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Abstract

This thesis is about process mining: the analysis an organization’s processes by
using process execution data. During the handling of a case or process instance
data about the execution of activities is recorded in databases. We use such process
execution data to gain insights about the real execution of processes. In this thesis,
we address research challenges in which a multi-perspective view on processes
is needed and that look beyond the control-flow perspective, which defines the
sequence of activities of a process. We consider problems in which multiple inter-
acting process perspectives — in particular control-flow, data, resources, time, and
functions — are considered together. We propose five multi-perspective process
mining methods that deal with the interaction of multiple process perspectives:

• A conformance checking method that balances the importance of multiple
perspectives to provide an alignment between recorded event data and a
process model. The method provides reliable diagnostics and quality mea-
sures with respect to all perspectives of the process model

• A precision measure for multi-perspective process models with regard to an
event log. The precision of a process model is determined as the fraction of
the behavior possible according to the model in relation to what has actually
been observed in the event log.

• A process discovery method that uses domain knowledge on the functional
perspective of a process to improve the result of existing discovery methods.
The domain knowledge is expressed as a set of multi-perspective activity
patterns and a mapping between low-level events and instantiations of the
activity patterns is computed. By grouping low-level events to instances of
recognizable activities on a higher abstraction level the understanding of
automatically discovered process models by stakeholders is facilitated.

• A process discovery method that uses the data perspective of a process to dis-
tinguish certain infrequent paths from random noise. The method discovers
infrequent paths that can be characterized by rules by employing classifi-
cation techniques. The data perspective is used to improve the discovered
control-flow: Data- and control-flow are learned together.

• A decision mining method for discovering, potentially, overlapping decision
rules. In contrast to existing methods for the same data values more than
one alternative activity may be activated at a decision point.

All methods have been implemented, systematically evaluated, and applied in
real-life situations in the context of four case studies.
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Part I

Introduction

Chapter 1 We introduce multi-perspective process mining and the research prob-
lems addressed in this thesis.

Chapter 2 We introduce preliminaries such as basic notations used in this thesis
and the notation for event logs.

Chapter 3 We introduce notations for three process modeling languages, which
are used in this thesis.





1

1 Introduction

The efficient and effective handling of its processes is essential for the success of
an organization. This thesis is about process mining, i.e., analyzing the processes
of an organization by using data recorded about their execution. A process can be
defined as:

a set of interrelated or interacting activities, which transforms inputs
into outputs. [ISO15]

A process that is executed in a professional context, is commonly denoted as busi-
ness process: “[..] a set of logically related tasks performed to achieve a defined
business outcome.” [DS90] Exemplary business processes are, e. g.:

• the process of handling of a loan application (service),
• the process of treating a patient in the emergency ward (health-care), and
• the process of manufacturing a car (production).

Several tasks or activities are executed in one instance of such a process. A process
instance is commonly denoted as a case, i. e., the activities of the process operate
on the case. Each case of a process has a defined start point and end point. In the
remainder of this thesis we use the term process but implicitly assume processes
to be executed in the context of professional organizations, i. e., processes that
describe how cases are handled with a well-defined start and end point. Possible
activities that are part of such processes could be, e. g.:

• approving a loan request,
• checking a credit rating,
• filling the triage for a patient,
• taking an X-ray image for medical diagnostics, and
• ordering a missing part.

The seminal articles on business re-engineering by Hammer and Champy [HC93]
and Davenport [Dav93] have established the focus on the processes of an organi-
zation in management practice: Organizations should radically reorganize their
work along their value-adding processes. A large body of work, both from industry
and from academia, has been organized around the belief that excellent processes
are the foundation of any successful organization. The basic problem that is being
tackled is: How do organizations obtain and execute excellent processes?

This problem has been addressed from various viewpoints. This resulted in a
large body of methods, languages, and tools: For example, management trends
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and strategies such as business process re-engineering, lean management, and six
sigma1 and research fields and methods such as workflow management, adaptive
case management, and Business Process Management (BPM). Finally, a large num-
ber of software systems for process execution has been proposed. For example,
Staffware, COSA, YAWL, Bizagi, Bonita, Camunda, jBPM, IBM Business Process
Manager, Oracle BPM Suite, and many more, cf. [Mue04, p. 93] for an overview.

Business Process Management (BPM) can be seen as the umbrella-term that
encompasses all those methods that are concerned with the design, enactment, mon-
itoring, and optimization of processes that handle cases. For all these concerns, in-
depth knowledge on the processes of an organizations is crucial. This in-depth
knowledge is often obtained by manual labor, i. e., consultants observe the process
work or conduct interviews with participants of a process to discover what is really
been done. However, this is an expensive and slow operation. Moreover, the view
of process participants on their own work might often provide a biased view on
the processes of an organization.

business processes information systems execution data

support, control record

Figure 1.1: Process execution data is recorded for the executions of activities of a process
instance. Process mining leverages such data recorded in event logs to analyze the real
execution of the process.

Due to the growing computing power and storage capacity of today’s IT systems,
organizations have the opportunity to store information about all their activities
that are conducted through information systems. Leveraging knowledge from
such recorded data is widely acknowledged to be an important challenge. This is
evident through the rise of fields such as data mining, machine learning, artificial
intelligence, data science, and big data. Also in information systems research, the
challenges of “leveraging knowledge from data, with related management of high
data volumes” [Bec+15] has been considered an important grand challenge for IS
research. Moreover, experts estimate its solution to have the most impact on the
field [Bec+15].

Since most business processes are supported by at least one information system,
as depicted in Figure 1.1, the amount of data being stored about process executions
is rapidly growing. This data might be recorded by a process-aware information
system, e. g., a workflow management system that executes a well-defined process.
But also information systems that are not process-aware record data about process
execution. For example, an Enterprise Resource Planning (ERP) system might be

1Lean management and Six Sigma both predate the business process re-engineering trend.
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used to support the process execution or a purpose-made application might record
data about the execution of process instances or cases in log files. Typically, the
execution of a case results in a sequence of events (i. e., execution trace) being
recorded. In general, such a log trace contains at least:

• the timestamps of activity executions (i. e., events), and
• the names or identifiers of the executed activity (i. e., activity names).

Process mining leverages such unbiased execution data to analyze the actual execu-
tion of processes [Aal+12]. Often, process mining methods only make use of activity
names and the timestamps of events recorded in execution traces. Other aspects
of the process execution are then overlooked. This thesis contributes process min-
ing techniques that make use of additional data to analyze a process from multiple
perspectives.

The structure of this introductory chapter is as follows. First, in Section 1.1 we
briefly introduce the foundations of process mining without considering multiple
process perspectives. Then, in Section 1.2 we extend our view on process mining
towards additional data and multiple process perspectives. In Section 1.3, we for-
mulate the overall research goals and summarize the contributions of this thesis.

1.1 Process Mining

The aim of process mining is to automatically provide an accurate view on how
the process is executed. Event logs and process models are two main artifacts that
are used in process mining. Event logs store data on the actual execution of the
cases of a process as recorded by information systems. Process models are used as
representation of processes.

Event Logs. Process mining methods typically assume that execution data is stored in
event logs. In event logs, data about each execution of a process (i. e., process instance
or case) is recorded as a sequence of events. This sequence of events is denoted as
a log trace. Each event refers to the execution of an activity that was executed as part of

TriageTrace 1 Register Check Check Visit Diagnostic Decide Prepare Discharge

TriageTrace 2 Register Check Visit Diagnostic Decide Prepare Organize
Ambulance Transfer

CheckTrace 3 Triage Check Diagnostic Visit Decide Check Prepare Observe

Figure 1.2: Execution traces recorded by two process instances of a hospital process. Events
are recorded for each execution of an activity. In both instances the first event refers to an
execution of activity Triage and the second event refers to an execution of activity Register.
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Figure 1.3: The control-flow of an example hospital process modeled using BPMN. The
sequence of activity executions recorded in the first trace of Figure 1.2 is highlighted.

the process instance. Figure 1.2 shows three log traces that are recorded for process
instances of an example hospital process: 27 events were recorded involving 11
distinct activities. The first two log traces started with an event recorded for the
Triage activity in which the priority of a patient based on the injuries is determined.
The third log trace starts with a Check activity. We will elaborate on the remaining
activities in Section 1.2.

Process Models. Process models are used to describe, prescribe, and explain [Rol98]
the behavior of processes of an organization for a wide range of objectives such as:
communication among stakeholders, process improvement, process management,
process automation, and process execution support [CKO92]. Concrete examples
are the comparison of the as-is and the to-be process, documentation for comply-
ing with regulatory requirements such as ISO 9001 [ISO15], and the analysis of
performance-related problems such as bottlenecks and inefficiencies. Figure 1.3
depicts the control-flow (i. e., the ordering of activities) of the hospital process using
Business Process Model and Notation (BPMN) [BPMN11]. Activities of the process
are shown as boxes and the ordering of activities is defined through directed edges
and special routing constructs (exclusive choice × and parallel +). Trace 1 from Fig-
ure 1.2 is projected on top of the process model. We highlighted the path followed
through the model with green color. A comprehensive introduction to the hospital
process, which is used as running example throughout this thesis, is provided in
Section 1.2.

The field of process mining can be organized in three categories [AAD12; Aal16]:
discovery, conformance, and enhancement. Figure 1.4 gives an overview of these
main types of process mining in the context of the real process execution (process
reality) and information systems of an organization. As shown in Figure 1.4, process
mining methods use process models and event logs as proxies for the real execution
of processes. An ultimate goal in the field of process mining is the automatic
discovery of accurate and understandable process models based solely on the
data recorded in an event log. Those models can be used for understanding and
improving the real execution of a process.
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Figure 1.4: Overview of the three main categories of process mining [Aal16].

However, next to process discovery, there are further equally important chal-
lenges. We elaborate briefly on the three main categories of process mining. For
each category, we list open challenges that are related to the contributions of this
thesis. Please note that Figure 1.4 describes process mining only in the offline set-
ting, i. e., only finished process cases are analyzed. Generally, process mining is
not limited to the offline setting. It also entails methods such as prediction and
recommendation based on current process data in an online setting. In in the scope
of this thesis, we only consider the offline setting.

Discovery. Process discovery methods solely use the data stored in event logs to
automatically generate an accurate process model that describes the real execution
of a process. The aim of process discovery is to create process models that:

• describe the observed behavior (i. e., fitting models),
• describe not much more than the observed behavior (i. e., precise models),
• generalize from the exact observed behavior (i. e., general models), and
• are not unnecessarily complex (i. e., simple models).

Given the nature of business processes in part to be based on human behavior,
process discovery techniques face some challenges. They need to be able:

• to filter noise (i. e., infrequent and erroneous events) from regular events,
and

• to recognize the correct behavioral relations between activities despite an
incomplete observation of the process.
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Triage

Triage Register

Check
	

Visit

Diagnostic

Decide

Prepare

Organize
Ambulance

Observe

Transfer

Discharge

discovery
discover a good model
based on the event log

conformance
diagnose the quality of the
model w.r.t. the event log

Trace 1 Triage Register Check Check Visit Diagnostic Decide Prepare Discharge

Trace 2 Triage Register Check Diagnostic Visit Decide Prepare Organize
Ambulance Transfer

Trace 3 Check Check Diagnostic Visit Decide Check Prepare Observe

⚡ ⚡

repetition

parallelism optional / choice

Figure 1.5: Process discovery uses the information stored in the event log to discover a
suitable process model. Conformance checking diagnoses deviations between process
models and the information stored in the event log.

In Figure 1.5 some of the challenges that process discovery methods face are illus-
trated using three examples traces and the BPMN model of the hospital process. A
good process model needs to be created based on a set of execution traces, which
cover only a limited subset of all possible traces. Relations between activities such
as sequence (e. g., Triage and Register) repetition (e. g., Check activity), parallelism
(e. g., Visit and Diagnostic activities), and choice (e. g., the optional Organize Ambu-
lance activity) need to be discovered. However, noise and incompleteness of the
event log need to be considered. For example, the first occurrence of activity Check
before Triage could be considered as noise since this activity does not occur before
Triage in the first two traces. Moreover, the event log is probably incomplete. It is
not certain whether activity Check can be repeated an unlimited number of times
and whether activity Check occurs in parallel to the activities Diagnostic and Visit.

Conformance. Conformance checking methods provide diagnostic information
and quantification of discrepancies between the actual process execution and a
discovered or manually created process model. Some of the challenges that confor-
mance checking methods face are [Aal+12]:

• to relate process model elements to events,
• to determine reliable quality measures for process models,
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• to balance the trustworthiness of the event data and the process model, and
• to provide reliable and understandable diagnostics.

In Figure 1.5 some of challenges that conformance checking methods face are
illustrated. Conformance checking methods aim to relate each event in the event
log to a corresponding element in the model. For example, the first event in the
third trace records an execution of activity Check. However, this event cannot be
related to the activity Check as modeled in the process model, since the activity is
not allowed to be executed at the start of a case. It is also possible that no events
can be found for activities in the model, e. g., in the third trace the event for activity
Register is missing. Conformance checking methods diagnose, amongst other tasks,
such discrepancies.

Enhancement. Enhancement methods use the recorded execution data to improve
existing process models. Often, process models exists as part of the process documen-
tation or, the basic control-flow of process models was discovered by a process
discovery method. These process models can be extended with information based
on the process context, e. g., decision logic, performance indicators, queuing mod-
els. Process models can also be repaired based on conformance checking results
in order to better reflect the real process execution. One of the challenges that en-
hancement methods face is to avoid the curse of dimensionality when considering
data recorded in the process context [Aal+12]. In Figure 1.5, enhancement methods
could enrich the model, e. g., with the conditions under which the optional activity
Organize Ambulance is executed.

1.2 One Process – Multiple Perspectives

In this section, we extend our view on processes and process mining towards
multiple perspectives. We introduce the scope of this thesis and identify five
concrete perspectives that we considered in our research. So far, we have considered
a very simplistic view on the processes of an organization. In Figures 1.2 and 1.3
we assumed that:

• events only record the fact that an atomic activity has been executed, and
• process models only describe the order of activity executions.

Whereas this simplification of process reality can be a “[..] a purposeful abstraction
of the behavior [..]” [Aal+12], often, there is more complexity to the real execution
of a process. As it is stated in the process mining manifesto [Aal+12]: “Process
mining is not limited to control-flow discovery.” Process discovery, conformance,
and enhancement methods should take advantage of additional data and consider
additional perspectives on the process.
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1.2.1 Multi-perspective Process Models and Event Logs

We start by illustrating the considered type of input and output: events logs en-
riched with data attributes and multi-perspective process models. Event logs typi-
cally contain more information than just timestamps and activity names. They can
contain:

• identifiers of resources that execute an activity (e. g., humans, machines),
• input data used to execute an activity (e. g., patient age, loan amount),
• output data generated by activity executions (e. g., decisions, outcomes), and
• information on the relation between multiple events (e. g., activity lifecycles).

Moreover, real-life activities rarely are atomic constructs. Often, there is a hierarchy
of activities: multiple activities executed together form an activity on a higher level
of abstraction. Furthermore, process models define more than just the ordering
of activities. Often, rules based on data associated to the process instance and
contextual information are included, e. g.:

• patients are only admitted to the emergency ward if their triage priority is
high (decision rule), and

• the background check for a credit application should be done by a different
person than the resource handling the application (four-eyes principle).

For example, the Decision Model and Notation (DMN) [DMN16] standard, a novel
standard for managing such decision rules has been recently endorsed by BPM
vendors such as Camunda and Signavio.

We are now refining the description of the hospital process that is used as a
running example throughout this thesis. At this stage, we describe the process
by natural language statements since we do not want to focus on any particular
process modeling notation. The process has been deliberately simplified such that
it is easy to understand and retains enough details to illustrate our contributions.

Example 1.1 (Description of the hospital process). The process starts when patients
arrive at the emergency ward of an hospital. Upon their arrival, patients are
assigned a triage color. Only in exceptional cases, patients are assigned the triage
color white. Patients classified as white typically leave the emergency ward after
being registered, because their injuries do not require an urgent, immediate atten-
dance by a doctor. All other patients are also registered, assigned to a responsible
nurse, and admitted to the emergency ward. While patients are in the emergency
ward, the nurse checks their condition every hour. For the patients under consid-
eration the medical examination consists of at least one medical diagnostic test
and one visit by a doctor. There are two different work practices regarding these
two activities:

1. Normally, a doctor first visits the patients and afterwards the diagnostic
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test is conducted.
2. Sometimes, these activities are executed in a reversed order: first the medical

diagnostic test is taken and, only thereafter, a doctor visits the patient.
Both the medical diagnostic test and the visit of a doctor can be repeated if
necessary. Afterwards, a doctor visits the patient one more time and decides
how to proceed in any of the following ways:

1. to transfer the patient to a ward within the hospital,
2. to transfer the patient to a another hospital (tertiary care), or
3. to discharge of the patient.

Regardless of the decision, the patient is prepared for a possible transfer or dis-
charge. If possible, the hospital wants to implement the retain familiar constraint.
The nurse who registered the patient shall also prepare the patient for transfer
or discharge. For a specific group of patients, i. e., those who are transferred to
another hospital, an ambulance needs to be organized. Finally, the patient leaves
the emergency ward of the hospital, either by being transferred, being discharged,
or being moved to a special observatory ward for further observation. Patients
that are moved to the observatory ward may be subject to further examinations,
which we consider out of scope of this process.

The process model in BPMN notation shown in Figure 1.3 describes the same pos-
sible ordering of activities as the textual description in Example 1.1. However, the
textual description in Example 1.1 specifies information from additional perspec-
tives on the process execution. Each perspective refers to a particular aspect of the
process. The model in Figure 1.3 describes the control-flow perspective of the process,
i. e., the dynamic behavior of the process expressed by the possible orderings of ac-
tivities for a single process instance. Next to the control-flow perspective, processes
can be considered from several other perspectives. Five of these are introduced in
the next section.

1.2.2 Five Considered Perspectives

Figure 1.6 depicts five perspectives on the running example process that are often
considered in the literature on BPM, process modeling, and process mining [Aal+12;
Aal16; BMS16; CKO92; JB96; LA13a; RAH16; Ram17; Ros+11; Sch00]: the control-
flow perspective, the resource perspective, the data perspective, the time perspec-
tive, and the function perspective. This set of perspectives is not comprehensive
and there may be other or additional perspectives from which processes can be
looked upon, e. g., costs or risks. However, we argue that these five perspectives
are significant perspectives for process mining.
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Figure 1.6: Multiple perspectives on a process can be used for process mining. The control-
flow perspective (i. e., the ordering of activities) can be combined with other perspectives
such as resources, data, time and the hierarchy of functions.

Control-flow perspective. The control-flow perspective, sometimes also called the
behavior- or behavioral perspective, of a process describes the order in which its
activities should be executed. The overall control-flow of a process corresponds to
all the possible sequences of activities. In Example 1.1, it is defined that the patient
is first triaged and only afterwards registered, i. e., activities Triage and Register in
the BPMN model Figure 1.3 are depicted in sequence. A second example is that
according to Example 1.1 there is no specific control-flow constraint defined regard-
ing the activity Check and the activities Diagnostic and Visit. Therefore, checking the
patients may be done in parallel to these activities. The control-flow perspective con-
stitutes the foundation of a process model. Therefore, the control-flow perspective
is, usually, the starting point for a process mining analysis [Aal16].

Resource perspective. The resource perspective, sometimes also called the organiza-
tional perspective, describes the resources required for the execution of a process
and how they interact with each other. Resources can be human resources and non-
human resources (e. g., machines and materials). Possible artifacts of the resource
perspective can be, e. g., social network graphs, assignment rules, and allocation
constraints regarding which resources may execute activities. In Example 1.1 some
activities are executed by nurses and some other activities are executed by doctors.
In Figure 1.6, BPMN lanes are used to express this allocation rule. Moreover, a
retain familiar resource constraint is defined for activities Register and Prepare. Both
activities should be conducted by the same nurse. Since the BPMN standard does
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not define a specific symbol for such a constraint, we illustrated the constraint in
Figure 1.6 by adding an annotation that is connected to both activities.

Data perspective. The data perspective, also denoted as case-, object-, information-,
or informational perspective, describes which existing data objects are required as
input during the execution of the process, used for control-flow routing decisions,
and how data objects are created and updated during the execution of the process.
In Example 1.1 a triage color is recorded for each patient. This color is used for the
routing decision on whether patients need to leave the hospital or are admitted to
the emergency ward. In Figure 1.6, we added the data object Color to the BPMN
process model. The value of this data object is written by the Triage activities. Later
in the process the recorded value is used to route process instances according
to the described rule. Similarly, we added routing decision rules and data object
concerning the referral of patients.

Time perspective. The time perspective focuses on all time-related aspects of the
process. In addition to the ordered sequence considered by the control-flow per-
spectives, activity executions take time and occur at a specific moment in time, e. g.,
before a predefined deadline. Often, there are rules regarding the timing between
activities too. In Example 1.1, a nurse needs to check the patient every hour. We
added an annotation to the activity Check of the BPMN model in Figure 1.6 to
express this constraint.

Function perspective. The functional perspective is concerned with the activities
that are part of the process. Often, not all activities (i. e., functional units) of a process
are at the same abstraction level. Often, the execution of a series of activities at
a low abstraction level together form an activity at a higher level of abstraction.
Some high-level activities may, in fact, be complex sub processes. For example, in
Figure 1.3 the activities Diagnostic, Visit, and Decide can be seen together as activity
Medical examination at a higher level of abstraction. We expressed this in the BPMN
model by annotating the group of activities with a dashed line.2

1.2.3 Relation to Existing Multi-perspective Frameworks

We briefly show how the perspectives considered in other research fields relate to
the five perspectives that are considered in this thesis.

A division of the description of the architecture of an entire organization in mul-
tiple perspectives is commonly made by Enterprise Architecture Modeling (EAM)
frameworks to reduce complexity. EAM frameworks such as the Zachman frame-
work, the CIMOSA framework, and the ARIS framework [Sch00; Sch92] typically

2We did not use the sub process notation of BPMN since we want to keep the example limited to one
process diagram.
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describe an organization from multiple perspectives. For example, the Zachman
framework makes use of the perspectives data, function, network, people, time,
and motivation [Zac87]; the CIMOSA framework includes four views on the orga-
nization: function, information, resource, and organization [ESP93; KZ99]; and the
ARIS framework uses the views organization, data, control, function, and prod-
uct/service.

We relate our usage of the term perspective in the context of those definitions made
by EAM frameworks. We use ARIS as an example since it is one of the most widely
used EAM frameworks. Our five-perspective view on processes is inspired by the
perspectives that ARIS and the other EAM frameworks introduce. Similar to the
ARIS methodology we consider the links between the static views to the behavioral
model (i. e., the control-view) to be important. We assume that our information
originates from an event log that records information about the dynamic process
behavior. Thus, we only consider those parts of the resource-, time-3, data-, and
function perspective that influences the control-flow of the process. This is different
from ARIS, which can take a more holistic view because it is a conceptual modeling
framework rather than an automated process mining technique.

To conclude, the term multi-perspective as used in this thesis relates to the ob-
servation that multiple perspectives on processes are connected and considering
multiple perspectives together provide a more comprehensive view.

1.3 Research Goals and Contributions

In this thesis we only consider perspectives that are intertwined with the control-
flow perspective, i. e., there are dependencies between the control-flow of a process
and the perspective. Therefore, we do not aim to consider one of the perspectives
in isolation, e. g., by discovering a social network graph without considering the
control-flow. We target problems in which multiple perspectives on a process are viewed
together, e. g., data objects that influence the routing of activities, routing that influ-
ences the possible resources, routing that depends on time constraints (e. g., fast vs.
normal procedure).

Based on this premise, we refine the overall goals of our research. We will also
describe the contributions achieved.

1.3.1 Overall Research Goals

In this thesis, we focus on three major research goals. We discuss each of the goals
and relate them to the challenges stated by the process mining manifesto [Aal+12].

3The time perspective is not explicitly mentioned in the ARIS framework. However, it would fit most
naturally in the control view of ARIS.
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Goal 1: Development of process mining methods that consider the interaction between
multiple process perspectives. We want to develop discovery, enhancement, and con-
formance checking methods that consider the interaction of multiple perspectives
on the process. We aim to advance the use of multi-perspective information for all
three types of process mining instead of focusing on one specific type. Moreover,
the goal is to consider situations in which perspectives interact with each other,
e. g., the choice of resources affects the control-flow. This research goal is related to
challenge C5, “Improving the Representational Bias Used for Process Discovery”
[Aal+12], of the process mining manifesto. Considering multiple perspectives on a
process requires suitable representations, e. g., using a process modeling notation
that allows to capture the perspectives. Moreover, it is also related to challenge C6,
“Balancing between Quality Criteria Such as Fitness, Simplicity, Precision and Gen-
eralization” [Aal+12], of the process mining manifesto. There is a need to reliably
determine the quality criteria for multi-perspective process models.

Goal 2: Implementation of efficient and effective tools that can deal with realistic event logs.
Often, research prototypes are implemented just as proof-of-concept tools, which
can only be used in a very small set of cases. The implementation of more broadly
usable tools entails many challenges and involves considerable effort. However,
efficient, effective and usable tools are essential to facilitate the adoption of research
results in practice. Therefore, one of our research goals is the development of tools
that can deal with realistic event logs in an efficient and effective manner. This
research goal is related to the challenges C1, C10, and C11 of the process mining
manifesto [Aal+12]. The challenges are “Finding, Merging, and Cleaning Event
Data” [Aal+12] (C1), “Improving Usability for Non-Experts” [Aal+12] (C10), and
“Improving Understandability for Non-Experts” [Aal+12] (C11).

Goal 3: Applicability of the method in real-world scenarios. We aim that our methods
are applicable in real-world scenarios. Therefore, the evaluation of the proposed
methods is conducted with four extensive case studies using real-life data. This
goal requires that developed methods can deal with the size and the complexity of
real-life data. This research goal is related to challenge C2 of the process mining
manifesto: “Dealing with Complex Event Logs Having Diverse Characteristics”
[Aal+12].

1.3.2 Contributions

We categorize our five main contributions along the three main types of process
mining: conformance, enhancement, and discovery. Furthermore, we present the imple-
mentation and the application in real-life situations of all proposed methods as two
additional, orthogonal contributions.
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Conformance. We contribute the following two multi-perspective conformance
checking methods.

• A method to compute an alignment of a multi-perspective process model to
an event log where the deviations with regard to the different perspective
are given the same importance (Chapter 5). The method can be used for
conformance checking of multi-perspective process models and provides
reliable diagnostics and quality measures with respect to all perspectives of
the process model.

• A method to compute the precision quality measure for multi-perspective
process models based on an alignment (Chapter 6). The precision score ac-
knowledges the added precision of decision rules, resource constraints, and
time constraints.

Discovery. We contribute the following two multi-perspective process discovery
methods.

• The Data-aware Heuristic Miner (DHM) (Chapter 8), a multi-perspective
process discovery method that uses the data perspective (i. e., recorded
data attributes) to distinguish infrequent paths from random noise by using
classification techniques. Data- and control-flow are learned together, i. e.,
recorded data values are used to build improve the discovered control-flow.

• The Guided Process Discovery (GPD) method (Chapter 9), a process discov-
ery method that uses domain knowledge expressed as multi-perspective
activity patterns to abstract low-level activities to high-level activities (i. e.,
considers the function perspective). Grouping low-level events to recogniz-
able activities on a higher abstraction level helps to discover a process model
that can be understood by stakeholders.

Enhancement. Regarding the enhancement category of process mining, we con-
tribute a method to discover potentially overlapping decision rules in process mod-
els based on an event log (Chapter 10). Overlapping (i. e., non mutually-exclusive)
decision rules are often encountered in practice since business rule may be non-
deterministic and contextual information relevant for the actual decision making
is unavailable. The method balances precision and fitness of a process model with
regard to an event log. When rules are overlapping two or more possible routing
options can be chosen non-deterministically. As result, the process model is less
precise but fits the observations better.

Implementation. We implemented all proposed methods in the open source frame-
work ProM in the form of plug-ins. Moreover, we integrated the functionality in
two interactive tools: the Multi-perspective Process Explorer (MPE) and the Interactive
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Data-aware Heuristic Miner (iDHM). Both tools reached a high level of maturity and
have been used in several real-life situations.

Applications. We applied all proposed methods in the context of four case studies
conducted in several organizations. For each case study, we obtained real-life event
data from their information systems, identified process questions relevant to the
organization, and showed that the application of our methods is feasible and pro-
vides valuable insights. Note that the focus of the conducted case studies was on the
evaluation of the proposed methods in a real-life environment and not on solving
a business questions. Thus, we only sketch the business context of each case briefly
and restrict ourselves to applying the proposed methods instead of conducting a
full case study which would be focused on the business questions.

1.4 Structure

This thesis is structured in five parts and 16 chapters. An overview of the structure
is given in Figure 1.7.

Part I: Introduction. The introductory Chapter 1 briefly provides the necessary
context to understand the contributions that are made in this thesis. Chapter 2
provides the preliminaries such as mathematical notations and formal definitions
of event logs. Chapter 3 describes the process model notations that are used in the
remainder of this thesis.

Part II: Multi-perspective Conformance. Chapter 4 introduces conformance checking
and multi-perspective conformance checking in more detail and introduces basic
concepts such as alignments. Chapter 5 describes a balanced alignment method
for multi-perspective process models. Chapter 6 introduces a precision measure
for multi-perspective process models based on multi-perspective alignments.

Part III: Multi-perspective Enhancement and Discovery. Chapter 7 introduces multi-
perspective process discovery and enhancement in more detail. Chapter 8 intro-
duces a discovery method that considers the data perspective as recorded in the
event log to improve discovery of the control-flow perspective. Chapter 9 provides
a method for process discovery that is guided by multi-perspective activity pat-
terns, which represent high-level activities of the process. Chapter 10 describes an
enhancement method to discover overlapping decision rules for process models.

Part IV: Applications. In Chapter 11 we describe the implementation of the in-
troduced methods as part of the open source process mining framework ProM.
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Part I: Introduction

Introduction (Chapter 1) Preliminaries (Chapter 2) Process Models (Chapter 3)

process
models

event logs

Part III: Multi-perspective Enhancement and Discovery

Part II: Multi-perspective Conformance

Introduction to Multi-perspective
Conformance Checking (Chapter 4)

Multi-perspective
Alignment (Chapter 5)

Multi-perspective
Precision (Chapter 6)

Introduction to Multi-perspective Discovery (Chapter 7)

Enhancing Models with Decision Rules (Chapter 10)

Data-aware Heuristic Process
Discovery (Chapter 8)

Guided Process
Discovery (Chapter 9)

Part IV: Applications and Part V: Closure

Tool Support (Chapter 11) Case Studies (Chapters 12–15) Conclusion (Chapter 16)

Figure 1.7: Structure of this thesis in context of the three types of process mining.

Specifically, we present two interactive tools that have been developed: the Interac-
tive Data-aware Heuristic Miner (11.1) and the Multi-perspective Process Explorer
(11.2). Then, we present four case studies in Chapters 12 to 15. In each of the case
studies we tested our proposed methods in real-life situations.

Part V: Closure. Chapter 16 concludes with summarizing our contributions and
elaborating on future work.



2

2 Preliminaries

In this chapter, we introduce necessary preliminaries such as basic mathematical
notations, expressions, decision tree classifiers, and the notation for events logs.

2.1 Basic Notations

Definition 2.1 (Set). A set is an unordered collection of distinct objects, which are
called elements of the set. A set is finite if it contains a finite number of elements.
Otherwise, the set is infinite. We describe a finite set by listing each element of the
set between curly braces, e. g., X = {a, b, c} = {c, b, a} is the set with elements a, b,
and c. We use symbol ∈ to denote that an object is contained as element in a set,
e. g. for set X with elements a, b, and c, a ∈ X whereas d ∉ X. ♢

Infinite sets can be described by using an ellipsis, e. g. ℕ = {0, 1, 2, 3, …} is the set of
all natural numbers, or the set-builder notation, e. g., {n ∈ ℕ ∣ ∃k ∈ ℕ ∶ n = 2k} is
the set of even numbers. Let X and Y be two sets. We use the following standard
notations for sets:

• ∅ denotes the empty set, i. e., ∅ = {},
• |X| = n denotes the number of elements (cardinality) of a finite set X,
• X ∪ Y is the union of X and Y,
• X ∩ Y is the intersection of X and Y,
• X ⧵ Y is the difference of X and Y,
• X ⊆ Y denotes that X is a subset of Y,
• X ⊂ Y denotes that X is a strict subset of Y,
• ℙ(X) = {Y ∣ Y ⊆ X} denotes the power set, i. e., the set of all subsets over X,

and
• X × Y = {(x, y) ∣ x ∈ X ∧ y ∈ Y} denotes the cartesian product of X and Y.

Elements (x, y) are ordered pairs (i. e. tuples).

Definition 2.2 (Relation). Let X1, X2, … , Xn be sets. A n-ary relation R over sets X1,
X2, … , Xn is a subset of the cartesian product of the sets, i.e., R ⊆ X1 × X2 × … × Xn.♢

Relations define a mapping between elements of multiple sets. Functions are special
relations, which defines a unique mapping from elements of a source set to elements
of a target set.
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Definition 2.3 (Function and partial function). Let X and Y be sets.
• A binary relation f ⊆ X ↛ Y is called a partial function if and only if it maps

elements in its domain X to unique elements in Y:

∀x∈X∀y∈Y∀y∈Y((x, y) ∈ f ∧ (x, y) ∈ f) ⟹ y = y).

• A binary relation f ⊆ X → Y is called function if and only if f maps every
element in its domain X to unique elements element in Y:

∀x∈X∀y∈Y∀y∈Y((x, y) ∈ f ∧ (x, y) ∈ f) ⟹ y = y)

∧∀x∈X∃y∈Y((x, y) ∈ f).

