value. Each leaf node, no, is connected to a dummy destination node, D 

(shown in Figure 5), by a dummy arc, and the value on each dummy arc is set equal to 

the salvage value of this leaf node, 
,T n

SV  . Then, finding the longest path from the 

dummy root O to a leaf node is equivalent to finding the longest path from O to D in the 

acyclic network shown in figure 5. A few shortest path algorithms (Ahuja, Magnanti, and 

Orlin, 1996) can be used for solving the longest path problem. It is noted that, 

theoretically, it is possible that there is no feasible solution when solving the 2SSIP 

model (26). For this case, we just set ,
,
m s

t nEP   
.
   

5 COMPUTATIONAL EXPERIMENTS 

5.1 A numerical example design 
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In order to illustrate applicability of the proposed approach for solving the 

MPLSFP problem with container transshipment and demand uncertainty, we assume that 

the liner container shipping company intends to make a 10-year liner ship fleet plan for 

eight ship routes shown in Figure 6. Note that these ship routes are now operated by the 

liner container shipping company OOCL in Hong Kong. These eight ship routes involve 

a total of 36 ports of call, 390 O-D pairs and 443 container routes.  

[Figure 6 is inserted here] 

The ports called at on each liner shipping route and their digital number codes are 

shown in Table 2. Table 3 gives the distances of each leg on each ship route. The relevant 

ship data are presented in Table 4, including ship size and type, daily operating and lay-

up costs, annual chartering in and out rates, selling and purchasing prices. The initial ship 

fleet consists of 27 ships, including two ships of type 1, two ships of type 2, nine ships of 

type 3, two ships of type 4 and twelve ships of type 5.To simplify the input data 

preparation, it is assumed that these cost parameters do not change within the time 

horizon. The daily operating costs of each ship type are estimated using the following 

regression equation in (Shintani et al., 2007) since the exact data are unavailable: 

  daily operating cost 6.54 ship size 1422.5 $  
 (41) 

 [Table 2 is inserted here] 

[Table 3 is inserted here] 

[Table 4 is inserted here] 

5.2 Generation of demand scenarios and fleet size and mix strategies 

We assume there are three scenarios of container shipment demand high, medium 

and low in each single period (i.e. one year), with associated probabilities of 0.35, 0.40 

and 0.25, as shown in Figure 7, and the container shipment demand increases at an annual 
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rate of 8000, 5000 and 2000 TEUs for each scenario, respectively. Additionally, we 

assume three feasible strategies shown in Table 5 are proposed by the liner container 

shipping company’s experts at the beginning of each year. A strategy involves five 

options: keep, charter out, sell, charter in and buy ships. We use five capital letters: K, O, 

S, I and B to represent those five options, respectively. Additionally, the superscript and 

the subscript of the capital letters in a strategy represent the ship type and the number of 

ships of this type, respectively. For example, the strategy 1 2 3 3 4 5
2 2 9 1 2 12K K K I K K  in year 1 

indicates that a total of 28 ship are contained in the ship fleet, of which two ships of type 

1, two ships of type 2, nine ships of type 3, two ships of type 4 and twelve ships of type 5 

are kept in the ship fleet and one ship of type 3 is chartered in. 

[Figure 7 is inserted here] 

[Table 5 is inserted here] 

5.3 Profit comparison 

The results of the numerical example are illustrated as an acyclic network 

representation. It is found that the longest path from O to D is 

1 3 3 1 1 2 2 2 2 3O D            with total profits of 95.2586 billion 

dollars. 

As mentioned in Section 1.2, the most significant contribution of this study is to 

take the dependency of uncertain container shipment demand between periods into 

account in the MPLSFP problem. In order to assess impact of container shipment demand 

dependency on the profit, we calculate the total profit over the whole multi-period 

planning horizon, with the assumption that the container shipment demand in each period 

is independent of that in other periods, and compare the results with those produced 
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above. For the sake of presentation, the case with dependency of container shipment 

demand is called case Ⅰ hereafter (i.e. the problem studied in this paper) while the case 

with independent container shipment demand is called case Ⅱ. 

In case Ⅱ, ,
m

t nEP   1,..., ; 1,..., tt T n N   is given by: 

  
OUT SOLD IN NEW

, ,, , , ,

OUT SOLD IN NEW
, max

                  ,

t n t nt n t n t n t n

t

m kr k
t n kt kt krt nt kt nt kt kt

r k kk k k k

t ts
s

s

EP c c c x e y c c

p Q

     



     



      

 ξ v ξ ω

     



 (42) 

subject to constraints (18) to (29).  

