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Abstract– Recently, we have witnessed the emergence of

technologies that can localize a user and track her gestures

based purely on radio reflections off the person’s body. These

technologies work even if the user is behind a wall or ob-

struction. However, for these technologies to be fully prac-

tical, they need to address major challenges such as scaling

to multiple people, accurately localizing them and tracking

their gestures, and localizing static users as opposed to re-

quiring the user to move to be detectable.

This paper presents WiZ, the first multi-person

centimeter-scale motion tracking system that pinpoints

people’s locations based purely on RF reflections off their

bodies. WiZ can also locate static users by sensing minute

changes in their RF reflections due to breathing. Further, it

can track concurrent gestures made by different individuals,

even when they carry no wireless device on them.

We implement a prototype of WiZ and show that it can

localize up to five users each with a median accuracy of

8-18 cm and 7-11 cm in the x and y dimensions respec-

tively. WiZ can also detect 3D pointing gestures of multiple

users with a median orientation error of 8 − 16◦ for each

of them. Finally, WiZ can track breathing motion and output

the breath count of multiple people with high accuracy.

1. INTRODUCTION

For many years, the wireless channel abstraction has in-

volved data communication between an RF transmitter and

an RF receiver. Recent advances in wireless technologies,

however, have demonstrated that a person’s motion can mod-

ulate the wireless signal, enabling the transfer of informa-

tion from a human to an RF transceiver, even when the per-

son does not carry a transmitter [5, 14, 4]. This leads to a

new abstraction of the wireless channel, in which a user may

communicate with remote devices over the wireless medium

directly using gestures, a much more natural interface for

mobile computing than a keypad or a touch screen. The new

channel abstraction also allows for a direct extraction of in-

formation from the environment. For example, one may track

objects and people as they move around, purely based on

how their motion modulates the wireless signal. This could

lead to new video games and virtual reality applications that

work in non-line-of-sight and across rooms. It can also be

used for health-care monitoring in hospitals or at home (e.g.,

monitoring dementia and Alzheimer patients), and for intru-

sion detection or search-and-rescue operations. Hence, the

new channel abstraction blurs the boundaries between wire-

less communications and human-computer interaction, pro-

viding a more holistic view of these disciplines that is better

aligned with the emerging world of mobile computing.

Motivated by this vision, this paper takes another leap to-

ward enriching this new channel model. We particularly fo-

cus on multi-person motion tracking using only RF reflec-

tions. Accurate tracking of a person’s body and body parts is

a core enabling primitive for this new channel because it can

be used both to extract information from the environment

and track its moving bodies, and to communicate commands

using hand gestures. Past work that delivers centimeter-scale

tracking accuracy can localize only one person, and only if

the person is moving [4]. Multi-person tracking based on

body reflections is intrinsically difficult. Movements of dif-

ferent people all modulate the same wireless signal causing

interference. Rather than avoiding interference by assuming

that only one person moves at any time, we aim to tackle and

overcome this interference problem.

We present WiZ, the first multi-person centimeter-scale

motion tracking system that operates purely using RF reflec-

tions off a person’s body. WiZ can also accurately localize

static people using their breathing motion, and can further

count their breaths. It can also track body parts, enabling

multiple people to simultaneously interact with the environ-

ment via hand gestures.

To achieve its goal, WiZ has to overcome multiple chal-

lenges. In particular, state-of-art centimeter-scale tracking

measures distances using the signal’s time of flight (TOF)

– that is the time it takes the signal to travel from the radio

to a reflector and back [4]. The TOF can be easily mapped

to a distance by multiplying it with the speed of light. How-

ever, when there are multiple people, they all modulate the

same wireless signal, making it difficult to disentangle the

TOFs of each individual. The problem is exacerbated in in-

door settings where people are confined to a small space

and hence their TOFs are naturally close. Furthermore, mul-

tipath reflections can create fictitious TOFs which further

complicate the problem. To address these challenges, WiZ

builds on Frequency Modulated Carrier Waves (FMCW), a

radar technique that provides TOF measurements. WiZ in-

troduces multi-shift FMCW, a multi-antenna extension to

FMCW where the signal transmitted by different antennas

is structured in a particular way to disentangle the TOFs cor-

responding to different people and eliminate the impact of

fictitious TOFs that do not correspond to a physical target.

In §4, we describe multi-shift FMCW in detail.

A second challenge that WiZ has to address is related

to the near-far problem. Nearby reflectors can have signif-

icantly more power than distant reflectors, obfuscating the

signal from people in the back and preventing their detection

or tracking. To address the near-far problem, WiZ introduces

successive silhouette cancellation (SSC). This approach is
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inspired by successive interference cancellation, where the

receiver first focuses on the strong signal, decodes it, and

subtracts it from the received signal to enable the decoding of

weaker signals. The main difference is that decoding in our

context means localizing the person using her TOF measure-

ments. Once we have decoded a person’s location, we have

to figure out how a reflection from a person at that location

would impact the received signals and cancel that impact.

Doing so allows us to successively eliminate strong reflec-

tors that could completely hide far away people. We keep

doing so until we have decoded all people in the scene.

Finally, to localize breathing, one needs to realize that the

breathing motion is fairly slow in comparison with body mo-

tion. The chest moves by a sub-centimeter distance over a

period of few seconds. In contrast, a human would pace in-

doors at 1 m/s. To detect reflectors with slow motions with-

out confusing them with static reflectors (e.g., furniture and

walls) and without obscuring them with fast reflectors, (e.g.

body motion), WiZ processes the received signal at multi-

ple time scales: a short time scale to detect moving bodies

and quickly pinpoint their location before it changes, and a

longer time scale that allows slowly moving objects, like a

breathing chest, to move enough so that they become de-

tectable.

We have built a prototype of WiZ using USRP software

radios and an analog FMCW radio. In our evaluation, we

use the VICON motion capture system to report the ground

truth location [3]. VICON can achieve millimeter localiza-

tion accuracy but requires instrumenting the human body

with infrared markers and positioning an array of infrared

cameras on the ceiling. We run experiments both in line-of-

sight (LOS) scenarios and non-line-of-sight (NLOS) scenar-

ios, where the device is in a different room and is tracking

people motion through the wall. Empirical results from over

300 experiments with 11 human subjects show the follow-

ing:

• Motion Tracking: WiZ accurately tracks the motion of

four people when the device is in the room where the mo-

tion occurs, and three people when the device is placed

behind the wall. Its median error is 8.4 cm and 7.2 cm in

x/y for the nearest person for both the through-wall and

line-of-sight experiments, and remains less than 16.1 cm

and 10.5 cm in x/y for the furthest person in the scene.

• Localizing Static People: By tracking their breathing mo-

tion, WiZ accurately localizes up to five static people in

line-of-sight and four static people through a wall. Its me-

dian error is less than 7.2 cm and 6.3 cm in x/y for the

nearest person in both through-wall and line-of-sight ex-

periments and remains less than 18.3 cm and 10.9 cm for

the furthest person in the scene.

• Breath Counting: In the above experiments, WiZ was able

to count the number of breaths taken by every participant.

Its counting error is less than one breath for over 97% of

our experiments – each of which lasted for 3-4 minutes.

Also WiZ was able to detect occasions when the user ac-

cidentally held her breath.

• Gestures: WiZ can recognize concurrent gestures per-

formed in 3D space by multiple users. In particular, we

consider a gesture in which three users point in different

directions at the same time. For example the users may

be playing a virtual shooting game, or may want to con-

trol different appliances around by pointing at them. Our

WiZ prototype detect all the pointing directions of all three

users with a median accuracy of 8.2◦ and 16◦, for the near-

est and furthest user respectively.

Contributions: This paper presents WiZ, the first multi-

person centimeter-scale motion tracking system that oper-

ates using RF reflections off people’s bodies. It works for

both moving and static people and can further count people’s

breath and track multiple concurrent gestures. These capa-

bilities are enabled by successive silhouette cancellation and

multi-shift FMCW, two innovative techniques for computing

the time of flight (TOF) of multiple reflectors from different

perspectives and mapping these TOFs to accurate estimates

of the locations of the reflecting bodies even in the presence

of near-far interference.