• Function f ∶ X → Y is surjective if ∀y∈Y∃x∈X(f(x) = y).
• Function f ∶ X → Y is injective if ∀x∈X∀x∈X(f(x) = f(x)) ⟹ x = x.
• Function is bijective if it is both surjective and injective. ♢

We introduce the following additional notation for partial functions and functions.
• The domain of a (partial) function f ∶ X ↛ Y is denoted as dom(f) = {x ∈ X ∣

(x, y) ∈ f} and its range as rng(f) = {y ∈ Y ∣ (x, y) ∈ f}.
• We denote with ∅ ∶ ∅ → ∅ the empty function for which the domain and range

are empty.
• We denote with (x1 ↦ y1, … , xn ↦ yn) an anonymous partial function, i. e., the

mapping defines a partial function f with f(xi) = yi for all 1 ≤ i ≤ n, xi ∈
X, yi ∈ Y. We use this notation when X and Y are clear from the context.

• We denote with f1 ⊕ f2 the overriding union of functions f1 and f2:

dom(f1 ⊕ f2) = dom(f1) ∪ dom(f2)
and

∀x∈dom(f1⊕f2)((f1 ⊕ f2)(x) =
⎧{
⎨{⎩

f2(x) if x ∈ dom(f2)
f1(x) otherwise.

)

Next to sets and functions, the concept of a multiset is used throughout this thesis.
Multisets generalize sets by allowing the repetition of elements within the set.

Definition 2.4 (Multiset). Let X be a set. A multiset (bag) M is a tuple M = (X, m)
where X is the underlying set and m ∶ X → ℕ is the multiplicity function of the
multiset. We use x ∈ M to denote that element x is contained in the multiset M, i.e.,
x ∈ X and m(x) ≥ 1. We denote with 𝔹(X) the set of all multisets over X. ♢

Often, we use a compact notation for multisets. For example, we write M = [a, a, b]
or M = [a2, b] for the multiset M = ({a, b}, m) with m(a) = 2 and m(b) = 1. We
define the following notation and operations on multisets M1 and M2.
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• The sum of two multisets is denoted as M1 ⊎ M2 = (X1 ∪ X2, m) with

m(x) =
⎧{
⎨{⎩

m1(x) + m2(x) if x ∈ (X1 ∩ X2)
m1(x) if x ∈ (X1 ⧵ X2)
m2(x) if x ∈ (X2 ⧵ X1).

• The difference of two multisets is denoted as M1 ⧵ M2 = (X1, m) with

m(x) = { max(0, m1(x) − m2(x)) if x ∈ (X1 ∩ X2)
m1(x) if x ∈ (X1 ⧵ X2).

• We denote with M2 ≤ M1 that M2 is a sub multiset of M1, i. e., M2 ≤ M1 ⟺
∀x∈X2

(x ∈ X1 ∧ m1(x) ≤ m2(x)).
All operations on multisets can also be applied to a mix of sets and multisets, i. e.,
sets X can be seen as multisets (X, m) in which each element occur only once.

Example 2.1 (Operations on multisets). Given two multisets M1 = [a, b] and M2 =
[b, c], and a set X = {c}. Then, M1 ⊎ M2 = [a, b2, c], M1 ⊎ X = [a, b, c], and
M2 ⊎ X = [b, c2]. Moreover, M1 ⧵ M2 = [a], M2 ⧵ M1 = [c], and M2 ⧵ X = [b].
Finally, we have X ≤ M2, M1 ≤ M1 ⊎ M2 and M2 ≤ M1 ⊎ M2.

Sequences are used widely in this thesis. Sequences are ordered collections of
elements. The same element can appear multiple times.

Definition 2.5 (Sequence). Let X be a set. A non-empty finite sequence s of length
n over elements in X is a function 𝛔 ∶ {1, 2, … , n} → X. Function 𝛔 defines in
which order elements of set X appear. We denote a sequence using the notation
𝛔 = ⟨s1, … , sn⟩ where si = σ(i), for 1 ≤ i ≤ n. We denote with si ∈ 𝛔 that element
si is element of the sequnce 𝛔 and appears at the i-th position. The empty sequence
with length 0 is denoted with ⟨⟩. A finite sequence is either the empty sequence or a
non-empty sequence of a certain length. ♢

The set of all finite sequences over X is obtained through the Kleene star operator X∗.
A sequence 𝛔 ∈ X∗ is also called word and the set X the alphabet. Let 𝛔a = ⟨a1, … , an⟩
and 𝛔b = ⟨b1, … , bn⟩ be sequences over X.

We define the following five operations on sequences.
• We denote with |𝛔| ∈ ℕ the length of a sequence, i. e., ∣⟨s1, … , sn⟩∣ = n.
• We denote with 𝛔a ⋅ 𝛔b ∈ S∗ the concatenation of two sequences, i. e., 𝛔a ⋅

𝛔b = ⟨a1, … , an, b1, … , bn⟩. It is also possible to concatenate single elements
to sequences, i. e., we write 𝛔a ⋅ x = 𝛔a ⋅ ⟨x⟩ to append x ∈ X to sequence 𝛔a.

• We define ∑s∈𝛔 f(s) = f(s1) + … + f(sn) as the sum of function f ∶ X → ℕ
applied to all elements of the sequence 𝛔.
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• Given a subset Y ⊆ X, we denoted with proj (𝛔, Y) the projection of 𝛔 =
⟨s1, … , sn⟩ on Y, i. e., proj (𝛔, Y) ∈ Y∗ is obtained by removing all elements
si ∉ Y for 1 ≤ i ≤ n from sequence 𝛔.

• Given a sequence 𝛔, we denote with prefix (𝛔) the set of all prefixes of 𝛔, i. e.,
𝛔pre ∈ prefix (𝛔) if and only if a sequence 𝛔suf exists such that 𝛔pre ⋅ 𝛔suf = 𝛔.

Example 2.2 (Sequences and operations on sequences). Given the set of possible ele-
ments X = {d, e, o, r, w}, we can build sequences based on set X. For example,
⟨w, o, r, d⟩ ∈ X∗ and ⟨d, o, o, r⟩ ∈ X∗ are sequences. We can combine two se-
quences, by concatenation to a new sequence, e. g., ⟨w, o⟩ ⋅ ⟨r, d⟩ = ⟨w, o, r, d⟩
and ⟨w, o⟩ ⋅ w = ⟨w, o, w⟩. Given a function f that maps each of the elements
of X to a number, e. g., f(w) = f(o) = f(r) = 1 and f(d) = 2, we can obtain the
sum of f applied to sequence ⟨w, w, d⟩ as ∑s∈⟨w,w,d⟩ f(s) = 1 + 1 + 2 = 4. We can
project a sequence on a subset of the alphabet X, e. g., proj (⟨w, o, r, d⟩, {o, r}) =
⟨o, r⟩ and proj (⟨d, o, o, r⟩, {o}) = ⟨o, o⟩. The set of all prefixes of ⟨w, o, r, d⟩ is
prefix(⟨w, o, r, d⟩) = {⟨⟩, ⟨w⟩, ⟨w, o⟩, ⟨w, o, r⟩, ⟨w, o, r, d⟩}.

In the remainder of this thesis, as a matter of convention, we use upper case
identifiers to denote sets and multisets (e. g., X = {a, b, c}); lower case identifiers
to denote functions (e. g., f ∶ X → Y) and elements of sets (e. g., a ∈ X); and bold
symbols to denote sequences (e. g., 𝛔).

2.2 Variables and Guard Expressions

Variables and their values are used to hold the values of data objects that are created,
updated, recorded, and read during the execution of a process.

Definition 2.6 (Variables). Let U be an universe of values. We denote with V the
set of all variables. Variables are defined over a (potentially) infinite domain of
values. Given a variable v ∈ V, we use function dom(v) ∈ ℙ(U) to retrieve the
domain of the variable.4 ♢

During a process execution a set of variables may be associated with concrete vari-
able values. We denote a function that captures a concrete assignment of variable
values as variable assignment.

Definition 2.7 (Variable Assignments). Let VX ⊂ V be a set of variables. A vari-
able assignment w ∈ VX ↛ U is a partial function that assigns values u ∈ U
to variables v ∈ VX. The set of all valid variables assignment for variables in VX

4Function dom is overloaded depending on the context. When applied to functions it returns their
domain. When applied to variables it returns the domain of admissible values.
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according to their domain dom is:

𝒰dom(VX) = {w ∈ VX ↛ U ∣ ∀v∈dom(w)(w(v) ∈ dom(v)}. ♢

To simplify the notation, we abbreviate 𝒰dom(VX) as 𝒰X
dom in the remainder of this

thesis.
We use linear boolean expressions to formulate constraints over multiple perspec-

tives of a process that can be represented as variables.

Definition 2.8 (Linear boolean expression). Let V be a set of variables. We denote
the universe of all boolean expressions over variables V as EXPR(V). A linear guard
expression is a boolean formula expr ∈ EXPR(V) that evaluates to true or false. We
define a concrete syntax for guard expressions using the following grammar in
EBNF notation:
⟨orExpr⟩ ::= ⟨andExpr⟩ ( ( ‘∨’ ⟨andExpr⟩) )*
⟨andExpr⟩ ::= ⟨eqTerm⟩ ( ( ‘∧’ ⟨eqTerm⟩) )*
⟨eqTerm⟩ ::= ⟨relTerm⟩ ( ( ‘=’ ⟨relTerm⟩) | ( ‘≠’ ⟨relTerm⟩) )*
⟨relTerm⟩ ::= ⟨addTerm⟩ ( ( ‘<’ ⟨addTerm⟩) | ( ‘≤’ ⟨addTerm⟩)

| ( ‘>’ ⟨addTerm⟩) | ( ‘≥’ ⟨addTerm⟩) )*
⟨addTerm⟩ ::= ⟨mulTerm⟩ ( ( ‘+’ ⟨mulTerm⟩ ) | ( ‘−’ ⟨mulTerm⟩ ) )*
⟨mulTerm⟩ ::= ⟨unTerm⟩ ( ( ‘⋅’ ⟨unTerm⟩) | ( ‘÷’ ⟨unTerm⟩) )*
⟨unTerm⟩ ::= ( ‘−’ ⟨unTerm⟩) | ( ‘≠’ ⟨unTerm⟩) | ⟨variable⟩ | ⟨literal⟩ | ( ‘(’ ⟨orExpr⟩ ‘)’ )
⟨variable⟩ ::= ( ⟨name⟩ [ ‘’’ ] )
⟨literal⟩ ::= ⟨int⟩ | ⟨float⟩ | ⟨string⟩ | ‘true’ | ‘false’ | ‘⊥’
The non-terminals <int>, <float>, and <string> are defined in the standard manner.
The non-terminal <name> is a special string literal denoting a variable. Additionally
we require linear boolean expressions to fulfill several requirements, which we list
separately from the syntax to avoid an overly verbose grammar.

• Arithmetic terms are limited to linear terms, i. e., each term may only be
constant or the product of a constant with a single variable (e. g., x ⋅ x is not a
linear term).

• Literals and variables from domains with incompatible equivalence relations
may not be used in one term (e. g., ”test” < 10 is undefined, since < is not
defined for both strings and integers together).

• Literals and variables of type boolean and string may not be used with
arithmetic terms (+, −, ⋅, ÷).

• Variables of type boolean may not be used with relational terms (<, ≤, >, ≥).

• The null literal ⊥ may only be used in equality terms (=, ≠). ♢

We use an expression evaluation function to evaluate a linear boolean expression
to true or false given a variable assignment.



24 2 PRELIMINARIES

Definition 2.9 (Expression evaluation function). Let U be the universe of all vari-
able values. Let VP ⊆ V be a set of process variables with domain function dom ∶
VP → ℙ(U). Let expr ∈ EXPR(VP) be a boolean expression. We evaluate the truth
value of a boolean expression with an evaluation function:

evalVP,dom ∶ (EXPR(VP) × 𝒰P
dom) → {true, false}.

Function evalVP,dom evaluates the expression to either true or false given a variable
assignment w ∈ 𝒰P

dom . If one or more variables required to evaluate the expression
are undefined, i. e., v ∉ dom(w), then false is returned. ♢

We do not elaborate further on the implementation of the evaluation function since
it is based only on basic arithmetic and basic logic.

Example 2.3 (Linear boolean expression). Given variables a, b, c ∈ VP that are de-
fined over domains dom(a) = {true, false}, dom(b) = ℝ, and dom(b) = ℕ,
we can define a boolean expressions: expr ← ((a = true) ∨ (( 2

3 ⋅ a) < b)). We
evaluate the expression using an evaluation function that follows the standard
rules for mathematical terms and boolean expressions. The expression is fulfilled,
e. g., for the variables values a = true, a = 3, and b = 2 and for the variables
values a = false, a = 3, and b = 3. The expression is not fulfilled for the variable
assignment a = false, a = 3, and b = 2.

2.3 Event Logs

An event log stores data about the occurrence of activities that were recorded by
information systems while supporting the execution of a process. Each execution
of a process instance results in a sequence of events [Aal16].

Definition 2.10 (Event log [Aal16]). Let U be an universe of values. Let VL ⊆ V be
a finite set of observed variables, which we denote as attributes. An event log L is a
4-tuple L = (E, Σ, #, ℰ), in which:

• E is a non-empty, finite set of unique event identifiers,
• Σ ⊆ U is a non-empty, finite set of activity names,
• # ∶ E → 𝒰L

dom retrieves the attribute values assigned to an event, and
• ℰ ⊆ E∗ is the finite set of traces over E.

The same event may not appear twice in a trace, i. e., ∀⟨e1,…en⟩∈ℰ∀1≤i≤n∀1≤j≤n(i ≠
j ⟹ ei ≠ ej); or in two different traces, i. e., ∀e∈ℰ∀𝛔1∈ℰ∀𝛔𝟐∈ℰ((e ∈ 𝛔1 ∧ e ∈ 𝛔2) ⟹
𝛔1 = 𝛔2). ♢

A trace 𝛔 ∈ ℰ records the sequence of events for one process instance. Each event
represents the execution of an activity in the process. Given an event e ∈ E, we write
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#a(e) ∈ U to obtain the value u ∈ U recorded for attribute a ∈ VL. One mandatory
attribute is recorded by each event: #activity(e) ∈ Σ, the name of the activity that
caused the event. An event log can be seen as an ordered table of values, which may
be sparse. Each row represent one unique event and each column an attribute. Some
columns of the table are used to group events into traces and uniquely identify
events. These columns allow viewing the event log as a set of ordered traces. We
define three more operations on event logs.

Definition 2.11 (Operations on event logs). Let L = (E, Σ, #, ℰ) be an event log.
Let 𝛔 = ⟨e1, … , en⟩ ∈ ℰ be a trace from L.

• The latest attribute values before an event occurred are latest ∶ E → 𝒰L
dom , i. e.,

latest(e1) = ∅ and latest(ei) = latest(ei−1) ⊕ #(ei−1).

• The predecessor event of ei in trace 𝛔 is returned by •ei ∈ (E∪{⊥}), i. e., •e1 = ⊥
and •ei = ei−1.

• The successor event of ei in trace 𝛔 is returned by ei• ∈ (E ∪ {⊥}), i. e., en• = ⊥
and ei• = ei+1. ♢

Example 2.4 (Event log). Table 2.1 shows four traces 𝛔1, 𝛔2, 𝛔3, 𝛔4 from an event
log that was recorded by information systems supporting the hospital process
introduced in Example 1.1. Each event has a unique identifier that can be used
to access the data stored in the attributes, e. g., we can identify the activity of
event e10 as #activity(e10) = Triage.

Contextual data about the executed activities is stored as further attributes,
e. g., event e10 writes the timestamps of the activity execution, #time(e11) =
23/11/16 12:00, the resource and the organizational role executing the activity,
#role(e10) = Nurse and #resource(e10) = Terry, and the triage color assigned to the
patient: #time(e11) = Yellow. Some events record more attributes than others. For
example, event e17 records the attribute #referral(e17) = Ward indicating the kind
of transfer. Event e28 does not record a resource, i. e., resource ∉ dom(#(e28)).

We access the latest attribute values recorded before e18 occurred as
latest(e18) = (activity ↦ Decide, time ↦ 23/11/16 15:30, role ↦ Doctor,
resource ↦ Danny, color ↦ Yellow, referral ↦ Ward). Function latest collects all
attribute values that are recorded in the trace. Older values are overwritten by
newer values, i. e., only the latest attribute values are retained.

In some cases, we use a simplified view on event logs. A simplified event log stores
only minimal data about the process. All contextual data, i. e., all attributes except
the activity name and the sequence order, are omitted. It is defined as a multiset
of sequences over the set of activity names [Aal16]: SL ∈ 𝔹(Σ∗). Figure 2.1 depicts
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Table 2.1: Four traces of an event log recorded for the hospital process.

(a) Trace 𝛔1, a patient that is transferred to the intensive care unit.

id activity time role resource color referral

e10 Triage 23/11/16 12:00 Nurse Terry Yellow
e11 Register 23/11/16 12:20 Nurse Nancy
e12 Check 23/11/16 12:50 Nurse Nancy
e13 Check 23/11/16 13:40 Nurse Nancy
e14 Check 23/11/16 14:35 Nurse Nancy
e15 Visit 23/11/16 14:40 Doctor Danny
e16 Diagnostic 23/11/16 15:10 Specialist Ray
e17 Decide 23/11/16 15:30 Doctor Danny Ward
e18 Prepare 23/11/16 15:35 Nurse Nancy
e19 Transfer 23/11/16 16:00 Nurse Nathan

(b) Trace 𝛔2, a patient that is transferred to another hospital.

id activity time role resource color referral

e20 Triage 5/12/16 21:00 Nurse Terry Red
e21 Register 5/12/16 21:02 Nurse Nathan
e22 Check 5/12/16 21:15 Nurse Nathan
e23 Diagnostic 5/12/16 21:35 Specialist Ray
e24 Visit 5/12/16 21:50 Doctor Danny
e25 Check 5/12/16 22:25 Nurse Nathan
e26 Decide 5/12/16 22:30 Doctor Danny
e27 Prepare 5/12/16 22:32 Nurse Nathan Tertiary
e28 Organize Ambu-

lance
5/12/16 23:15 System

e29 Discharge 5/12/16 23:16 Nurse Nathan

(c) Trace 𝛔3, a patient that is not admitted to the emergency ward.

id activity time role resource color referral

e30 Triage 12/12/16 10:30 Nurse Terry White
e31 Register 12/12/16 10:45 Nurse Nathan

(d) Trace 𝛔4, a patient that is not admitted to the emergency despite its triage color.

id activity time role resource color referral

e40 Triage 15/12/16 10:30 Nurse Terry Green
e41 Register 15/12/16 10:45 Nurse Nathan
e42 Check 15/12/16 11:15 Nurse Nathan
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1x Triage Register Check Check Check Visit Diagnostic Decide Prepare Transfer

1x Triage Register Check Diagnostic Visit Check Decide Prepare Organize
Ambulance

1x Triage Register

1x Triage Register Check

Figure 2.1: A simple event log obtained by transforming the four traces of the example event
log shown in Table 2.1.

a visual representation of a simplified event log based on the four example traces
𝛔1, 𝛔2, 𝛔3, 𝛔4. Each event is depicted by a chevron shape that is labeled with the
activity name. A trace is a sequence of chevron symbols. Its multiplicity is written in
front of the chevron sequence. In the remainder of this thesis, we use this simplified
view for a compact representation visual representation of event logs for which
only the control-flow perspective is important.

2.4 Decision Trees

A decision tree is a visual representation of a set of disjoint decision rules that can
be used as classifier. Each decision rule predicts a target class based on an observed
set of attribute values. In a decision tree, each internal node (i. e., nodes with at
least one child node) specifies a test concerning a single attribute. Each branch
from an internal node represents a possible outcome of that test, e. g., a test on a
Boolean attribute X yields the branches X = true, X = false. Leaf nodes represent
the target class after a series of tests (i. e., the final prediction).

Decision trees can be learned based on observation instances (also denoted as
training instances), e. g., by using C4.5 [Qui93].

Definition 2.12 (Observation Instances). Let C be a set of target classes. Let VL ⊆
V be a set of observed variables and let U be a universe of possible values. We
denote with

OI ∈ 𝔹(𝒰L
dom × C)

a multi-set of observation instances. An observation instance (w, c) ∈ OI records that
target class c was observed for attribute values w. ♢

We define a decision tree builder function that returns a set of guard expressions
based on a decision tree learned on observation instances. Each guard expression
returned by the decision tree builder function predicts a target class. Here, we do
not elaborate on how the observation instances are extracted from a given event
log since this is described later as part of our method in Chapter 10.
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Definition 2.13 (C4.5 Decision Tree Builder). Let C be a set of target classes. Let
OI ∈ 𝔹(𝒰L

dom × C) be a multi-set of observation instances over a set VL of observed
event log variables with values U. Let EXPRVL

be the universe of boolean expres-
sions over the set of observed variables. Let mi ∈ ℕ be the minimum number
of instances on a leaf for the splitting criterion in the decision tree induction. We
denote with

buildTreeC,mi(OI) ∈ ℙ(EXPR(VL) × C)

a function that returns the leafs of a decision tree trained with C4.5 [Qui93] using
the instances OI. A leaf (expr , c) ∈ buildTreeC,mi(OI) predicts target class c ∈ C
under condition expr ∈ EXPR(VL). ♢

The rule for a leaf of the decision tree is obtained by taking the conjunction of all
conditions represented by those nodes that are encountered on a path from the
leaf up to the root node [LA13b].

Example 2.5 (Decision Tree Builder). Assume target classes C = {A, B, C} and the
following multi-set of 40 observation instances:

OI = [((a ↦ White, b ↦ 10), A)10,
((a ↦ White, b ↦ 5), B)10,
((a ↦ Green, b ↦ 10), C)10,
((a ↦ Red, b ↦ 10), C)10]

C4.5 would learn the following decision tree when trained on the observation
instances OI:

a

b

A B C

a = White

b ≤ 5 b > 5

a ≠ White

Based on such a decision tree, we obtain the set of leafs as:

buildTreeC,mi(OI) = {(b ≤ 5 ∧ a = White, A),
(b > 5 ∧ a ≠ White, B),
(a ≠ White, C)}
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Process models describe the behavior of processes. Many different process mod-
eling notations have been proposed [Aal16]. In this chapter, we introduce three
notations that are used in the remainder of this thesis. Each notation has different
properties, which makes it applicable in a certain setting. We position the notations
used in this thesis with regard to other notations and show that results can be
transferred to standard notations used in practice (e. g., to BPMN).
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Figure 3.1: Process model notations used in this thesis compared to other notations. The
notations are categorized based on their level of abstraction and their kind of semantics.

Figure 3.1 provides an overview of the employed process modeling notations. We
use three different process model notations to unambiguously specify the expected
behavior of a process:

1. Trace set (Section 3.1),
2. Data Petri Nets (DPNs) (Section 3.2), and
3. Causal Nets (C-Nets) (Section 3.3).

The trace set notation enumerates the set of possible process executions. We use
this notation whenever the method does not depend on the actual process modeling
notation. Consequently, methods presented in this manner are independent of the
particular formalism (e. g., Petri nets [Pet62; Rei85], EPC [KSN92], BPEL [BPEL07],
UML activity diagrams, Declare [PSA07], BPMN) employed to model processes.
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In practice, higher level notations are needed to describe non-trivial processes,
e. g., to describe processes with an infinite set of possible execution traces. Therefore,
we use two notations with a graphical notation to describe the implementation of
the methods presented in this thesis. Primarily, we use the DPN notation, which has
clear semantics and is based on Petri nets, which have a strong formal foundation.
Therefore, we use DPNs whenever a process model needs to be specified as input
to a presented method, i. e., in Chapters 5, 6, 9 and 10.

For the presentation of the process discovery method in Chapter 8, we employ
the C-Net notation. C-Nets have declarative semantics and are tailored towards
process discovery [AAD11]. They are a better match for this particular problem
than DPNs.

Finally, we show in Section 3.4 that both C-Nets and DPNs can be transformed to
languages on a higher abstraction level. Thus, the methods presented in this thesis
can be generalized towards process modeling languages that are used in practice.
We selected BPMN as an example for the de-facto standard process modeling
notation in practice and extended Data Petri Nets (eDPN) [Bal16] as an example
for a high-level notation that is based directly on the DPN semantics.

3.1 Process Behavior Expressed as a Trace Set

A very basic notation of a process model is the enumeration of all possible process
executions. Each process execution (i. e., case) is a sequence of process steps. Each
process step represents an activity execution together with recorded variable values.

Definition 3.1 (Process step). Given universes of values U, process variables VP ⊆
V, and process transitions T, we denote with PS = T×𝒰P

dom the set of all possible process
steps. A process step (t, w) ∈ PS describes the execution of a process transition t
together with the variable assignment 𝒰P

dom . ♢

The set of all possible sequences of process steps defines the behavior of the
process. This definition of a process model based on its valid traces abstracts from
the modeling notation. Any notation with executable semantics can be seen in this
manner. We denote the set of execution traces as a Trace Set.

Definition 3.2 (Trace set). Given universes of values U, process variables VP ⊆ V,
and process transitions T, and let PS = T × 𝒰P

dom be the set of all possible process steps.
A process trace is a finite sequence of process steps 𝛔 ∈ PS∗, which corresponds to
one valid execution (i. e., process instance) of the process. Then, a trace set TS ⊆ PS∗

is a (possibly infinite) set of process traces. ♢

Note that, Definition 3.2 does not provide any kind of abstraction from the low-level
behavior of the process, e. g., repeating activities lead of an infinite set of possible
process executions.
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Example 3.1 (Trace set of the hospital process). We can describe the hospital process
(cf., Example 1.1) with a trace set. The set of traces is infinite since
that process includes a loop: “While patients are in the emergency ward
the nurse periodically checks their condition”. Therefore, we show only
an exemplary process execution. The set of process transitions is: T =
{ttri, treg, tche, tdia, tvis, tdec, tpre, torg, tvis, tobs, tdis}. The set of process variables is:
VP = {datacolor, datareferral, timeche, resreg, respre}. Each process transition models
an activity from Example 1.1, e. g., ttri corresponds to the Triage activity and tdia
corresponds to taking a medical Diagnostic Test. Each variable captures a multi-
perspective aspect of the process, e. g., datacolor records the triage color; timeche
records the last execution time of the respective process transitions treg, tche, and
tpre; and variable resreg stores the name of the nurse carrying out the activities
Register. A possible process trace is:

⟨(ttri, (datacolor ↦ Yellow)), (treg, (timeche ↦ 23/11/16 12:20, resreg ↦ Nancy),

(tche, (timeche ↦ 23/11/16 12:50)), (tche, (timeche ↦ 23/11/16 13:20)),
(tche, (timeche ↦ 23/11/16 13:50)), (tvis, ∅),
(tdia, ∅), (tdec, (datareferral ↦ ICU)),
(tpre, (timeche ↦ 23/11/16 14:20, respre ↦ Nancy), (ttra, ∅)⟩ ∈ TM.

This process trace fulfills all multi-perspective constraints that are described
in Example 1.1. For example, the triage color of the admitted patient is different
from white, the activity Check is done every hour until activity Prepare occurs, and
the same nurse registers and prepares the patient for discharge.

Process steps correspond to executions of activities and assignments of attribute
values to process variables (e. g., as recorded attribute assignments in an event
log). It is possible that the same activity is represented by two distinct process
transitions. Similarly, it is possible that the same event log attribute is represented
by two distinct process variables. This duplication can be used to distinguish, e. g.,
the first execution of an activity from its second execution and the timestamp of the
first execution of an activity from the timestamp of its second execution. Therefore,
we introduce two labeling functions connecting process transitions to activities
and process variables to attributes.

Definition 3.3 (Labeled trace set). Let U be an universe of values. Let VP ⊆ V be a
set of process variables and let VL ⊆ V be the set of attributes of an event log such
that VP ∩ VL = ∅. Let T be a set of process transitions and let Σ ⊆ U be the set of
activity names. A labeled trace set is a triple (TS, λ, ν) where:

• TS ⊆ PS∗ is a trace set,
• λ ∶ T → (Σ ∪ {τ}) is an activity label function that returns the observable

activity name of a process transition or τ in case of unobservable internal
process transitions,
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• ν ∶ VP → VL is a variable label function that returns the observable attribute
name of a process variable. ♢

Including unobservable routing transitions in Definition 3.3 may seem not to be
strictly necessary. However, we use them later when defining the language of a
DPN (cf., Definition 3.12) in terms of process traces.

3.2 Data Petri Nets

We adopt DPNs [LA13a; LA13b; SST11] as language for modeling multi-perspective
processes that are used as input to the developed methods. DPNs are based on Petri
nets, which we introduce in the next section.

3.2.1 Petri Nets

Petri nets are used to model the control-flow perspective of a process. Only the
ordering of activity executions is described and all other perspectives on a process
are ignored. A Petri net is a bipartite directed graph that consists of places and
transitions. Transitions represent the activities of a process and places capture the
current state of the process. Transitions are depicted as rectangles and places are
depicted as circles.

Definition 3.4 (Petri net). A Petri net is a triple (P, T, F) with:

• P is a finite set of places,
• T is a finite set of transitions, and
• F ⊆ (P × T) ∪ (T × P) is a set of flow relations that describe a bipartite graph

between places and transitions. ♢

Places can be marked with zero or more tokens. We denote with •t = {p ∈ P ∣
(p, t) ∈ F}, the input places of a transition t; and with t• = {p ∈ P ∣ (t, p) ∈ F}, the
output places of a transition t. Definitions of pre- (•p) and postsets (p•) of places are
analogous.

The distribution of tokens over all places of a Petri net determines its state. Each
place may be associated with zero or more tokens. The set of possible states of the
Petri net is formed by the multiset of its places 𝔹(P). A state M ∈ 𝔹(P) is called
marking of the Petri net. We introduce two special kind of markings to define the
complete behavior of a Petri net:

• the initial marking MI ∈ 𝔹(P) describing the start state, and
• the final marking MF ∈ 𝔹(P) indicating the end state.

Executions of the Petri net start with the initial marking and end in the final marking.
The marking of a Petri net is changed by firing transitions (i. e. executing process
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activities). Transitions in a Petri net may be fired only when they are enabled. Tran-
sitions are enabled only if each of their input places is marked with one or more
tokens. Firing a transition in a Petri net consumes one token from each of its input
places and produces one token to each of its output places. This possibly enables
other transitions and changes the marking. Executions of a Petri net finish when
the final marking MF is reached and none of the transitions is enabled.
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Figure 3.2: A Petri net modeling the control-flow perspective of the hospital process.

Example 3.2 (Petri net). Figure 3.2 shows a Petri net modeling the hospital process
that we introduced by a natural language description in Example 1.1. Each valid
execution sequence (i. e., process trace) of the Petri net corresponds to a process
instance (i. e., case) of the hospital process. The initial marking consists of one
token that is put in place src. Tokens are depicted as small black dots within
places. We abbreviate the identifiers of the transitions by using the first three
letters of the name of the represented activity. Please note that not all transitions
refer to visible process activities (i. e., some may be routing transitions) and
that two transitions may refer to the same activity (i. e. duplicate transitions).
Routing transitions are also known as τ-transitions or invisible transitions. Later,
in Definition 3.12, they are introduced formally.

In the initial state, only the transition ttri (Triage) is enabled. Upon executing
transition ttri one token is consumed from place src and a new token is pro-
duced in place p1. The marking of the Petri net changes from the initial marking
MI = [src] to [p1]. With the new marking, transition tref (Register) is enabled
since its input place p1 is marked with one token. Executing transition ttri con-
sumes one token from p1 and produces one token in p2. Now, both τ1 and τ2
are enabled in marking [p2]. An exclusive choice (XOR split) is modeled between
the two routing transitions. Executing τ1 removes the token from p2 and, in turn,
disables transition τ2. Assume τ1 has been executed, then, the resulting marking
is [p3, p4, p5]. Transition τ1 splits the thread of control in three concurrent branches



34 3 PROCESS MODELS

(AND split). Therefore, transitions tche (Check), tdia (Diagnostic), and tvis (Visit)
are enabled. Firing one of these transitions does not disable the other, e. g., both
tche and tdia can be executed independently from each other. Transition tche can be
repeated since it consumes a token from p3 and put new token back in the same
place p3. Transitions tdec (Decide) merges two of the concurrent branches back together
(AND join). The transition consumes tokens from both p6 and p7 but produces
only one token in place p9. Afterwards, either transition tpre (Prepare) may be
executed or both transitions tdia and tvis may be executed again. If transition tpre
is executed, two tokens are consumed: one token from place p3 and one token
from place p8. Thus, the two remaining concurrent branches are joined together.
Then, there are two more exclusive choices modeled regarding transition torg
(Organize Ambulance), which can be skipped; and transitions ttra (Transfer), tdis
(Discharge), and tobs (Observe), which are in conflict with each other. Finally, one
token is put in place snk. The final marking is [snk] and no further transition in
the Petri net is enabled, therefore, the process instance ends.

We only consider Petri nets with a single source place in the initial marking
and a single sink place in the final marking. Moreover, we restrict transitions to
only remove and produce one token on each input- and output arc (i. e. arcs are
unweighted). This is similar to the definition of workflow nets [Aal98] and avoids
introducing unnecessary notation. We omitted a formal introduction of the Petri
net execution semantics, since we extend them to the more expressive DPN. A
comprehensive introduction on classical Petri nets is given, e. g., by Murata [Mur89].

3.2.2 Syntax and Semantics of DPNs

A DPN is a Petri net, in which transitions can manipulate variables and are associ-
ated with a data-dependent guard expressions (guards). Additional perspectives
of the process are captured by storing contextual information in variables and
expressing constraints with guards. For example, we can store information on the
organizational resources, which executed activities, in variables over a nominal
domain. Moreover, we can express resource-perspective constraints such as the
four-eyes principle (two activities should not be executed by the same resource)
as guards, e. g., resourceA ≠ resourceB. Guards are boolean expressions over the
variables of the DPN, i. e. guards evaluate to either true or false.