We found that the total profit in case Ⅱ was 95.0217 billion dollars, which is 

lower than those in case Ⅰ. This indicates that the dependency of container shipment 

demand has a significant effect on profits and verifies that the importance of considering 

dependency between the container shipment demand in different periods. Actually, we 

have also theoretically proven that the profit in case Ⅱ will be less than or equal to that in 

case Ⅰ (see appendix). 

5.4 Comparison of fleet deployment plans 

This section investigates the effect of the dependency on the resulting fleet 

deployment plans. The 2SSP model (17) indicates that the fleet deployment plan under a 

given fleet strategy n in period t is dependent on the container shipment demand scenario 

s  of the previous period t-1. Since there are 1tS   container shipment demand scenarios in 

period t-1, it is possible that there are 1tS   different fleet deployment plans for a strategy 

n in year t (t = 2,…,T), where each fleet deployment plan corresponds to a container 

shipment demand scenario s  from the  previous period t-1 and is obtained by solving the 
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2SSP model (17). This shows that, in case Ⅰ, the fleet deployment decisions for period t 

take the container shipment demand from the previous period into account, and therefore, 

the fleet deployment plans are demand-dependent. In case Ⅱ, the container shipment 

demand between periods is assumed to be independent, that is the container shipment 

demand in period t-1 is not taken into consideration in the fleet deployment plan 

developed for period t, which indicates that the fleet deployment plans are demand-

independent. The optimization model (42) shows that, in case Ⅱ, a strategy n in year t (t 

= 2,…,T) has only one fleet deployment plan, which is obtained by solving the 

optimization model. Evidently, the demand-dependent fleet deployment plans in case Ⅰ 

are more reasonable and flexible because the consideration of container shipment demand 

dependency in this case means that the liner container shipping company can adopt a 

proper fleet deployment plan based on the container shipment demand that came about in 

the previous period; in case Ⅱ, meanwhile, the same fleet deployment plan must be 

adopted regardless of the scenario of container shipment demand that materialized in the 

previous year.  

In the numerical example, each fleet strategy has three fleet deployment plans 

corresponding to three scenarios of demand: high, medium and low. For example, for the 

strategy 1 2 3 3 4 5
2 2 9 5 2 12K K K I K K  of year 2 in case Ⅰ, three fleet deployment plans are shown in 

table 6. The fleet deployment plan for the same strategy in case Ⅱ is shown in table 7. It 

is found that those fleet deployment plans are different; the reason for this is that the 

probabilities involved in the optimization models are different. 

[Table 6 is inserted here] 
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[Table 7 is inserted here] 

6  CONCLUSIONS AND FUTURE WORK 

This paper proposes a MPLSFP problem with container transshipment and 

uncertain container shipment demand. The uncertain container shipment demand in each 

period is assumed to be dependent on that of the previous period. A set of scenarios in 

each single period is used to reflect the uncertainty of container shipment demand, and 

then the evolution and dependency of container shipment demand across multiple periods 

is modeled as a scenario tree. A decision tree is used to interpret the procedure of fleet 

development over the multi-period planning horizon. The proposed MPLSFP problem is 

formulated as a multi-period stochastic programming model comprising a sequence of 

interrelated 2SSP models. In order to solve this model, the dual decomposition and 

Lagrangian relaxation method is employed to solve the 2SSP models; and then the 

solution to the MPLSFP problem is found by using the longest path algorithm on an 

acyalic network. Numerical experiments are carried out to evaluate the applicability and 

performance of model and solution method proposed in this study. Impact analysis of 

container shipment demand dependency is also examined. The results show that the profit 

obtained when considering dependency is higher and the ship fleet plans are more 

flexible than when dependency is not considered.  

It is worth  highlighting that the most significant contribution of this study is that 

it takes the first step towards a more realistic MPLSFP problem than has been studied in 

previous literature and provides an applicable and feasible method for handling such a 

problem in practice. It has to be pointed out that in this study the feasible fleet size and 

mix strategies in each single period are assumed to be proposed by experts in the liner 
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container shipping company, rather than being regarded as decision variables. The 

rationale behind such an assumption is that it effectively reduces the searching space 

from the viewpoint of operations research and makes the MPLSFP problem solvable in 

practice; otherwise, the MPLSFP problem would be highly intractable. We also need to 

reduce the runtime further because the convergent rate of the harmonic series, i.e. the step 

size sequence  1/ , 1, 2,3,...h h h    adopted in the solution algorithm, is inefficient. It 

might be worhwhile investigating whether a more sophisticated heuristic for finding 

feasible solutions would produce even better results.   