2. BACKGROUND

This section provides necessary background regarding

single-person motion tracking via RF body reflections.

The process of localizing a user based on radio reflec-

tions off her body has three steps: 1) obtaining time-of-flight

(TOF) measurements to various reflectors in the environ-

ment; 2) eliminating TOF measurements due to reflections

of static objects like walls and furniture; and 3) mapping the

user’s TOFs to a location.

Obtaining TOF measurements. A typical way for measur-

ing the time-of-flight (TOF) is to use a Frequency-Modulated

Carrier Waves (FMCW) radio. An FMCW transmitter sends

a narrowband signal (e.g., a few KHz) but makes the carrier

frequency sweep linearly in time, as illustrated by the solid

green line in Fig. 1(a). The reflected signal is a delayed ver-

sion of the transmitted signal, which arrives after bouncing

off a reflector, as shown by the dotted green line in Fig. 1(a).

Because time and frequency are linearly related in FMCW,

the delay between the two signals maps to a frequency shift

∆f between them. Hence, the time-of-flight can be measured

as the difference in frequency ∆f divided by the slope of the

sweep in Fig. 1(a):

TOF = ∆f /slope (1)

This description generalizes to an environment with mul-

tiple reflectors. Because wireless reflections add up linearly

over the medium, the received signal is a linear combina-

tion of multiple reflections, each of them shifted by some ∆f

that corresponds to its TOF. Hence, one can extract all these

TOFs by taking an FFT of the received signal. The output

of the FFT gives us the TOF profile which we define as the

reflected power we obtain at each possible TOF between the

transmit antenna and receive antenna, as shown in Figs. 1(b)

and 1(c).
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Figure 1—Localization by TOF measurements. (a) shows the transmitted FMCW signal and its reflection. The TOF between the trans-
mitted and received signals maps to a frequency shift ∆f between them. (b) shows the TOF profile obtained after performing an FFT on the
baseband FMCW signal. The profile plots the amount of reflected power at each TOF. (c) shows that a moving person’s reflections pop up
after performing background subtraction. (d) shows how we can use TOF measurements from multiple receivers, map them to round-trip
distance measurements, and localize the user by trilateration.

Eliminating TOFs of static reflectors. To localize a human,

we need to identify his/her reflections from those of other ob-

jects in the environment (e.g., walls and furniture). This may

be done by leveraging the fact that the reflections of static ob-

jects remain constant over time. Hence, one can eliminate the

power from static reflectors by performing background sub-

traction – i.e., by subtracting the output of the TOF profile in

a given sweep from the TOF profile of the signal in the pre-

vious sweep. Fig. 1(c) and 1(b) show how background sub-

traction eliminates the power in static TOFs from the TOF

profile, and allows one to notice the weak power resulting

from a moving person.

Localization using TOF measurements. Recall that the

TOF corresponds to the time it takes the signal to travel from

the transmitter to a reflector and then back to the receiver.

Therefore, one can compute the corresponding round-trip

distance by multiplying this TOF by the speed of light C

as follows:

round trip distance = C × TOF = C ×
∆f

slope
(2)

Knowing the round trip distance localizes the person to an

ellipse whose foci are the transmit and receive antennas. To

localize a person in 2D, one needs at least two round-trip dis-

tances from different Tx-Rx pairs. Fig. 1(d) shows an exam-

ple of the localization process. The two round-trip distances

corresponding to the two transmitter-receiver pairs, Tx-Rx1

and Tx-Rx2, define two ellipses. The person has to be at one

of the intersection points of these ellipses. However by using

directional antennas for transmission and reception we can

eliminate the intersection point behind the antennas and lo-

calize the person to one point in 2D. This approach extends

to 3D, whereby a distance measurement would map to an el-

lipsoid; hence, we would need three TOF measurements to

obtain the 3D location of a person using his reflections.

3. WIZ OVERVIEW

WiZ is a wireless system that scales device-free localiza-

tion to multiple users in both line-of-sight and through-wall

scenarios. For static users, WiZ localizes them based on their

breathing, and further monitors their breathing rate. WiZ can

also localize the hand motions of multiple people, enabling

a multi-user gesture-based interface.

(a) Antenna (b) Antenna Setup

Figure 2—WiZ’s Antennas and Setup. (a) shows one of WiZ’s
directional antenna placed next to a quarter (dimension of each an-
tenna: 3cm× 3.4cm) (b) shows how these antennas are mounted on
a foldable platform (dimensions: 2m×1m) and arranged in a single
vertical plane.

WiZ is a multi-antenna system. It has five transmit anten-

nas and five receive antennas. These antennas are directional,

and each of them is 3cm × 3.4cm as shown in Fig. 2(a); they

are all stacked in a single plane and mounted on a foldable

platform as shown in Fig. 2(b). This arrangement is chosen

because it enables see-through-wall applications, whereby

all the antennas need to be lined up in the plane facing the

wall of interest.

WiZ operates by transmitting RF signals and capturing

their reflections after they bounce off different users in the

environment. Algorithmically, WiZ has two main compo-

nents: 1) Multi-shift FMCW, a technique that enables it to

deal with interference from multiple users that are modulat-

ing the same wireless signal, and (2) Successive Silhouette

Cancellation (SSC), an algorithm that allows WiZ to over-

come the near-far problem. The following sections describe

these components in detail.

4. MULTI-SHIFT FMCW

We first explain the basic intuition underlying our lo-

calization of multiple people, then introduce the details of

multi-shift FMCW.

4.1 Challenges and Basic Intuition

We have seen in §2 that TOF measurements from two Tx-

Rx pairs allow us to localize a single person in 2D. In this

section, we show that to localize a larger number of users,

we naturally need TOF measurements from many Tx-Rx an-

tenna pairs.
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(a) One Tx-Rx pair
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(b) Two Tx-Rx pairs
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(c) Three Tx-Rx pairs
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(d) Four Tx-Rx pairs
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(e) Five Tx-Rx pairs

Figure 4—Increasing the Number of Tx-Rx pairs enables Localizing Multiple Humans. The figure shows the heatmaps obtained from
combining the TOF profiles of multiple Tx-Rx antenna pairs in the presence of two people in the scene. The x and y axes of each heatmap
correspond to the real world x and y dimensions.

Tx#Rx1# Rx2#

Real#target#Fic00ous#target#

Figure 3—Challenge in Localizing Multiple People. The figure
shows what happens when we have the same setup as Fig. 1(d) but
add a second person to the scene. We get two TOF measurements
at each Rx, which results in four ellipses having four intersection
points within the beam of the antennas. Only two of these intersec-
tions are real targets, and the other two are fictitious targets.

Illustrative Example. Consider the example in Fig. 3, where

we want to localize two users, and we have one transmit (Tx)

and two receive antennas (Rx1 and Rx2). Recall that this

setup allowed us to localize a single person (as discussed

in §2). Now say we have two people. In this case, each re-

ceiver will obtain a TOF profile that shows two spikes, one

spike for each user that corresponds to the value of her TOF

with respect to the Tx-Rx pair. Hence, Rx1 will compute two

TOF measurements, and map them to two different ellipses

whose foci are Tx and Rx1 (green ellipses in Fig. 3). Sim-

ilarly, Rx2 will compute two TOF measurements and map

them to two ellipses whose foci are Tx and Rx2 (blue ellipses

in Fig. 3). These ellipses have four intersections within the

beam of the directional antennas (i.e., in the top half of the

figure). However, only two of these intersections correspond

to real targets. The other two are due to the ellipse of one

person intersecting with the ellipse of another person, and

hence correspond to fictitious targets.