Differently from notations such as Colored Petri nets (CPN) [JK09], which store
data values locally using colored tokens, the variables in a DPN are globally defined
and data values in a DPN are visible to all transitions. This is useful in the process
mining setting that we consider in this thesis since we do not know the visibility
of data values in the processes under investigation.
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Definition 3.5 (Prime Variables). Let U be the universe of variable values. Let
VP ⊆ V be a set of process variables. We denote with V′

P = {v′ ∣ v ∈ VP} a set of
additional prime variables. One prime variable is paired with each variable v ∈ VP.♢

We use a prime variable v′ ∈ V′
P to distinguish the new data value that is written by

a transition to variable v ∈ VP from its old value before the transition is executed.

Definition 3.6 (Data Petri Net [LA13a]). Let U be the universe of variable values.
Let VP ⊆ V be a set of process variables and let V′

P be a set of prime variables. A
DPN N = (P, T, F, VP, dom , in ,wr , gd) is a Petri net with additional components,
which can be used to describe the additional perspectives of the process model:

• (P, T, F) is a Petri net,
• VP is a finite set of process variables,
• dom ∶ VP → ℙ(U) returns the (potentially) infinite domain for variables

v ∈ VP,
• in ∶ VP → U returns the initial value for variables v ∈ VP,
• wr ∶ T → ℙ(VP) returns the set of required write operations for transitions

t ∈ T,
• gd ∶ T → EXPR(VP ∪ V′

P) returns the boolean guard expression that is
associated with each transition t ∈ T. The guard is defined over variables VP
and the additional prime variables V′

P.5 ♢

Variables in a DPN are updated by transitions through write operations. We as-
sume that variables are assigned an initial value as specified by function in . In
the remainder, we use the symbol ⊥ as a placeholder for the initial value of any
variable. Guard expressions are associated with transitions. Guard expressions in
short guards further constrain when transitions may be executed. A transition t
in a DPN can be executed only if all its input places contain at least one token and its
guard is satisfied. The guard is evaluated based on the values written for regular
variables (v ∈ VP) before the execution of transition t and the values written for
prime variables (v′ ∈ V′

P) by transition t itself.

Example 3.3 (DPN). Figure 3.3 shows a DPN modeling the hospital process that
we introduced by a natural language description in Example 1.1. Each valid
execution sequence (i. e., process trace) of the DPN corresponds to a a process
instance (i. e., case) of the hospital process. The underlying Petri net structure of
the process is modeled in the same way as in Figure 3.2. The Petri net models the
control-flow perspective of the process. Other perspectives (e. g., resources, time,
and data) are expressed with the additional modeling elements of a DPN: vari-
ables, write functions, and guard expressions. Variables are depicted with yellow
colored hexagons. In Figure 3.3, we added variables datacolor and datareferral to

5If a transition t is associated with no guard, we set gd(t) = true.
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capture the data perspective; variable timeche to capture the time perspective;
and variables resreg and respre to capture the resource perspective. Variables
are written by transitions, e. g., the dashed edge from transition ttri to variable
datacolor denotes that a value needs to be assigned to variable datacolor when
executing transition ttri . Variable datacolor is part of the set of write operations
wr(ttri). The values of variables are globally visible to all transitions that use the
current values to evaluate guard expressions. Guard expression add additional
constraints to the execution of a transition. Transitions that are assigned a non-
trivially fulfilled guard (i. e., gd(t) ≠ true) are drawn with a double border. For
example, transition τ2 can only be executed when the corresponding expression
(datacolor = White) is fulfilled. Thus, only patients with the triage color white
may directly leave the emergency ward. Similarly, constraints are also specified
on the transitions torg, ttra, tobs, and tdis. Their execution depends on the decision
regarding the transfer of the patient, which is written to variable datareferral by
transition tdec.

Variables and guards can also be used to model constraints on the time per-
spective of the process. For example, transitions treg, tche, and tpre record their
execution time with variable timeche. Using this variable, we can implement the
constraint that patients need to be checked at least every hour after they have
been registered until they are prepared for discharge or transfer. The guard of
tche specifies the last execution time recorded timeche and current execution time
recorded time′

che should be at most 1 hour apart from each other. A similar guard
is added to transition tpre. Boths guard reference a special prime variable time′

che
to access the variable value written by the current transition firing.

The resource perspective of the process is also specified by variables and
guards. For example, we implement the retain familiar regarding transitions treg
and tpre (i. e., the same nurse shall carry out both activities) using two variables
resreg and respre and add the condition resreg = reg′

pre to the guard expression
of transition tpre. Both variables store the resource that executed the transition.
Transition tpre may only be fired if both resources match.

We now introduce the execution semantics of a DPN stepwise by defining (1)
its state, (2) the set of valid transition firings of a DPN, and (3) the transition firing
rule, which changes the state of the DPN. The state of a DPN is the combination of
both the marking of the Petri net and the current variable assignment.

Definition 3.7 (State of a DPN [LA13a]). Let N = (P, T, F, VP, dom , in ,wr , gd) be a
DPN. The set of possible states of N is formed by all pairs (M, α) where:

• M ∈ 𝔹(P), i. e., is the marking of the Petri net (P, T, F), and
• α ∈ 𝒰P

dom is the current variable assignment. ♢
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(a) Written variables are depicted as dashed edges to yellow hexagons. Guarded transitions
are drawn with a double border.

Transition Guard expression

τ1 datacolor ≠ White
τ2 datacolor = White
tche time′

che ≤ (timeche + 1h)
tpre time′

che ≤ (timeche + 1h) ∧ resreg = res′
pre

torg datareferral = Tertiary
tobs datareferral ≠ Home
ttra datareferral ≠ Home
tdis datareferral = Home

(b) Guards assigned to transitions that are not always enabled (i. e., gd(t) ≠ true).

Figure 3.3: Multiple perspectives of the hospital process modeled with a DPN.
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We denote with αI a special initial variable assignment in which every variable is
assigned its initial value: ∀v∈VP

(α0(v) = in(v)).
In any state, zero or more transitions of a DPN-net may be able to fire. Firing

a transition t ∈ T moves tokens from the input places •t to the output places t•
and writes values to the variables defined by the write operations wr(t). Transition
can only fire if their guard (gd(t)) is fulfilled according to the current and written
variable values.

Definition 3.8 (Valid transition firing). Let U be the universe of variable values.
Let N = (P, T, F, VP, dom , in ,wr , gd) be a DPN-net. Let evalVP,dom be an expression
evaluation function. Let PS ∶ T × 𝒰P

dom be the set of possible process steps (cf. Def-
inition 3.2). A transition firing s in a DPN is a process step (t, w) ∈ PS. Transition
firing s = (t, w) is valid in a state (M, α) of the DPN if four conditions are satisfied:

1. each input place of t contains at least one token, i. e., ∀p∈•t(M(p) > 0);
2. the transition t writes exactly the variables specified by the write operation

function, i. e., dom(w) = wr(t);
3. the value written to each variable is valid according to its domain, i. e.,

∀v∈dom(w)(w(v) ∈ dom(v)); and
4. the guard gd(t) is fulfilled when evaluated on variable assignment α′ ∈ 𝒰P

dom ,
i. e., evalVP∪V′

P,dom(gd(t), α′) = true. Variable assignment α′ consists of the
current variable assignment (α) for normal variables VP and the assignment
to variables that are to be written (w) for prime variables V′

P:

∀v∈VP∪{v′∈V′
P∣v∈w(t)}(α′(v) = { α(v) if v ∈ VP

w(v) otherwise. )

All other transition firings are invalid in state (M, α). ♢

Example 3.4 (Transition firing in a DPN [LA13a]). Assume that the DPN specified
in Figure 3.3 is in the state ([src], αI), i. e., there is a token in the initial place and all
variables are assigned their initial values. Transition ttri is the only transition that
can be fired in this state since only place src is marked with a token. The transition
is not guarded (i. e., gd(ttri) = true). However, the transition writes the variable
datacolor. Therefore, a valid firing needs to assign a value to variable datacolor.
For example, possible valid transition firing would be (ttri, (datacolor ↦ White)).

Another example, assume that the DPN is in the state (M1, α1) with M1 = [p2]
and α1 = αI ⊕ (vcolor ↦ White) (i. e., only variable vcolor is assigned a value).
According to the standard Petri net execution semantics both transitions τ1 and
τ2 would be enabled. However, since both transition are assigned guards, their
guard needs to be fulfilled in order to fire. In this case, the only valid transition
firing is (τ2, ∅), i. e., the patients needs to leave the emergency ward.
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When firing a valid transition the state of the DPN changes from state (M, α) to the
next state (M′, α′). Firing a single valid transition can be extended to sequences of
valid transition firings, i. e., process traces σ ∈ PS∗.
Definition 3.9 (Process trace of a DPN [LA13a]). Let N = (P, T, F, VP, dom , in ,wr ,
gd) be a DPN-net and (M, α) be a state of the DPN. Let s = (t, w) be a valid transition
firing in (M, α). Firing s in state (M, α) leads to state (M′, α′). In the new state the
new marking is calculated according to the Petri net execution semantics and the
variable assignment is updated based on the write operations:

• ∀p∈P M′(p) =
⎧{
⎨{⎩

M(p) − 1 if p ∈ •t,
M(p) + 1 if p ∈ t•,
M(p) otherwise;

• ∀v∈V α′(v) = { α(v) if s ∉ dom(w),
w(v) otherwise.

This is denoted as (M, α) s−→ (M′, α′). By firing multiple transitions we obtain a
process trace 𝛔N = ⟨s1, … , sn⟩ ∈ PS∗, i. e., (M0, α0)

𝛔N−−→ (Mn, αn) corresponds to:

(M0, α0)
s1−→ (M1, α1)

s2−→ …
sn−→ (Mn, αn). ♢

(MI, αI) is the initial state of a DPN, i. e., the initial marking of the Petri net and
each variable mapped to its initial value. We define the set of possible process traces
as those traces that start in the initial state of the DPN and lead to some other state
of the DPN., i. e., not necessarily to a final state.
Definition 3.10 (Possible process traces). Let N = (P, T, F, VP, dom , in ,wr , gd) be
a DPN-net. Let MI ∈ 𝔹(P) be the initial marking. We denote the set of possible
process traces that start in the initial state (MI, αI) and lead to any state (M, α) as:

TSN,MI
= {𝛔N ∈ PS∗ ∣ ∃M∈𝔹(P)∃α∈𝒰P

dom
((MI, αI)

𝛔N−−→ (M, α))}. ♢

The overall trace set (i. e., its entire behavior) of a DPN corresponds to all possible
process traces starting from an initial state and ending in any final state. The set of
final states includes every state (MF, α), i. e., all states in which the final marking
of the Petri net is reached regardless of the variable values. Thus, the variable
assignment reached in a final state does not matter for the proper completion of
an execution. Still, it is possible to enforce a certain variable assignment in all final
state; guards can be assigned to the transitions leading to a final marking.
Definition 3.11 (Trace set of a DPN). The overall behavior of a DPN N with initial
marking MI and final marking MF is the set of complete finite process traces that lead
from the initial marking MI to the final marking MF:

TSN,MI,MF
= {𝛔N ∈ PS∗ ∣ ∃αF∈𝒰P

dom
((MI, αI)

𝛔N−−→ (MF, αF))}.

We denote TSN,MI,MF
as the trace set of a DPN. ♢
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Example 3.5 (Trace set of a DPN). Assume again that the DPN specified in Fig-
ure 3.3 together with its initial marking MI = ([src], αI) and its set of final
markings (MF = ([snk], αF)). The trace set of this DPN consists of all com-
plete finite process traces that start with the initial marking, i. e., only a to-
ken in the place src, and end with the final marking, i. e., only a single to-
ken in the place snk. Thus, only complete finite process executions are part
of the trace set TSN,MI,MF

. For example, the firing sequence ⟨(ttri, (datacolor ↦
White)), (tReg, ∅), (τ2, ∅)⟩ ∈ TSN,MI,MF

is part of the trace set whereas the firing
sequence ⟨(ttri, (datacolor ↦ Yellow)), (treg, ∅), (τ2, ∅)⟩ ∉ TSN,MI,MF

is not part of
the trace set since a the guard of the transition τ2 is not fulfilled.

Some transitions in a DPN do not correspond to actual pieces of work and are
only added for routing purposes. For example, transitions τ1, … , τ4 in Figure 3.3 are
such routing transitions. Formally, there is no reason to distinguish such transitions
from others. In practical terms, such routing transitions are characterized by not
leaving any explicit trails in event logs. That is why these transitions are commonly
referred to as invisible transitions. Analogous to our definition of a labeled trace set,
we introduce a labeled DPN.

Definition 3.12 (Labeled DPN). Let N = (P, T, F, VP, dom , in ,wr , gd) be a DPN. A
labeled DPN is a triple LN = (N, λ, ν), in which:

• λ ∶ T → (Σ ∪ {τ}) is an activity label function that returns the observable
activity name of a transition or τ for invisible routing transitions,

• ν ∶ VP → VL is a variable label function that returns the observable attribute
name of a variable. ♢

Example 3.6 (Relating firing sequences to activities and attributes with a labeled DPN).
Figure 3.4 shows a labeled version of the DPN N that was introduced in Fig-
ure 3.3. We depict both mapping functions λ and ν by annotating the DPN
with the names of the observable activities and the names of the observable
data attributes of the process. In this labeled DPN, we can connect transition
of the DPN to activities recorded in an event log. In Figure 3.4 each transition
is mapped to a unique activity. Generally, two or more transitions may be
connected to the same activity. In a similar manner, we can connect the other
attributes of the event log to variables in the DPN. For example, we specify that
both variables resreg and respre are mapped to the resource attribute in the event
log and variable timeche is mapped to the time attribute.
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Figure 3.4: A labeled DPN describing the hospital process. Activity and variable labels are
shown next to the model elements.

3.3 Causal Nets

We use Causal Nets (C-Nets) [AAD11; Aal16; WR11] as notation for the process dis-
covery method presented in Chapter 8. Other notations similar to C-Nets have been
proposed [AAD11], e. g., Heuristic Nets [WAA06; WR11] and Fuzzy Models [GA07].
Moreover, most commercial process mining tools use simple representations of
the dependency relation that form the core of a C-Net. We use the syntax and
semantics of C-Nets proposed by Van der Aalst et al. [AAD11; Aal16]. The C-Nets
represent only the control-flow perspective of a process. Therefore, we present a
multi-perspective extension in Chapter 8.

C-Nets are directed graphs that represent the causal dependencies (dependency
relations) between activities. Nodes of the graph are activities of the process. Directed
edges between two activities define a dependency relation, i. e., the execution of
the target activity depends on the prior execution of the source activity. There are
no routing elements in a C-Net. Instead, each activity is associated with a set of
input bindings and output bindings. Input bindings define sets of activities that
can precede an activity. Output bindings define sets of activities that can follow an
activity.

Definition 3.13 (Causal Net [Aal16]). A C-Net is a 6-tuple C = (Σ, ai, ao, D, I, O)
where:

• Σ is a finite set of activities,
• ai ∈ Σ is the start activity,
• ao ∈ Σ is the end activity,
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• D ⊆ Σ × Σ is the dependency relation,
• AS = {X ⊆ ℙ(Σ) ∣ X = {∅} ∨ ∅ ∉ X} are sets of activities,
• I ∶ Σ → AS is the set of input bindings per activity, and
• O ∶ Σ → AS is the set of output bindings per activity

such that the dependency relations match the input and output bindings:

D = {(a1, a2) ∈ Σ × Σ ∣ a1 ∈ ⋃
β∈I(a2)

β ∧ a2 ∈ ⋃
β∈O(a1)

β}

and that the C-net has a unique start and end activity, i. e., {ai} = {a ∈ Σ ∣ I(a) = {∅}}
and {ao} = {a ∈ Σ ∣ O(a) = {∅}}. ♢

Each activity of a C-net refers to a unique activity of the process; thus, we can
directly associate a recorded event in the event log to an activity in the C-net.
However, C-nets might not include all activities that are recorded in the event log.

ai atri

Triage

areg

Register

ache

Check

adia

Diagnostic

avis

Visit

adec

Decide
apre

Prepare

aorg

Organize
Ambulance

atra
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aobs
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ao

Figure 3.5: The hospital process modeled as C-Net. The bindings of the C-Net are depicted
as black dots on the edges between activities.

Example 3.7 (Running example process modeled as a C-net). Figure 3.5 shows a C-
net modeling the process behavior that is described for the hospital process
in Example 1.1. Activities of the C-net are depicted as boxes. We refer to the
activities by using a shorthand version, e. g., atri corresponds to the activity Reg-
ister. Dependency relations of the C-net are shown as directed edges between
activities. For example, the execution of activity areg (Register) depends on a prior
execution of the activity atri (Triage). The C-net includes a unique start activity ai
and a unique end activity ao.

The sets of input and output bindings of each activity obtained by the binding
functions I and O are depicted using small black dots on the outgoing and incom-
ing edges. Connected dots indicate that multiple activities are part of the same
binding. For example, the set of output bindings of activity atri is O(atri) = {{areg}}
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and its set of input bindings is I(atri) = {{ai}}. Activities may have multiple in-
put or output bindings, e. g., the set of output bindings of activity ache (Check)
is O(ache) = {{ache}, {apre}}. In a C-net, multiple possible bindings indicate an
exclusive choice between the activities that are specified by the bindings. For
example, after an occurrence of ache, either apre may be executed or ache may
be executed again. Conversely, multiple possible bindings in an input binding
indicate a simple merge.

A single binding may consist of multiple activities, i. e., function I and O return
a set of sets for each activity. We depict bindings that consist of multiple activities
by connecting the dots on the edges. For example, the set of output bindings
of activity atri is O(atri) = {{ao}, {avis, adia, ache}}. The binding {avis, adia, ache}
specifies a parallel split, i. e., all activities of the binding, i. e., avis, adia, and ache,
must occur (AND split). Conversely, input bindings that consists of multiple
activities indicate a synchronization (AND join). In the output binding of areg
both types are mixed, i. e., there is an exclusive choice between the single activity
{ao} and the parallel split {avis, adia, ache}. This corresponds to an inclusive choice,
which is also called multi-choice or OR split. Figure 3.6 gives an overview of the
kinds of routing constructs that can be modeled using bindings of a C-net.

Figure 3.6: Possible routing constructs using a set of bindings in a C-net [Aal16].

We adopt the formal semantics introduced by Van der Aalst et al. [AAD11]. The
execution semantics of C-Nets is defined through the interplay between the input
and output bindings of activities. Only full execution traces are considered, i. e.,
the semantics are global in contrast to the local semantics of a DPN.
Definition 3.14 (Binding sequence [Aal16]). Let C = (Σ, ai, ao, D, I, O) be a C-Net.
We denote the set of possible activity bindings of C as:

B = {(a, asI, asO) ∈ Σ × ℙ(Σ) × ℙ(Σ) ∣ asI ∈ I(a) ∧ asO ∈ O(a)}.

A binding sequence is a sequence of activity bindings: 𝛔 ∈ B∗. ♢

A binding sequence defines the set of activities (asI) that are expected to occur
before an activity a can be executed and the set of activities (asO) that are expected



44 3 PROCESS MODELS

to occur after execution of a. Intuitively, a pair of output and input bindings in
a binding sequence matches if there are sets of activities in the output bindings
and input bindings of activities such that the activity sets agree. Every activity
that was activated by an output binding has to be deactivated by an activity in an
input binding. We denote the activation of sets of activities as obligations. Output
bindings add obligations and input bindings remove obligations.

A binding sequence ⟨(a1, asI
1, asO

1 ), … , (an, asI
n, asO

n )⟩ is considered a valid binding
sequence if the sequences starts with the start activity ai (a0 = ai), ends with the end
activity ao (an = ao), ai and ao do not occur in other places of the sequence, and
the output bindings an input bindings of the activities match, i. e., there are no
pending obligations left after the sequence ends.

Example 3.8 (Valid binding sequence). We show two examples for valid binding
sequence. We underline the executed activity for improved legibility. The first
example of a valid binding sequence is:

𝛔1 = ⟨(ai, ∅, {atri}), (atri, {ai}, {areg}),

(areg, {atri}, {ao}), (ao, {areg}, ∅)⟩.

Binding sequence 𝛔1 is valid and corresponds to a process execution in which
only the activities Triage (atri) and Register (areg) occur, i. e., the patient left before
being admitted to the emergency ward. Start- and end activities ai and ao are
artificially introduced activities that serve solely as markers for the boundary
of the process, i. e., the input and output of the process. A second example of a
valid binding sequence is:

𝛔2 = ⟨(ai, ∅, {atri}),

(atri, {ai}, {areg}), (areg, {atri}, {avis, adia, ache}),

(ache, {ache}, {ache}), (ache, {ache}, {ache}), (ache, {ache}, {apre}),

(avis, {areg}, {adec}), (adia, {areg}, {adec}),

(adec, {adia, avis}, {apre}),

(apre, {adec, ache}, {atra}),

(atra, {apre}, {ao}),

(ao, {atra}, ∅)⟩.

This binding sequence corresponds to a process execution in which the patient is
admitted to the emergency ward. The patient is checked three times, visited by
the doctor, and a medical diagnostic test is taken. Then, the patient is prepared
and transferred.

We formalize this execution semantics by introducing the state of a C-Net and,
then, defining its behavior through the set of valid binding sequences.
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Definition 3.15 (State of a C-Net [Aal16]). Let C = (Σ, ai, ao, D, I, O) be a C-Net.
The state of a C-Net STC ∈ 𝔹(A × A) is a multiset of pending obligations. We define
function stateC ∶ B∗ → STC that returns the state after executing binding sequence
stateC(𝛔) as:

• stateC(⟨⟩) = []
• stateC(𝛔 ⋅ (a, asI, asO)) = (stateC(𝛔) ⧵ (asI × {a})) ⊎ ({a} × asO)

for any binding sequence 𝛔 ⋅ (a, asI, asO) ∈ B∗. ♢

The state of a C-Net is similar to a marking of a Petri net. Pending obligations can
be seen as tokens, which need to be consumed by subsequent activities.

Definition 3.16 (Valid binding sequences of a C-Net [Aal16]). Let C = (Σ, ai, ao,
D, I, O) be a C-Net. Let 𝛔 = ⟨(a1, asI

1, asO
1 ), … , (an, asI

n, asO
n )⟩ ∈ B∗ be a binding

sequence. Sequence 𝛔 is in the set of valid binding sequences BSC of C if and only
if:

1. a0 = ai ∧ ∀1<j<n(aj ∈ (Σ ⧵ {ai, af})) ∧ an = af;
2. there are no pending obligations, i. e., stateC(𝛔) = []; and
3. for any prefix ⟨(a1, asI

1, asO
1 ), … , (aj, asI

j , asO
j )⟩ = 𝛔′ ⋅ (aj, asI

j , asO
j ) ∈ pref (𝛔) we

require that (asI
j ×{asj}) ≤ stateC(𝛔), i. e., bindings may only remove pending

obligations for the current activity asj. ♢

Example 3.9 (Declarative replay semantics of a C-Net). Assume the C-Net shown
in Figure 3.5. Binding sequence 𝛔1 (Example 3.8) is part of its valid binding
sequences, i. e., 𝛔𝟏 ∈ BSC. Sequence 𝛔1 starts with ai and ends with ao. There
are no pending obligations after replaying binding sequence 𝛔1 on the C-net.
Moreover, for any prefix of 𝛔1, only pending obligations are removed. The replay
of the binding sequence changes the state of the C-Net as follows:

STC(⟨⟩) = []
STC(⟨(ai, ∅, {atri})⟩) = [(ai, atri)]

STC(⟨(ai, ∅, {atri}), (atri, {ai}, {areg})⟩) = [(atri, areg)]

STC(⟨(ai, ∅, {atri}), (atri, {ai}, {areg}), (areg, {atri}, {ao})⟩) = [(areg, ao)]

STC(⟨(ai, ∅, {atri}), (atri, {ai}, {areg}), (areg, {atri}, {ao}), (ao, {areg}, ∅)⟩) = [].

We show that C-Nets can be used to specify the set of execution traces, i. e.,
analogous to the trace set of a DPN (Definition 3.11), we define the overall trace set
of a C-Net.

Definition 3.17 (Trace set of a C-Net). Let C = (Σ, ai, ao, D, I, O) be a C-Net. Let
VP ⊆ V be a set of process variables. Let T be a set of process transitions such that
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T = Σ, i. e., we assume that the activities of the C-Net are process transitions. Let
PS = T× be the set of all possible process steps. The overall behavior of the C-Net
C is the set of process traces with a corresponding valid binding sequence in C:

TSC = {⟨(t1, ∅), … , (tn, ∅)⟩ ∈ PS∗ ∣ ∃𝛔∈BSC
(𝛔 = ⟨(ai, asI

0, asO
0 ),

(t1, asI
1, asO

1 ), … , (tn, asI
n, asO

n ),
(ao, asI

n+1, asO
n+1)⟩)}.

We denote TSC as the trace set of C. ♢

Since C-Nets are defined directly over the same set of activities Σ that is recorded
in event logs, we do not need to introduce a labeled variants.

3.4 BPMN and Extended Data Petri Nets

In this section, we show that the process modeling notations that we presented in
the previous three sections are compatible with notations that provide a higher
level of abstraction. Since we only want to illustrate the compatibility with the
notations used in this thesis, both BPMN and eDPN are introduced by means of
examples.

3.4.1 BPMN

BPMN [BPMN11] is a process modeling notation that has become the de-facto
standard in practice. It is widely supported by tool vendors (e. g., Activiti, Bonita
BPM, Camunda, IBM Rational System Architect, and Signavio), used in text
books [Dum+13], and has been adopted by many organizations [Rec10]. BPMN
is a procedural process notation with token-based semantics. A commonly sub-
set of BPMN [MR08] has been formalized, e. g., by providing a mapping to Petri
nets [DDO08]. Conversely, there are multiple process discovery methods that first
discover one of the previously introduce notations (i. e., Petri nets, DPNs, and
Causal Nets) and, subsequently, transform those discovered models to BPMN mod-
els [Con+16; Kal+16a; Kal+16b; WBC14]. Thus, the mapping between the notations
used in this thesis and BPMN is well-researched and supported by tools like ProM.
As an example of a transformation, Figure 3.7 shows the multi-perspective BPMN
model of the hospital process transformed from the DPN in Figure 3.4.

The BPMN process starts with a start event (circle) and ends with an end event
(thick circle). The transitions of the DPN are transformed into BPMN activities,
which are depicted as rounded rectangles. BPMN supports special activities with a
loop marker (	) that can be repeated indefinitely [BPMN11]. In Figure 3.7, we use
such a loop marker to express that activity Check can be repeated in the same manner
as expressed by the Petri net in Figure 3.2 and the C-Net in Figure 3.5. Since BPMN
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Figure 3.7: A BPMN model of the hospital process.

does not support the notation of a state in terms of marked places like in a DPN,
gateways need to be used as additional modeling elements. In Figure 3.4, there
are two types of gateways: exclusive choice gateways (×) and parallel gateways (+).
We transform guards of a DPN into data conditions that are placed on exclusive
gateways. For example, the guard datacolor = white for patients, who leave the
hospital without being admitted, is transformed into a data condition written
above the edge from the first exclusive gateway to the end event. Variables of the
DPN are transformed to data objects, which are connected to activities that assign
values. In Figure 3.4, we use simple textual annotations to specify the resource and
time rules of the hospital process. BPMN offers more sophisticated support for
modeling temporal aspects and some limited support for modeling resources (e. g.,
through swimlanes as depicted in Figure 1.6), but a comprehensive introduction
would be out of the scope in this thesis.

3.4.2 Extended Data Petri Nets

Extended Data Petri Nets (eDPNs), introduced by Balkom [Bal16], extend the
DPN notation with additional notational elements that describe high-level multi-
perspective constructs. The eDPN notation aims at simplifying the notation of
those complex multi-perspective constructs at the expense of introducing addi-
tional elements to the language, which express time and resource-perspective
related constraints. Multi-perspective process models can be visualized in a more
compact form. The elements of eDPN are inspired by research on the visualization
of multi-perspective compliance rules in the context of the extended Compliance
Rule Graph (eCRG) language [KR16], which has been evaluated with users and
shown to be applicable in real-world situations [KR16; KRK17].

The notational elements introduced by the eDPN notation are defined by a map-
ping to DPN constructs (i. e., similar to macros in programming languages). Fig-
ure 3.8 shows the hospital process modeled in eDPN notation. The DPN in Fig-
ure 3.3 uses multiple guard expressions to encode the time-perspective constraint
that activity Check should be executed every hour from registration of the patient
until preparation for discharge or transfer. In the eDPN notation these guards are
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Figure 3.8: An eDPN model of the hospital process.

replaced by a visual time distance constraint element that is connected to both ac-
tivities for which a time constraint is defined. Similarly, the guards encoding the
retain familiar resource constraint are also replaced by a new visual element. After
conversion of the eDPN to a DPN as defined in [Bal16] the methods proposed in
this thesis can be applied.



Part II

Multi-perspective Conformance

Chapter 4 We position multi-perspective conformance checking in the broader
context of compliance checking and process mining. Moreover, we introduce
the central concept of an alignment. An alignment establishes a mapping
between a log trace of the event log and a process trace of the trace set of a
process model.

Chapter 5 We present a method that computes an alignment with the goal to
balance deviations in multiple perspectives on the process to provide reli-
able conformance diagnostics. Moreover, we show that the balanced multi-
perspective alignment method can be used to quantify the level of fitness
between the observed and modeled behavior. This chapter is based on the
publications [Man+14; Man+16a].

Chapter 6 We present a method to quantify the precision of modeled behavior
based on observed behavior in form of an event log. The precision measure
makes use of the balanced multi-perspective alignment introduced in Chap-
ter 5. This chapter is based on the publication [Man+16d].
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4 Introduction to Multi-perspective
Conformance Checking

Organizations maintain process models to describe their business processes. Process
models may be manually modeled or obtained through process discovery. Irregard-
less of its source a process model should accurately reflect the real execution of the
process, i. e., it should reflect the process reality.

Rules and regulations (e. g., Sarbanes-Oxley Act [SOX02], Basel II [BASEL06],
and the ISO 9000 series [ISO15]) may require organizations to document their op-
erational or reporting processes accurately [KMS07]. When the documentation in
the form of a process model and the process reality deviate, then, either the docu-
mentation is outdated and the process performs well, or, worse, the real execution
of the process does not follow the desired procedures with possible harmful conse-
quences. Thus, inaccurate process models are unsuited for their prime purposes:
documentation and analysis of processes. Conversely, processes that do not follow
the desired procedures may lead to bad performance or form a risk to the whole
organization in case of non-compliance with rules and regulations.

Considerable work has been devoted to checking the compliance of processes and
process models with rules and regulations. The work can be categorized in two cat-
egories: forward compliance checking and backward compliance checking [Kha+08]. For-
ward compliance checking methods focus on verifying the compliance of process
models to rules at the design time (e. g., [ADW08]) and on monitoring the adher-
ence to rules during the execution of a processes (e. g., [Ly+15]). Backward compliance
checking employs data recorded about the process execution to locate compliance
violations, e. g., in the context of audits [Aal+10; AS12; Car13].

This chapter presents methods that can be categorized as backwards compliance
checking methods, i. e., we analyze the historic process execution. However, we
do not focus solely on checking the compliance of a process execution to rules
and regulations. We consider the problem of comparing modeled and observed be-
havior, quantifying the correspondence, providing diagnosis information for process
executions based on process models, and analyzing bottlenecks and resource us-
age. In the next section, we introduce the field of conformance checking, which
encompasses all those problems.
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Figure 4.1: Conformance checking of processes in the context of process mining [Aal16].

4.1 Conformance Checking

Conformance checking is the diagnosis and quantification of discrepancies between
process reality, i. e., the real execution recorded by information systems and process
models, i. e., the desired execution of the process. Information systems often record
information about the execution of process activities in their databases. This infor-
mation can be extracted from a database in the form of an event log [Aal16]. As
shown in Figure 4.1, recorded event logs are then used by process conformance
checking methods together with existing or discovered process models as input to
compare the real process execution with the assumed behavior specified by process
models.

Many methods have been proposed that address the problem of comparing ob-
served and modeled behavior in the context of business processes. We differentiate
between local conformance checking methods and global conformance checking methods.

Local conformance checking methods consider a set of independent rules as
input for conformance checking. Each rule expresses constraints for a part of the
overall process. For example two simple rules in the context of our hospital example
process could be:

• executions of Diagnostic should precede executions of Decide (A) and
• executions of Check should precede executions of Prepare (B).

Rule A is fulfilled in the log trace that is shown in Figure 4.2: event Diagnostic
occurs before event Decide. Rule B is violated since event Check does not occur
before event Prepare. The adherence to such rules can be verified very efficiently for
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each rule in isolation. Rules are often specified in some kind of temporal logic (e. g.,
Lineral Temporal Logic (LTL) [ABD05; Car13]) or in a declarative process model
notation. Most declarative notations are grounded in a suitable temporal logic (e. g.,
Declare [PSA07] or DCR Graphs [HMS12]) or assigned a precise semantics with
other means (e. g., Compliance Rule Graphs [Ly+11] or Petri net patterns [RFA12]).
Clearly, more intricate rules than the two examples given can be verified. The
diagnosis is often limited to a binary output: the rule is fulfilled or the rule is not
fulfilled.
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Figure 4.2: Global conformance checking methods establish a global connection between
the events and elements of the process model.