Currently, only the expected profit is studied, and no attempt is  made to control 

the variance (that is the risk that results from the uncertain environment). This will be a 

subject of our future research work. As the proposed problem is for strategic long-term 

planning horizon, it is reasonable to exclude the operational-level issue of demand peak 

seasonality. In further research, the demand peak seasonality at the operational level will 

be studied.  
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APPENDIX 

In case Ⅰ, ,
m

t nEP  is given by:  
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, ,
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m t m s
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In Eq. (17), the terms 
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 can be 

removed since they are fixed when the sets of OUT SOLD IN
, , ,, ,t n t n t n    and NEW

,t n  are given. Then 

Eq. (A-1) can be rewritten as follows after using Eq. (17) to replace ,
,
m s

t nEP  :  
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 (A-2) 

In case Ⅱ, ,
m

t nEP  is given by Eq. (42). Similarly, the terms OUT SOLD IN
, , ,, ,t n t n t n    and NEW

,t n  are 

removed and then ,
m

t nEP  is given by:  

     
,

, max ,
t t n

m t ts r kr kr
t n s kt nt kt nt

s r k

EP p Q c x e y
  
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Therefore, ,
m

t nEP  in case Ⅰ   ,
m

t nEP  in case Ⅱ. 
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Table 1 Container shipment demand scenarios for illustrative example 

O-D pair 

Year 1 Year 2 

L  M H L  M H 

PS   SH 1000 2000 3000 1500 2500 3500 

SH   YT 800 1000 1500 1200 2000 2500 

YT  HK 1000 1500 2000 1500 2000 2500 

 
Table 2 Port calling sequence and number code for each route 

Route Port Calling Sequence and Number Code  

CCX Los Angeles/Oakland/Pusan/Dalian/Xingang/Qingdao/Ningbo/Shanghai 

/Pusan/Los Angles (1-2-3-4-5-6-7-8-9-1) 

CPX Shanghai/Ningbo/Shekou/Singapore/Karachi/Mundra/Penang/PortKelang 

/Singapore/Hong Kong/Shanghai (1-2-3-4-5-6-7-8-9-10-1) 

GIS Singapore/Port Kelang/Nhava Sheva/Karachi/Jebel Ali/Bandar Abbas 

/Jebel Ali/ Mundra/Cochin/Singapore (1-2-3-4-5-6-7-8-9-1) 

IDX Colombo/Tuticorin/Cochin/Nhava Sheva/Mundra/Suez/Barcelona/NewYork 

/Norfolk/Charleston/Barcelona/Suez/Colombo (1-2-3-4-5-6-7-8-9-10-11-12-

1) 

NCE New York/Norfolk/Savannah/Panama/Pusan/Dalian/Xingang/Qingdao 

/Ningbo/Shanghai/Panama/New York (1-2-3-4-5-6-7-8-9-10-11-1) 

NZX Singapore/Port Kelang/Brisbane/Auckland/Napier/Lyttelton/Wellington/ 

Brisbane/Singapore (1-2-3-4-5-6-7-8-1) 

SCE New York/Norfolk/Savannah/Panama/Kaohsiung/Shekou/Hong Kong 

/Panama/New York (1-2-3-4-5-6-7-8-1) 

UKX Southampton/Hull/Grangemouth/Southampton (1-2-3-1) 
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Table 3 Distance of each leg in a ship route 
Route Distance (nautical miles) 

CCX 360-4 978-523-209-408-390-111-456-5 289 

CPX 111-740-1 423-2 881-213-2474-165-198-1422-787 

GIS 198-2 247-498-713- 152-152-890-915-1848 

IDX 153-225-723-372-2 809-1 673-3 741-273-402-4 170-1 673-3 394 

NCE 273-505-982-13 831-523-209-408-390-111-13 565-1359 

NZX 198-3 880-1 303-523-329-175-1 379-3 685 

SCE 273-505-982-12 949-366-26-12 788-1 359 

UKX 315-243-511 

Source: The port distances are from the website: 
http://www.searates.com/reference/portdistance/ 

 