In practice, the problem of fictitious targets is exacerbated

by multiple challenges, and gets more complicated as the

number of users in the environment increases. The first chal-

lenge is multipath. Specifically, the signal reflected off a per-

son may also bounce off other objects in the environment

before arriving at the receive antenna. Each of these reflec-

tions will result in an additional spike in the TOF profile,

and hence an additional ellipse. A second challenge is due to

the near-far problem. Namely, a person who is closer to the

antennas will have much stronger reflections than someone

who is further away; thus, the reflections of the far person

may be masked by the multi-path of the closer one. A third

challenge is due to the fact that a person is not a point re-

flector – his entire body will reflect the transmitted signal.

Hence, each ellipse in Fig. 3 will have a fuzzy region about

it (i.e., a thickness of +/-∆d, where ∆d is determined by the

size of the reflecting surface of each person).

Real-world Experiment. To explore these challenges in

practice, we run an experiment with two users in a 5 m×7 m

room with furniture (tables, chairs, boards, etc.) in a standard

office building. We study what happens as we successively

overlay the ellipses obtained from different transmit-receive

pairs. Recall from §2 that each transmit-receive antenna pair

provides us with a TOF profile – i.e., it tells us how much

reflected power we obtain at each possible TOF between the

transmit antenna and receive antenna (see Fig. 1(c)).

Now let us map all TOFs in a TOF profile to the corre-

sponding ellipses. This process produces a heatmap like the

one in Fig. 4(a). For each ellipse in the heatmap, the color

in the image reflects the amount of received power at the

corresponding TOF. Hence, the ellipse in red corresponds to

a strong reflector in the environment. The orange, yellow,

and green ellipses correspond to weaker reflections respec-

tively; these reflections could either be due to another person

in the environment, multi-path reflections of the first person,

or noise. The blue regions in the background corresponds to

the absence of reflections in the corresponding areas.

Note that the x and y axes for the heatmap image corre-

spond to the x and y dimensions in the real world. Notice

how the heatmap shows a pattern of half-ellipses; the foci

of these ellipses are the transmit antenna and the receive an-

tenna, both of which are placed along the y = 0 axis. The

reason we only show the upper half of the ellipses is that we

are using directional antennas and we focus them towards the

positive y direction. Hence, we know that we do not receive

reflections from behind the antennas.

Fig. 4(a) shows the ellipses corresponding to the TOF pro-

files from one Tx-Rx pair. Now, let us see what happens

when we superimpose the heatmaps obtained from two Tx-

Rx pairs. Fig. 4(b) shows the heatmap we obtain when we

overlay the ellipses of the first transmit-receive pair with

those from a second pair. We can now see two patterns of el-

lipses in the figure, the first pattern resulting from the TOFs

of the first pair, and the second pattern due to the TOFs of the

second pair. These ellipses intersect in multiple locations, re-

sulting in red or orange regions, which suggest a higher prob-

ability for a reflector to be in those regions. Recall that there
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Figure 5—Interference due to multiple transmit antennas. The
signals from multiple transmit antennas would interfere with each
other at the receiver, causing it to obtain two TOF measurements.

are two people in this experiment. However, Fig. 4(b) is not

enough to identify the locations of these two people.

Figs. 4(c) and 4(d) show the result of overlaying the el-

lipses from three and four transmit-receive pairs respectively.

The figures show how the noise and multi-path from differ-

ent antennas is averaging out to result in a dark blue back-

ground. This is because different Tx-Rx pairs have different

perspectives of the indoor environment; hence, they do not

observe the same noise or multi-path reflections. As a result,

the more we overlay heatmaps from different Tx-Rx pairs,

the clearer the candidate locations for the two people in the

environment.

Next, we overlay the ellipses from five transmit-receive

pairs and show the resulting heatmap in Fig. 4(e). We can

now clearly see two bright spots in the heatmap: one is red

and the other is orange, whereas the rest of the heatmap is

mostly a navy blue background indicating the absence of re-

flectors. Hence, in this experiment, we are able to localize

the two users using TOF measurements from five transmit-

receive pairs. Combining these measurements together al-

lowed us to eliminate fictitious intersections and localize the

two people passively using their reflections.

Summary: As the number of users increases, we need TOF

measurements from a larger number of Tx-Rx pairs to local-

ize them. For the case of two users, we have seen a scenario

whereby the TOFs of five transmit-receive pairs were suf-

ficient to accurately localize both of them. In general, the

exact number would depend on multi-path and noise in the

environment as well as on the number of users we wish to

localize. These observations motivate a mechanism that can

provide us with a large number of Tx-Rx pairs while scaling

with the number of users in the environment.

4.2 The Design of Multi-shift FMCW

In the previous section, we showed that we can local-

ize two people by overlaying many heatmaps obtained from

mapping the TOF profiles of multiple Tx-Rx pairs to the cor-

responding ellipses. But how do we obtain TOFs from many

Tx-Rx pairs? One option is to use one FMCW transmitter

and a large number of receivers. In this case, to obtain N Tx-

Rx pairs, we would need one transmitter and N receivers.

The problem with this approach is that it needs a large num-

ber of receivers, and hence does not scale well as we add

more users to the environment.

Time%

FMCW%from%Tx1%

Frequency%

TOFlimit%

FMCW%from%Tx2%

TOF1%

ReflecCon%due%to%Tx1%

Figure 6—Multi-shift FMCW. WiZ transmits FMCW signals
from different transmit antennas after inserting virtual delays be-
tween them. This delay must be larger than the highest time-of-
flight (TOFlimit) due to objects in the environment.

A more appealing option is to use multiple FMCW trans-

mit and receive antennas. Since the signal transmitted from

each transmit antenna is received by all receive antennas, this

allows us to obtain N Tx-Rx pairs using only
√

N transmit

antennas and
√

N receive antennas.

However, the problem with this approach is that the sig-

nals from the different FMCW transmitters will interfere

with each other over the wireless medium, and this inter-

ference will lead to localization errors. To see why this is

true, consider the simple example in Fig. 5, where we want

to localize a user, and we have two transmit antennas, Tx1

and Tx2, and one receive antenna Rx. The receive antenna

will receive two reflections – one due to the signal transmit-

ted from Tx1, and another due to the signal transmitted from

Tx2. Hence, its TOF profile will contain two spikes referring

to two time-of-flight measurements TOF1 and TOF2.

With two TOFs, we should be able to localize a single user

based on the intersection of the resulting ellipses. However,

the receiver has no idea which TOF corresponds to the re-

flection of the FMWC signal generated from Tx1 and which

corresponds to the reflection of the FMCW signal generated

by Tx2. Not knowing the correct Tx means that we do not

know the foci of the two ellipses and hence cannot localize.

For example, if we incorrectly associate TOF1 with Tx2 and

TOF2 with Tx1, we will generate a wrong set of ellipses,

and localize the person to an incorrect location. Further, this

problem becomes more complicated as we add more trans-

mit antennas to the system. Therefore, to localize the user,

WiZ needs a mechanism to associate these TOF measure-

ments with their corresponding transmit antennas.

We address this challenge by leveraging the structure of

the FMCW signal. Recall that FMCW consists of a con-

tinuous linear frequency sweep as shown by the green line

in Fig. 6. When the FMCW signal hits a body it reflects

back with a delay that corresponds to the body’s TOF. Now

let us say TOFlimit is the maximum TOF that we expect

in the typical indoor environment where WiZ operates. We

can delay the FMCW signal from the second transmitter by

τ > TOFlimit so that all TOFs from the second transmitter

are shifted by τ with respect to those from the first transmit-

ter, as shown by the red line in Fig. 6. Thus, we can prevent

the various FMCW signals from interfering by ensuring that
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Figure 7—Multi-shift FMCW Architecture. The FMCW gener-
ated FMCW signal is fed to multiple transmit antennas via different
delay lines. At the receive side, the TOF measurements from the
different antennas are combined to obtain the 2D heatmaps.

each transmitted FMCW signal is time shifted with respect

to the others, and those shifts are significantly larger than the

time-of-flight to objects in the environment. We refer to this

design as Multi-shift FMCW.