Global conformance checking methods expect an integrated end-to-end, often
procedural, process model as input, e. g., a simple BPMN model that is shown in
the top part of Figure 4.2. The process model is expected to be an accurate specifica-
tion of the overall behavior of the process, i. e., a closed-world is assumed. Global
conformance checking methods determine deviations between the observed order-
ing of activities and the expected ordering of activities. For example, in Figure 4.2
activity Check is diagnosed to have been forcefully executed. The check event was
missing when it was expected, i. e., after activity Register and before activity Prepare.
Moreover, later in the trace an extra check event occurred, but cannot be matched to
a corresponding activity in that stage of the process.

Often, it is desirable to not only report the existence of conformance problems but
also diagnostic information that enables to pinpoint the exact source of a deviations
and analyze contextual factors. Moreover, there may be two interpretations of a
deviation:

• The process model might not reflect the real execution properly, e. g., because
it is outdated, based on optimistic scenarios, or not flexible enough to capture
all scenarios. Therefore, the process model should be improved.

• The process execution might not adhere to rules imposed by a normative
process model. Non-conformance may lead to poor performance or, in case of
non-compliance to regulations, to legal problems. However, non-conformance
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may also be a positive deviation from the prescribed process, i. e., a different
handling of cases may result in better quality outcomes or faster processing.

Besides compliance-oriented questions, there are two more important aspects of
conformance checking to the field of process mining [Aal+12]. Conformance check-
ing methods:

• establish the relation between events in the event log to elements in the
process model (e. g., to transitions in a DPN based on an alignment as will
be introduced in Section 4.3) and

• determine the quality of discovered process models.

As motivated in the previous paragraph, model-based methods establish a relation
between events and elements in the model (cf., Figure 4.2). Moreover, model-based
methods are particularly suited to diagnose the quality of discovered process mod-
els, which are expected to describe the overall behavior of an observed process. The
quality of a process model can be looked upon from various perspectives. Broadly
speaking, quality measures can be distinguished into structural quality measures
and behavioral quality measures. Structural measures are concerned with properties
such as model size, density, cyclicity, and structuredness [Men08; Pol12]. Structural
measures are typically based solely on the structure of the process model itself; thus,
the behavior and its connection to the underlying process reality is not taken into
account. Conversely, behavioral measures only take the behavior (i. e., state-space)
of the model into account. In the context of process mining four major quality
dimensions for discovered process models have been proposed [Aal16; BDA14;
Roz+08]:

• fitness, the degree to which the model allows all the observed behavior;
• precision, the degree to which the model only allows the observed behavior;
• generalization, the degree to which the model generalizes from the observed

behavior; and
• simplicity, the degree to which the model is not be needlessly complex6.

Simplicity is often measured based on simple structural properties (e. g., model
size [BDA14]). The other three quality criteria in process mining are clearly behav-
ioral measures. Fitness and precision are only related to the process model and the
event log at hand, whereas the generalization measure introduces a third element:
the (unknown) real process system. Figure 4.3 illustrates the behavioral aspects
of the three quality dimensions fitness, precision, and generalization in a Venn
diagram. The diagram in Figure 4.3 compares the behavior specified by the process
model with both the behavior observed in the event log and the actual behavior of
the real process (i. e. the system under examination). We adopt the view of Buijs
et al. [BDA14] who defines fitness, precision, and generalization in terms of the

6The principle that simpler models are to be preferred when all other criteria are mostly equivalent is
often denoted as Occam’s razor.
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Figure 4.3: Venn diagram depicting the relation between the behavior specified by the
process model, the behavior observed in the event log, and the possible behavior of the
process (often denoted as system)[BDA14]. Note that the the behavior of the event log that
is not part of the behavior of the process (Ⓑ + Ⓒ) is assumed to small since the event log
contains recorded executions of the process.

overlaps between behaviors of model, log, and system.

Fitness can be expressed as the fraction of log behavior Ⓐ + Ⓑ shared with the
model over the overall observed log behavior Ⓐ + Ⓑ + Ⓒ + Ⓓ: Ⓐ+Ⓑ

Ⓐ+Ⓑ+Ⓒ+Ⓓ . Precision
can be expressed as the fraction of model behavior Ⓐ + Ⓑ shared with the log
over the overall possible model behavior Ⓐ + Ⓑ + Ⓔ + Ⓕ: Ⓐ+Ⓑ

Ⓐ+Ⓑ+Ⓔ+Ⓕ . The problem
with generalization is that the process system behavior is generally unknown in a
process mining setting.7 Generalization measures try to estimate the size of area
Ⓕ in Figure 4.3, i. e., how much unrecorded process system behavior is explained
by the model [AAD12; Bro+14]. Area Ⓕ represents behavior that is not part of
the event log, is described by the model, and is part of the system behavior. Thus,
the model generalized over what was observed in the event log. We focus on
fitness and precision measures since there is no generally agreed-upon measure
for generalization [Jan+16].

In this section, we introduced the field of conformance checking and four quality
measures for process models with regard to to event logs focusing on the control-
flow perspective. In the next section, we extend conformance checking towards
multiple process perspectives.

7In case the system behavior is known, e. g., the event log is known to be complete, then, there is little
reason to use the generalization quality dimension.
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4.2 Multi-perspective Conformance Checking

The major share of work on conformance checking techniques has focused only on
the control-flow perspective (e. g., [AAD12; ADA11a; Adr14; Bro+14; CW99; MAW08;
MC10; RA08; Roz10; Wei+11]). This means that, as illustrated in Figure 4.2, the
order of steps is being analyzed to determine the conformance between prescribed
and actual behavior. However, event logs often contain more information than just
the order of activities. Additional elements, such as the processed data, informa-
tion on organizational resources, and the execution timestamp are recorded. In
fact, this additional information is as important for compliance as the ordering of
activities [Awa10; Car13; CVB13b; Elg+14; Knu+10; RFA12; SGN07; Tur+12]. Re-
cently, more work has been devoted to conformance checking for other important
perspectives on processes: data, resources, and time; which may be also subject to
rules and regulations (e. g., [BB14; BMS16; Car13; CVB13b; LA13a; Ram17]).

Transfer
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Organize
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Figure 4.4: Model-based multi-perspective conformance checking needs to consider addi-
tional constraints based on data, resources, and time.

Multi-perspective conformance checking considers the conformance of process to
multiple perspectives of a process model (i. e., control-flow, data, resources, time)
at the same time. Deviations may occur on a perspective different from control-
flow or deviations from the control-flow may be explained in terms of the other
perspectives.

Multiple perspectives on a process are integrated in a single model and the
sources for deviations are not only the ordering of activities, but also data-related
deviations (e. g., the credit limit is too high), resource-related deviations (e. g., the
four-eyes principle is violated), and time-related deviations (e. g., an activity is
executed too late). If conformance checking would only consider the control-flow
perspective, the activities themselves and their ordering are the only issues of con-
cern. Executions may seem conforming to the model when, in fact, they are not.
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However, to fully grasp whether a model conforms with reality other perspectives
is important, as well. In this thesis, we focus on the additional perspectives data,
resource, and time. For example, in Figure 4.4 rules based on contextual informa-
tion and the control-flow prescribed by the model are checked using the recorded
events.

Our multi-perspective process mining techniques are grounded in the belief that
even though data, resource, and time are separate concerns from a business or
modeling perspective, they can be encoded into the data perspective. For exam-
ple, we can encode the retain familiar constraint [Rus+05] defined on the resource
perspective of the model in Figure 4.4, i. e., both Register and Prepare should be
done by the same doctor, using the data attribute N. Also the time constraints that
activity Check needs to be executed every hour can be encoded using data attribute
and rules, cf. the DPN specification of the process in Figure 3.3. We can, then, check
conformance to the rules defined over attributes encoding the other perspectives.
For example, in Figure 4.4, the retain familiar constraint is violated, activities Reg-
ister and Prepare are executed by different resources Nancy and Nathan. Thus, we
use the data perspective to capture any perspective different from control-flow.
Whereas we only show such an encoding for resource and time dimensions, also
other perspectives such as costs and risks can be encoded in the same way.

Conformance checking techniques that only consider the control-flow perspec-
tive cannot find the conformance violation of the retain familiar constraints for the
trace depicted in Figure 4.4. By considering more perspectives more deviations
between the process model and this trace can be identified. The identification of
non-conformance in its different forms clearly has value in itself. For example, we
can define quality measures fitness and precision that take multiple perspectives
on the process into account. Nonetheless, organizations are often interested in
explanations that can steer measures to improve the quality of the process. What
may happen is that alternative explanations exist for a deviating trace. Due to the
interplay among perspectives, different explanations may favor deviations in one
perspective over deviations in another perspective.

For the identified deviation regarding the activity Transfer in Figure 4.4 there are
two possible explanations:

1. The data value for attribute R was written correctly (i. e., the data-perspective
is correct) but that activity Transfer should not have been performed (i. e., the
control-flow perspective is incorrect). The patient should should have been
discharged (R = Home), but was wrongly transferred.

2. Activity Transfer was performed properly but attribute R was written incor-
rectly. The patient should have, indeed, been transferred and a different data
value, e. g., R = Ward, should have been recorded.

Thus, apart from identifying multi-perspective deviations, it is desirable to identify
possible explanations for the deviations. Having identified the most likely expla-
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nation, it can be used, e. g., to investigate the root cause and project performance
statistics on the model.

In this section, we motivated why it is crucial to consider multiple process per-
spectives for conformance checking of process models with regard to to event logs.
We introduced the problem of deriving the most likely explanation of deviations
in terms of all process perspectives. Such an explanation of deviations between the
prescribed behavior by the model and the observed behavior in the event log is
denoted as an alignment. In the next section, we define multi-perspective align-
ments and introduce formal notations that are necessary for the presentation of
our conformance checking methods.

4.3 Aligning Process Models and Event Logs

An alignment is a mapping between the modeled behavior in terms of a process
model and the observed behavior from a real process execution recorded in an event
log. Alignments are the central concept for model-based conformance checking
that we use to check whether the process reality conforms to the models. The term
alignment in process mining was coined by Adriansyah et al. [AAD12; Adr14]
for the control-flow perspective. In this section, we introduce a broader multi-
perspective definition of alignments inspired by the one presented by de Leoni et
al. in [LA13a].

process model event log

T

T
⊗

R

R
●

C

≫
◓

alignment

conformance

Figure 4.5: An alignment maps events to activities of a process model.

4.3.1 Alignments

We define alignments independently of the modeling notation based on an event
log and a trace set. For this purpose, we use the trace set notation introduced in
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Section 3.1, which is only based on the sets of labeled traces of a process model. An
alignment establishes a mapping between a log trace of the event log and a process trace
of the trace set. Events in the log trace (upper part of the events in Figure 4.5) are
mapped to process steps in the process traces (lower part of the events in Figure 4.5).
However, it may not be possible to align all events and process transitions. A special
mismatch symbol ≫ is used to express that there is a mismatch between log trace
and process trace.

In case an event is mapped to ≫, the alignment could not find a corresponding
process transition for an event, i. e., the event is missing in the process model. In case a
process transition is mapped to ≫, the alignment could not find a corresponding
event in the event log, i. e., the process step was forcefully executed. We denote those
steps as log move and model move, respectively. Moreover, when considering the
multiple perspectives, it is possible that the activity label of both the event and the
process transition match, but the expected values of the process variables and values
of the event attributes differ. We denote such a move as an incorrect synchronous
move. Otherwise, if the expected values match, the move is denoted as a correct
synchronous move.

Definition 4.1 (Alignment moves). Let L = (E, Σ, #, ℰ) be an event log. Let PS be
the set of all process steps. Let LTS = (TS, λ, ν) be a labeled trace set with TS ⊆ PS∗.
A legal move in an alignment is a pair (e, s) ∈ (E ∪ {≫}) × (PS ∪ {≫}) with:

• (e, ≫) is a log move (◓) iff e ∈ E,

• (≫, s) is a model move (◒) iff s ∈ S,

• (e, s) is an incorrect synchronous move (⊗) iff e ∈ E ∧ s ∈ PS ∧ s = (t, w) ∧
#act(e) = λ(t) ∧ ∃v∈dom(w)(ν(v) ∉ dom(#(e))) ∨ w(v) ≠ #ν(v)(e)),

• (e, s) is a correct synchronous move (●) iff e ∈ E ∧ s ∈ PS ∧ s = (t, w) ∧
#act(e) = λ(t) ∧ ∀v∈dom(w)(w(v) = #ν(v)(e)).

All other moves are considered illegal; e. g., the move (≫, ≫) is an illegal move. We
denote the set of all legal moves in an alignment as ΓL,LTS = ((E ∪ {≫}) × (PS ∪
{≫})) ⧵ {(≫, ≫)}. ♢

Remember that proj (𝛔, Y) returns the projection of sequence 𝛔 on set Y, i. e., only
elements contained in Y are retained in the sequence. Given a sequence of alignment
moves 𝛄 = ⟨(e1, s1), … , (en, sn)⟩ ∈ Γ∗

L,LTS. We introduce two notations on sequences
of alignment moves:

• proj L(𝛄) = proj (⟨e1, … , en⟩, E) denotes the log projection of 𝛄, i. e., the se-
quence of events ignoring occurrences of ≫.

• proj P(𝛄) = proj (⟨s1, … , sn⟩, PS) denotes the process projection of 𝛄, i. e., the
sequence of process steps ignoring occurrences of ≫.
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Definition 4.2 (Alignment). Let L = (E, Σ, #, ℰ) be an event log. Let LTS = (TS, λ,
ν) be a labeled trace set. An alignment between log trace 𝛔 ∈ ℰ and labeled trace set
LTS is a sequence of alignment moves 𝛄𝛔 ∈ Γ∗

L,LTS such that ignoring all occurrences
of ≫, the projection of 𝛄𝛔 on the first element (log projection) of each move yields
log trace 𝛔 and the projection on the second element (process projection) yields a
process trace. We define the set of alignments between 𝛔 and LTS as:

Γ𝛔
L,LTS = {𝛄𝛔 ∈ Γ∗

L,LTS ∣ proj L(𝛄𝛔) = 𝛔 ∧ proj P(𝛄𝛔) ∈ TS}.

An alignment 𝛄𝛔 ∈ Γ𝛔
L,LTS is a sequence of alignment moves, which relate events of

the log trace 𝛔 to process steps of a process trace in the process model. ♢

Example 4.1 (Alignment). Table 4.1 shows three alignments between traces of the
example event log (cf., Example 2.4) and the hospital process (cf., Figure 3.4).

Correct Synchronous Moves (●). The first two alignment moves in Table 4.1a are
correct synchronous moves, i. e., the recorded events and the behavior prescribed
by the model agree. For example, the DPN-guard color ≠ White attached to the
routing transition τ1 is fulfilled since the triage color is recorded as Red. The third
move (≫, (τ1, ∅)) is a model move since invisible routing transition are never
recorded in event logs.

Incorrect Synchronous Move (⊗). The seventh move (e25, (tche, w25)) in Table 4.1a
is an incorrect synchronous move. The activity in the event log can be mapped to
the process transition in the DPN. However, the time constraint for activity Check
(“[..] the nurse periodically checks their condition every hour”) requires event e25
to occur within one hour from Register. The time attribute value for both activity
Register and Check need to be aligned to the values of the process variable timeche.
Event e25 recorded an execution time of 5/12/16 22:25. This violates the time
rule since it is more than one hour after the execution time of the Register activity
(event e22 at 5/12/16 21:15). Hence, one of the values needs to be corrected. Here,
an alternative, feasible value for the seventh move is suggested and it is marked
as incorrect synchronous move.

Log Move (◓). Both events e40 (Triage) and e42 (Check) in the alignment Table 4.1b
are problematic. According to the process model (Figure 3.4), Check is only done
for patients that are admitted. One possible alignment of the log trace is to mark
event e42 as log move, i. e., the event is invalid and cannot be explained by the
process model and the value recorded for attribute color as incorrect.



4.3 ALIGNING PROCESS MODELS AND EVENT LOGS 61

4

Table 4.1: Three alignments between log traces 𝛔2, 𝛔4 ∈ ℰex and the hospital process.

(a) 𝛄𝛔2
: One incorrect synchronous move (⊗), two model moves (◒), and one log move (◓).

Event attributes (#(e)) Move (e, (t, w)) Process variables (w)

(activity ↦ Triage, color ↦ Red) ● (e20, (ttri, w20)) (datacolor ↦ Red)

(activity ↦ Register, time ↦
5/12/16 21:02, resource ↦ Nancy)

● (e21, (treg, w21)) (timeche ↦ 5/12/16 21:02,
resreg ↦ Nancy)

- ◒ (≫, (τ1, ∅)) ∅

(activity ↦ Check,
time ↦ 5/12/16 21:15)

● (e22, (tche, w22)) (timeche ↦ 5/12/16 21:15)

(activity ↦ Diagnostic) ● (e23, (tdia, ∅)) ∅

(activity ↦ Visit) ● (e24, (tvis, ∅)) ∅

(activity ↦ Check,
time ↦ 5/12/16 22:25)

⊗ (e25, (tche, w25)) (timeche ↦ 5/12/16 22:15)

(activity ↦ Decide, referral ↦ Tertiary) ● (e26, (tdec, w26)) (datareferral ↦ Tertiary)

(activity ↦ Prepare, time ↦
5/12/16 22:32, resource ↦ Nancy)

● (e27, (tpre, w27)) (timeche ↦ 5/12/16 22:32,
respre ↦ Nancy)

(activity ↦ Organize Ambulance) ● (e28, (torg, ∅)) ∅

(activity ↦ Discharge) ◓ (e29, ≫) ∅

- ◒ (≫, (ttra, ∅)) ∅

(b) 𝛄𝛔4
: 1 incorrect synchronous move (⊗), one model move (◒), and one log move (◓).

Event attributes (#(e)) Move (e, (t, w)) Process variables (w)

(activity ↦ Triage, color ↦ Green) ⊗ (e40, (ttri, w40)) (datacolor ↦ White)
(activity ↦ Register, time ↦
15/12/16 10:45, resource ↦ Nathan)

● (e41, (treg, w41)) (timereg ↦ 15/12/16 10:45,
resreg ↦ Nathan)

- ◒ (≫, (τ2, ∅)) ∅
(activity ↦ Check) ◓ (e42, ≫) ∅

(c) An alternative alignment 𝛄𝛔4
for trace 𝛔4 containing six model moves (◒).

Event attributes (#(e)) Move (e, (t, w)) Process variables (w)

(activity ↦ Triage, color ↦ Green) ● (e40, (ttri, w40)) (datacolor ↦ Green)
(activity ↦ Register, time ↦
15/12/16 10:45,
resource ↦ Nathan)

● (e41, (treg, w41)) (timereg ↦ 15/12/16 10:45,
resreg ↦ Nathan)

(activity ↦ Check, time ↦
15/12/16 11:15)

● (e42, (tche, w42)) (timeche ↦ 15/12/16 11:15)

- ◒ (≫, (tdia, ∅)) ∅
- ◒ (≫, (tvis, ∅)) ∅
- ◒ (≫, (tdec, w45)) (datareferral ↦ Home)
- ◒ (≫, (tpre, w46)) (timeche ↦ 15/12/16 11:15,

respre ↦ Nathan)
- ◒ (≫, (τ4, ∅)) ∅
- ◒ (≫, (ttra, ∅)) ∅
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Model Move (◒). The alignment shown in Table 4.1c gives a different explanation
of the deviations observed in trace 𝛔4. Instead of assuming that the event e42
(Check) was wrongfully recorded, five process steps have been inserted in order
to finish the process trace. Note that the values assigned to the process variables
of these model moves need to be feasible solutions to the constraints imposed
by DPN-guards.

4.3.2 Optimal Alignment and Cost Function

Some alignments may be more desirable or likely than others. For example, align-
ment 𝛄𝛔4

(Table 4.1c) indicates that the events of six process transitions have not
been recorded in trace 𝛔4. Alignment 𝛄𝛔4

diagnosed only three deviations: one
incorrect synchronous move, one model move, and one log move. Both alignments
are valid according to Definition 4.2 and it depends on the application scenario
which of both is preferable. In the case of 𝛔4 there are two plausible scenarios:

1. We know that the recording of attributes values is manual and known to be
error-prone. Moreover, we know that the process instance recording 𝛔4 has
been completed.

2. We know that attribute values are automatically recorded and known to be
correct.

In the first scenario, alignment 𝛄𝛔4
seems to be very unlikely since it suggest that

four activities in a row have not been recorded. However, a incorrectly recorded
triage color as diagnosed by alignment 𝛄𝛔4

could be a plausible explanation. In
the second scenario, alignment 𝛄𝛔4

could be a good explanation. It diagnoses that
the process instance recording 𝛔4 is still running and the alignment indicates a
possible continuation.

Often, the choice which alignment is better can only be made using domain
knowledge. Therefore, we use a domain-specific cost function to rank different
alignments of the same trace.

Definition 4.3 (Cost function). Let L = (E, Σ, #, ℰ) be an event log. Let LTS = (TS,
λ, ν) be a labeled trace set. Let ΓL,LTS be the set of all legal alignment moves. A cost
function κ ∶ ΓL,LTS → ℕ assigns a non-negative cost to each legal move. The overall
cost of a sequence of alignment moves 𝛄 ∈ Γ∗

L,LTS is computed as the sum of the cost of
all constituent moves:

K(𝛄) = ∑
(e,s)∈𝛄

κ(e, s).
♢

This cost function can be used to favor one type of explanation for deviations over
the other. The cost of each legal move depends on the specific model and process
domain and, hence, the cost function κ needs to be defined specifically for each
setting.
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Given a user-defined cost function, we define an optimal alignment that minimizes
the deviations between log trace and process trace. Deviations are scored according
to a user-defined cost function so that domain knowledge on the reliability of events
and process activities can be used. An optimal alignment according to the user-
defined cost function can be seen as the most likely mapping between events and
process steps. Note that an optimal alignment does not need to be unique, i. e.,
multiple complete alignments with the same minimal cost may exist.

Definition 4.4 (Optimal alignment). An alignment 𝛄𝛔 ∈ Γ𝛔
L,LTS is an optimal align-

ment for a given trace set LTS and log trace 𝛔 if and only if any other alignment
between the log trace and the labeled trace set has the same or higher cost:

∀𝛄𝛔∈Γ𝛔
L,LTS

(𝛄𝛔 is an alignment ∧ K(𝛄𝛔) ≤ K(𝛄𝛔)). ♢

4.3.3 Choice of a Cost Function

The choice of a good cost function is challenging. As illustrated in Example 4.1,
there is no universally good cost function. Often, the cost function can be designed
based on domain knowledge on the likelihood of deviations. It may be, e. g., based
on knowledge on the reliability of event logging or on the likelihood of deviations.
Another possibility to determine a good cost function is by comparing the resulting
alignments to a gold standard alignment determined by process stakeholders. In case
of missing information or as a starting point, the following standard cost function
can be used.

Definition 4.5 (Standard cost function). The standard cost function is defined as
κ1 ∶ ΓL,LTS → ℕ with:

κ1((e, (t, w))) =

⎧{{{{{
⎨{{{{{⎩

1 if (e, (t, w)) is a log move
1 + |(dom(w))| if (e, (t, w)) is a model move

and λ(t) ≠ τ
|{v ∈ dom(w) ∣ w(v) ≠ #ν(v)(e)}| if (e, (t, w)) is an incorrect

synchronous move
0 otherwise.

♢

This standard cost function assigns the same cost of 1 to each deviation. Moreover,
for each incorrect or missing variable assignment a cost of 1 is added. The only
exceptions are model moves for unobservable transitions (i. e., mapped to τ). These
model moves are assigned a cost of 0 since executions of those transitions can never
be recorded in an event log.
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Example 4.2 (Standard cost function). Using the standard cost function, we obtain
the following cost for the alignments shown in Table 4.1. The cost of the alignment
𝛄𝛔2

in Table 4.1a is K1(𝛄𝛔2
) = 3. There is one incorrect synchronous move with

one incorrect variable timeche (cost 1), two model moves of which one model
move is for an invisible routing transition (cost 1), and one log move (cost 1). The
cost of the alignment 𝛄𝛔4

in Table 4.1b is K1(𝛄𝛔4
) = 2 since there is one incorrect

synchronous move with one incorrect variable (cost 1), one log move (cost 1)
and one model move for an invisible routing transition (cost 0). The cost of the
alternative alignment for trace 𝛔4 in Table 4.1c is K1(𝛄𝛔4

) = 8 since there are
five model moves for visible transitions (each cost 1) and three missing variable
assignments (each cost 1). For the example cost function, 𝛄𝛔2

and 𝛄𝛔4
are optimal

alignments. No other alignment with lower cost exists. Alignment 𝛄𝛔4
is clearly

not optimal when using the standard cost function since alignment 𝛄𝛔4
has lower

cost.

We introduced a formal notation for alignments, which provides a mapping
between the events recorded in a log trace and the behavior defined by a process
model. The next section concludes the introduction to multi-perspective confor-
mance checking by showing how to use alignments to quantify the fitness quality
dimension.

4.4 Measuring Fitness Based on Alignments

Model Log

Process (System)

Ⓐ

Ⓑ
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Ⓖ

Ⓕ Ⓓ

Figure 4.6: Venn diagram illustrating the fitness measure [BDA14].

When focusing on the fitness dimension of conformance, we are not only interested
in finding the optimal alignment and, hence, diagnosing where a log trace does
not conform to a model. Also, we wish to quantify the fitness level of traces 𝛔 ∈ ℰ



4.4 MEASURING FITNESS BASED ON ALIGNMENTS 65

4

and logs L = (E, Σ, #, ℰ) with regard to the process model LTS. We want to measure
how much of the behavior that was recorded in the event log (Ⓐ+Ⓑ+Ⓒ+Ⓓ) can be
explained by the process model, i. e., we want to determine the fraction: Ⓐ+Ⓑ

Ⓐ+Ⓑ+Ⓒ+Ⓓ .
A process model is fitting well the event log when the area Ⓒ + Ⓓ in Figure 4.6 is
rather small.

For this reason, we introduce a fitness function for a log trace and a process model:
fitness(𝛔, LTS) ∈ [0, 1]:

• fitness(𝛔, LTS) = 1, if the trace 𝛔 can be replayed by the model from the
beginning to the end with no discrepancies; conversely,

• fitness(𝛔, LTS) = 0 denotes the poorest level of conformance.

We use the cost of a deviation according to the cost function used to determine
the alignment as indication of its severity. Note that it would also be possible to
use a second cost function as proposed by Adriansyah et al. [Adr14] in the case of
control-flow alignments. The second cost function enables to assign different cost
to the severity and likelihood of deviations. Here, we simplify the presentation by
using the same cost function for both tasks.

However, the cost of all deviations K(𝛔) cannot directly be used as fitness function
as we want to obtain a fitness level between 0 and 1. Normalization can be done
in multiple ways. We divide the cost of an optimal alignment by a reference cost,
which is obtained using a worst case alignment that is always possible. Therefore,
the fitness level of a log trace is defined with respect to a worst case scenario. The
following fitness measure is an extended version of the unbalanced fitness measure
presented in [LA13a]. In [LA13a], deviations on the control-flow perspective were
treated separately from deviations on other perspectives.

Definition 4.6 (Fitness measure). Let 𝛔 = ⟨e1, … , en⟩ ∈ ℰ be a log trace of event
log L = (E, Σ, #, ℰ). Let LTS be a trace set. Let 𝛄opt

𝛔 ∈ Γ𝛔
L,LTS be an optimal alignment

of σ and LTS. Let 𝛄⟨⟩ ∈ Γ⟨⟩
L,LTS be an optimal alignment of the empty trace ⟨⟩ and

LTS. Let 𝛄ref
𝛔 ∈ Γ𝛔

L,LTS be a reference alignment given by

𝛄ref
𝛔 = 𝛄⟨⟩ ⊕ ⟨(e1, ≫), … , (en, ≫)⟩.

The fitness measure of 𝛔 and LTS is defined as:

fitness(𝛔, LTS) = 1 −
K(𝛄opt

𝛔 )
K(𝛄ref

𝛔 ) ♢

To compute the fitness, the cost of the optimal alignment is confronted with the
cost of the reference alignment K(𝛄ref

𝛔 ). The reference alignment is build by con-
catenating log moves for all events of 𝛔 and the alignment of the empty trace. 𝛄ref

𝛔
is used as the reference alignment as it contains no correct synchronous moves,
which is an undesirable worst case scenario. Since 𝛄opt

𝛔 is an optimal alignment its
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cost is optimal by definition: 0 ≤ K(𝛄opt
𝛔 ) ≤ K(𝛄ref

𝛔 ). The fitness measure is properly
normalized, i. e.:

0 ≤ fitness(𝛔, LTS) ≤ 1.

Example 4.3 (Fitness measure). Take the alignments shown in Table 4.1a, align-
ment 𝛄𝛔2

∈ Γ𝛔2
L,LTS is an optimal alignments for the trace 𝛔2. Assume that the

reference alignment for the labeled trace set LTS based on the example DPN
(Figure 3.4) is as follows:

⟨(≫, (ttri, datacolor ↦ Red)),
(≫, (treg, (timereg ↦ 00/00/00 00:00, resreg ↦ Anyone))),

(≫, (τ2, ∅), (e20, ≫), (e21, ≫), … , (e29, ≫)⟩

with K(𝛄ref
𝛔2

) = 5 + 10. The optimal alignment of the empty trace yield cost 5 and the ten
log moves in the optimal alignment 𝛄𝛔2

yield cost 10. Then, the fitness measure for 𝛔2

with K(𝛄𝛔2
) = 2 is: fitness(𝛔2, LTS) = 1 − 2

15 = 1 − 0.133 = 0.867.

We introduced multi-perspective conformance checking and provided necessary
preliminaries such as alignments and quantifying fitness based on alignments. In
the next chapter, we describe a method to compute optimal alignments between a
multi-perspective process model and an event log.
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5 Multi-perspective Alignment
We present a method that returns an alignment between a multi-perspective process
model and an event log. Our method allows to balance deviations concerning the
different perspectives in a fully customizable manner.

5.1 Motivation for Balanced Alignments

We motivate the need for balanced, multi-perspective alignments using the three
alignments illustrated in Figure 5.1.

… Decide Prepare Organize
Ambulance

Observe

Transfer

Discharge

R = Tertiary

R ≠ Home

R = Home

R ≠ Home

Referral

…

…
Decide

Decide
●

Prepare

Prepare
●

O. Ambulance

O. Ambulance
●

Discharge

Discharge
●

R ← Tertiary

R ← Tertiary

⚡

(a) Invalid alignment when considering all process perspectives. According to the decision
rules it is impossible that both Organize Ambulance and Discharge occurred.

… Decide Prepare Organize
Ambulance

Observe

Transfer

Discharge

R = Tertiary

R ≠ Home

R = Home

R ≠ Home

Referral

…

…
Decide

Decide
●

Prepare

Prepare
●

O. Ambulance

O. Ambulance
●

Discharge

≫
◓

≫

Transfer
◒

R ← Tertiary

R ← Tertiary

(b) A valid alignment: Event Discharge is
marked as log move, activity Transfer is intro-
duced as model move, and the referral value
is marked as correct.

… Decide Prepare Organize
Ambulance

Observe

Transfer

Discharge

R = Tertiary

R ≠ Home

R = Home

R ≠ Home

Referral

…

…
Decide

Decide
⊗

Prepare

Prepare
●

O. Ambulance

≫
◓

Discharge

Discharge
●

R ← Tertiary

R ← Home

(c) Another valid alignment: Event Organize
Ambulance is marked as log move and the
value recorded for the variable referral is
diagnosed to be incorrect.

Figure 5.1: Motivation for a multi-perspective, balanced alignment. Three alternative align-
ments for log trace 𝛄𝛔2

(cf., Table 4.1a) illustrated using a fragment of the BPMN model of
the hospital process.

Take the optimal alignment 𝛄𝛔2
introduced in Table 4.1a on page 61. When consid-
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ering only the control-flow perspective, the execution of the two activities: Organize
Ambulance and Discharge in a single process instance does not violate the behavior
prescribed by the hospital process model. As illustrated in Figure 5.1a, both Orga-
nize Ambulance and Discharge would be correct synchronous moves in an alignment
based on the control-flow perspective only. However, the decision rules of both
activities contradict each other: There is no value for the variable referral that fulfills
both rules (datareferral = Tertiary and datareferral = Home). The alignment depicted
in Figure 5.1a is invalid when considering all process perspectives.

Figures 5.1b and 5.1c illustrate two valid multi-perspective alignments. One
possibility is that the recorded referral value was Tertiary. Then, Organize Ambulance
should happen and Discharge must not happen as diagnosed by the alignment
shown in Figure 5.1b. Another explanation is that the referral was Home. Then,
Discharge can be executed, but Organize Ambulance must not occur as diagnosed
by the alignment shown in Figure 5.1c. These examples illustrate that alignments
need to balance between deviation in multiple perspectives.

Our proposed method balances the control-flow, data, resources, and time per-
spectives in identifying explanations for deviations. Depending on the importance
of the perspectives either the alignment shown in Figure 5.1b or the alignment
shown in Figure 5.1c can be considered the best explanation, i. e., an optimal align-
ment. The method is customizable through a user-defined cost function that encom-
passes all process perspectives. Users can assign different weights to the different
types of deviations. In fact, there might be situations in which process attributes
are known to be more reliable than the activities recorded as events. This can be
reflected in the weights by assigning a higher cost to deviations on the data perspec-
tive. In such situation, the alignment in Figure 5.1c would be a better explanation
for the log trace than Figure 5.1c. In Figure 5.1c the value recorded for referral is
assumed to be correct.

The remainder of this chapter is divided in four sections: In Section 5.2, we
present the alignment method; in Section 5.3, we show that our approach is feasible
to be applied on real-life event logs and process models; in Section 5.4, we discuss
related work in the fields of process mining; and in Section 5.5 we conclude by
summarizing the contributions and sketch future work.

5.2 Balanced Alignment Method

In this section, we present our balanced alignment method for multi-perspective
process models, which has been published in [Man+14; Man+16a]. Before present-
ing the algorithm, we elaborate on the required input.