Table 4 Ship data  

Item 
Ship types 

1  2 3  4  5  

Ship size (TEUs) 2 808 3 218 4 500 5 714 8 063 

Design speed (knots) 21.0 22.0 24.2 24.6 25.2 

Daily operating cost 

($103) 

19.8 22.5 30.9 38.8 54.2 

Daily lay-up cost 

($103) 

2.8 3.2 4.5 6 8 

Annual chartering out 

rate ($million) 

3.64 

 

4.68 

 

6.42 

 

8.64 

 

10.24 

 

Annual chartering in rate 

($million) 

4 5.2 7.0 9.4 12.0 

Selling price ($million) 85 105 175 225 345 

Purchasing price 

($million) 

135 155 215 275 385 
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Table 5 Strategies proposed for each year 
Year Strategy 1 Strategy 2 Strategy 3 

1 1 2 3 4 5
2 2 9 2 12K K K K K  1 2 3 3 4 5

2 2 9 1 2 12K K K I K K  1 1 2 3 3 4 5
1 1 2 9 4 2 12K O K K I K K  

2 1 2 3 3 4 5
2 2 9 5 2 12K K K I K K  1 2 3 3 4 4 5

2 2 9 2 2 2 12K K K I K I K  1 2 3 3 4 4 5
2 2 9 3 2 2 12K K K I K I K  

3 1 1 2 3 3 4 4 5
1 1 2 9 4 2 2 12S K K K I K I K 1 2 3 3 4 5

2 2 9 5 2 12S K K B K K  1 1 2 3 4 4 5
1 1 2 9 2 6 12S K K K K I K  

4 1 2 3 3 4 4 5
1 2 9 4 2 5 12K K K I K I K  2 3 4 5

2 14 2 12K K K K  1 2 3 3 4 4 5
1 2 9 5 2 3 12K K K B K I K

5 1 2 3 3 4 4 5
1 2 9 5 2 3 12S K K B K I K  2 3 4 4 5

2 14 2 5 12K K K I K  1 2 3 4 4 5
1 2 14 2 5 12K K K K I K  

6 2 3 4 4 5
2 14 2 8 12K K K I K  2 2 3 4 4 5 5

1 1 14 2 4 12 2S K K K B K I 1 2 3 4 4 5
1 2 14 2 4 12S K K K B K  

7 2 3 4 4 5 5
2 14 2 4 12 3S K K B K I  2 3 4 5 5

1 14 6 12 5K K K K I  2 3 4 5 5
2 14 6 12 5K K K K I  

8 3 4 5 5
14 6 12 6K K K I  2 3 4 5 5

1 14 6 12 6S K K K B  2 2 3 4 5 5
1 1 14 6 12 6S K K K K B  

9 3 4 4 5 5
14 6 4 12 3K K I K B  3 4 5

14 6 18K K K  2 3 4 5
1 14 6 18S K K K  

10 3 4 5 5
14 6 15 5K K K I  3 4 4 5

14 6 3 18K K I K  3 4 4 5
14 6 4 18K K I K  
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Table 6 Ship-to-route allocation of strategy 1 2 3 3 4 5
2 2 9 5 2 12K K K I K K  in case I for year 2 

Demand 
scenario 

 

Route
Ship 
Type 

CCX CPX GIS IDX NCE NZX SCE UKX

H
ig

h 

1       2  

2       2  

3 3 3   5 3   

4   1 1     

5   1 3 4  3 1 

M
ed

iu
m

 

1       2  

2       2  

3 3 3   5 3   

4     2    

5   2 4 2  3 1 

L
ow

 

1       2  

2   2      

3 3 3    4 4  

4     1  1  

5    4 6  1 1 
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Table 7 Ship-to-route allocation of strategy 1 2 3 3 4 5
2 2 9 5 2 12K K K I K K  in case II for year 2 

Route 
Ship 
Type 

CCX CPX GIS IDX NCE NZX SCE UKX 

1       2  

2       2  

3 3 3  2 2 3 1  

4     2    

5    3 4  2 1 
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Figure 1 A liner ship route 

 

 
Figure 2 Three liner ship routes 

 

 
Figure 3 A two-layer scenario tree 
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Figure 4 Decision tree for fleet development plan in MPLSFP problem 

 
 

 
Figure 5 An acyclic network representation of the MPLSFP problem 
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Figure 6 Liner shipping network for the numerical example 

 

 
 

Figure 7 Scenario tree for the numerical example 
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