As a result, the receiver would still compute two TOF

measurements: the first measurement (from Tx1) would be

TOF1, and the second measurement (from Tx2) would be

TOF′

2 = TOF2 + τ . Knowing that the TOF measurements

from Tx2 will always be larger than τ , WiZ determines that

TOF1 is due to the signal transmitted by Tx1, and TOF′

2 is

due to the signal transmitted by Tx2.

This idea can be further extended to more than two trans-

mit antennas as shown in Fig. 7. Specifically, we can trans-

mit the FMCW signal directly over the air from Tx1, then

shift it by τ and transmit it from Tx2, then shift it by 2τ
and transmit it from Tx3, and so on. At the receive side, all

TOFs between 0 and τ are always mapped to Tx1, whereas

distances between τ and 2τ are mapped to Tx2, and so on.1

Summary: Our Multi-shift FMCW technique has two com-

ponents: the first component allows us to obtain TOF mea-

surements from a large number of Tx-Rx pairs; the second

component operates on the TOFs obtained from these differ-

ent Tx-Rx pairs by superimposing them into a 2D heatmap,

which allows us to localize multiple users in the scene.

5. SUCCESSIVE SILHOUETTE CANCELLATION

With multi-shift FMCW, we can obtain TOF profiles from

a large number of Tx-Rx pairs, map them into 2D heatmaps,

overlay the heatmaps, and start identifying the locations of

the users. However, in practice this is not sufficient because

different users will exhibit the near-far problem. Specifically,

the reflections of a nearby person are much stronger than

1Note that there is a fundamental difference between this approach
and Time-Division Multiplexing (TDM). Specifically, in TDM,
transmissions from different antennas are multiplexed in time – i.e.,
at any point in time, only one antenna is transmitting the FMCW
signal. In contrast, in Multi-shift FMCW, all the shifted FMCW sig-
nals are transmitted continuously and concurrently by all the trans-
mit antennas of the system.

Tx$(xt,yt,zt)$

Rx$
(xr,yr,zr)$

WiZ$

TOFmin$

TOFmax$

(x,y,(zt+zr)/2)$

(x,y,0)$

Figure 9—Finding TOFmin and TOFmax. TOFmin is determined by
the round-trip distance from the Tx-Rx pair to the closest point on
the person’s body – i.e., the projection of the midpoint of [Tx,Rx]
on the person’s body. Since the antennas are elevated, TOFmax is
typically due to the round-trip distance to the person’s feet.

the reflections of a faraway person or a person behind an

obstruction.

Fig. 8(a) illustrates this challenge. It shows the 2D

heatmap obtained in the presence of four persons in the envi-

ronment. The heatmap allows us to localize only two of these

persons: one is clearly visible at (0.5, 2), and another is fairly

visible at (−0.5, 1.3). The other two people, who happen to

be further away from WiZ, are completely overwhelmed by

the power of the first two persons.

To deal with this near-far problem, rather than localizing

all the people in one shot, WiZ performs Successive Silhou-

ette Cancellation (SSC). SSC is inspired by Successive Inter-

ference Cancellation whereby the receiver decodes the signal

with the highest SNR, then re-encodes it and subtracts it out

from the received signal, and proceeds to decode the signal

with the second-highest SNR, then repeats the same proce-

dure until it has decoded all interferers. The main difference

is that decoding in our context means localizing the person

using her TOF. More specifically, WiZ’s SSC algorithm con-

sists of four main steps:

1. SSC Detection: which involves finding the location of the

strongest user (reflector) by overlaying the heatmaps of all

Tx-Rx pairs.

2. SSC Re-mapping: which involves mapping a person’s loca-

tion to the set of TOFs that would have generated that loca-

tion at each transmit-receive pair.

3. SSC Cancellation: which involves canceling the impact of

the person on the TOF profiles of all TX-Rx pairs.

4. Iteration: whereby we use the obtained TOF profiles after

cancellation to re-compute the heatmaps, overlay them, and

proceed to find the location of the next strongest reflector.

In what follows, we describe each of these four steps in de-

tail by walking through the example with four persons shown

in Fig. 8.

SSC Detection. In the first step, SSC finds the location of

the highest power reflector in the 2D heatmap of Fig. 8(a). In

this example, the highest power is at (0.5, 2), indicating that

there is a person in that location.
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(a) Detect First Person
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(b) Detect Second Person
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(c) Detect Third Person
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(d) Detect Forth Person
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(e) Focus on First Person
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(f) Focus on Second Person
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(g) Focus on Third Person
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(h) Focus on Forth Person

Figure 8—Successive Silhouette Cancellation. (a) shows the 2D heatmap obtained by combining all the TOFs in the presence of four
users. (b)-(d) show the heatmaps obtained after cancelling out the first, second, and third user respectively. (e)-(h) show the result of the SSC
focusing step on each of the person, and how it enables us to accurately localize each person while eliminating interference from all other
users.

SSC Re-mapping. Given the (x, y) coordinates of the per-

son, we map his location back to the corresponding TOF at

each transmit-receive pair. Keep in mind that each person is

not a point reflector; hence, we need to estimate the effect

of reflections off his entire body on the TOF profile of each

transmit-receive pair.

To see how we can do this, let us look at the illustra-

tion in Fig. 9 and try to see the effect of a person’s body

on one transmit-receive pair. The signal transmitted from the

transmit antenna will reflect off different points on the per-

son’s body before arriving at the receive antenna. Thus, the

person’s reflections will appear between some TOFmin and

TOFmax in the TOF profile at the receive antenna. (In fact,

this can be clearly seen in Fig. 1(c) where a person’s reflec-

tions span a contiguous band of TOF measurements.)

Note that TOFmin and TOFmax are determined by the clos-

est and furthest points respectively on a person’s body from

the transmit-receive antenna pair. Let us first focus on how

we can obtain TOFmin. By definition, the closest point on

the person’s body is the one that corresponds to the shortest

round-trip distance to the Tx-Rx pair. Hence, it is the projec-

tion of the midpoint of the segment [Tx, Rx] on the body of

the person as shown in Fig. 9. We already know the x and y

of that projection point because they are the 2D location of

the person. Further, the z coordinate of that point is midway

between Tx and Rx. Formally, for a Tx antenna at (xt, yt, zt)
and an Rx antenna at (xr, yr, zr), the z of the point on the per-

son’s body that is closest to the Tx-Rx pair can be expressed

as (zt + zr)/2. Hence, since the round-trip distance is the

summation of the forward path from Tx to that point and the

path from that point back to Rx, we may express it as:

dmin =
√

(xt − x)2 + (yt − y)2 + ((zt − zr)/2)2

+
√

(xr − x)2 + (yr − y)2 + ((zr − zt)/2)2.

Similarly, TOFmax is determined by the round-trip distance

to point on the person’s body that is furthest from the Tx-Rx

pair. Again, the x and y coordinates of the furthest point are

determined by the person’s location from the SSC Detection

step. However, we still need to figure out the z coordinate of

this point. Since the transmitter and receiver are both raised

above the ground (at around 1.2 meters above the ground),

the furthest point from the Tx-Rx pair is typically at the per-

son’s feet.2 Therefore, we know that the coordinates of this

point are (x, y, 0), and hence we can compute dmax as:

dmax =

√

(xt − x)2 + (yt − y)2 + z2
t +

√

(xr − x)2 + (yr − y)2 + z2
r .

Finally, we can map dmin and dmax to TOFmin and TOFmax

by dividing them by the speed of light C.

SSC Cancellation. The next step in the SSC algorithm is

to use TOFmin and TOFmax to cancel the person’s reflections

from the TOF profiles of each transmit-receive pair. Unlike

successive interference cancellation, where the receiver can

fully re-encode the transmitted signal before subtracting it

out, the effect of a person’s reflections on the TOF profile

of each transmit-receive pair cannot be perfectly estimated.

This is because the reflected power of the human body de-

pends on many factors like the size of the person, the clothes

she is wearing, and her exact posture while walking.