As outlined in Figure 5.2, the input to the balanced alignment method is a process
model in form of a DPN, an event log, and a user-defined cost function. The cost
function can be used to provide domain knowledge on the likelihood of deviations
and is used to guide the search for an optimal balanced alignment. We require
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relaxed data-sound
DPN

event log

T

T
⊗

R

R
●

C

≫
◓

optimal balanced alignment

cost function

conformance

Figure 5.2: Overview of the proposed balanced alignment method.

the process models to be DPNs since the trace set notation is unable to provide
procedural execution semantics, which are required to explore the possibly infinite
set of process traces. As discussed in Section 3.2, DPNs have clear semantics that
makes them suitable to describe multi-perspective process models used in practice.
However, as we defined alignments (cf., Definition 4.2) based on trace sets, we show
that the result of our method is a is a valid alignment for the trace when converting
the language of the DPN to a trace sets.

5.2.1 Assumptions on the Input

Two important assumption are made with regard to the input:
• The DPN should be relaxed data sound and
• DPN guards should be linear guard expressions.

In a relaxed data-sound DPN there needs to be at least one sequence of transition
firings that leads from the initial state to a final state. This restriction is motivated
by the fact that the process projection of an alignment is required to be a process
trace of the model. Clearly, to be able to provide an alignment, the DPN should
allow for at least one trace.

Definition 5.1 (Relaxed data-sound DPN). Let N = (P, T, F, VP, dom , in ,wr , gd)
be a DPN with initial marking MI and final marking MF. DPN N is relaxed data
sound if and only if its trace set contains at least one complete trace: TSN,MI,MF

≠ ∅,
i. e., there exists one firing sequence from the initial marking to one of the the final
states in the final marking. ♢

Relaxed data-sound DPNs are not required to be free from deadlocks, i. e., states
different from one of the final state in which no transitions are enabled, or livelocks,
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i. e., firing sequences that do not progress towards a final state. However, we require
that one of the final states is reachable from the initial marking. The requirement
that the DPNs is relaxed sound does not hinder the applicability of our method in
practice. In fact, a business process models that does not define at least one possible
process trace can be discarded for analysis anyway.

Furthermore, our method requires guards to be linear boolean expressions as
defined in Definition 2.8. It would be impossible to support arbitrary guard ex-
pressions since we need to be able to find variable assignments that satisfy the
guard expressions. However, satisfiability of non-linear constraints over integers is
undecidable [DH73].

5.2.2 A* Algorithm and Search Space

We formulate the problem of finding an optimal alignment between a multi-perspective
process model and a log trace as a search problem in a directed graph and employ
the A∗ algorithm [DP85] to find a least expensive path through the graph. We
briefly introduce the A∗ algorithm.

Let Z = (ZV, ZE) be a directed graph with edges weighted based on a predefined
cost structure. The A∗ algorithm, as initially proposed in [DP85], finds the path
with the overall lowest cost from a given source node v0 ∈ ZV to a node of a given
goal set, i. e. a set of target nodes ZG ⊆ ZV. Each node v ∈ ZV is associated with a
cost that is determined by an evaluation function f(v) = g(v) + h(v), where

• g ∶ ZV → ℝ+ gives the smallest path cost from v0 to v;
• h ∶ ZV → ℝ+

0 gives an estimate of the smallest path cost from v to any goal node
vG ∈ ZG from v.

Function h is admissible if it always underestimates the remaining cost to reach any
goal node vG from v: for each node v ∈ ZV and for each goal node vG ∈ ZG that is
reachable from v, h(v) ≤ g(vG) − g(v) holds. If h is an admissible function, then
A∗ is guaranteed to return a path that has lowest overall cost.

In order to use A∗ to find an optimal alignment, the search space needs to be
defined along with the cost of paths in the search-space.

Definition 5.2 (Alignment search space). Let LN = (N, λ, ν) be a labeled DPN
with initial marking MI and final marking MF. Let LTS = (TSN,MI,MF

, λ, ν) be the
trace set of DPN N having the same labeling functions λ and ν. Let 𝛔 be a log trace
of the event log L = (E, Σ, #, ℰ), then, the search space to find an optimal alignment
of LN and 𝛔 is a graph ZLN,MI,MF,𝛔 = (ZV, ZE) where:

• the set of nodes ZV contains sequences of alignment moves s. t. their process
projection corresponds to a process trace in the DPN (not necessarily com-
plete) and their log projection is a prefix of the log trace:

ZV = {𝛄 ∈ Γ∗
L,LTS ∣ proj L(𝛄) ∈ prefix(𝛔) ∧ proj P(𝛄) ∈ TSN,MI

};



5.2 BALANCED ALIGNMENT METHOD 71

5

• the set of edges ZE contains all (𝛄𝛔, 𝛄𝛔) ∈ ZV × ZV, where 𝛄𝛔 is obtained by
adding one legal alignment move to 𝛄𝛔:

ZE = {(𝛄, 𝛄) ∈ ZV × ZV ∣ ∃(e,s)∈ΓL,LTS
(𝛄 = 𝛄 ⋅ (e, s))}.

The set of goal nodes ZG ⊆ ZV contains all alignments of 𝛔 and the trace set
TSN,MI,MF

of the DPN N:

ZG = {𝛄𝛔 ∈ Γ∗
L,LTS ∣ proj L(𝛄𝛔) = 𝛔 ∧ proj P(𝛄𝛔) ∈ TSN,MI,MF

} = Γ𝛔
L,LTS. ♢

The search space Z consists of sequences of alignment moves, some of these se-
quences are prefixes of an alignment. Therefore, we use 𝛄 to denote nodes in Z. To
find an optimal alignment of N and 𝛔, we search a path in Z with the lowest cost
from the source node 𝛄0 = ⟨⟩ to a goal node 𝛄𝛔 ∈ ZG.

Definition 5.3 (Cost of a path in the search space). Let ZLN,MI,MF,𝛔 = (ZV, ZE) be
an alignment search space. We define the cost associated with a path leading to a
graph node 𝛄 ∈ ZV as:

g(𝛄) = K(𝛄) + ϵ ∣𝛄∣

Cost epsilon is a sufficiently-small negligible cost ϵ ∈ ℝ+, which we use to guaran-
tee termination of the search algorithm (see Theorem 5.2). Adding cost ϵ does not
affect the optimality of the returned alignment as long as it is chosen sufficiently
small. ♢

The A∗ algorithm guarantees to find such a path only if the cost is monotonically
increasing while more nodes are added to the path. The following theorem proves
that the cost from Definition 5.2 satisfies a stricter form of this property.

Theorem 5.1 (Cost g is strictly increasing). Let ZLN,MI,MF,𝛔 = (ZV, ZE) be an align-
ment search space. Let 𝛄, 𝛄 ∈ ZV be two nodes in the alignment search space such
that (𝛄, 𝛄) ∈ ZE, i. e., there is an edge from 𝛄 to 𝛄. Let g(𝛄) = K(𝛄) + ϵ ∣𝛄∣ be the cost
associated with a path leading to a graph node 𝛄 ∈ ZV. Then ∀𝛄∈ZV

(g(𝛄) < g(𝛄)).♢

Proof. Assume that there is an alignment 𝛄 ∈ ZV with lower cost than 𝛄: g(𝛄) <
g(𝛄). As (𝛄, 𝛄) ∈ ZE, it follows that there exists (e, s) ∈ ΓL,LTS s. t. 𝛄 = 𝛄 ⊕ (e, s).
The cost of a path to a node in ZV is defined as the sum of the cost of all moves
that led to the node: g(𝛄) = K(𝛄) + ϵ ∣𝛄∣ = ∑(e,s)∈𝛄 κ(e, s) + ϵ ∣𝛄∣. Therefore, the cost
of 𝛄 can be expressed as g(𝛄) = g(𝛄) + κ((e, s)) + ϵ. Using the assumption g(𝛄) =
g(𝛄) + κ((e, s)) + ϵ < g(𝛄) ⇔ κ((e, s)) + ϵ < 0 should hold, but κ ∈ ΓL,LTS → ℝ+

0 is
non-negative and ϵ ∈ ℝ+ is positive. �

Regarding the heuristic function h, there are multiple options available.
1. We set h(𝛄) = 0 and, thus, naïvely underestimating the remaining cost. This

turns the A∗ search algorithm into the uninformed Dijkstra’s algorithm [Dij59],
in which there is no pruning of the search space.
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2. We use the heuristic function introduced by Adriansyah et al. [Adr14], which
uses the Petri net marking equation to estimate the remaining cost.

We assume that option (2), i. e., the marking equation heuristic is employed. We
defer a more detailed discussion of this heuristic and its applicability to the multi-
perspective alignment problem to Section 5.2.7.

5.2.3 Searching an Optimal Balanced Alignment

Defining the search space and an admissible path cost function would be sufficient
to obtain an optimal solution by direct application of the A∗ algorithm. However,
there are two problems regarding our definition of the search space in Definition 5.2
that we are solving in this section:

1. the set of nodes ZV may be infinite,
2. the set of edges (𝛄, 𝛄) ∈ ZE associated to a single node 𝛄 may be infinite.

Thus, a direct application of A∗ might require building an infinite search space up-
front. Moreover, an infinite number of successor nodes may need to be explored in a
single iteration of the search algorithm. Clearly, this is infeasible. Therefore, before
introducing the actual algorithm, which iteratively builds only part of the search
space, we introduce the concepts of control-flow successors and the augmentation with
variable assignments.

Exploring the Control-flow Successors

The idea is to explore successors of a node in the search space based on the control-
flow perspective, and, then, augment with the other perspectives. Figure 5.3 il-
lustrates this idea. The potentially infinite number of successors of a node in the
search space ZV is reduced to a small number of successors when taking only the
control-flow perspective into account.

We define two necessary notations to formally introduce the set of control-flow
successors of a node in the search space. First, we define the projection function
projCF ∶ Γ∗

L,LTS → Γ∗
L,LTS that removes all variable assignments from a sequence of

alignment moves 𝛄 ∈ Γ∗
L,LTS. We define projCF(𝛄) recursively:

projCF(⟨⟩) = ⟨⟩
projCF(⟨(e, ≫)⟩ ⋅ 𝛄) = ⟨(e, ≫)⟩ ⋅ projCF(𝛄)

projCF(⟨(≫, (t, w))⟩ ⋅ 𝛄) = ⟨(≫, (t, ∅))⟩ ⋅ projCF(𝛄)
∀e≠≫(projCF(⟨(e, (t, w))⟩ ⋅ 𝛄) = ⟨(e, (t, ∅))⟩ ⋅ projCF(𝛄)).

Second, we introduce the control-flow copy of a DPN. We denote a copy of the
original DPN N in which in all variables, write operations, and guards are removed
as control-flow copy of N.



5.2 BALANCED ALIGNMENT METHOD 73

5

𝛄1 = ⟨(e40, (ttri, w40))⟩

𝛄1 ⋅ (≫, (treg, (resreg ↦ Nancy, timeche ↦ 1/12/16 00:00)))

𝛄1 ⋅ (≫, (treg, (resreg ↦ Nancy, timeche ↦ 1/12/16 00:01)))

𝛄1 ⋅ (≫, (treg, (resreg ↦ Nancy, timeche ↦ 1/12/16 00:02)))

𝛄1 ⋅ (≫, (treg, (resreg ↦ Nancy, timeche ↦ 1/12/16 00:03)))

𝛄1 ⋅ (≫, (treg, (resreg ↦ Nancy, timeche ↦ … )))

𝛄1 ⋅ (e41, ≫)

𝛄1 ⋅ (e41, (treg, (resreg ↦ Nancy, timeche ↦ 5/12/16 21:02)))

𝛄1 ⋅ (e41, (treg, (resreg ↦ Nancy, timeche ↦ 5/12/16 21:03)))

𝛄1 ⋅ (e41, (treg, (resreg ↦ Nancy, timeche ↦ 5/12/16 21:04)))

𝛄1 ⋅ (e41, (treg, (resreg ↦ Nancy, timeche ↦ 5/12/16 21:05)))

𝛄1 ⋅ (e41, (treg, (resreg ↦ Nancy, timeche ↦ … )))

successors in ZV

⟨(e40, (ttri, ∅)),
(≫, (treg, ∅))⟩

⟨(e40, (ttri, ∅)),
(e41, ≫)⟩

⟨(e40, (ttri, ∅)),
(e41, (treg, ∅))⟩

control-flow successors
in Z′

V

Figure 5.3: Collapsing the search space by considering only the control-flow successors of a
node. A potentially infinite number of successors of 𝛄1 in ZV is reduced to exactly three
successors in Z′

V: one model move, one log move, and one correct synchronous move.

Definition 5.4 (Control-flow copy of a DPN). Let LN = (N, λ, ν) be a labeled DPN.
We define the control-flow copy of DPN LN as LN′ = (N′, λ, ∅) with:

N′ = (P, T, F, ∅, ∅, ∅,wr ′, gd ′), s. t.,
∀t∈T(wr ′(t) = ∅ ∧ gd ′(t) = true). ♢

We define the set of control-flow successors of a node in the search space, i. e., a
function that returns only the nodes depicted on the right side in Figure 5.3.

Definition 5.5 (Control-flow successors). Let ZLN,MI,MF,𝛔 = (ZV, ZE) be an align-
ment search space. Let Z′

LN′,MI,MF,𝛔 = (Z′
V, Z′

E) be the alignment search space based
on the control-flow copy DPN LN′. We denote the set of control-flow successors of a
node 𝛄 ∈ ZV with

ctrlSuccessorsLN,MI,𝛔(𝛄) ⊆ Z′
V.

We obtain ctrlSuccessorsLN,MI,𝛔(𝛄) by concatenating 𝛄 with one legal alignment
move (e, s) such that the added process step s corresponds to either ≫ or a transition
firing in LN′. Also, we remove the variable assignments from all moves:

ctrlSuccessorsLN,MI,𝛔(𝛄) = {𝛄C ∈ Z′
V ∣ ∃(e,s)∈ΓL,LTS

(𝛄C = projCF(𝛄) ⋅ (e, s))}, ♢

Note a control-flow successor 𝛄C ∈ Z′
V is not necessarily part of the search space

ZV, since ZV ≠ Z′
V. All variable assignments are missing in the process projection

of 𝛄C.
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Augmenting with Optimal Variable Assignments

⟨(e40, (ttri, w40)),
(e41, (treg, w42))⟩

⟨(e40, (ttri, ∅)),
(e41, (treg, ∅)),
(≫, (τ1, ∅))⟩

⟨(e40, (ttri, ∅)),
(e41, (treg, ∅)),
(≫, (τ2, ∅))⟩

⟨(e40, (ttri, ∅)),
(e41, (treg, ∅)),
(e42, ≫)⟩

control-flow successors
in Z′

V

⟨(e40, (ttri, w40)),
(e41, (treg, w41)),
(≫, (τ1, ∅))⟩

⟨(e40, (ttri, w40)),
(e41, (treg, w41)),
(≫, (τ2, ∅))⟩

⟨(e40, (ttri, w40)),
(e41, (treg, w41)),
(e42, ≫)⟩

optimal successors
in ZV

w40 = ()
w41 = ()

w40 = ()
w41 = ()

w40 = ()
w41 = ()

augmented
variable assignment

Figure 5.4: Augmentation with variable assignments of a control-flow successor.

As indicated, not every control-flow successor 𝛄C is a node of the search space.
Control-flow successors 𝛄C need to be augmented with the write operations. Vari-
ables can be defined on infinite domains and, as a result, 𝛄C may have an infinite
number of possible augmentations. Since we aim to minimize the alignment cost,
we only take one of these augmentations: the augmentation with the lowest cost.
Figure 5.4 illustrates this augmentation and the collapsing of a, potentially, infinite
number of successors to a small finite number of successor nodes.

We perform the augmentation of the variable assignments in a similar way as
discussed in [LA13a] with the notable difference that we also augment alignments
of prefixes of the log trace with the process model. This is required to obtain
an optimal alignment that is balanced according to all process perspectives. By
contrast, in [LA13a] only alignments of entire log traces are augmented, which may
result in suboptimal or invalid alignments being returned. For example, the invalid
alignment illustrated in Figure 5.1a would be returned.

Definition 5.6 (Augmentation function). Let ZLN,MI,MF,𝛔 = (ZV, ZE) be an align-
ment search space. Let Z′

LN′,MI,MF,𝛔 = (Z′
V, Z′

E) be the alignment search space based
on the control-flow copy DPN LN′. Let AUG𝛄C

= {𝛄D ∈ ZV ∣ ∀𝛄∈ZV
(projCF(𝛄D) =

𝛄C ∧ ((projCF(𝛄D) = projCF(𝛄)) ⟹ (g(𝛄D) ≤ g(𝛄))))} be the set of possible vari-
able augmentations for a control-flow successor 𝛄C ∈ ctrlSuccessorsLN′,MI,𝛔(𝛄) with
lowest cost, i. e., optimal variable augmentations. The variable augmentation function:

augmentVariablesLN,𝛔,K ∶ Z′
V → (AUG𝛄C

∪ {⊤}),

returns one of the possible augmentations of node 𝛄C from the set of possible
augmentations AUG𝛄C

or ⊤ if no such augmentation exist. ♢

The implementation of the augmentation function is described separately in Sec-
tion 5.2.5. In case there are multiple optimal variable augmentations for a control-
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flow successor, the augmentation function may return any one of them. Moreover,
it may happen that 𝛄C cannot be augmented with other perspectives, i. e., there is
no variable assignment that fulfills the guards of all DPN transitions linked to the
control-flow alignment.8 In this case, the function is assumed to return the special
value ⊤. Note that the augmentation 𝛄D needs to be computed from scratch for
each for control-flow successor 𝛄C, ignoring the assignment computed for previous
nodes. Indeed, the last move may refer to a transition t that is not allowed to fire in
the DPN state reached after the process trace proj P(𝛄).

Balanced Alignment Algorithm

Input: Labeled DPN (LN), Initial and final markings (MI, MF), Log trace (𝛔),
Cost function (K)
Result: Balanced alignment (𝛄)

1 𝛄 ← ⟨⟩
2 QUEUE = ⟨⟩
3 while ¬(𝛄 is an alignment) do
4 foreach 𝛄C in ctrlSuccessorsLN,MI,𝛔(𝛄) do
5 𝛄D ← augmentVariablesLN,𝛔,K(𝛄C)
6 if 𝛄D ≠ ⊤ then
7 g(𝛄D) ← K(𝛄D) + ϵ ∣𝛄D∣
8 f(𝛄D) ← g(𝛄D) + h(𝛄D)
9 enqueue(QUEUE, 𝛄D, f(𝛄D))

10 𝛄 ← pollLowestCost(QUEUE)
11 return 𝛄

Algorithm 1: Procedure that computes a balanced alignment

Algorithm 1 illustrates how we use the A∗ algorithm to search for an optimal
alignment. The algorithm takes a relaxed data-sound, labeled DPN LN and a log
trace 𝛔 as input and returns the optimal alignment 𝛄𝛔 that is balanced according
to a given cost function K. Instead of building the graph Z beforehand – which is
potentially infinite – we build up the search space incrementally.

Starting with the empty sequence 𝛄 = ⟨⟩ as its source node (line 1), we build the
set ctrlSuccessorsLN,MI,𝛔(𝛄) with all successors of 𝛄 by taking only the control-flow
perspective into account (line 3). By doing so, we prune the alignment search space
ZLN,MI,MF,𝛔 such that there is only a finite number of edges connected to any given
node 𝛄 ∈ ZV. The possibly infinite number of variable assignments for any given
legal alignment move is reduced to exactly one variable assignment, which results
in a minimal cost for the next node in the search space 𝛄, i. e., an optimal variable

8There may be deadlocks based on the data constraints defined in the DPN.
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assignment. It is not important which one of the optimal variable assignments is
chosen as long as it results in the minimal cost.

We use function augmentVariablesLN,𝛔,K to augment the control-flow successors
with a variable assignment (line 5). If an augmentation 𝛄D does not exist, 𝛄C does not
yield to any valid alignment to be added to QUEUE. Otherwise, if an augmentation
𝛄D exists, i. e., 𝛄D ≠ ⊤, then, the cost f(𝛄D) is computed (line 7-8). Thereafter, we
inserted node 𝛄D into the priority queue QUEUE using the function enqueue (line
9).

Once all the control-flow successors are considered, a new node 𝛄 is picked
from the head of QUEUE using the function pollLowestCost, i. e., one of the nodes
associated with the lowest cost (line 10s). If the node 𝛄 is an alignment according
to Definition 4.2 (i. e., 𝛄 ∈ ZG), then it is returned as the optimal alignment (line 3
and line 11). Since the heuristic function h is admissible and the cost g is monotoni-
cally increasing, the application of A∗ guarantees that the first goal node visited
has the lowest cost of all goal nodes. Otherwise, all successors are processed as
described beforehand (line 4-10). Therefore, the search-space successors of a given
node are only created when such a node is visited, without unnecessarily storing
information for search-space nodes that are never going to be visited.

●
(e40, (ttri, w40))

◒
(≫, (ttri, w40))

◓
(e40 , ≫)

●
(e41, (treg, w41))

◒
(≫, (treg, w41))

◓
(e41, ≫)

◓
(e42, ≫)

◒
(≫, (τ1, ∅))

◒
(≫, (τ2, ∅))

◒
(≫, (τ1, ∅))

◒
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ϵ #4γ7

3ϵ
5 + 7ϵ

γ9
1 + 3ϵ

2ϵ #5γ8

1 + 4ϵ
6 + 7ϵ

γ10
2 + 4ϵ

0 #6γ11

Figure 5.5: Search space explored for an optimal alignment of 𝛔4 and the hospital process.
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Example 5.1 (Incremental Building of the Search Space). Figure 5.5 shows the por-
tion of the search space that Algorithm 1 constructs to find an optimal alignment
of 𝛔3 and the hospital example DPN using the standard cost function K1. Nodes
𝛄 ∈ ZV in the search space are represented by circles. Goal nodes 𝛄G ∈ ZG are de-
picted with a double-line border. Nodes that have been polled from the priority
queue during the search are emphasized with a gray background. The remaining
nodes have been enqueued in the priority queue, but have never been polled
since their cost exceeds the cost of an optimal alignment. Polled nodes are as-
signed numbers #1, … , #6 that indicate the order in which they have been visited.
We include both the values for the actual cost g(𝛄) (first value) and the estimated
cost to reach a goal node h(𝛄) (second value). Edges between two nodes 𝛄 and 𝛄
are labeled with the type of alignment move (i. e., synchronous move●, incorrect
synchronous move ⊗, model move ◒, and log move ◓) and the alignment move
(e, s) with which 𝛄 has been extended. For example, 𝛄2 = ⟨⟩ ⋅ ⟨(e40, (ttri, w40))⟩.

Algorithm 1 starts with the empty alignment ⟨⟩ (#1). Both functions g
and h are initially 0. Then, three control-flow successors are generated by
ctrlSuccessorsLN,MI,𝛔 (Algorithm 1, line 4).:

𝛄1
C = ⟨(≫, (ttri, ∅))⟩, 𝛄2

C = ⟨(e40, ≫)⟩, 𝛄3
C = ⟨(e40, (ttri, ∅))⟩.

In 𝛄1
C a model move for process transition ttri was appended, in 𝛄2

C a log move
for event e30 was appended, and in 𝛄3

C a synchronous move for transition ttri and
event e30. An optimal variable assignment according to the guard expressions of
the DPN is determined for 𝛄1

C, 𝛄2
C, and 𝛄3

C using function augmentVariablesLN,𝛔,K
(Algorithm 1, line 7). The obtained variable assignment may differ from the
attribute values observed in the event in order to fulfill guards specified in the
DPN. Thus, synchronous moves (●) might be turned into incorrect synchronous
moves (⊗). In Figure 5.5, we obtain nodes:

𝛄1 = ⟨(≫, (ttri, w40 = (datacolor ↦ White))⟩
𝛄2 = ⟨(e40, ≫)⟩
𝛄3 = ⟨(e40, (ttri, w40 = (datacolor ↦ Green))⟩.

The assignment w40 = (datacolor ↦ White) chosen for the model move in 𝛄1 is
correct because 𝛄1 does not contain any move that is associated to a guarded
transition. Therefore, variable datacolor is free to take on any value in its domain.
The assignment w40 = (datacolor ↦ White) chosen for the synchronous move in
𝛄3 is correct since function augmentVariablesLN,𝛔,K returns the attribute value
of event e40 if it does not violate any guards. Because there is not yet any guard
constraining the value of variable datacolor, the observed value can be consid-
ered as correct. We elaborate further the computation of the optimal variable
assignments in Section 5.2.5.

After augmentation with optimal variable assignments, the path cost for all
three generated sequences is calculated and they are enqueued into the priority
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queue QUEUE (Algorithm 1, lines 8-12). Based on the standard cost function K1,
we obtain the following cost:

g(𝛄1) = ϵ, g(𝛄2) = 2 + ϵ, g(𝛄3) = 1 + ϵ

Each deviating move contributes cost 1. The values returned by the heuristic
function are based on the minimum number of model/log moves that need to be
executed to reach a goal node. Further information is given in Section 5.2.7. Then,
the sequence of alignment moves with the lowest overall cost is polled from the
queue (Algorithm 1, line 13). Node 𝛄1 has the lowest cost f(𝛄1) = g(𝛄1) + h(𝛄1) =
ϵ + 4ϵ among all nodes in the priority queue.

Again, control-flow successors are generated based on 𝛄1 and further nodes are
visited in the same manner until a goal node is encountered. The goal node first
visited is an optimal alignment between 𝛔 and LN and returned (Algorithm 1,
line 12) and returned. Here, γ11 is an optimal alignment. Transition τ2 is preferred
over transition τ1 despite the violated guard since it leads to the shorter path to
a final marking.

5.2.4 Formal Guarantees

In the following two sections we show that Algorithm 1 terminates and returns an
optimal alignment for any given log trace and relaxed data-sound DPN.

Algorithm 1 terminates

We proof that Algorithm 1 terminates. As necessary preliminary for the proof, we
show that it is possible to find an variable assignment for any prefix of a goal node
𝛄𝛔 ∈ ZG using function augmentVariablesLN,σ,K. Intuitively, this property holds be-
cause the sequence of variable assignments of any prefix of a goal node needs to ful-
fill less or equal constraints as the sequence of variable assignment of the goal node.

Lemma 5.1 (Sequence of variable assignments exists prefixes of goal nodes). Let
ZLN,MI,MF,𝛔 = (ZV, ZE) be an alignment search space with 𝛔 = ⟨e1, … , en⟩ and
LN = (N, λ, ν). Let K be a cost function. Let 𝛄𝛔 ∈ ZG be a goal node. Function
augmentVariablesLN,σ,K returns nodes in the search space when applied to the
control-flow projection of any prefix of 𝛄𝛔:

∀𝛄⋅(e,s)∈prefix(𝛄𝛔)(augmentVariablesLN,σ,K(𝛄, projCF(𝛄 ⋅ (e, s))) ≠ ⊤). ♢

Proof. Let ⟨(e1, (t1, w1)), … , (en, (tn, wn))⟩ = 𝛄𝛔. Assume that there exists a node
𝛄 ⋅ (e, s) = ⟨(e1, (t1, w1)), … , (em, (tm, wm))⟩ ∈ prefix(𝛄𝛔) with m ≤ n and with the
control-flow projection 𝛄C = projCF(𝛄⋅(e, s)). Assume that augmentVariablesLN,σ,K(𝛄,
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𝛄C) = ⊤, i. e., it is impossible to find variable assignments for the process steps of
𝛄C that fulfill all the constraints of the DPN LN.

Since 𝛄𝛔 ∈ ZG is a goal node there exists variable assignments w1, … , wm, … , wn,
s. t.:

⟨(t1, w1), … , (tm, wm), … , (tn, wn) ∈ TSN,MI,MF

Since ⟨(t1, w1), … , (tm, wm), … , (tn, wn)⟩ is a process trace of the DPN, i. e., the vari-
able assignments fulfill all the constraints of the DPN, the variable assignments
of any prefix ⟨(t1, w1), … , (tm, wm)⟩ also fulfill all the constraints of the DPN. Thus,
function augmentVariablesLN,σ,K could have returned node:

⟨(e1, (t1, w1)), … , (em, (tm, wm))⟩ = 𝛄 ⋅ (e, s)

which contradicts our assumption. �

Using Lemma 5.1, we proof that Algorithm 1 terminates when applied to any log
trace and relaxed data-sound DPN. The proof is divided in three parts: (1) we show
that any search space contains at least one goal node, i. e., there exists an alignment
between the log trace and the DPN; (2) we show that Algorithm 1 visits at least one
goal node, i. e., even though it explores only the control-flow successors of nodes
and augments them with only one optimal variable assignment, the alignment
is eventually constructed; and (3) we show that this alignment is visited after
exploring a finite number of nodes. Together these three properties proof that the
algorithm terminates when applied on an DPN and a log trace with a given cost
function.

Theorem 5.2 (Algorithm 1 terminates). Let ZLN,MI,MF,𝛔 = (ZV, ZE) be an align-
ment search space with 𝛔 = ⟨e1, … , en⟩. Let K be a cost function. Algorithm 1
terminates with inputs LN, MI, MF, 𝛔, and K. ♢

Proof. We need to show three properties: (1) there exists at least one alignment,
i. e., 𝛄𝛔 ∈ ZG, (2) Algorithm 1 eventually visits this alignment 𝛄𝛔 ∈ ZG, and (3)
Algorithm 1 explores a finite number of nodes before visiting 𝛄𝛔.

(1) Alignment exists. Since we require LN to be relaxed data sound, there ex-
ists at least one complete process trace σN = ⟨(t1, w1), … , (tm, wm)⟩ ∈ TSN,MI,MF

.
Therefore, there exists at least alignment 𝛄𝛔 = ⟨(e1, ≫), … (en, ≫), (≫, (t1, w1)), … ,
(≫, (tm, wm))⟩ ∈ ZG, which belongs to the target nodes ZG of the search space
explored by Algorithm 1.

(2) Alignment is visited. Suppose that Algorithm 1 does not visit any 𝛄𝛔 ∈ ZG. It
follows that there exists a sequence of alignment moves 𝛄 ⋅ (e, s) ∈ prefix(𝛄𝛔) that



80 5 MULTI-PERSPECTIVE ALIGNMENT

is not enqueued to the priority queue in Algorithm 1. There may be two reasons
that 𝛄 ⋅ (e, s) is not enqueued into the priority queue:

projCF(𝛄 ⋅ (e, s)) ∉ ctrlSuccessorsLN,MI,𝛔(𝛄) (5.1)
or

augmentVariablesLN,σ,K(projCF(𝛄 ⋅ (e, s)) ≠ 𝛄 ⋅ (e, s). (5.2)

Thus, either the control-flow successor (Equation 5.1) is not generated or the vari-
able assignment is not returned (Equation 5.2). We distinguish two cases regarding
the added alignment move:

(A) (e, s) = (ei, ≫) (log move) and

(B) (e, s) = (≫, (ti, wi)) (model move).

In case (A), the sequence of alignment moves is

𝛄 ⋅ (ei, ≫) = ⟨(e1, ≫), … , (ei−1, ≫)⟩ ⋅ (ei, ≫)

since we assumed that in alignment 𝛄𝛔 all log moves precede the model moves.
Moreover, because 𝛄⋅(ei, ≫) is a prefix of the goal node 𝛄𝛔, it follows that ⟨e1, … , ei⟩ ∈
prefix(𝛔) is a prefix of the log trace. Sequence 𝛄 ⋅ (e, ≫) consists only of log moves.
Log moves do not require any variable assignment. Therefore, no variable assign-
ments need to be determined (i. e., all process steps are ≫) and Equation 5.2 does
not hold. Consequently, Equation 5.1, projCF(𝛄) ⋅ (e, ≫) ∉ ctrlSuccessorsLN,MI,𝛔(𝛄),
needs to hold. Since function ctrlSuccessorsLN,MI,𝛔(𝛄) returns all control-flow suc-
cessors of 𝛄 (cf., Definition 5.5), it follows that projCF(𝛄) ⋅ (e, ≫) ∉ Z′

V should hold.
Thus, projCF(𝛄) ⋅ (e, ≫) is not a control-flow successors of 𝛄. However, its process
projection is the empty sequence and its log projection is a prefix of the log trace 𝛔:

proj P(projCF(𝛄) ⋅ (e, ≫)) = ⟨⟩ ∈ TSN′,MI
and

proj L(projCF(𝛄) ⋅ (e, ≫)) = ⟨e1, … , ei⟩ ∈ prefix(𝛔).

This implies that projCF(𝛄) ⋅ (e, ≫) ∈ Z′
V is a control-flow successor, which contra-

dicts our assumptions.
In case (B), the sequence of alignment moves is:

𝛄 ⋅ (≫, (ti, wi)) = ⟨(e1, ≫), … , (en, ≫),
(≫, (t1, w1)), … , (≫, (ti−1, wi−1))⟩ ⋅ (≫, (ti, wi)).

From Equation 5.1 and Definition 5.5 it follows that projCF(𝛄) ⋅ (≫, (ti, ∅)) ∉ Z′
V

should hold, i. e., the node is not a control-flow successor of 𝛄. However, we as-
sumed that 𝛄 ⋅ (≫, (ti, wi)) ∈ prefix(𝛄𝛔). Moreover, each sequence of transition
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firings of the original DPN LN is also a transition firing sequence of the control-
flow copy DPN LN′. Therefore, the following two equations hold:

proj P(projCF(𝛄) ⋅ (≫, (ti, ∅)) = ⟨(t1, ∅), … , (ti, ∅)⟩ ∈ TSN′,MI
and

proj L(projCF(𝛄) ⋅ (≫, (ti, ∅)) = ⟨e1, … , en⟩ = 𝛔

Together both equations imply projCF(𝛄) ⋅ (≫, (ti, ∅)) ∈ Z′
V. Thus, Equation 5.2

needs to hold. According to Lemma 5.1, function augmentVariablesLN,σ,K returns
valid nodes in the search space ZV when applied to the control-flow projection
of any prefix of goal nodes. Since 𝛄 ⋅ (≫, (ti, wi)) ∈ prefix(𝛄𝛔), the augmentation
function could have returned, e. g.:

augmentVariablesLN,σ,K(projCF(𝛄) ⋅ (≫, (ti, ∅)) = 𝛄 ⋅ (≫, (ti, wi)).