Hence, to remove a person’s reflections from a particular

TOF profile, we take a conservative approach and zero out

the power in all TOFs between TOFmin and TOFmax within

that profile. Of course, this means that we might also be par-

tially cancelling out the reflections of another person who

happens to have a similar time of flight to this Tx-Rx pair.

2Note that generally we compute both the round-trip to the person’s
feet and to the head of an average-height person (5’9") and choose
the max of the two as dmax.
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However we rely on that multi-shift FMCW provides with

a large number of TOF profiles from many Tx-RX pairs.

Hence even if we cancel out the power in the TOF of a per-

son with respect to a particular Tx-Rx pair, each person will

continue to have a sufficient number of TOFs measurements

from the rest of the antennas.

We repeat the process of computing TOFmin and TOFmax

with respect of each Tx-Rx pair and zero-ing out the power

in that range, until we have completely eliminated any power

from the recently decoded person.

Iteration. We proceed to decode the next person. This is

done by regenerating the heatmaps from the updated TOF

profiles and overlaying them. Fig. 8(b) shows the obtained

image after performing this procedure for the first person.

Now, a person at (−0.5, 1.3) becomes the strongest reflector

in the scene.

Subsequently, we repeat the same procedure for this per-

son, cancelling out his interference, then reconstructing the

2D heatmap in Fig. 8(c) using the remaining TOF mea-

surements. Now, the person with the strongest reflection is

at (0.8, 2.7). Note that this heatmap is much noisier than

Figs. 8(a) and 8(b) because now we are dealing with a more

distant person.

WiZ repeats the same cancellation procedure for the third

person and constructs the 2D heatmap in Fig. 8(d). The fig-

ure shows a strong reflection at (1, 4). Recall that our anten-

nas are placed along the y = 0 axis, which means that this

is indeed the furthest person in the scene. Also note that the

heatmap is now even noisier. This is expected because the

furthest person’s reflections are much weaker. We note that

each of these heatmaps are scaled so that the highest power

is always in red and the lowest power is in navy blue; this

change in scale emphasizes the location of the strongest re-

flectors and allows us to better visualize their locations.

WiZ repeats the interference cancellation for the forth per-

son, and determines that the SNR of the maximum reflec-

tor in the resulting heatmap does not pass a threshold test.

Hence, it determines that there are only four people in the

scene.

We perform four additional steps to improve WiZ’s SSC

algorithm:

• Refocusing Step: After obtaining the initial estimates of

the locations of all four persons, WiZ performs a focusing

step for each user to refine his location estimate. This is

done by reconstructing an interference-free 2D heatmap

only using the range in the TOF profiles that corresponds

to TOFs between TOFmin and TOFmax for that Tx-Rx pair.

Figs. 8(e)- 8(h) show the images obtained from this focus-

ing step. In these images, the location of each person is

much clearer, which enables higher-accuracy localization.

• Leveraging Motion Continuity: After obtaining the esti-

mates from the SSC algorithm, WiZ applies a Kalman

filter and performs outlier rejection to reject impractical

jumps in location estimates that would otherwise corre-

spond to abnormal human motion over a very short period

of time.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

-1.5 -1 -0.5  0  0.5  1  1.5  2

D
is

ta
n
c
e
 (

in
 m

e
te

rs
)

Distance (in meters)

Person 1
Person 2

Figure 10—Disentangling Crossing Paths. When two people
cross paths, they typically keep going along the same direction they
were going before their paths crossed.

• Disentangling Crossing Paths: To disentangle multiple

people who cross paths, we look at their direction of mo-

tion before they crossed paths and project how they would

proceed with the same speed and direction as they are

crossing paths. This helps us with associating each person

with his own trajectory after crossing. Fig. 10 shows an

example with two people crossing paths and how we were

able to track their trajectories despite that. Of course, this

approach does not generalize to every single case, which

may lead to some association errors after the crossings but

not to localization errors.

• Extending SSC to 3D Gesture Recognition: Similar to past

work [4], WiZ can differentiate a hand motion from a

whole-body motion (like walking) by leveraging the fact

that a person’s hand has a much smaller reflective sur-

face than his entire body. Unlike past work, however,

WiZ can track gestures even when they are simultaneously

performed by multiple users. Specifically, by exploiting

WiZ’s SSC focusing step, it can focus on each person in-

dividually and track his/her gestures. In our evaluation,

we focus on testing a pointing gesture, where different

users point in different directions at the same time. Sub-

sequently, by tracking the trajectory of each moving hand,

we can determine the direction in which each of the users

is pointing. Note that we perform these pointing gestures

in 3D and track the hand motion by using the TOFs from

the different Tx-Rx pairs to construct a 3D point cloud

rather than a 2D heatmap.3 The results in §8.3 show that

we can accurately track hand gestures performed by mul-

tiple users in 3D space.

6. LOCALIZATION BASED ON BREATHING

We extend WiZ’s SSC algorithm to localize static peo-

ple based on their breathing. Recall from §2 that in order

to track a user based on her radio reflections, we need to

eliminate reflections off all static objects in the environment

(like walls and furniture). This is typically achieved by per-

forming a background subtraction step, i.e., by taking TOF

3Recall from §2 that a given TOF maps to an ellipse in 2D and
an ellipsoid in 3D. The intersection of ellipsoids in 3D allow us to
track these pointing gestures.
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(a) Short subtraction window local-

izes a walking person.
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(b) Short subtraction window

misses a static person.
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(c) Long subtraction window

smears a walking person.
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(d) Long subtraction window local-

izes a static person.

Figure 11—Need For Multiple Subtraction Windows. The 2D heatmaps show that a short subtraction window allows WiZ accurately
localize a pacing person in (a) but not a static person in (b). A long subtraction window would smear the walking person’s location in (c) but
allows WiZ to localize a breathing person in (d).
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Figure 12—Monitoring the Breathing of Multiple People. The figures show how the maximum power in the focused spectrogram of each
person is varying in time due to his breathing. (a), (b), and (c) correspond to the first, second, and third persons detected by the SSC algorithm.

profiles from adjacent time windows and subtracting them

out from each other.4

Whereas this approach enables us to track moving people,

it prevents us from detecting a static person – e.g., some-

one who is standing or sitting still. Specifically, because a

static person remains in the same location, his TOF does

not change, and hence his reflections would appear as static

and will be eliminated in the process of background subtrac-

tion. To see this in practice, we run two experiments where

we perform background subtraction by subtracting two TOF

profiles that are 12.5 milliseconds apart from each other. The

first experiment is performed with a walking person and the

resulting heatmap is shown in Fig. 11(a), whereas the sec-

ond experiment is performed in the presence of a person

who is sitting at (0, 5) and the resulting heatmap is shown

in Fig. 11(b). These experiments show how the heatmap of a

moving person after background subtraction would allow us

to localize him accurately, whereas the heatmap of the static

person after background subtraction is very noisy and does

not allow us to localize the person.

To localize static people, one needs to realize that even a

static person moves slightly due to breathing. Specifically,

during the process of breathing, the human chest moves by

a sub-centimeter distance over a period of few seconds. The

key challenge is that this change does not translate into a dis-

cernible change in the TOF of the person. However, over an

4Recall that we obtain one TOF profile by taking an FFT over the
received FMCW signal in baseband. Since the FMCW signal is
repeatedly swept, we can compute a new TOF profile from each
sweep.

interval of time of a few seconds (i.e., as the person inhales

and exhales), it would result in discernible changes in the re-

flected signal. Therefore, by subtracting frames in time that

are few seconds apart from each other, we should be able to

localize the breathing motion.

In fact, Fig. 11(d) shows that we can accurately local-

ize a person who is sitting still by using a subtraction win-

dow of 2.5 seconds. Note, however, that this long subtraction

window will introduce errors in localizing a pacing person.

In particular, since typical indoor walking speed is around

1 m/s [7], subtracting two frames that are 2.5 seconds apart

would result in smearing the person’s location and may also

result in mistaking him for two people as shown in Fig. 11(c).

Thus, to accurately localize both static and moving people,

WiZ performs background subtraction with different sub-

traction windows. It then applies multi-shift FMCW and suc-

cessive silhouette cancellation as before.

Counting the Number of Breaths: WiZ’s SSC algorithm

enables focusing on each person while eliminating interfer-

ence from all other users. This algorithm proves critical to

monitoring each person’s breath in the presence of other peo-

ple in the environment.

We run an experiment with three users, whereby we ask

them to sit on chairs and remain still for the duration of the

experiment. To test WiZ’s ability in monitoring their breath-

ing rates, we subtract the sequence of TOF profiles obtained

over time from initial TOF profile at time 0, for each Tx-

Rx pair. We then process the obtained signals by performing

SSC. Recall that the SSC focusing step allows us to focus

on each person while eliminating interference from all other

9



people in the scene (as shown in Figs. 8(e)-8(h)). Hence, it

allows us to focus on each person individually, and monitor

the max power of each person’s focused heatmap as a func-

tion of time. We do that for every person in the environment,

and plot in Fig. 12 the max power for each focused heatmap

as a function of time.

The figure shows multiple observations:
• The maximum power from each person’s heatmap goes

up and down periodically. This is because breathing is a

rhythmic motion that alternates between inhaling and ex-

haling. The maximum power is lowest when the person’s

chest returns to its location in the initial subtraction frame,

and is highest when it is at the furthest position from its

initial location.

• The first person’s peak-to-peak signal is three orders of

magnitudes higher than that of the second person and five

orders of magnitude higher than the third person. This ob-

servation demonstrates the importance of the SSC algo-

rithm in detecting weaker reflections on one hand, and the

importance of the SSC focusing step in eliminating inter-

ference from all other persons to be able to focus on each

person individually and monitor his/her breathing.

• WiZ allows us to detect periods of time when a user holds

her breath. For example, the user in Fig. 12(c) holds her

breath between t = 20 s and t = 27 s. This capability

opens up WiZ to a wide variety of applications in health-

care monitoring in hospitals or at home, such as diagnos-

ing sleep apnea and detecting a user’s stress level [17].

7. IMPLEMENTATION & EVALUATION

7.1 Implementation

We built WiZ using an FMCW radio, USRP N210 soft-

ware radios [2] with LFRX-LF daughterboards, and di-

rectional antennas. The FMCW radio generates a signal

that sweeps 5.46-7.25 GHz every 2.5 milliseconds. The

schematic in Fig. 7 shows how we use this radio to imple-

ment Multi-shift FMCW. Specifically, the generated sweep is

fed to different directional antennas via delay lines of differ-

ent lengths. At the receive side, the signal from each receive

antenna is mixed with the FMCW signal and the resulting

signal is fed to the USRP. The USRP samples the signals at

1 MHz and feeds the digitized samples to the UHD driver.

These samples are processed in software to localize users

and recognize their gestures.

WiZ uses custom-made log-periodic antennas, each of

size 3cm × 3.4cm, optimized to operate in the desired

frequency range. In its default setup, WiZ’s antennas are

stacked into a 2m×1m vertical plane (see Fig. 2(b) for an im-

age of this setup). These antennas transmit very low power

(less than 0.75 milliWatt) to comply with FCC regulations

for consumer use in the corresponding frequency band.

Finally, we note that the analog FMCW radio and all the

USRPs are driven by the same external clock. This ensures

that there is no frequency offset between their oscillators,

and hence enables subtracting frames that are relatively far

apart in time to enable localizing people based on breathing.

7.2 Evaluation

Human Subjects. We evaluate the performance of WiZ by

conducting experiments in our lab with eleven human sub-

jects: four females and seven males. The subjects are of dif-

ferent heights and builds.

Ground Truth. We use the VICON motion capture sys-

tem to provide us with ground truth positioning informa-

tion. VICON is a multi-hundred thousand dollar system that

provides sub-centimeter positioning information and is used

in film making and video game development to create 3D

animation models of characters. It consists of a array of

pre-calibrated infrared cameras that are fitted to the ceil-

ing of a room, and requires instrumenting any tracked ob-

ject with infrared-reflective markers. When an instrumented

object moves, the system tracks the infrared markers on that

object and fits them into a 3D model to identify the object’s

location at any point in time.

We evaluate WiZ’s accuracy by comparing it to the loca-

tions provided by the VICON system. To track a user using

the VICON system, we ask him/her to wear a hard hat that is

instrumented with five infrared markers. In addition, for the

gestures experiments, we ask each user to wear a glove that

is instrumented with six VICON markers.

Experimental Setup. We evaluate WiZ in two experimental

setups: line-of-sight and through-the-wall. In the through-

wall experiments, WiZ is placed outside the VICON room

with all transmit and receive antennas facing one of the walls

of the VICON room. Recall that WiZ’s antennas are direc-

tional and hence this setting means that the radio beam is

directed toward the VICON room. The VICON room has

no windows; it has 6-inch hollow walls supported by steel

frames with sheet rock on top, which is a standard setup for

office buildings. In the line-of-sight experiments, we move

WiZ to inside the VICON-instrumented room. In all of these

experiments, the subjects’ locations are tracked by both the

VICON system and WiZ.

Calibration. Localizing a person requires that the system

first detects him/her. Therefore, we run experiments to iden-

tify the maximum number of people that WiZ can reliably

detect under various conditions, and report the numbers in

the table below.

Line-of-Sight Through-Wall

Motion Tracking 4 3

Breathing-based

Localization

5 4

Table 1—Maximum Number of People Detected Reliably.

For our evaluation of localization accuracy, we run ex-

periments with the maximum number of people that are re-

liably detectable, where reliably detected is defined as de-

tected with probability 0.98 or higher.

We make two observations about the above table. First,

the maximum number of people detected in line-of-sight is

higher than in the through-wall settings. This is expected be-

cause the wall causes significant attenuation and hence re-
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Figure 13—Performance of WiZ’s LOS Tracking. (a) and (b)
show the CDFs of the location error in both x and y dimensions for
each of the tracked users in LOS. Subjects are ordered from first to
last detected by the SSC algorithm.

duces the SNR of the reflected signals. Second, the maxi-

mum number of people detected for breathing-based local-

ization is higher than the number detected in the tracking

experiments. While this might seem surprising, it is actu-

ally due to the fact that the breathing experiments are run for

a longer period of time, where each person stays in his/her

same location throughout the experiment; the system outputs

the number of people detected and their locations by analyz-

ing the trace resulting from the entire experiment. In con-

trast, the tracking experiments require outputting a location

of each person once every 12.5 ms, and hence they might

not be able to detect each person within such a small time

window.

8. PERFORMANCE RESULTS

8.1 Accuracy of Multi-Person Motion Tracking

We first evaluate WiZ’s accuracy in multi-person motion

tracking. We run 100 experiments in total, half of them in

line-of-sight and the second half in through-wall settings. In

each experiment, we ask one, two, three, or four human sub-

jects to wear the hard hats that are instrumented with VICON

markers and move inside the VICON-instrumented room.

Each subject’s location is tracked by both the VICON sys-

tem and WiZ.

Each experiment lasts for one minute. Since each FMCW

sweep lasts for 2.5ms and we average 5 sweeps to obtain

each TOF measurement, we collect more than 400,000 loca-

tion readings for each person from these experiments.

Fig. 13 and 14 plot the CDFs of the location error along

the x and y coordinates for each of the localized persons in

both line-of-sight and through-wall scenarios. The subjects
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Figure 14—Performance of WiZ’s through-wall Tracking. (a)
and (b) show the CDFs of the location error in both x and y dimen-
sions for each of the tracked users in LOS. Subjects are ordered
from first to last detected by the SSC algorithm.

are ordered from the first to the last as detected by the SSC

algorithm. The figures reveal the following findings:

• WiZ can accurately track the motion of four users when

it is placed in the same room as the subjects. Its median

location error for these experiments is around 8.5 cm in x

and 6.4 cm in y for the first user detected, and decreases

to 15.9 cm in x and 7.2 cm in y for the last detected user.