This contradicts Equation 5.2 and, thus, our assumption that alignment 𝛄𝛔 is not
visited by Algorithm 1.

(3) Finite number of nodes. Suppose that Algorithm 1 does not terminate with
inputs LN, MI, MF, 𝛔, K. It follows that for each q ∈ ℕ, there exists a sequence of
alignment moves 𝛄q

𝛔 composed by q moves such that f(𝛄q
𝛔) ≤ f(𝛄𝛔). In particular,

this holds for q = ⌈ f(𝛄𝛔)
ϵ + 1⌉. Since each alignment move adds at least cost ϵ,

f(𝛄q
𝛔) ≥ ⌈ f(𝛄𝛔)

ϵ + 1⌉ ⋅ ϵ ≥ f(𝛄𝛔) + ϵ. This cannot be true since we assumed that
f(𝛄q

𝛔) ≤ f(𝛄𝛔). �

We showed that Algorithm 1 will always terminate although, depending on the
minimal length of complete process traces, an arbitrary large number of nodes
need to be visited. In practice, this number is kept reasonably small by the fact
that models are usually designed in a way that there is no possibility to have
long sequences in an alignment where each move takes on a zero cost (i. e., the
corresponding arcs in the search space are associated with a cost ϵ).

Algorithm 1 Returns an Optimal Alignment

We show that the alignment returned by Algorithm 1 is, indeed, an optimal align-
ment as defined in Definition 4.4, i. e., any other alignment has a higher or equal
cost. A direct application of A∗ on the search space ZLN,MI,MF,𝛔 = (ZV, ZE) would
guarantee that the returned alignment has lower or equal cost than any other align-
ment in the search space, i. e., that the returned alignment is optimal. This follows
from Theorem 5.1 (strictly increasing cost), the use of an admissible heuristic and
the optimality of A∗ [DP85]. However, we prune large parts of the search space in
Algorithm 1 by only considering the nodes constructed with the optimal variable
assignment instead of all possible variable assignments. Therefore, we need to
show that we do not prune away a path to a goal node with lower cost.
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Theorem 5.3 (Algorithm 1 returns an optimal alignment). Let ZLN,MI,MF,𝛔 = (ZV,
ZE) be an alignment search space with log trace 𝛔 = ⟨e1, … , en⟩. Let K be a cost func-
tion. Algorithm 1 returns an optimal alignment 𝛄𝛔 ∈ ZG with inputs LN, MI, MF, 𝛔,
and K:

∀𝛄𝛔∈ZG
(g(𝛄𝛔) ≥ g(𝛄𝛔)). ♢

Proof. Assume that Algorithm 1 would return a sub-optimal alignment 𝛄𝛔. It
follows that there exists another alignment 𝛄𝛔 ∈ ZG (𝛄𝛔 ≠ 𝛄𝛔) with lower cost
g(𝛄𝛔) < g(𝛄𝛔), which is not visited by Algorithm 1. Thus, there needs to be a node
𝛄 ∈ prefix (𝛄𝛔) in the search space, s. t., g(𝛄) > g(𝛄𝛔) and node 𝛄 needs to be visited
by Algorithm 1 before 𝛄𝛔 is visited.

Algorithm 1 visits all enqueued nodes in order of increasing cost (i. e., QUEUE is a
priority queue), the cost of nodes along a path in the search space is monotonically
increasing (Theorem 5.1), and function augmentVariablesLN,σ,K returns variable
assignments that minimize the cost (Definition 5.6). Therefore, some prefix 𝛄⋅(e, s) ∈
prefix(𝛄𝛔) with g(𝛄 ⋅ (e, s)) < g(𝛄𝛔) is not enqueued and the following needs to
hold:

projCF(𝛄 ⋅ (e, s)) ∉ ctrlSuccessorsLN,MI,𝛔(𝛄) (5.3)
or

g(augmentVariablesLN,σ,K(projCF(𝛄 ⋅ (e, s)))) > g(𝛄 ⋅ (e, s)). (5.4)

Since 𝛄 ⋅ (e, s) ∈ prefix(𝛄𝛔), we have proj P(𝛄 ⋅ (e, s)) ∈ TSN,MI
and proj L(𝛄 ⋅

(e, s)) ∈ prefix(𝛔). Thus, according to Definition 5.2 it follows that 𝛄 ⋅ (e, s) ∈
ZV. Process traces of the original DPN LN are also process traces of the control-
flow copy DPN LN′ (i. e., without variables). This implies that projCF(𝛄 ⋅ (e, s)) ∈
ctrlSuccessorsLN,MI,𝛔(𝛄), which contradicts Equation 5.3.

Thus, Equation 5.4 needs to hold. According Lemma 5.1, the variable assignment
of alignment 𝛄𝛔 can be used to augment the prefix, e. g.,

augmentVariablesLN,σ,K(projCF(𝛄 ⋅ (e, s))) = 𝛄 ⋅ (e, s).

An alignment with minimal cost is returned by augmentVariablesLN,σ,K:

g(augmentVariablesLN,σ,K(projCF(𝛄 ⋅ (e, s)))) ≤ g(𝛄 ⋅ (e, s)),

which contradicts Equation 5.4 and, thus, our assumption that alignment 𝛄𝛔 is not
visited by Algorithm 1. �

5.2.5 Computing an Optimal Variable Assignment

We present how the augmentation function augmentVariablesLN,𝛔,K that is used
in Algorithm 1 can be implemented as an optimization problem. Recall that in De-
finition 4.3, the cost function used for alignments, may assign costs to incorrect
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synchronous moves, i. e., deviations in the variable assignment. The idea is to trans-
form the augmentation with optimal variable values to the following optimization
problem: Search for an variable assignment that fulfills all constraints imposed
by guard expressions of the DPN and minimizes costs associated with deviations
from the values recorded in the log trace.

Mixed Integer Linear Programming

We formulate this optimization problem as an Mixed Integer Linear Programming
(MILP) [Sch86] problem since some of our variables are integers or can be mapped
to integers (e. g., strings, booleans, timestamps) and other variables are non-integer.
Other similar methods might be used to formulate this problem, e. g., constraint
programming, planning, or satisfiability modulo theories. However, we choose
MILP to formulate the augmentation with optimal variable assignments since it is
a well-research problem and efficient open-source (e. g., LpSolve) and commercial
solvers for MILP problems (e. g., Gurobi, and CPLEX) are available.

Definition 5.7 (Mixed Integer Linear Programming (MILP) Problem). Let VAR =
{x1, … , xn} be a set of variables. Let (c1, … , cn) ∈ ℝn be coefficients of the ob-
jective function. Let (b1, … , bm) ∈ ℝm be constants with ∀1≤i≤m(bi ≥ 0). Let
(a11, … , amn) be constants with ∀1≤i≤n∀1≤j≤m(aij ∈ ℝ). We define a MILP mini-
mization (VAR, CSTR, obj ) problem in the following form:

minimize obj = c1x1 + … + cnxn
subject to CSTR = a11x1 + … + a1nxn ≤ b1

⋮ ⋮
am1x1 + … + amnxn ≤ bm

with the additional constraint that for 1 ≤ i ≤ n variable xi is either a real variable
xi ∈ ℝ or an integer variables xi ∈ ZB. The goal is to obtain values for the variables
VAR such that the objective function obj is minimized. ♢

In the remainder of this section, we need to formulate constraints of the form

̂x = 0 ⟺ (a1x1 + … + anxn ≤ b)

with ̂x ∈ VAR and the additional constraint ̂x ∈ {0, 1}, i. e., ̂x takes on value 0 if and
only the constraint can be fulfilled. Such constraint can be encoded by using the
following constraint [BHM77]:

(a1x1 + … + anxn) − B ̂x ≤ b.

with B ∈ ℝ being a sufficiently large number to fulfill the constraint when ̂x = 1. The
introduced variable ̂x serves as indicator of the feasibility of the constraint. Moreover,
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we need to express constraints of the form a1x1 + … + anxn = b. Such a equality
constraint can be transformed to a set of two inequality constraints [BHM77]:

a1x1 + … + anxn ≤ b
−a1x1 − … + anxn ≤ −b.

Building the Optimal Variable Assignment MILP

We show how to build a MILP problem with which we obtain the variable as-
signment for a sequence of alignment moves without variable assignments, i. e.,
a sequence 𝛄C as returned by function ctrlSuccessorsLN,MI,𝛔(𝛄) as defined in Def-
inition 5.5. Our goal is to minimize the cost of deviations between the attribute
assignments of the events and the variable assignments required by the DPN.

For the sake of a simpler presentation of the main algorithm, we assume that
guards are defined in the form of MILP constraints (i. e., a1x1 + … + anxn ≤ b). Later
we show how to deal with any linear guard expression. Moreover, we use helper
cost function κI ∶ V → ℕ that associates non-negative costs to incorrect variable
assignments from the general alignment cost function κ (cf. Definition 4.3). In fact,
for the standard cost function κ1, we obtain κI(v) = 1 for all variables v ∈ V.

Input: Labeled DPN (LN), Sequence of moves (𝛄C), Variable cost function (κI)
Result: Variables (VAR), Constraints (CSTR), Objective function (obj )

1 VAR ← ⋃v∈V(v0)
2 CSTR ← ⋃v∈V(vo = in(v))
3 foreach (ei, si) ∈ 𝛄C s. t. si = (ti, wi) ≠≫ do
4 foreach v ∈ wr(ti) do
5 VAR ← VAR ∪ {vi, v̂i}
6 if ei ≠≫ ∧ν(v) ∈ dom(#(ei) then
7 CSTR ← CSTR ∪ {v̂i ⟺ (vi = #ν(v)(ei))}

8 MAP ∶ V ↛ VAR
9 foreach v ∈ V do

10 MAP ← MAP ⊕ {(v′ ↦ vi)}
11 IDX ← {i′ ∈ {0, … , i − 1} ∣ vi′ ∈ VAR}
12 MAP ← MAP ⊕ {(v ↦ vmax(IDX))}
13 CSTR ← CSTR ∪ {rewrite(gd(ti), MAP)}
14 return (VAR, CSTR, ∑v̂i∈VARS(v̂iκI(v)))

Algorithm 2: Procedure that builds a MILP to obtain an optimal variable assignment

The procedure described in Algorithm 2 is based on the method proposed
in [LA13a]. Its input is a sequence 𝛄C without variable assignments, a DPN LN, and
cost function κI. Its output is a MILP formulation (VAR, CSTR, obj ) of the optimal
variable assignment problem.
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We start by creating variables and constraints for the initial value of each variable
of the DPN (lines 1 and 2). For each alignment move ei, (ti, wi) ∈ 𝛄C that is a model
move or (incorrect) synchronous move (line 3), we add variables and constraints
for the write operations and guard expression.

For each write operation that is prescribed to happen according to function wr
when replaying the control-flow of the process trace on the DPN two variables vi
and v̂i are added (line 5). Variable vi captures to actual variable that is used later in
the constraints. Variable v̂i serves as feasibility indicator of the observed attribute
value, i. e., v̂i takes on value 1 in case the observed attribute value violates a guard
of the DPN, which are transformed to MILP constraints (line 6 and 7).

Then, we add constraints for the guard of the transition gd(ti). We rewrite each
guard with function rewrite s. t.:

• references to prime variable v′ are replaced with the current MILP variable
vi (line 10); and

• references to variables v are replaced with the MILP variable of the previous
write operation or with the initial MILP variable vmax(IDX) (line 12).

Moreover, function rewrite returns ∅ for guards that are identically true. Finally,
the objective function obj sums the cost defined for incorrect variable assignments.

We implement function augmentVariablesLN,𝛔,K by using the variable assignment
obtained from the solution of the MILP problem. Solutions to the MILP problem
minimize the cost associated with deviations between the recorded values in the log
steps of γC and the variable assignment required by the process model. Therefore,
we can use it the resulting variable assignment as a representative of an optimal
variable assignment for the balanced alignment method.

In Algorithm 2, we assumed guards of the DPN to be MILP constraints as defined
by Definition 5.7. However, variables of a DPN may be defined for domains different
from ℤ and ℝ. Also, guard expression may not all be of the form required by
Definition 5.7. In the following two sections, we show how to transform any linear
guard expression and DPN variable in a form suitable for use in Algorithm 2.

Transforming Non-linear and Non-atomic Constraints

There are two problems that need to be solved to transform a linear guard expres-
sion into MILP constraints:

1. guards containing strict inequalities (>, <) and not-equal constraints (≠); and
2. guards containing disjunctions (∨).

Guard expressions using these elements cannot be directly expressed as MILP
constraint in the form introduce in Definition 5.7. Both problems can be solved
using standard transformations [LA13a].

We encode strict inequality constraints of the form

a11x1 + … + a1nxn < b1
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by introducing a sufficiently small ϵ-value:

a11x1 + … + a1nxn − ϵ ≤ b1.

For integer variables (xi ∈ ℤ), we use ϵ = 1, for non-integer variables we need to
choose a value based on the magnitude of values used in the constrain. Not-equal
constraints x ≠ b can be encoded using two strict inequality constraints x > b∧x < b.

Regarding disjunctions, we use binary variables (i. e., integer variables constrained
to {0, 1}) to formulate that at least one out of n constraints needs to hold as described
in [BHM77]. For example, two constraints

a11x1 + … + a1nxn ≤ b1

∨ a21x1 + … + a2nxn ≤ b2

are connected in disjunction by introducing binary variables y1 and y2 and trans-
forming the constraints to

a11x1 + … + a1nxn − B1y1 ≤ b1

a21x1 + … + a2nxn − B2y2 ≤ b2

y1 + y2 ≤ 1.

B1 and B2 need to be chosen sufficiently large such that the constraint is always
fulfilled if the respective binary variable y1 or y2 is 1. In practice, we can choose a
suitable value based on the constants used in guards and the values observed in
the log.9

Transforming Incompatible Domains

Generally, we did not restrict the domain of DPN variables. However, in practice,
we encounter variables of the following basic types, which are defined by the XES
standard for event logs [IEEECIS16]:

• continuous or float (ℝ),
• integer (ℤ),
• boolean ({true, false}),
• time ({1/1/1970 00:00, …}), and
• string ({Green, White, Red, …}).

We show how to transform values of these domains to value in the domains ℤ
or ℝ. Regarding continuous, integer and boolean variables the mapping is straightfor-
ward. Continuous and integer values are directly supported. Boolean values are
often transparently mapped to the domain {0, 1} by the employed MILP library.
We describe the mapping for time values and string literals in the following two
paragraphs.

9Please note that we cannot simply choose Bi to be infinite since this would lead to numerical instabili-
ties due to the use of fixed-precision arithmetic in most MILP solvers.
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String literals. We build a mapping table between string literals and positive inte-
gers (i. e., ℕ0). The mapping table can be obtained since the number of string literals
in the event log and in guard expressions is finite. We implement all comparison
operations using such an integer representation of string literals.

Time values. Converting time values to integer numbers using the UNIX time-
stamp encoding, i. e., the number of milliseconds since 1970, is straightforward.
However, this conversion may result in computations involving numbers of several
magnitudes of difference, e. g., 1483239500 ≤ 1481539500 + 3600000 would be the
computation for a UNIX timestamp encoding of the guard: time′

che ≤ (timeche+1hr).
Constants of several magnitudes difference cause numerical instabilities in MILP
solvers [Mar03], which lead to wrong solutions being returned. We solve this prob-
lem by expressing time constraints relative to the start-time of the process instance
and by using a suitable time unit. For example, in guard time′

che ≤ (timeche + 1hr),
we express the relative time in hours instead of milliseconds.

Example 5.2 (Building the MILP problem for the optimal variable assignment). As-
sume that we want to find the optimal variable assignment for for the sequence
of alignment moves 𝛄8, which was introduced in Figure 5.5. Before augmentation
with variable assignments, we denote the sequence as 𝛄8

C. In fact, the alignment
moves 𝛄8

C are generated by Algorithm 1 as part of its search space, which is
shown in Figure 5.5. Please note that all variable assignments are missing since
𝛄8

C still needs to be augmented with an optimal variable assignment:

𝛄8
C = ⟨(e30, (ttri, ∅)), (e31, (treg, ∅)), (≫, (tτ1

, ∅))⟩.

We apply Algorithm 2 using γ8
C as input. Algorithm 2 builds the following MILP

problem:

minimize d̂ata
0
color + ̂time0

reg (5.5)

subject to data0
color − B1d̂ata

0
color ≤ 1 (5.6)

−data0
color − B1d̂ata

0
color ≤ −1 (5.7)

time0
reg − B2 ̂time0

reg ≤ 15 (5.8)

time0
reg − B2 ̂time0

reg ≤ −15 (5.9)
data0

color − ϵ − B3or1 ≤ 1 (5.10)
−data0

color + ϵ − B3or2 ≤ −1 (5.11)
or1 + or2 ≤ 1. (5.12)

The first alignment move (e30, (ttri, ∅)) is a synchronous move. Therefore, we
need to check for possible variable assignments (Algorithm 2, line 3). Transition



88 5 MULTI-PERSPECTIVE ALIGNMENT

ttri writes one variable datacolor, i. e., wr(ttri) = {datacolor}, for which we add two
MILP variables data1

color and d̂ata
1
color to the set of MILP variables (Algorithm 2,

line 5). Then, we record the value of mapped attribute color (i. e., ν(datacolor) =
color) that was observed in e30 (Algorithm 2, line 6-7). Since e30 recorded the color
White, which we assume to be mapped to the integer 1, we add the constraints
5.6 and 5.7. Moreover, the decision variable d̂ata

0
color is added to the objective

function in 5.5. The coefficient used in the objective function is κI(v) = 1. Since the
guard expression associated with ttri is gd(ttri) = true there are no constraints
that need to be added.

We proceed with the next alignment move (e31, (treg, ∅)). Again, one variable
is written: timereg; thus, the constraints 5.8 and 5.9 are added. The value of the
time attribute of e31 is transformed to the integer 15 because event e31 occurred
15 minutes after start of the trace.

Finally, with the last alignment move (≫, (tτ1
, ∅)), two constraints are added for

a guard expression. The guard datacolor ≠ White is transformed to the constraints
5.10, 5.11, and 5.12. A possible solution to the obtained MILP problem is variable
assignment:

d̂ata
0
color = 0 ̂time0

reg = 0

data0
color = 1 time0

reg= 15.

The observed value 2 (White) for attribute color does not satisfy the guard ex-
pression datacolor ≠ White. Therefore, the MILP solver suggests a different value:
0 (Green). There are multiple optimal solutions, e. g., value 3 (Red) would also
minimize the objective function. However, one of the optimal solutions will be
picked and, thus, the search space is pruned considerably. The resulting align-
ment moves are:

𝛄8 = ⟨(e30, (ttri, (datacolor ↦ Green))),
(e31, (treg, (timereg ↦ 12/12/16 10:45))),

(≫, (tτ1
, ∅))⟩.

In summary, the overall cost is K(γ8) = 1 due to the incorrect attribute value
recorded by event e30.

5.2.6 Computational Complexity

We now discuss the computational complexity of the balanced alignment method
from two angles. First, we show that the worst-case complexity of our method
is double exponential. Second, we show that restricting the input to relaxed data
sound DPN is necessary since the problem of deciding whether an alignment exists
is undecidable for arbitrary DPNs.
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Complexity of Alignments for Relaxed Data Sound DPN

The worst-case complexity of our A∗-based algorithm is exponential in the length of
the path that leads from the initial search-space node to the nearest goal node [DP85].
Applied to the problem of finding an optimal alignment between a relaxed sound
DPN and an log trace, this means that the worst-case complexity is exponential in
the length of the alignment. This is of the same order of magnitude as the log-trace
traces, under two assumptions: (1) on average, each trace event is associated with
one or two moves (e. g., a move in both or a move in log plus a move in model) and
(2) the number of invisible routing transitions in process traces of the DPN that are
required to reach the final marking is negligible in comparison to the number of
transitions representing visible activities.

For each node that is visited, a MILP problem needs to be solved. So, the number
of problems to be solved is exponential in the length of log trace. The worst-case
complexity of solving an MILP problem is exponential in the number of variables
and constraints, which, in our setting, is translated to the number of variables
written by and guards associated to transitions. We conclude that the worst-case
complexity is double exponential in the length of the trace.

Decidability of the General Case

So far, we have required relaxed data sound DPN as input for the balanced align-
ment method. We show that this restriction is necessary since DPN is a turing
complete notation and, thus, the alignment problem for arbitrary DPN is unde-
cidable. This result highlights that DPNs are a powerful notation and that there
are limitations to our balanced alignment technique for arbitrarily complex DPN
specifications.

We use an extended class of Petri nets, so called Inhibitor nets [Mur89], in which
an additional type of arc is introduced: inhibitor arcs. An inhibitor arc connects a
place to a transition and changes the execution semantics as follows. A transition
connected to an inhibitor arc can only fire if the input place with the inhibitor arc
has no token and all other input places have at least one token [Mur89]. Inhibitor
nets are known to be turing complete [Bus02; Min67].

Theorem 5.4 (DPNs are Turing complete). There exists a DPN N = (P, T, F, VP,
dom , in ,wr , gd) with initial marking MI and final marking MF such that N simulates
any turing machine, i. e., DPN are turing complete. ♢

Proof. Figure 5.6 shows how to simulate an inhibitor arc using one variable and
guards in a DPN. For each place p that is connected with an inhibitor arc to a
transition t, we introduce a counter variable Xp that tracks the number of tokens
currently stored in p. Then, we can simulate the zero testing semantics of the
inhibitor arc by assigned the guard Xp = 0 to transition t. The behavior modeled
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p3

p2

p1

C

B

A

E

D

(a) Inhibitor net that specifies priority of
transition D over transition E with an
inhibitor arc from p1 to E. Transition E
can only fire when p1 is not marked.

p3

p2

p1

C

B

A
x′p = xp + 1

E
xp = 0

D
x′p = xp − 1

Xp

(b) DPN modeling the same behavior.

Figure 5.6: Simulation of inhibitor arcs using variables and guards of a DPN

in Figure 5.6 requires the use of inhibitor arcs, i. e., it cannot be expresses with a
standard Petri net. DPNs are as least as expressive as inhibitor net. Thus, DPNs are
turing complete. �

Theorem 5.5 (The alignment problem for arbitrary DPNs is undecidable). Let L
= (E, Σ, #, ℰ) be an event log. Let (N, λ, ν) be any labeled DPN with initial marking
MI and final marking MF. Let LTS = (TSN,MI,MF

, λ, ν) be the labeled trace set in-
duced by the labeled DPN. The alignment problem for DPNs is the following decision
problem: Given any log trace 𝛔 ∈ ℰ, decide whether there is an alignment between
𝛔 and the DPN, i. e., ∃𝛄𝛔 ∈ 𝛄∗

L,LTS. The alignment problem is undecidable. ♢

Proof. Let L be an event log containing the empty trace σ∅ = ⟨⟩. Assume that we
could decide for the empty trace if there is an alignment 𝛄σ∅

∈ 𝛄∗
L,LTS. The projection

of alignment 𝛄σ∅
on the process steps is required to be a process trace of the trace

set LTS. Trace set LTS contains all process traces of the DPN that start in the initial
state and end in one of the final states. Thus, by computing an alignment, we could
decide whether there is, indeed, a firing sequence in the DPN that starts in the
initial state with marking MI and ends in one of the final states with marking MF.
Deciding whether there is such a firing sequence is equivalent to deciding whether
the DPN token-game halts. According to Theorem 5.4, DPNs are turing complete.
Therefore, we could decide the halting problem for turing machines. However,
the halting problem for turing machines is undecidable [Tur37], thus, leading to a
contradiction. �

Whereas the general problem is undecidable for arbitrary DPNs, we would like to
highlight that for practical applications our alignment method is often feasible. It
uses the finite log traces to guide the search for an alignment. Therefore, we assume
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that our method is applied to process models that terminate after a finite number
of steps and that the length of typical process traces is close to the length of the log
traces.

5.2.7 Optimizations

We have shown how to compute balanced alignments between multi-perspective
models and traces of an event log. As discussed, computing a fully balanced align-
ment is undecidable for arbitrary DPNs and a computationally difficult problem
for relaxed data-sound DPN. Therefore, we cannot avoid an exponential worst-case
complexity. Nevertheless, efficiency for the average case that is encountered in
practice is of the utmost importance. We describe two optimizations, which speed
up the computation and limit the number of nodes to be visited:

• we elaborate on the heuristic function used to guide the A∗ search and
• we prune the search space using an equivalence relation for nodes in ZV.

Guiding the SearchWith a Heuristic Function

We use the same heuristic function h that was introduced in [Adr14] for control-
flow only alignments. This heuristic exploits the Petri-net marking equation to
rule out most nodes for which all goal states have become unreachable.10 A formal
introduction of the marking equation and this heuristic is out of scope for this thesis.
We limit ourselves to argue that a heuristic developed for control-flow alignments
is also admissible when adding other perspectives.

First, we show that the cost of an alignment between a log trace and a DPN with
guard expressions and variable assignments is always higher or equal to the cost
of an alignment between the same log trace and a copy of the DPN without guard
expressions and variable assignments.

Lemma 5.2 (Variable, guards, and write operations increase the alignment cost).
Let ZLN,MI,MF,𝛔 = (ZV, ZE) be an alignment search space between log trace σ and LN.
Let Z′

LN′,MI,MF,𝛔 = (Z′
V, Z′

E) be the alignment search space based on the control-flow
copy DPN LN′. Let K be a cost function. The variables, guards, and write operations
added in LN may only increase the alignment cost compared to LN′:

∀𝛄∈ZV
∀𝛄∈Z′

V
(projCF(𝛄) = projCF(𝛄)) ⟹ (Κ(𝛄) ≥ Κ(𝛄))). ♢

Proof. Cost function Κ(𝛄) ∈ ℝ as defined in Definition 4.3 is required to assign
a non-negative cost to any deviation. The only difference between the alignment
moves in 𝛄 and the alignment moves in 𝛄 are the variable assignments. Thus, it
10The marking equation provides a necessary but not sufficient condition for the reachability of the

goal state.
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holds that Κ(projCF(𝛄)) = Κ(projCF(𝛄)), i. e., both alignments have the same cost
for deviations based on the control-flow only. Cost function Κ only adds additional
costs for deviations with respect to other perspectives. Such deviations can only
be caused by incorrect variable assignment operations, for which we require a
non-negative cost. Thus, Κ(𝛄) ≥ Κ(𝛄). �

A heuristic that ignores variable assignments and guards of the DPN might provide
a suboptimal underestimate. Metaphorically speaking, some roads predicted to
have a low remaining path cost might be blocked by guards, which are not taken
into account. However, any path that is predicted to have high costs regarding the
control-flow will have at least the same cost when regarding all perspectives, i. e.,
no shortcuts can be build using variable assignments and guards.

Proposition 5.1 (The heuristic function introduced in [Adr14] is admissible). Let
ZLN,MI,MF,𝛔 = (ZV, ZE) be an alignment search space between log trace σ and LN.
Let K be a cost function. Let g(𝛄) = K(𝛄) + ϵ ∣𝛄∣ be the cost function. Let h be the
heuristic function of [Adr14]. Function h is admissible for the alignment search
space, i. e., it underestimates the required cost to reach any goal node 𝛄𝛔 from any
node 𝛄:

∀𝛄∈ZV
∀𝛄𝛔∈ZG

(𝛄 ∈ prefix(𝛄𝛔)) ⟹ (h(𝛄) ≤ g(𝛄𝛔) − g(𝛄)). ♢

Proof. From [Adr14] we know that the heuristic function h is admissible for control-
flow alignments, i. e., ∀𝛄∈ZB

∀𝛄𝛔∈ZG
if 𝛄 ∈ prefix(𝛄𝛔), then, it follows that

h(𝛄) ≤ g(projCF(𝛄𝛔)) − g(projCF(𝛄))
⇔ h(𝛄) ≤ Κ(projCF(𝛄𝛔)) − Κ(projCF(𝛄)) + ϵ ⋅ (∣𝛄𝛔∣ − ∣𝛄∣). (5.13)

Assume that the heuristic function would not be admissible for a multi-perspective
alignment, i. e.:

g(𝛄𝛔) − g(𝛄) < h(𝛄)
⇔ Κ(𝛄𝛔) − Κ(𝛄) + ϵ ⋅ (∣𝛄𝛔∣ − ∣𝛄∣) < h(𝛄). (5.14)

Let 𝛄𝛔 = 𝛄 ⋅ 𝛄. Since cost function Κ is additive it follows that:

Κ(𝛄𝛔) = Κ(𝛄) + Κ(𝛄)
⇔ Κ(𝛄) = Κ(𝛄𝛔) − Κ(𝛄)

and
Κ(projCF(𝛄𝛔)) = Κ(projCF(𝛄)) + Κ(projCF(𝛄))

⇔ Κ(projCF(𝛄)) = Κ(projCF(𝛄𝛔)) − Κ(projCF(𝛄)).
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Therefore, the heuristic function needs to overestimate the cost of 𝛄 (Equation 5.14):

Κ(𝛄) + ϵ ⋅ ∣𝛄∣ < h(𝛄)

However, we know that the heuristic function underestimates the cost for a control-
flow alignment (Equation 5.13):

Κ(𝛄) + ϵ ⋅ ∣𝛄∣ < h(𝛄) ≤ Κ(projCF(𝛄𝛔)) − Κ(projCF(𝛄)) + ϵ ⋅ (∣𝛄𝛔∣ − ∣𝛄∣)

Since the cost function is additive, we have:

Κ(𝛄) + ϵ ⋅ ∣𝛄∣ < Κ(projCF(𝛄)) + ϵ ⋅ (∣𝛄∣)
⇔ Κ(𝛄) < Κ(projCF(𝛄))

Thus, our assumption in Equation 5.14 contradicts Lemma 5.2, i. e., our cost function
Κ only adds additional costs for deviations with respect to other perspectives. �

Pruning Equivalent States inZV

Algorithm 1 explores the graph ZLN,MI,MF,𝛔 = (ZV, ZE) by conducting an A∗ search
to find an optimal alignment. However, the search graph Z explored by Algorithm 1
is, in fact, a tree. Since search nodes in ZV are sequences of alignment moves and
edges in ZE only add moves, the search never encounters a node that was already
visited. When applied on a search graph, the A∗ algorithm can make use of two
optimizations to reduce the number of explored nodes:

1. maintaining a closed set of visited nodes to prevent nodes equivalent to
already visited nodes to be explored; and

2. checking whether an equivalent node with lower cost is already enqueued
in the queue before adding a new node.

Algorithm 3 is an optimized variant of Algorithm 1 that employs these two opti-
mizations. In comparison to Algorithm 1, we added:

• the closed set CLOSED and use function isClosed ∶ Z′
V → {true, false} to

check whether an equivalent node has already been visited, and

• the function isBetter ∶ (ZV × QUEUE) → {true, false} to keep only nodes
with the lowest cost among all equivalent nodes in the queue.

We can use Algorithm 3 instead of Algorithm 1 to prune away large portions of
the search space. We define an equivalence relation:

isSame ⊆ Z′
V × Z′

V

on states in Z′
V and implement functions isClosed and isBetter as:

isClosed(CLOSED, 𝛄) =
⎧{
⎨{⎩

true if ∃𝛄∈CLOSED((𝛄, projCF(𝛄)) ∈ isSame)
false otherwise,
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Input: Labeled DPN (LN), Initial and final markings (MI, MF), Log trace (𝛔), Cost
function (K)

Result: Balanced alignment (𝛄)
1 𝛄 ← ⟨⟩
2 QUEUE = ⟨⟩
3 CLOSED = ∅
4 while ¬(𝛄 is an alignment) do
5 CLOSED ← CLOSED ∪ {𝛄}
6 foreach 𝛄C in ctrlSuccessorsLN,MI,𝛔(𝛄) s. t. ¬isClosed(CLOSED, 𝛄C) do
7 𝛄D ← augmentVariablesLN,𝛔,K(𝛄C)
8 if 𝛄D ≠ ⊤ then
9 g(𝛄D) ← K(𝛄D) + ϵ ∣𝛄D∣

10 f(𝛄D) ← g(𝛄D) + h(𝛄D)
11 if isBetter(QUEUE, 𝛄D) then
12 enqueue(QUEUE, 𝛄D, f(𝛄D))

13 𝛄 ← pollLowestCost(QUEUE)
14 return 𝛄

Algorithm 3: Optimized procedure that computes a balanced alignment

and

isBetter(QUEUE, 𝛄) =
⎧{{
⎨{{⎩

false if ∃𝛄∈QUEUE(((projCF(𝛄), projCF(𝛄) ∈ isSame

∧ f(𝛄) ≤ f(𝛄))
true otherwise.

In both cases only one of equivalent states in the search space needs to be considered
to obtain an optimal solution. The search space is pruned.

We implement isSame as follows. Any two nodes in the search space are equiva-
lent according to isSame if and only if:

1. the same sequence of events is recorded in their log projections;
2. the same marking is reached in their process projections;
3. the same sequence of guard expressions needs to be fulfilled in their process

projections; and
4. the same sequence of alignment moves that include a process step with write opera-

tions is recorded.
This implementation of isSame leads to a considerable reduction of the search space
that needs to be explored. Often, process models only include guard expressions
and write operations on a few of the transitions. For these models, re-orderings
of moves (e. g., in parallel branches) that are not associated with guards or write
operations do not need to be explored.
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We argue briefly that our implementation of isSame does not influence the op-
timality of the result returned by Algorithm 3. The sequence of events in the log
projection uniquely defines the remaining events that need to be aligned. The mark-
ing uniquely defines the possible continuations in the Petri net underlying the DPN and,
thus, the set of possible firing sequences to reach a final marking when considering
control-flow only. Conditions (1) and (2) were already used in [Adr14] to define
equivalent states for alignments between the control-flow of a process model and
an event log. However, our search space is defined for multi-perspective alignments.
Variable assignments and guard expressions influence the successor nodes of a
node in the search space ZLN,MI,MF,𝛔 of the original DPN LN. Therefore, we also
need to consider the set of possible variable assignment for successor nodes in our
implementatin of isSame .

In Section 5.2.5, we introduced a MILP problem formulation to obtain the optimal
variable assignment. Intuitively, if the same MILP problem needs to be solved for
both nodes, the set of possible variable assignments is the same for both nodes.
As described in Algorithm 2 the MILP problem formulation depends on (a) the
sequence of write operations and (b) the sequence of process transitions that are
associated with guard expressions, which need to be fulfilled. Therefore, we add
conditions (3) and (4) which compare sequence of transitions with associated guard
expressions and the sequence of alignment moves with write operations for both
nodes. Condition (3) ensures that the constraints due to guard expressions are equal
for both nodes. Condition (4) ensures that the same values have been recorded
for variables. Together both conditions guarantee that the same MILP problem
formulation is obtained for nodes deemed equivalent by relation isSame . Thus, we
can use relation isSame to prune the search space as described in Algorithm 3.

5.3 Evaluation

We used both real-life and synthetic data sets to evaluate the usefulness and feasibil-
ity of the balanced approach. In the interest of a clear separation between the more
theoretical contributions of this thesis and their applications to case studies, we
describe the evaluation on real-life data sets separately as part of the presentation
of case studies in Sections 12.2, 13.2 and 15.3.

In the following sections, we focus on the evaluation with controlled, synthetic
examples. We assessed the effectiveness and the efficiency of the method. Regarding
the effectiveness, we compared results returned by the balanced approach with
those returned by the non-balanced one from [LA13a]. Regarding the efficiency,
we show that our implementation can compute the alignment of deviating traces of
considerable length and with large number of deviations in a reasonable amount
of time given the complexity of the problem. Clearly, we cannot expect an efficient
worst-case computation time since the worst case complexity of our method is
exponential.
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(a) The labeled DPN structure of the credit card application process.

Transition Guard expression

τ1 dataver = false
τ2 datadec = true
τ3 datadec = false
taa dataver = true ∧ dataamt > 5000 ∧ 0.1 < (data′

int??dataamt) < 0.15
tsa dataver = true ∧ dataamt ≤ 5000 ∧ 0.15 < (data′

int??dataamt) < 0.2
toc datadec = true ∧ dataver = true
tim datareq ≥ “M”
tia datareq ≤ “L”
trn data′

amt ≤ dataamt

(b) Guards assigned to transitions that are not always enabled (i. e., gd(t) ≠ true).

Figure 5.7: Example credit card application process used to evaluate the balanced alignment.
The model is based on the model presented in [LA13a; Man+16a] and contains a loop,
parallelism, as well as complex guard expressions.
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5.3.1 Datasets and Experimental Setup

As synthetic datasets, we used two simulated process models:

1. the hospital model that was introduced in Figure 3.4 and
2. a synthetic model of a credit card application process based on previous

work [LA13a; Man+16a] as shown in Figure 5.7.

Both models contain several guards and write operations regarding the data, time,
and resource perspective. Moreover, they contain loops, parallelism, and choices in
the control-flow perspective. Therefore, both models are suited as representatives
of typical multi-perspective process models that our method is applicable to.

We generated synthetic event logs using CPN Tools [JKW07]. The resulting logs
allow for various controlled experiments to evaluate the performance of the ap-
proach. In total, we generated three event logs of 5,000 traces for each of the two
processes. The event logs contain traces of varying length, i. e., between 3 and 95
events. Then, we created several test logs with introduced artificial noise. We test
different types of noise by creating test logs for each of the following operations:

• invalidating data assignments with regard to the guards,
• swapping events,
• adding artificial events, and
• removing events.

For both processes and for each type of noise, we create test logs with increasing
levels of noise, i. e., 2%, 5%, and 10% of noise. Introducing x% of noise in a perfectly
fitting log means that we manipulate the event logs by applying the respective
type of noise to x% of the events in each trace. We always invalidate x% of the data
assignments and obtain 9 events logs with 2%, 5%, and 10% of swapped, added,
and removed events respectively for both of the processes.

We used 18 test logs to test the efficiency and effectiveness of our alignment
method. We aligned each of the 18 generated logs to the respective process model.
For all synthetic experiments we employed the standard cost function K1. We re-
peated each performance experiment three times and took the minimum computa-
tion time to eradicate external factors such as garbage collection from distorting the
experiment. All experiments were executed on a standard quad-core laptop with
16 GB of memory. The reported computation times correspond to the execution
of our method on a single computation thread. Then, we validated the following
three statements about our method:

• the computation time of the balanced alignment per trace grows exponential
in the length of traces and the exponential factor is influenced by the level
and type of deviations (Figures 5.8 and 5.9),

• the optimizations to the balanced alignment method in Section 5.2.7 improve
the performance considerably (up to several magnitudes, see Figure 5.10),
and
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• the balanced alignment provides better alignments (i. e. optimal ones) com-
pared to the non-balanced approach described in [LA13a] (Figure 5.11).

5.3.2 Results

We investigated the performance (efficiency) and the effectiveness of the method.

Efficiency

Figures 5.8 and 5.9 illustrate the execution time for alignments between the credit
application and the hospital process example. There are 9 scattered plots: one plot
for each combination of noise level and noise type. Dots represent the median of
the computation time in milliseconds required for the alignment of traces of length
x. The computation times may differ between traces of the same length since the
introduced noise might affect them differently. In some cases more deviations lead
to a more complex alignment problem for the same trace length.

Three series of dots are displayed: green dots refer to the execution time of
the naïve balanced alignment only using the control-flow heuristic for A∗; orange
dots refer to the fully optimized balanced alignment; and purple dots refer to
the non-balanced alignment approach described in [LA13a]. We also tried to run
the experiment without the A∗ heuristic (i. e., h=0 for all nodes), however, the
computation did not finish within a day for one of the combinations of noise type
and noise level. We limited the alignment computation to 30 minutes (dotted line
at 1,800,000 ms) per trace to limit the overall time needed for the experiments.
Moreover, we considered a computation time of more than 30 minutes per trace to
be unreasonable for practical applications. Therefore, for some traces, the reported
computation time represents a lower bound of the real computation time. Except for
a small number of cases (11 traces) the optimized method was able to compute the
alignment within 30 minutes, whereas the naïve method fails to compute alignment
within 30 minutes for most longer traces (141 traces).

Regarding the different types of noise, it appears that removing tasks and swap-
ping tasks results in more difficult alignment problems. This can be explained for
both models by looking at the guard expressions. In fact, the guard of trn (Renegoti-
ate) links the old value of dataamt to its new value: data′

amt ≤ dataamt and the guards
of transitions taa (Advanced Assessment) and tsa (Simple Assessment) connect the
value of the variable dataamt with the value of the variable dataint (cf., Section 5.3).
Moreover, in the hospital process the guard time′

check ≤ timecheck + 1h connects the
values for variable timecheck of events that occurred early in the trace with those that
occurred late in the trace. Thus, when swapping or removing events the written
values do not match the expected values and the balanced alignment often needs
to backtrack to consider all possible explanations for the observed invalid values.

We compared the results of the balanced and the non-balanced alignment, as
well as the results of the naïve and the optimized method. For all methods, the
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execution time grows exponentially in the length of the input traces. However,
the balanced method is computationally more expensive than the non-balanced
method. Whereas the difference for short traces is in the order of one magnitude,
it increases to several orders of magnitudes for longer traces. Moreover, the non-
balanced method fails to compute alignments for some longer traces with 5% and
10% of noise, which highlights the need for the balanced method.

Balanced vs. non-balanced method. The non-balanced alignment can be obtained in
less than 100 milliseconds for most of the traces. Unlike the balanced method pre-
sented here, the non-balanced alignment method proposed in [LA13a] separates
the control-flow alignment from the alignment of the other perspectives (i. e., it
follows a staged approach). Therefore, the non-balanced alignment is several mag-
nitudes faster than the balanced alignment presented in this thesis. However, the
non-balanced alignment method does not guarantee to return an optimal solution
wrt. a cost function defined for all perspectives.

Naïve vs. optimized method. For short traces and for a low level of noise the naïve
balanced alignment method is feasible. However, by employing the optimizations
we are able to compute balanced alignments for long traces and higher levels of
noise about a magnitude faster than with the naïve method for the credit process
and about two magnitudes faster for the hospital process. Thus, the optimizations
enable alignments of long traces with computation times feasible in real-life set-
tings.

Figures 5.10a and 5.10b give a more detailed overview of the computation time
speedup that the optimization in Section 5.2.7 provides for the different combina-
tions of noise level and noise type. For longer log traces, the optimized variant is
around one magnitude times faster than the naïve method in the credit process and
around two magnitudes faster for the hospital process. In some cases the speed-up
is even up to three magnitudes. It seems that the optimizations do not lead to a
speed-up for 5% and 10% of noise and the noise type swap task. However, this is
because we limited the execution time per trace to 30 minutes. In fact, for a lot of
traces the naïve method could not determine an alignment within this time limit.
In some cases the optimized method took longer than the naïve method. We as-
sume that this is due to random garbage collection processes or interference by the
operating system that were not removed by repeating the experiment three times.
For very short cases it may be due to the overhead imposed by checking the state
equivalence as defined in Section 5.2.7.

Effectiveness

An obvious next question is: Are better alignments justified by the increase of computa-
tion time? We excluded the traces whose fitness is 1.0 from this discussion, since
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Figure 5.11: Absolute difference between the fitness determined by the balanced alignment
method (fitnessbalanced) and the non-balanced method (fitnessnon−balanced). Note that the
non-balanced method always returned a lower fitness compared to the balanced method.
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we cannot expect any improvement in the fitness level for these traces. Among
the remaining traces, several alignments that were returned by the non-balanced
method [LA13a] returned as optimal were, in fact, suboptimal. Specifically:

• 24.6% of the alignments returned for the credit process and
• 18.6% of the alignments returned for the hospital process were suboptimal.

The difference between the fitness score returned by the non-balanced method and
the balanced method was on average 0.09 for the credit process and 0.08 for the
hospital process. This seems to be a small error. However, for several traces the
non-balanced alignment was unable to compute an alignment, i. e., for

• 5.0% of the credit application process traces and
• 1.5% of the hospital process trace.

The non-balanced approach cannot not return an alignment when it is impossible
to find a variable assignment for the sequence of transitions returned by the control-
flow alignment. For example, it is impossible to find a variable assignment for the
process trace

⟨(ttri, w1), (tref, w2), (τ1, ∅), (tdia, ∅), (tvis, ∅),
(tdec, w3), (tpre, w4), (torg, ∅), (tdis, ∅)⟩

of the hospital process (cf., the DPN in Figure 3.3). There is no variable assign-
ment for variable datareferral in w3 that fulfills the guards of both transitions torg
(datareferral = Tertiary) and tdis (datareferral = Home). The non-balanced approach
cannot change the sequence of transitions and fails to return an alignment.

Figures 5.11a and 5.11b show the distribution of the improvement in the fitness
score obtained with the balanced method. Here, we only considered those traces for
which the non-balanced approach did return an alignment. Among the improved
alignments for the credit process, the average improvement of the fitness score
is 0.09. The maximum improvement in fitness is 0.42. For the hospital process,
the fitness score of the alignments improved by 0.08 on average. The maximum
improvement was 0.30. Swapping tasks seems to increase the amount of traces
for which the non-balanced approach returns sub-optimal alignments. However,
increasing the noise level does not considerably increase the number of sub-optimal
alignments as returned by the non-balanced approach.

Figures 5.12a and 5.12b show the distribution of the fitness score of traces for
which the non-balanced approach did not return an alignment. For these traces,
the average fitness was 0.76 for the credit process and 0.71 for the hospital process.
The maximum fitness was, in both cases, as high as 0.96. Thus, the non-balanced
approach could not compute an alignment even though alignments with very high
fitness levels of up to 0.96 exist, i. e., some of these log traces deviated very little from
the process traces prescribed by the model. Moreover, even for a low percentage
of added noise (i. e., 2% of added, removed, or swapped events) the non-balanced
approach cannot compute an alignment for some traces.



5.3 EVALUATION 105

5

2% Noise 5% Noise 10% Noise

A
dd

Event
Rem

ove
Task

Sw
ap

Tasks

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0

50

100

150

0

50

100

150

0

50

100

150

Fitness level measured by the balanced method

Fr
eq

ue
nc

y

(a) Histograms of the fitness for the credit process

2% Noise 5% Noise 10% Noise

A
dd

Event
Rem

ove
Task

Sw
ap

Tasks

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0

50

100

150

0

50

100

150

0

50

100

150

Fitness level measured by the balanced approach

Fr
eq

ue
nc

y

(b) Histograms of the fitness for the hospital process

Figure 5.12: Fitness level of traces determined by the balanced alignment method for which
the non-balanced method [LA13a] could not compute an alignment.
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5.4 RelatedWork

We first discuss related work on conformance checking that abstract from data-flow,
resource constraints, and time constraints. Afterwards, we discuss related work
that takes multiple perspectives into account.

5.4.1 Control-flow Conformance Checking

One of the earlier works that considers the problem of process conformance check-
ing using event data is [CW99]. In [CW98a], the log is considered as a stream of
events, which is matched to a model that is also considered as a stream of events. In
contrast to our approach, no guarantees are made about the optimality of the result.
In [BKR12] the conformance checking problem is tackled by defining the process as
a Communicating Sequential Process (CSP) and applying a model checker to find
counter examples. However, the method is limited to process models exhibiting
finite behavior. In [Wei+11] and [RVA08], techniques are presented that compare
an abstraction of a process model with a log. In both cases, the process model is
required to exhibit finite behavior. Furthermore, no alignment is provided. Instead,
only a number that quantifies the conformance is returned.

Token-based replay techniques [MAW08; MWA07; RA08; WAA06] can handle
infinite behavior but need to resort to heuristics to deal with silent/duplicate activ-
ities. In some cases, the use of heuristics may lead to false negatives (i. e., perfectly
fitting process executions are evaluated as non-fitting executions), as shown in
[ADA11b]. Moreover, the user cannot set the severity of different deviations, i. e.,
non-conformance is measured in terms of missing and remaining tokens.

Efficient algorithms also exist to perform sequence alignments (e. g., the algo-
rithms of Needleman-Wunsch [NW70] and Smith-Waterman [SW81]). Similarly,
in process mining, Bose et al. [JA12] have proposed techniques to efficiently align
pairs of log traces. Unfortunately, these approaches cannot be applied to find an
alignment between a log trace and a process model. In our setting, the process
trace that is to be aligned with the log trace is not know a priori; hence, a process
trace minimizing the severity of the deviations needs to be chosen. Moreover, se-
quence and trace alignments only focus on the activity names ignoring the other
perspectives.

To overcome the limitations of earlier approaches, such as no guarantees for
correctness and the inability to handle silent/duplicate activities, alignment-based
techniques were initially proposed by Adriansyah et al. [AAD12; ADA11b; Adr14].
These are tailored towards checking conformance between the control flow of a
procedural process model and log traces. The A∗ algorithm together with a heuristic
based on the Petri net marking equation has been proposed as an efficient solution
to the problem [Adr14]. Indeed, our definition of a multi-perspective alignment is
based on this seminal work. Further improvements to the control-flow alignment
method have been proposed, e. g.:
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• decomposing the problem in smaller problems [MCA14];
• translating alignment problems to constraint programming problems [Lóp+16]

or planning problems [LM17] and use off-the-shelf software to solve them;
• solving a series of Integer Linear Programming (ILP) problems that approxi-

mate the A∗ search [TC16];
• assuming a partially-ordered sequence as input [LFA15]; and
• using attribute data to construct a likely cost function [ALZ15].

Moreover, the alignment concept has also been transferred to declarative languages
such as Declare [De +16; LMA12] and been applied directly to models in the BPMN
notation [Mol+14]. Recently, there has been work on lifting the alignment between
process models and event logs to a behavioral level rather than as an alignment be-
tween sequences [Gar+17]. Event structures are used as intermediate representation
of both event log and process model. Then, behavioral differences are verbalized as
natural language statements. One problem with such an approach is that it relies
on a concurrency oracle to determine the event structure of the event log.

However, none of these extensions addresses the problem of aligning a multi-
perspective process model to an event log. Unfortunately, the alignment technique
proposed in [Adr14] and [Gar+17] cannot be straightforwardly extended to account
for other perspectives such as time, resources, and data.

5.4.2 Multi-perspective Conformance Checking

Even though the major share of conformance checking work has been devoted to
the control-flow perspective, there is work considering conformance of processes
on multiple perspectives.

Rule-based conformance. There is related work in the area of compliance checking of
business processes with regard to norms and regulations [ADW08; GMS06; HWG12;
LMX07]. In contrast to our work, all these approaches focus on forward compli-
ance checking, i. e., to verify whether a process model can exhibit non-compliant
behavior by analyzing the model only, thereby ignoring event data. Our approach
also notably advances beyond existing techniques for multi-perspective backward
compliance checking [BLP12; Car13; CVB13b; Ly+11; Ram17]. All these compliance
checking techniques verify rules on process behavior rule-by-rule and in isolation
from the other constraints. Thus, such techniques only provide explanations for
local compliance violations and do not provide a global explanation of deviating
behavior based on a single process model for the overall process. These compliance
techniques often use temporal logic representations such as LTL, for which the
conformance can be verified efficiently. However, the overall conformance of the
event log with regard to a given process model is not determined.
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Model-based conformance. Other research approaches focus on verifying the compli-
ance of process models with respect to declarative process models that are defined
by a set of formulas, which are mostly intended to encode business rules of which
one wants to verify the compliance (e. g., [BB14; BLP12; BMS16; CVB13b; DMM14;
GGP15; Ly+11; Mon10]). For example, the work of Caron et al. [Car13; CVB13a;
CVB13b] provides a comprehensive view on rule-based, multi-perspective com-
pliance checking in the area of auditing and risk management. A log trace can be
represented by a set of formulas (e. g., an event for activity A is followed by an
event for activity B) and, hence, its compliance can be checked by applying exist-
ing techniques. Unfortunately, the diagnostics are limited to highlighting which
formulas are not satisfied. To our knowledge, the same limitation is also shared by
approaches that use alternative languages to handle verification with data vari-
ables in processes (e. g. [Alb+04]), as well as by techniques to debug the execution
of distributed systems (e. g. [Rey+06; Xu+09]). The work by Borrego et al. [BB14]
does provide some diagnostics on violated rules for data-aware declarative process
models by using constraint programming. In [BB14] the minimum set of rules in
the model that need to be relaxed in order satisfy all formulas is determined using
constraint programming. However, the rules are limited to binary relationships
between activities and violations in the event log, e. g., out of order events are not
considered. Cook et al. [CHM01] extend their control-flow based event matching
method [CW98a] to deal with timed models. However, the method does not find a
globally optimal matching. Senderovich et al. [Sen+16a] consider the conformance
between the execution of a stochastic process and a schedule. Here, the control-flow
of the schedule is assumed to be conforming to the event log. However, we aim to
pinpoint where in the process deviations occur, such as the case that an activity has
not been executed or has written a wrong value for a variable. It is far from easy to
derive the same insights on the basis of not-satisfied formulas. This is due to the
fact that the same log trace can be repaired in multiple ways to satisfy one formula.
When multiple, unsatisfied formulas come in to play, we would be interested in
finding the least expensive changes that are needed to ensure all formulas are sat-
isfied. In fact, this is again the problem of finding the least expensive solution in
a certain search space, which is exactly what our application of the A∗ algorithm
aims to be.

Direct application of A∗. In previous work [LAD12], de Leoni et al. have shown
that, indeed, if the domains of all variables are finite, a multi-perspective alignment
problem can be translated into the classical alignment problem. However, the
assumption of finite domains for any variable is too restrictive and, hence, the
practical relevance would be compromised. For example, guards could not be
defined over variables with the domain of real numbers. If the domain of any
variables is infinite, there are infinite successors to a given search space node,
i. e., there are infinite alignments that can be obtained by adding an alignment
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move. Therefore, the A∗ algorithm is not directly applicable because it requires the
number of successors of a search space node to be finite. Our alignment method
uses a technique that limits the number of successors to a finite number based on
solving MILP problems.

Non-balanced approach. The balanced alignment method is significantly different
from the approach proposed in [LA13a]. This approach performs the alignment
computation in two steps. For each trace, a control-flow alignment is built leverag-
ing work [Adr14]; then, the alignment is augmented with the write operations by
solving a MILP problem. This approach is certainly faster since the A∗ algorithm
only considers the control flow and one MILP problem needs to be solved in total.
Unfortunately, in certain situations, the alignment is not optimal and, thus, can
even return explanations of deviations that are unlikely from a domain viewpoint.
By first considering only the control flow, this approach cannot balance the costs
related to data and control-flow and, therefore, might return such wrong explana-
tions as shown in Section 5.3. The technique proposed in our work is guaranteed
to return optimal solutions and, hence, more likely explanations of diagnosed de-
viations. This is due to the fact that the different perspectives are considered all
together rather than one-by-one.

5.5 Conclusion

In recent years, many techniques have been proposed to evaluate a model’s confor-
mance with respect to given logs. As mentioned in Section 4.2, these techniques
can only evaluate the conformance with respect to control-flow considerations. The
techniques are unable to check, e. g., the correctness of routing decisions, activities
performed by unqualified resources, and activities that happen outside the correct
time frame.

5.5.1 Contribution

We present a method that computes an optimal, multi-perspective, balanced align-
ment. The computed alignment relates the behavior modeled in a multi-perspective
process model with the behavior observed in an event log. The method balances de-
viations on the different process perspectives and provides an optimal explanation
for the observed behavior in terms of an execution trace of the multi-perspective
process model.

The main improvement over previous work presented in [LA13a] is that our
approach allows to obtain an optimal solution for cost functions that cover all
perspectives, thus, it is possible to give user-defined weight to the different per-
spectives. This allows us to express statements such as “Skipping activity Check is
more severe than executing activity Check too late” and “Executing activity Decide
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by a different doctor than activity Visit is less severe than sending patients with
the triage color Red to their home”. The method in [LA13a] return alignments that
are not optimal in situations, in which control-flow violations are assigned a lower
cost than violations in the data perspective. As a consequence, the explanation of
the deviations may be unlikely or, even, wrong from a business viewpoint.

We tested the approach on several synthetic event logs to evaluate how the
approach scales with traces of increasing length. Clearly, we cannot expect our
method to be efficient in all cases since the worst case complexity of our method
is exponential. Still, the experiments show that solutions for process models and
event logs with real-life complexity can be found in a reasonable amount of time.

The presented balanced alignment method is fully implemented as plug-in Confor-
mance Checking of DPN in the DataAwareReplayer package the open-source process
mining framework ProM 6.7. The plug-in takes as input a process model in the
form of a DPN and an event log in the XES format [IEEECIS16]. It computes op-
timal balanced alignments for the traces of the event log. The MILP problems
are solved through the open-source library lpSolve, which is based on the revised
simplex method combined with a branch-and-bound method for the integers.11

However, we use a standardized interface and, hence, it is easy to plug in other
solvers like, e. g., Gurobi or CPLEX. We also tested the method with the commercial
solver Gurobi. Finally, the Multi-perspective Process Explorer (MPE) tool, which
we described in Section 11.2, is based on the balanced alignment method.

5.5.2 Limitations

We acknowledge that there are some limitations to our balanced alignment method.

• The flexibility of our balanced alignment method comes at a increased compu-
tational complexity of the alignment problem since the variable assignment
is part of the search space. Compared to the non-balanced method [LA13a],
we may need to solve a exponential number of MILP problems. We try to
accommodate this increased complexity by several optimizations that are
presented in Section 5.2.7.

• Defining a cost function for all perspectives may be difficult due to the com-
plex interactions between the perspectives.

• Our method only returns one of several possible optimal alignments. Some-
times, there are multiple possible explanations with the same cost. In some
situations it might be desirable to find all optimal alignments. Even though
all optimal alignments are associated with the same cost, one of them might
provide a better explanation from a domain viewpoint than another one.

11http://lpsolve.sourceforge.net

http://lpsolve.sourceforge.net
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• The applicability of our method relies on existing multi-perspective process
model in which rules and regulations have been integrated. Such an integra-
tion of rules into one single process model can be challenging.

5.5.3 FutureWork

There are several directions for interesting future work.

• It may be worth to explore whether other formulations of the search problem,
e. g., using constraint programming or planning techniques, would lead to
improvements to the computation time in practical cases. Some improve-
ments have been reported when using constraint programming [Lóp+16] or
planning [LM17] to solve the control-flow alignment problem.

• Decomposition methods based on the concept of valid decompositions [Aal13]
can be used to improve the performance of our multi-perspective confor-
mance checking approach. An initial proposal for a valid decomposition
of DPNs was made by de Leoni et al. in [Leo+14a]. The efficiency of these
decomposition could be improved.

• Sometimes an optimal alignment is not required. An initial good enough ex-
planation of the deviations between the observed events and the process
model is sufficient to guide the search for conformance problems. Methods
to quickly obtaining an approximate alignment with quality guarantees are
needed. Some initial work on obtaining approximate control-flow alignments
has been done in [Don+17; TC16], which might be extendable towards multi-
perspective alignments. However, it is difficult to overcome the inherent
complexity of the reachability problem, which needs to be solved in order
to guarantee that the process projection of the alignment is a valid process
trace in the model.

• Our method, as all other alignment methods, aligns log traces in isolation.
In several scenarios, e.g. in process security checking, the conformance of a
case depends on the behavior observed in other cases that are being executed.
Aligning traces based on the whole log, i. e. a log-alignment, would not only
compute an optimal alignment based on intra-case constraints, but a globally
optimal alignment that considers inter-case constraints.

• Capturing the time perspective in constraint requires to encode the execu-
tion time of activities in extra variables and define guard expressions with
complex calculations (cf., the constraint regarding the Check transition in
Figure 3.3). Since time is monotonically increasing within a process instance,
it would be possible to pre-compute some of the values in event attributes
and simplify the guard expressions. An initial step towards this has been
done in [Bal16].
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6 Multi-perspective Precision

For the primary use cases of BPM, the discovered process model needs to adequately
reflect the real behavior of the process. An obvious question is then: How does one
know if a model is adequate? As discussed in Chapter 4, the quality of a process
model can be measured along several quality dimensions. Clearly, a process model
should be able to explain the behavior of the process using the process model: The
model should recall the observed behavior. In other words, using process-mining
terminology, the model should fit [Aal16] the real behavior observed in the event
log. However, the model should also be precise [MC10]: It should not allow for
more behavior than what was observed in the event log because the extra behavior
would not have empirical support. Any extra behavior allowed by the model can
be considered unlikely given the observed behavior.

Model Log

Process (System)

Ⓐ

Ⓑ
ⒸⒺ

Ⓖ

Ⓕ Ⓓ

Figure 6.1: Venn diagram illustrating the precision measure [BDA14].

We can only observe the system behind the process through the event log. There-
fore, the precision of a model is not an absolute value but, not different from fitness,
it is relative to an event log (cf., Figure 6.1). In other words, the precision of a
process model depends on what has been observed. We want to measure how
much unobserved behavior is allowed by the process model. A process model is
considered to be precise if the area Ⓔ + Ⓕ in Figure 6.1 is small in comparison
to the overall behavior allowed by the model (Ⓐ + Ⓑ + Ⓔ + Ⓕ). Note that for this
definition of precision the original behavior of the process (system) is irrelevant. In
fact, the boundary between area Ⓐ and Ⓑ as well as between Ⓔ and Ⓕ is generally
unknown. Attempts to estimate the behavior of the original process (system) are
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made to quantify the generalization dimension. However, as already motivated in
Section 11.1.2, we do not consider the generalization dimension in this thesis.

Multiple methods to measure the precision of a process model based on event
logs have been proposed in the literature [Adr+15; Bro+14; Gre+06; MC12; MWA07;
RA08]. However, these methods can only be used to measure precision of models
that do not encompass data-, resource, and time-related aspects. This is a serious
limitation, since these aspects play an important role in real business processes.
Ignoring those aspects hampers the applicability of the existing precision measures
in practice: the extra constraints may exclude certain behavior and increase the pre-
cision of the model. Existing approaches are often unaware of multiple perspectives
and, thus, tend to underestimate the precision of models.

6.1 Motivation for a Multi-perspective Precision Measure

We wish to illustrate the problem of measuring precision when ignoring perspec-
tives beyond control flow. Let us consider a fragment of a credit application process
that generated the event log Lc shown in Table 6.1. The event log contains six traces
𝛔c1, … , 𝛔c6 each of them containing four events. Two attributes are recorded: re-
source, the name of the person executing some of the activity and loan, the amount
of the credit that is requested. The amount of the credit loan ranges from 750 to
5000 and each case is processed in a slightly different manner.

Figure 6.2 (N1) and Figure 6.3 (N2) show DPN models that describe the entire
behavior of the process as it was recorded in Lc. Both the models are perfectly fitting
with respect to the event log Lc. Moreover, when disregarding the data perspective
model N1 can be seen as a precise representation of the observed behavior.

The difference between models N1 and N2 is that the latter specifies additional
rules: Depending on the requested loan amount either activity Simple Check or
activity Extensive Check needs to be executed. For certain loan amounts, between
1,000 and 2,000, the decision between Simple Check (dataloan < 2, 000) or Exten-
sive Check (dataloan > 1, 000) is left to the process worker. Moreover, in N2, a
separation-of-duty constraint is implemented between activities Call Customer and
Handle Request: These two activities must be performed by different resources (i. e.
resreq ≠ res′

req). Intuitively, these rules based on process data make the process
model N2 more precise than N1: Their presence provides additional constraints
that reduce the amount of allowed behavior. For example, model N1 would allow
to execute Simple Check for any amount, but Simple Check is only considered for
an amount smaller than 2,000 in the event log. The major limitation of all existing
approaches [Adr+15; Bro+14; Gre+06; MC12; MWA07; RA08] is that they would
return the same precision score for both models.

The main contribution of this chapter is a method that generalizes the precision
measure proposed in [AAD12; Adr+15] to incorporate additional rules relating to
multiple perspectives. More precisely, it supports multi-perspective rules that can
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Table 6.1: Six traces of the event log Lc recorded by the example credit application process.

(a) Trace 𝛔c1

id activity resource loan

ec10 Handle Re-
quest

Rory 750

ec11 Simple Check
ec12 Call Customer Amy
ec13 Decide

(b) Trace 𝛔c2

id activity resource loan

ec20 Handle Re-
quest

Rory 750

ec21 Call Customer Amy
ec22 Simple Check
ec23 Decide

(c) Trace 𝛔c3

id activity resource loan

ec30 Handle Re-
quest

Rory 1250

ec31 Simple Check
ec32 Call Customer Amy
ec33 Decide

(d) Trace 𝛔c4

id activity resource loan

ec40 Handle Re-
quest

Rory 1500

ec41 Simple Check
ec42 Call Customer Amy
ec43 Decide

(e) Trace 𝛔c5

id activity resource loan

ec50 Handle Re-
quest

Rory 1500

ec51 Extensive
Check

ec52 Call Customer Amy
ec53 Decide

(f) Trace 𝛔c5

id activity resource loan

ec60 Handle Re-
quest

Rory 5000

ec61 Extensive
Check

ec62 Call Customer Amy
ec63 Decide

src snkp1 p2

p3

p4

p5

p6

τ1 τ2thr

Handle
Request

tsc

Simple Check

tex

Extensive
Check

tcc

Call Customer td

Decide

dataloan

loan

resreq

resource

Figure 6.2: Imprecise DPN model N1 of the credit application process.
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src snkp1 p2

p3

p4

p5

p6

τ1 τ2thr

Handle
Request

tsc

Simple Check

tec

Extensive
Check

tcc

Call Customer td

Decide

dataloan

loan

resreq

resource

Transition Guard expression

tec dataloan > 1, 000
tsc dataloan < 2, 000
tcc resreq ≠ res′

req

Figure 6.3: Precise DPN model N2 of the credit application process that uses guards.

be encoded as constraints over data attributes and directly influence the execution
of the process. The approach in [Adr+15] returns, for both models, the same
precision score of 0.913, because it ignores the constraints of duty separation as
well as those at decision points.

By contrast, our approach, when applied to the shown process model and event
log, returns a lower precision score 0.757 for process model M1 and a higher preci-
sion score 0.848 for the process model M2. Thus, the precision added by specifying
data-driven rules for choices in process models is reflected in our measure. It fulfills
the intuitiveness requirement [RA08]. Note that the values of the scores returned
by our approach should not be compared directly to the scores returned by the
approach in [Adr+15]. We compute the precision in a new, more generic manner
that acknowledges the precision added by those rules and penalizes their absence.
Therefore, both process models achieve lower precision scores. However, their
relative ranking reflects the difference in precision. Moreover, the relative rank-
ing between process models without multi-perspective rules remains the same as
returned by the approach in [Adr+15].

6.2 Multi-perspective Precision Measure

We present our precision measure for multi-perspective process models. A large
part of the work presented in this chapter was published in [Man+16d]. Before
describing our method, we clarify the required input. As outlined in Figure 6.4, the
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trace set of a
process model

perfectly fitting
event log

[0,1]

precision score

relevant variables

conformance

Figure 6.4: Overview of the proposed multi-perspective precision measure.

precision measure requires the trace set of a process model, an event log, and a set
of attributes relevant to the precision measurement as input.