• In through-wall scenarios, WiZ can accurately localize up

to three users. Its median location error for these exper-

iments is 8.4 cm and 7.1 cm in x/y for the first user de-

tected, and decreases to 16.1 cm and 10.5 cm in x/y for

the last detected user. As expected, the location accuracy

when the device is placed in the same room as the users

is better than when it is placed behind the wall due to the

extra attenuation and the reduced SNR caused by the wall.

• The accuracy in the y dimension is better than the accu-

racy in the x dimension. This discrepancy is due to WiZ’s

setup. Recall that WiZ’s antennas are all arranged along

the y = 0 axis. Hence, the major axis of the resulting el-

lipses is always along the x-axis, which means that the

same TOF error would have a larger impact on the x di-

mension than on the y dimension.

• The localization accuracy decreases according to the or-

der the SSC algorithm localizes the users. By investigating

these results more, we realize that the forth person is typi-

cally the subject who is the furthest from the center of our

device. Hence, his SNR would be lowest, which explains

his/her higher localization error.

8.2 Accuracy of Breathing-based Localization and

Breath Counting

We evaluate WiZ’s accuracy in localizing static people

based on their breathing and its ability to count their breaths.
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Figure 15—Accuracy for Localizing Breathing People in line-
of-sight.. The figure shows show the median and 90th percentile
errors in x/y location. Subjects are ordered from first to last detected
by the SSC algorithm.
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Figure 16—Accuracy for Localizing Breathing People in
through-wall experiments.. The figure shows show the median
and 90th percentile errors in x/y location. Subjects are ordered from
first to last detected by the SSC algorithm.

We run 100 experiments in total with up to five people in

the room. Half of these experiments are done in line-of-sight

and the other half are through-wall. Experiments lasts for 3-

4 minutes. All subjects wear hardhats and sit on chairs in the

VICON room.

Fig. 15 and 16 plot WiZ’s localization error in line-of-

sight and through-wall settings as a function of the order with

which the subject is detected by the SSC algorithm. The fig-

ures show the median and 90th percentile of the estimation

error for the x and y coordinates of each of the subjects.

The figures show the following results:

• WiZ’s breathing-based localization accuracy goes from a

median of 7.24 cm and 6.3 cm in x/y for the nearest person

to 18.31 cm to 10.85 cm in x/y for the furthest person, in

both line-of-sight and through-wall settings

• Localization based on breathing exhibits higher accuracy

than motion tracking. This is because when people are

static, we obtain a larger number of measurements for

each location, which allows us to localize them more ac-

curately.

Breath counting results: Besides localizing people based

on their breathing, WiZ can also count their breaths. Recall

from §6 that after localizing subjects based on their breath-

ing, we can use the SSC focusing step to focus on each user

and monitor his breathing rate. Specifically, Fig. 12 shows

how the maximum power in the focused 2D heatmap varies

periodically in time due to each person’s rhythmic breath-

ing. By taking the Fourier transform over this time plot and
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Figure 17—3D Gesture Accuracy. The figure shows the CDFs of
the orientation accuracy for the pointing gestures of each partici-
pant. Subjects are ordered from first to last detected by the SSC
algorithm.

choosing the frequency with the highest power, WiZ can de-

termine each person’s breathing rate; then, it can map it to

the number of breaths taken by that person by multiplying

that rate by the duration of the experiment.

To obtain a ground truth for the number of breaths taken

by each subject, we asked the users to start counting their

breaths when the experiment starts, and report the number of

breaths they have taken once the experiment is over.5 Across

all of these experiments, WiZ’s error in counting the number

of breaths remains within one breath for over 97% of our

experiments – each of which lasts for 3-4 minutes; note that

this error is within the rounding error of the integer count as

reported by each user. In 2% of these experiments, the users

were not detected, and hence WiZ was unable to count their

breathing rate.

In addition, WiZ was able to detect instances where users

held their breath (e.g., experiment in Fig. 12(c)). Upon de-

tection, we confirmed with the subjects that they indeed held

their breaths. These result indicates that WiZ could be used

in health-care monitoring applications such as diagnosing

sleep apnea.

8.3 Accuracy of 3D Pointing Gesture Detection

We evaluate WiZ’s accuracy in tracking 3D pointing ges-

tures. We run 100 experiments in total with one to three

subjects. In each of these experiments, we ask each subject

to wear a glove that is instrumented with infrared-reflexive

markers, stand in a different location in the VICON room,

and point his/her hand in a random 3D direction of their

choice – as if they were playing a shooting game or point-

ing at some household appliance to control it. In most of

5Obtaining the breath count with other methods is difficult since
accurate breath monitoring equipment is expensive [1].
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these experiments, all subjects were performing the pointing

gestures simultaneously.

Throughout these experiments, we measure the 3D loca-

tion of the hand using the VICON system and WiZ. We then

use the 3D trajectory to determine the direction in which

each user pointed. Fig. 17(a) and 17(b) plot the CDFs of the

orientation error between the angles as measured by WiZ and

the VICON for the 1st, 2nd and 3rd participant (in the order

of detection by SSC). Note that we decompose the 3D point-

ing direction into two angles: θ and φ, where the former is

the projection of the pointing direction on the x − y plane

and the latter is the pointing direction in the r − z plane (i.e.,

azimuth angle of the spherical coordinate system). The fig-

ure shows that the median orientation error in θ goes from

8.2 degrees to 12.4 degrees from the first to the third person,

and from 12 degrees to 16 degrees in φ. Note that WiZ’s ac-

curacy in θ is slightly higher than its accuracy in φ. This is

due to WiZ’s setup, where the antennas are more spread out

along the x than along the z, naturally leading to lower ro-

bustness to errors along the z axis, and hence lower accuracy

in φ. These experiments demonstrate that WiZ can achieve

high accuracy in 3D tracking of body parts and hence en-

ables a rich multi-user gesture-based interface using wireless

signal reflections.

9. RELATED WORK

WiZ builds on prior foundational work in multiple areas,

but differs from all past work both in the developed tech-

nologies and the resulting capabilities. It introduces two new

techniques – multi-shift FMCW and the successive silhou-

ette cancellation – and applies them to achieve highly accu-

rate tracking of multiple people and simultaneous gestures in

indoor settings, based purely on how those motions modulate

the RF signal.

Through-Wall Motion Tracking and RF-Based Gesture

Interfaces. The past year has seen the rise of wireless sys-

tems that deliver through-wall motion tracking and gesture-

based interfaces [5, 14, 4]. Our work builds on these past

systems, but differs in the developed techniques and capa-

bilities. Specifically, WiVi [5] and WiSee [14] rely on WiFi

Doppler effects to detect motion and identify a handful of

gestures after they perform prior training; but, unlike WiZ,

they have no mechanism for obtaining the location of a per-

son, whether she is moving or static. On the other hand,

WiTrack [4] uses time-of-flight measurements to obtain the

location of a single moving person, but cannot localize mul-

tiple or static humans. Similar to WiTrack, WiZ also relies

on time-of-flight estimates; however, WiZ’s successive sil-

houette cancellation and Multi-shift FMCW techniques scale

device-free localization and RF-based gesture interfaces be-

yond a single person. Further, in contrast to all these systems,

WiZ can localize static humans based on their breathing and

even count their breathing rate.

RSSI-based Radio Tomography. Some past work on radio

tomography [21, 12] can localize a person even if she holds

no RF device. These proposals employ a network of dozens

to hundreds of sensors, deployed throughout the area of in-

terest. The received signal strength (called RSS or RSSI) is

measured between the resulting n2 links, and a variation in

the RSSI measurements on a link is attributed to a human

crossing that link. Another body of work performs device-

free localization by leveraging RSSI fingerprinting [18, 16,

23]. Specifically, these works perform an initial calibration

phase where they require a person to stand in all different

locations throughout the area of interest, and create a radio

map using these measurements. In the testing phase, they

identify the location of person by mapping the RSSI mea-

surements to those computed during the offline phase.

WiZ shares the vision of these techniques in performing

device-free localization. WiZ however does not use RSSI; it

introduces new techniques based on the time of flight; as a

result, its accuracy is 10x to 100x higher than state-of-the-art

RSSI-based systems [18, 16, 12, 6, 13]. Further, WiZ does

not require an initial calibration phase where an estimate of

the environment is obtained in the absence of people [16, 6].

See-Through-Wall Radar. Seeing through walls is an ac-

tive area of research for the military [15, 11, 9, 19, 22].

WiZ builds on this body of work but differs from it along

three lines: First, in comparison to these proposals, which

have access to military spectrum, WiZ limits itself to oper-

ating within FCC regulations concerning spectrum usage for

consumer electronics, and transmits less than one milliwatt

of power. Second, WiZ introduces two technical innovations

over all prior art: Multi-shift FMCW and the SSC algorithm.

Finally, WiZ is not limited to full-body motion; it can track

hand motion delivering the first multi-user gesture interface

using RF reflections.

FMCW Techniques. The literature has many variations on

the basic FMCW technique; hence, it is important to note

that these past variations all differ significantly from WiZ’s

Multi-shift FMCW technique. We particularly highlight the

difference between our work and three past systems. MIMO

FMCW [10, 15] is based on switched antenna arrays – i.e., at

any point in time, it transmits the FMCW signal from one Tx

antenna and receives it at one Rx antenna, then alternates be-

tween its antennas in a round-robin fashion. As a result, the

TOFs computed from the different antennas correspond to

different points in time, which results in smearing the mov-

ing person’s location and reducing the localization accuracy.

Multi-source FMCW [20] is a new technique in opti-

cal imaging that emulates a large sweep by using multiple

smaller sweeps which operate in different frequency bands

and are all transmitted from the same laser source. This

technique is orthogonal to Multi-shift FMCW where shifted

sweeps in the same frequency band are transmitted simulta-

neously from different antennas.

Finally, multiplexed FMCW [8] is another optical imag-

ing technique that enables focusing on different planes in

space by delaying the received signal by different amount

of time. In WiZ our objective is not to focus on different

plane but rather to obtain a large number of Tx-Rx mea-

surements without confusing the signal from various trans-
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mitters. Hence, Multi-shift FMCW delays the signals on the

transmit side before sending them on different transmitters,

which enables each receiver to distinguish between the trans-

mitted signals from different antennas.

10. DISCUSSION & LIMITATIONS

WiZ marks an important contribution by enabling

centimeter-scale device-free multi-person tracking. WiZ,

however, has some limitations that are left for future work.

Antenna spacing: WiZ’s current prototype distributes its an-

tennas in a fairly large vertical plane that measures 2 × 1 m.

The large spacing between its antennas is important to enable

the antennas to capture different perspectives of the people in

the scene, which reduces interference and increases diversity.

Future research may explore both hardware and algorithmic

advances that can increase the resolution of the system al-

lowing for the antennas to be stacked within a smaller area.

Number of tracked people: The current version of WiZ can

accurately track the motion of up to four users. It can also lo-

calize up to five people based on their breathing. We believe

these capabilities open up a large number of applications in

multi-player gaming and gesture-based interfaces. However,

it is always desirable to increase the number of people that

the device can track.

Person and body part identification: In its current version

WiZ can track the motion of body parts, e.g., a hand, but

cannot differentiate between different body parts (a hand vs.

a leg). We believe that future work can investigate this issue

further by identifying fingerprints of different reflectors that

can provide insight about the type of the moving object.

Although there are many issues that future work can

build upon, WiZ pushes the limits of RF motion tracking

by enabling centimeter-scale multi-person tracking. It also

enriches the roles that wireless networks can play in our

daily lives and bridges wireless communication with human-

computer interaction.

11. REFERENCES

[1] Maxtec Exhalometer Respirometer.

http://www.mspinc.com. Maxtec.

[2] USRP N210. http://www.ettus.com. Ettus Inc.

[3] VICON T-Series. http://www.vicon.com.

VICON.

[4] F. Adib, Z. Kabelac, D. Katabi, and R. C. Miller. 3D

Tracking via Body Radio Reflections. In Usenix NSDI,

2014.

[5] F. Adib and D. Katabi. See through walls with Wi-Fi!

In ACM SIGCOMM, 2013.

[6] M. Bocca, O. Kaltiokallio, N. Patwari, and

S. Venkatasubramanian. Multiple target tracking with

rf sensor networks. Mobile Computing, IEEE

Transactions on, 2013.

[7] R. Bohannon. Comfortable and maximum walking

speed of adults aged 20-79 years: reference values and

determinants. Age and ageing, 1997.

[8] P. K. Chan, W. Jin, J. Gong, and N. Demokan.

Multiplexing of fiber bragg grating sensors using a

fmcw technique. IEEE Photonics Technology Letters,

1999.

[9] S. Hantscher, A. Reisenzahn, and C. Diskus.

Through-wall imaging with a 3-d uwb sar algorithm.

Signal Processing Letters, IEEE, 2008.

[10] Y. Huang, P. V. Brennan, D. Patrick, I. Weller,

P. Roberts, and K. Hughes. Fmcw based mimo

imaging radar for maritime navigation. Progress In

Electromagnetics Research, 2011.

[11] Y. Jia, L. Kong, X. Yang, and K. Wang.

Through-wall-radar localization for stationary human

based on life-sign detection. In IEEE RADAR, 2013.

[12] S. Nannuru, Y. Li, Y. Zeng, M. Coates, and B. Yang.

Radio-frequency tomography for passive indoor

multitarget tracking. Mobile Computing, IEEE

Transactions on, 2013.

[13] N. Patwari, L. Brewer, Q. Tate, O. Kaltiokallio, and

M. Bocca. Breathfinding: A wireless network that

monitors and locates breathing in a home. Selected

Topics in Signal Processing, IEEE Journal of, 2014.

[14] Q. Pu, S. Jiang, S. Gollakota, and S. Patel.

Whole-home gesture recognition using wireless

signals. In ACM MobiCom, 2013.

[15] T. Ralston, G. Charvat, and J. Peabody. Real-time

through-wall imaging using an ultrawideband

multiple-input multiple-output (MIMO) phased array

radar system. In IEEE ARRAY, 2010.

[16] A. Saeed, A. Kosba, and M. Youssef. Ichnaea: A

low-overhead robust wlan device-free passive

localization system. Selected Topics in Signal

Processing, IEEE Journal of, 2014.

[17] L. Science. Stressed? It May Show in Your Breath.

http://www.livescience.com/27991-breath-analysis-

stress-level.html.

[18] M. Seifeldin, A. Saeed, A. Kosba, A. El-Keyi, and

M. Youssef. Nuzzer: A large-scale device-free passive

localization system for wireless environments. Mobile

Computing, IEEE Transactions on, 2013.

[19] G. E. Smith and B. G. Mobasseri. Robust

through-the-wall radar image classification using a

target-model alignment procedure. Image Processing,

IEEE Transactions on, 2012.

[20] A. Vasilyev. The optoelectronic swept-frequency laser

and its applications in ranging, three-dimensional

imaging, and coherent beam combining of

chirped-seed amplifiers. PhD thesis, 2013.

[21] J. Wilson and N. Patwari. Radio tomographic imaging

with wireless networks. In IEEE Transactions on

Mobile Computing, 2010.

[22] Y. Xu, S. Wu, C. Chen, J. Chen, and G. Fang. A novel

method for automatic detection of trapped victims by

ultrawideband radar. Geoscience and Remote Sensing,

IEEE Transactions on, 2012.

[23] M. Youssef, M. Mah, and A. Agrawala. Challenges:

device-free passive localization for wireless

environments. In ACM MobiCom, 2007.

14