6.2.1 Assumptions on the Input

For the sake of a simpler presentation of our multi-perspective precision measure,
we assume that the event log perfectly fits the process model, i. e., the fitness score
defined in Section 4.4 returns a fitness score of 1.0 for the event log and the process
model. A perfect fitness perfect fitness implies:

• that the control-flow is perfectly matching;
• that the names of log attributes and their values observed in the event log

are matched with the ones in the process model; and
• that the event log contains events for unobservable routing activities (i. e.,

invisible transitions).

This does not limit the applicability of the approach since for any event log that
does not meet these requirements, we can transform the log to the closest event log
matching the requirements. For example, by using alignment-based techniques for
multi-perspective process models as presented in Section 5.2. Using an alignment,
we squeeze any non-compliant behavior present in the event log into the closest
compliant behavior defined by the model. We add events for required unobservable
activities, remove uncompliant events, and modify attribute values such that they
fit the process model. Thus, we separate the fitness measurement from the precision
measurement. Therefore, from now on, we assume that any event log has been
preprocessed in such way.
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6.2.2 Precision Measure

The precision of a process model in relation to an event log must take into account the
extra behavior allowed by the model that is not seen in the event log. The precision of
a process model is computed with respect to an event log that records executions of
such a process. It is the ratio between the amount of observed behavior as recorded
in the event log that is also described by the process model Ⓐ + Ⓑ and the overall
possible behavior as allowed by the process model Ⓐ+Ⓑ+Ⓔ+Ⓕ. All behavior that
is allowed by the model yet never observed in the log makes a model less precise,
i. e., we want to measure the size of the area Ⓔ + Ⓕ in Figure 6.1.

To measure the amount of behavior that is allowed by the model yet never
observed, we need a method to compare the possible behavior of the process with
the observed behavior. Comparing the entire possible behavior of the process with
the complete observed behavior in the event log is not possible, since we cannot
assume that the, possibly, infinite modeled behavior can be observed in a finite number
of traces. Several methods to approximate the preciseness of a process model with
regard to an event log have been proposed [MC12; MWA07; RA08]. For our work,
we adopt the idea proposed by Munoz-Gama et al. in [MC12]: only the unobserved
behavior that escapes from visited process states is considered.

Process State

We generalize this idea towards multiple process perspectives. Therefore, we in-
troduce the concept of a process state. We are only interested in process states that
have been visited during the process execution that was recorded in the event log.
As proposed for the control-flow perspective in [Adr+15], we use alignments to
establish which part of the model has been used during the process execution.

We define a function that returns the state of the process that is reached before an event
occurred. Given a log trace σ ∈ ℰ, we compute an optimal alignment and define
function stateLTS,L(e) such that it returns the prefix of process transitions of the
process projection that is obtained just before the alignment move that contains
event e. Moreover, we include the latest variable assignment in our notion of state.
The variable values capture the current state of the other process perspectives (i. e.,
resources, time, and data).

Definition 6.1 (Prefix-based process state). Let VP be a set of process variables
with domain dom . Let LTS = (TS, λ, ν) be a labeled trace set. Let L = (E, Σ, #, ℰ)
be a perfectly fitting event log. Let 𝛔 = ⟨e1, … , ei, … , en⟩ be a log trace. Given an
optimal alignment 𝛄𝛔 ∈ Γ𝛔

L,LTS, for each ei ∈ 𝛔 function stateLTS,L(ei) ∈ T∗ × 𝒰P
dom
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is defined as follows:

stateLTS,L(ei) =
⎧{
⎨{⎩

(⟨⟩, ∅) if i = 1
(⟨t1, … , tk⟩, w) otherwise

where
⟨(e1, s1), … , (ek, sk), (ei, sk+1), … , (en, sn)⟩ = 𝛄𝛔

∧ proj P(⟨(e1, s1), … , (ek, sk)⟩) = ⟨(t1, w1), … , (tk, wk)⟩
∧ proj L(⟨(e1, s1), … , (ek, sk)⟩) = ⟨e1, … , ei−1⟩

∧ w1 ⊕ … ⊕ wk = w. ♢

Thus, we can exactly describe the process state based on an event of the event log.
Function stateLTS,L is well-defined since only one optimal alignment is returned by
the alignment method, e. g., Algorithm 1 can be implemented to deterministically
return only one of the possible optimal alignments.

Several other state concepts are possible. There are many choices available and
the choice of the state concept determines what constitutes precise and imprecise
behavior. For example, we could use the multiset (or set) of activities that have
been executed before event e was aligned (denoted as unordered alignment automa-
ton by [Adr+15]). Moreover, we could also use the current marking and variable
assignment of a DPN as state concept.

In this thesis, we only use the just introduced prefix-based state function. Using
the prefix constitutes a strict notion of precision, e. g., for a process model with
activities in two parallel branches all possible permutations of these activities
need to have been observed to consider the model as precise. Other notions of
process state could also be used together with our precision measure. Generally,
we assume that the state notion should not be more coarse-grained than the real
process state, e. g., using only the current marking of a DPN as the process state
without considering the variable assignment would ignore the precision added by
rules in the data perspective of the model.

Possible and Observed Behavior

The precision of a process model in relation to an event log must take into account
the extra behavior allowed by the model that is not seen in the event log. We
compute the precision of a process model with respect to an event log that records
executions of such a process. It is the ratio between the amount of observed behavior
as recorded in the log and the amount of possible behavior as allowed by the model.
All behavior that is allowed by the model yet never observed in the log makes a model
less precise.

More precisely, given an event log and a process model, we define the possible
behavior that is possible in a state with respect to a set of process variables VPR ⊆ VP
and a particular event e ∈ E. We define the possible behavior based on all the
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possible combinations of process transitions t ∈ T and the values of the considered
variables VPR that can be executed in the process state prior to the occurrence of
e. We allow to configure the considered variables VPR depending on the use case.
Often not all of them are relevant to measure precision.

Definition 6.2 (Possible Behavior). Let LTS = (TS, λ, ν) be a labeled trace set. Let
L = (E, Σ, #, ℰ) be a perfectly fitting event log. Let stateLTS,L be a state function.
Given a set of process variables VPR ⊆ VP with domain dom , the possible behavior
with respect to the variables VPR that is allowed by the trace set LTS in the state
before event e occurred can be represented as function posTM,L(e, VPR) ∈ T ×
𝒰PR
dom . Function posTS,L returns the cartesian product of process transitions and variable

assignments to variables VPR that are possible according to LTS when being in the state
before event e ∈ E occurred, i. e.,:

posLTS,L(e, VPR) = {(tPR, wPR) ∈ T × 𝒰PR
dom ∣ ∃𝛔∈TS∃⟨(t1,w1),…,(t,w)⟩∈PS∗

(⟨(t1, w1), … , (tn, wn)⟩ ∈ prefix(𝛔)
∧ (⟨t1, … , tn⟩, w1 ⊕ … ⊕ wn) = stateLTS,L(e) ∧ tn = tPR

∧ ∀v∈VPR
(wn(v) = wPR(v)))}. ♢

The definition above is kept intentionally generic concerning the choice of variables
VPR because we aim to measure the precision from different perspectives, which
will be more extensively discussed in the following sections when we present two
concrete multi-perspective precision measures. In a similar way, we define the
observed behavior prior to the occurrence of any event e ∈ E as all the combinations
of process transitions and values of the considered variables VPR that have been
aligned to some event that occurred in the same state as prior to the occurrence of
e.

Definition 6.3 (Observed Behavior). Let LTS = (TS, λ, ν) be a labeled trace set.
Let L = (E, Σ, #, ℰ) be an event log. Let stateLTS,L be a state function. Given a set of
process variables VPR ⊆ VP with domain dom , we consider the observed behavior
with respect to the variables VPR that has been recorded according to the alignments
between traces 𝛔 ∈ ℰ and the labeled trace set LTS. The set of observed behavior
can be represented as function obsTS,L(e, VPR) ∈ T × 𝒰PR

dom . Function obsTS,L returns
the cartesian product of process transitions and assignments to variables VPR that have
been observed in the event log when being in the state before event e ∈ E occurred,
i. e.:

obsLTS,L(e, VPR) = {(t, w) ∈ (T × 𝒰PR
dom) ∣ ∃e∈E(stateLTS,L(e) = stateLTS,L(e)

∧ #activity(e) = λ(m)

∧ ∀v∈VPR
(#(ν(v))(e) = w(v)))}. ♢
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PrecisionMeasure

Using the definitions of possible and observed behavior in the context of an event,
we define the precision of a trace set LTS according to variables VPR ⊆ VP and an
event log L as follows.

Definition 6.4 (Multi-perspective precision wrt. variables). Let LTS = (TS, λ, ν)
be a labeled trace set. Let L = (E, Σ, #, ℰ) be a perfectly fitting event log. Let VPR ⊆ VP
be a set of process variables. The precision of LTS with regard to L for the variables
VPR is a function precision(LTS, L, VPR) ∈ [0, 1]:

precision(LTS, L, VPR) =
∑e∈E ∣obsLTS,L(e, VPR)∣

∑e∈E ∣posLTS,L(e, VPR)∣
. ♢

Note that we do not require the trace set trace set to be finite. We only consider the
trace-set states that are visited by the recorded events e ∈ E. Since the number of
events is finite, the number of considered process states is also finite. Furthermore,
precision scores are always between 0 and 1 because for each event e ∈ E, all there is
always at least as much possible behavior as observed behavior: ∣obsLTS,L(e, VPR)∣ ≤
∣posLTS,L(e, VPR)∣. This follows from our assumption made in Section 6.2.1. Clearly,
all observed behavior needs to be possible according to the trace set for a perfectly
fitting event log.

As discussed, most attention in the literature has been paid to computing the
precision on the basis of activities that are enabled according to the model but
never happened. This type of precision can be calculated as a special case of the
precision measure defined in Definition 6.4 when setting VPR = ∅, i. e., we consider
only the possible process transitions as escaping edges and disregard the possible
variable assignments. In the following, we will refer to this specific case as activity
precision. Activity precision is concerned only with the possible behavior in terms
of activities.

6.2.3 Activity-precision Measure

We present a specific application of the general precision measure by defining the
multi-perspective activity precision of a process model, and proceed to show that
our definition is intuitive by discussing a series of illustrative examples.

Definition 6.5 (Activity-precision measure). Let LTS = (TS, λ, ν) be a labeled trace
set. Let L = (E, Σ, #, ℰ) be a perfectly fitting event log. The activity precision of LTS
with regard to L is a function precisionact(LTS, L) ∈ [0, 1]:

precisionact(LTS, L) = precision(LTS, L, ∅). ♢
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The multi-perspective activity precision measure focuses on the ordering of activ-
ities, i. e., the control-flow. However, the effect of multi-perspective rules on the
possible behavior is taken into account when calculating precision.

We proceed to show that our definition is intuitive by discussing a series of
illustrative examples based on the event log of the credit application process and a
collection of different process models N1, N2, N3, and N4. N1 and N2 are the process
models introduced in Figure 6.2 and Figure 6.3. N3 and N4 are process models
that represent extreme cases, which we will introduce later.

With abuse of notation, we assume that any DPN model Ni also refers to its
trace-set representation. We obtain the following sets of observed and possible
behavior for the events listed in Table 6.1 and the initial, imprecise model N1:

posN1,Lc
(ec10, ∅) = {(thr, ∅)}, posN1,Lc

(ec11, ∅) = {(tsc, ∅), (tec, ∅), (tcc, ∅)},

posN1,Lc
(ec12, ∅) = {(tcc, ∅)}, posN1,Lc

(ec13, ∅) = {(td, ∅)}

obsN1,Lc
(ec11, ∅) = {(thr, ∅)}, obsN1,Lc

(ec12, ∅) = {(tsc, ∅), (tcc, ∅)},

obsN1,Lc
(ec13, ∅) = {(tcc, ∅)}, obsN1,Lc

(ec14, ∅) = {(td, ∅)}

For example, the set of observed behavior for ec11 is {(tsc, ∅), (tcc, ∅)} because the
execution of both activities Simple Check and Call Customer can be observed in
those events that are recorded when the process is in the same state as prior to
the occurrence of ec11: stateN1,Lc

(ec11) = (⟨thr⟩, (resreq ↦ Rory, dataload ↦ 750)).
This state is reached when activity Handle Request has already been executed and
the latest values assigned to the attributes Resource and Loan are Rory and 750
respectively.

By consulting Table 6.1, it becomes clear that events ec11 and ec21 contribute
to the set of observed behavior for ec11. Please note that ec11 and ec21 are events
from different traces, i. e., the whole event log is considered when computing the
observed behavior. Continuing in the same manner with the remaining events
yields precision(N1, Lc) = 28

37 ≈ 0.76.
Applying the same measure on the process model N2, we get:

posN1,Lc
(ec10, ∅) = {(thr, ∅)}, posN1,Lc

(ec11, ∅) = {(tsc, ∅), (tcc, ∅)},

posN1,Lc
(ec12, ∅) = {(tcc, ∅)}, posN1,Lc

(ec13, ∅) = {(td, ∅)}

obsN1,Lc
(ec11, ∅) = {(thr, ∅)}, obsN1,Lc

(ec12, ∅) = {(tsc, ∅), (tcc, ∅)},

obsN1,Lc
(ec13, ∅) = {(tcc, ∅)}, obsN1,Lc

(ec14, ∅) = {(td, ∅)}.

This results in a value of precision(N2, Lc) = 28
33 = 0.848. It is easy to see that the

added constraints regarding the attribute Loan limit the set of possible activities
for event ec11 to Simple Check and Call Customer. The activity Extended Check cannot
be executed anymore in the state prior to the occurrence of ec11, as the value of
the attribute Loan would need to be higher than 1,000. This improves the multi-
perspective activity precision of model N2.
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Moreover, the observed parallelism of activities Simple Check and Call Customer
for a Loan value of 750 is not seen as imprecision in either case, as reflected in the
set of observed behavior {(tsc, ∅), (tcc, ∅)} for event ec11. Note that the assignment
of data attributes needs to be exactly the same in order to detect parallelism in
the model as a precise representation of the observed behavior. Otherwise, when
parallelism is observed with different attribute values, it is seen as an imprecision
because a more precise process model using the different attribute values for a data
rule can be created.
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Figure 6.5: Very imprecise DPN model N3 of the credit application process.

Next to the two process models introduced in Figure 6.2 and Figure 6.3, we
consider two additional, illustrative process models representing extreme cases.
Figure 6.5 shows an example of a process model that is very imprecise in relation
to event log Lc. Always starting with Handle Request, model N3 in Figure 6.5 allows
to execute the remaining activities any arbitrary number of times and, also, in any
order. On the opposite side of the spectrum, model N4 in Figure 6.6 is very precise,
as only exactly the observed behavior in Lc is possible. For instance, the order of the
activities Simple Check and Call Customer depends on the value of the data attribute
Loan; if it has 750 as value both activities are carried out in any order, for the values
1,500 and 1,250 only the modeled order is observed.

For process model N3, we obtain precision(N3, Lc) = 28
78 ≈ 0.359, which is less

than half of the precision measure of N2 in Figure 6.3 (0.848). On the other end of
the spectrum, model N4 in Figure 6.6 has a perfect precision: precision(N4, Lc) = 1,
as only the behavior seen in the event log is allowed. These examples demonstrate
that the computed precision values behave as expected. Model N3 is, indeed, the
least precise, and model N4 is the most precise of the presented examples. Models
scoring a very high precision value are not always the most preferable. In particular,
model N4 allows for exactly the behavior observed in the event log and nothing
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Transition Guard expression

tec dataloan = 5, 000 ∨ dataloan = 1, 500
tsc1 dataloan = 1, 250 ∨ dataloan = 1, 500
τ1 dataloan = 750
tcc1 resreq ≠ res′
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Figure 6.6: Perfectly precise DPN model N4 of the credit application process.
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more. Given that event logs only contain example behavior as observed in a limited
time frame, one cannot assume that all possible behavior has been observed. In
other words, model N4 is probably over-fitting the event log.

6.2.4 Resource-precision Measure

Our multi-perspective activity-precision measure determines the unnecessary be-
havior defined by a process model in terms of enabled activities. We denote it as
activity-precision measure since only the possible process transitions are consid-
ered as sources of imprecision. However, multi-perspective process models also
encompass behavior in the time-, resource-, and data-perspective, i. e., several re-
source may execute an activity or several values may be assigned to a data attribute.
Here, we show that it is also possible to use our general precision measure for
measuring the precision of those multi-perspective assignments.

Generally, our measure is directly applicable to any kind of variable that is part
of the process model and recorded as an attribute in the event log. The idea is
to measure how many of the possible variable assignments are observed in the
event log. As an example of the general idea, we sketch how to use our measure
to determine the precision of the resource perspective of process models. The same
idea could be directly applied to any other nominal variable12, e. g., customer cate-
gories (bronze, silver, and gold). We assume that information about the resources
working in a process can be encoded in the data attribute resource, which is defined
over a finite domain, i. e., there is a finite number of resources taking part in the
process. This makes it is possible to measure the resource precision. Given the sets of
resources in a process (e. g., groups of employees in a certain roles), and constraints
governing the allocation of activities to those sets, we can measure the precision of
the allocation.

For example, consider the models in N1 (Figure 6.2) and N2 (Figure 6.2). We
assume that in both models a limited set of of resources {Amy, Rory} can execute
activities. Clearly, the separation-of-duty constraint (i. e., those activities must not
be executed by the same person) in N2 increases the precision of the resource
allocation. In fact, it limits the resources that are allowed to perform Call Customer,
i. e., given that Rory performed Handle Request, only Amy is left to perform Call
Customer. To apply the generic precision measure on the resource perspective, we
need to consider the possible resources together with the possible activities.

Definition 6.6 (Resource-precision measure). Let LTS = (TS, λ, ν) be a labeled
trace set. Let L = (E, Σ, #, ℰ) be a perfectly fitting event log. The resource precision
of LTS with regard to L is a function precisionres(LTS, L) ∈ [0, 1]:

precisionres(LTS, L) = precision(LTS, L, {resource}). ♢
12Discrete and continuous variable would require special pre-processing steps since it is unlikely that

all values of such variable are observed. We discuss this case as future work in Section 6.6.3
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Thus, the generic multi-perspective precision measure can be used to determine
how precisely variables with a finite domain, such as resources, are assigned. In
the scope of this thesis, we only present the application of our measure on the
resource-perspective. Resource precision is only an example of an application of
our generic precision measure for multi-perspective process models. A similar
measure could also be directly applied to any other process variables with a finite
domain, e. g., categories of customers and the triage priority or the referral type
assigned to patients (cf., Figure 3.3).

Again, we proceed to show that our definition of resource-precision is intuitive
by discussing it using two examples models N1 and N2 in Figures 6.2 and 6.3. We
define Vr = {resource} and obtain the following sets of observed and possible
behavior for model N2:

posN2,Lc
(ec10, Vr) = {(thr, (resreq ↦ Amy)), (thr, (resreq ↦ Rory))},

posN2,Lc
(ec11, Vr) = {(tsc, ∅), (tcc, ∅)},

posN2,Lc
(ec12, Vr) = {(tcc, (resreq ↦ Amy))},

posN2,Lc
(ec13, Vr) = {(td, ∅)}

obsN2,Lc
(ec11, Vr) = {(thr, (thr, (resreq ↦ Rory)))},

obsN2,Lc
(ec12, Vr) = {(tsc, ∅), (tcc, ∅)},

obsN2,Lc
(ec13, Vr) = {(tcc, (resreq ↦ Amy)))},

obsN2,Lc
(ec14, Vr) = {(td, ∅)}

The separation-of-duty constraint in N2 limits the possible resources that may
execute activity Call Customer. We obtain posN2,Lc

(ec12, Vr) = (tcc, (resreq ↦ Amy)).
This results in a resource precision of 28

55 ≈ 0.509. Model N1 does not define such a
constraint and, thus, we obtain the following sets of observed and possible behavior
for model N1:

posN1,Lc
(ec10, Vr) = {(thr, (resreq ↦ Amy)), (thr, (resreq ↦ Rory))},

posN1,Lc
(ec11, Vr) = {(tsc, ∅), (tcc, ∅)},

posN1,Lc
(ec12, Vr) = {(tcc, (resreq ↦ Amy)), (tcc, (resreq ↦ Rory))},

posN1,Lc
(ec13, Vr) = {(td, ∅)}

obsN1,Lc
(ec11, Vr) = {(thr, (thr, (resreq ↦ Rory)))},

obsN1,Lc
(ec12, Vr) = {(tsc, ∅), (tcc, ∅)},

obsN1,Lc
(ec13, Vr) = {(tcc, (resreq ↦ Amy)))},

obsN1,Lc
(ec14, Vr) = {(td, ∅)}

Due to the missing separation-of-duty constraint on transition tcc, the possible
behavior before event ec12 occurred is {(tcc, (resreq ↦ Amy)), (tcc, (resreq ↦ Rory))}.
Both Amy and Rory may execute the Call Customer activity. However, only Amy is
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observed to execute this activity. Therefore, N1 gets a lower resource-precision than
N2, its resource precision is 28

74 ≈ 0.378. This follows the intuition that a model that
defines constraints on the resource perspective should obtain a higher precision
score than a model without such constraints.

Again, similar to the discussion about the activity-precision score of a model,
a high resource-precision score should not be the only objective to measure the
quality of a process model. However, a good process model should strike a balance
between fitness and precision.

6.3 Locating Precision Problems

So far, we have only discussed global measures of precision (both activity and
resource) for the entire process model. However, it is often desirable to pinpoint
the sources for imprecision in a process model. Being aware of the imprecise model
parts it is, e. g., possible to use decision mining techniques to discover data rules
that increase the precision of a model in certain parts. We introduce such a decision
mining technique later in Chapter 10.

To better evaluate how the addition of a single data rule affects the precision of
a process model, we introduce a local variant of the precision measure. The idea
behind this measure is that only the behavior local to a decision point is considered
when computing the sets of possible and observed behavior. Non-local behavior,
e. g., in different parallel branches, is not considered since data rules that are local
to a decision point cannot influence behavior in parallel branches. Our goal is to
visualize the local precision on the process model, thus, we use DPN as a concrete
modeling notation instead of trace sets for its definition. We define the following
refinements of the possible and observed behavior and a local place-precision
measure.

Definition 6.7 (Locally possible- and observed behavior). Let LTS = (TSN,MI,MF
,

λ, ν) be the labeled trace set induced by the labeled DPN LN = (N, λ, ν) with initial
marking MI and final marking MF. Let L = (E, Σ, #, ℰ) be a perfectly fitting event
log. Let p ∈ P be a place of LN. Let VPR ⊆ VP be a set of process variables. Let
e ∈ E be an event. Function posLTS,L,p(e, VPR) ∈ T × 𝒰PR

dom returns local behavior
with respect to the variables VPR that is possible for output transitions of place p,
i. e.:

posLTS,L,p(e, VPR) = {(t, w) ∈ posLTS,L(e, VPR) ∣ t ∈ p•}

Function obsLTS,L,p(e, VPR) ∈ T × 𝒰PR
dom returns local behavior with respect to the

variables VPR that is observed for output transitions of place p, i. e.:

obsLTS,L,p(e, VPR) = {(t, w) ∈ obsLTS,L(e, VPR) ∣ t ∈ p•} ♢
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Definition 6.8 (Local precision measure). Let LTS = (TSN,MI,MF
, λ, ν) be the la-

beled trace set induced by the labeled DPN LN = (N, λ, ν) with initial mark-
ing MI and final marking MF. Let L = (E, Σ, #, ℰ) be a perfectly fitting event
log. Given a set of process variables VPR ⊆ VP and a place p ∈ P of LN, the
local precision of place p with regard to L for the variables VPR is a function
localPrecision(LTS, L, VPR, p) ∈ [0, 1]:

localPrecision(LTS, L, VPR, p) =
∑e∈E ∣obsLTS,L,p(e, VPR)∣

∑e∈E ∣posLTS,L,p(e, VPR)∣
. ♢

In Figures 6.7 and 6.8 we projected the local activity-precision measure on two
examples DPN models of the credit application process. We color coded the preci-
sion result such that a dark color represents a very low precision score and a bright
color represents a good precision score. Except for place p2, all other places have
a perfect local precision score of 1.0. This is because those places have only one
output transition, i. e., ∣p•∣. It follows that only one transition is in the set of possible
and observed local behavior and, thus, the local precision of those places is 1.0. The
local precision measure ignores imprecision that are caused due to parallelism.

As discussed earlier, the difference between models N1 and N2 is the added
guard expression in N2 for both output transitions tec and tsc of p2. This influences
the local precision at p2. The place obtains a precision score of 0.643 for N1 and
a local precision of 0.9 for N2. The color coding of local precision values is imple-
mented in the Multi-perspective Process Explorer (MPE) tool, which is introduced
in Section 11.2 and used in several case studies. Moreover, we use the local precision
measure along with the alignment-based fitness measure to evaluate the decision
mining method presented in Section 10.3.
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Figure 6.7: Local precision measure projected on the places of the imprecise DPN model N1.
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Figure 6.8: Local precision measure projected on the places of the more precise model N2.

6.4 Evaluation

The evaluation is based on a real-life case study, involving the processing of road-
traffic fines by an Italian local police force [Man+16d]. Specifically, we employed
a real-life event log [LM15] that records the execution of 11 different activities
and contains 550,000 events grouped into 150,000 traces. In total there are 9 data
attributes.

For this evaluation, we used five different DPN process models:

Model A, which is discovered using the Inductive Miner set to guarantee perfect
fitness [LFA13];

Model B, which extends model A with guards as discovered by the decision-tree
miner [LA13b]; the minimal instances per decision-tree leaf parameter was set
to 125 to avoid over-fitting;

Model C, which is the normative model, shown later on in Figure 12.1a and first
introduced by [Man+16a], but without any guards;

Model D, the normative model from Figure 12.1a again, yet including all those
guards that concern attributes available in the public event log;

Model E, which extends Model C with the guards discovered with the decision
tree miner (using the same parameter settings as for model B).13

Table 6.2 shows the precision and fitness scores for the described process models.
We used the just described activity-precision measure and the multi-perspective
fitness measure described in Section 5.2. We do not report on the difference between
the multi-perspective precision values and the existing precision measures, since it
is clear that both measures are incompatible. We already showed in Section 6.1 that
existing methods would ignore the presence of data rules and do return the same
precision score for models A and B, as well as for models C, D, and E. Clearly, the
precision score of these models should not be identical since the added data rules
contribute towards to precision of the process models. Our multi-perspective preci-

13All used models can be downloaded from http://purl.tue.nl/726309911741849

http://purl.tue.nl/726309911741849
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Table 6.2: Precision and fitness scores for the normative and discovered process models of a
process managing road traffic fines enacted in an Italian municipality.

Process Model Precision Fitness

A: Inductive Miner 0.298 1
B: Inductive Miner with discovered rules 0.344 0.922
C: Normative model without rules 0.639 0.997
D: Normative model 0.694 0.972
E: Normative model with discovered rules 0.801 0.981

sion measure is incompatible with existing measure since it needs to assign a lower
precision to process models without data rules whereas existing measures simply
ignore the presence of data rules. As both existing measures and our proposed
measure normalize values on a scale from 0 to 1, their result cannot be directly
compared. In the remainder of this evaluation, we show that our precision measure
results in intuitive scores when comparing process models without data rules to
process models with discovered data rules.

Figure 6.9: Model A discovered by the Inductive Miner on the road-traffic fine event log.
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Figure 6.10: Model B based on the model A with data rules discovered by using the ProM
decision miner. Write operations are omitted to improve the readability on paper.

Models A and B. Intuitively, model A should be the least precise process model.
This model does not constrain the allowed behavior with any data rules. Also,
the Inductive Miner, with parameters that are set to guarantee perfect fitness, is
unlikely to discover a precise model for this event log, which includes infrequent
behavior. Indeed, Model A scores a low precision of 0.298. Figure 6.10 shows model
B, which has the same control-flow as model A, but additional guards based on
the discovered rules. As expected, the discovered rules in model B result in an
improved precision of 0.344. This comes at the expense of a slightly lower fitness
score. Still, model B arguably allows for too much behavior, which is reflected in
the poor precision score.

Models C, D, and E. The normative model without data rules, model C, is more pre-
cise than the models discovered with the Inductive Miner; its precision is 0.639. As
expected, adding the normative data rules shown in Figure 5.7 to arrive at model D
will increase its precision to 0.694. However, adding those data rules has an impact
on the fitness of model D; its fitness is reduced by 0.025. As reported in [Man+16a],
the event log shows that the rules are not always respected. Finally, we applied the
DTM on the normative model, which resulted in model E. It scores best on precision
with a score of 0.801, and better on fitness than model D. Completely in line with
expectations, Model E scores better in fitness, because it discovers the as-is rules
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rather than the to-be rules. A cursory glance on the results may invoke surprise
that the precision of model E is higher than the precision of model D. However, this
can be expected: The guards are discovered so as to maximize fitness and precision.
Therefore, the rules added in model D only reflect constraints on the process from a
compliance perspective, e.g. Send of Credit Collection should only be executed if the
fine is not yet fully paid. By contrast, the decision tree miner strives for discovery
of mutually-exclusive rules that describe the real behavior as observed in the event
log. Being based on the real process executions, these rules may violate the norma-
tive rules. There are mutually exclusive rules discovered for both transitions Send
Fine: Payment > 18 and τ1: Payment ≤ 18, which leads to a higher precision score
than the rules defined for the normative model D. In model D only a data rule for
transition τ1 is specified: (Dismissal ≠ NIL ∨ (Points = 0 ∧ Payment ≥ Amount)).
These controlled experiments using real-life data show that our way of computing
precision is applicable to evaluate the quality of multi-perspective process models
and provides intuitive results.

Regarding the computational complexity of the approach, we conducted all ex-
periments on a standard laptop with a memory limit of 2 GB, which is lower than
what current-day, regular computers contain. Given a perfectly fitting event log, the
precision measurement could be computed within at most 12s for all considered
process models. However, creating a perfectly fitting event log requires to compute
an alignment. We reported extensively on the performance of multi-perspective
alignments in Section 5.3. Therefore, since the complexity of the precision measure-
ment is dominated by the alignment computation, we do not repeat performance
experiments here.

6.5 RelatedWork

Measuring the precision of a process model is not trivial. Process models may
specify an infinite amount of behavior. Therefore, it is not possible to check if all
possible behavior is actually observed in the event log, since it is impossible that
infinite behavior can be observed in a finite number of traces.

Multiple measures for precision have been proposed in the literature [AAD12;
Adr+15; Bro14; Gre+06; MC12; MWA07; RA08] that extrapolate a finite amount of
significant process behavior out of such in-finiteness. The work presented in [Gre+06;
MWA07; RA08] introduced various measures for precision, all based on com-
paring observed and modeled behavior: soundness [Gre+06]; behavioral preci-
sion [MWA07]; and advanced behavioral appropriateness [RA08].

A fundamentally different approach to determine precision is proposed in [Bro14;
Wee+11]. Both approaches insert artificially generated negative events into the event
log, and determine the precision using the standard precision measure from binary
classification. Similarly, in work [DCC16] highly deviating model traces with respect
to the event log are considered to determine the precision and generalization of a
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model. In [MC12], another precision measure is proposed, which counts so-called
escaping edges while traversing the process models behavior based on the event
log. Works [AAD12; Adr+15] extend this approach by using alignments between
observed and modeled behavior to cope with event logs that deviate from the
modeled behavior.

Our approach shares several similarities with the research reported on in [AAD12;
Adr+15]. However, there are two major differences between all existing measures
and our proposed approach:

1. We consider the influence of data rules on the behavior of a process model
when calculating the precision score.

2. We generalize the precision measure beyond the limited scope of the control-
flow perspective enabling to determine other types of precision, e. g., preci-
sion of resource assignments.

None of the mentioned works consider the importance of data-driven rules
constraining the behavior possible according to a process model. Data-driven rules
involving process data are readily available in most process modeling languages
such as, e. g., data-driven gateways in BPMN. Moreover, they are used widely in
practice, e. g., as illustrated by the recent uptake of the DMN standard [DMN16] in
industry.

6.6 Conclusion

Whereas process modeling languages commonly used in practice (e. g. BPMN and
DMN) allow one to specify data-driven rules to model choices, existing approaches
to measure the precision of a process model ignore perspectives other than the
control-flow perspective. The precision of a process model can be seen as the
fraction of the possible behavior allowed by the model in relation to what has
actually been observed, as recorded in the event log.

6.6.1 Contribution

In this chapter, we proposed a new measure for the precision of multi-perspective
process models in relation to behavior that is described in the form of an event log.
In particular, given an event log of a certain process and a number of models for the
same process, we are able to determine which model scores higher on precision.

The chapter is based on our publication [Man+16d], which reports on the first
proposal to measure precision for multi-perspective process models. We assume
that information about process perspectives such as resources, time and data are
recorded in the attributes the event log and that multi-perspective constraints are
defined with rules over such data. The proposed precision measure generalizes
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existing precision measures [MC12] by taking these rules and the recorded data val-
ues into account. The proposed measure is configurable towards multiple concepts
of precision. Closest to the existing work on precision measures is the presented
activity-precision measure. This measure considers the number of enabled activi-
ties in any given state as the source of imprecision. Next to this more traditional
view on precision, we also presented the resource-precision measure, which also
considers the set of available resources for activities as a source of imprecision.

For each model, the respective precision score can be combined with the fitness
score, which, for instance, can be computed using the balanced alignment method
described in the previous Chapter 5. In many cases, higher values of precision are
associated with lower values of fitness, and vice versa. By finding the right trade-off
between these two quantities, we can determine which model provides a better
representation of the process in question.

Both the activity-precision and the resource-precision measure have been im-
plemented as plug-ins of ProM 6.7 in the DataAwareReplayer package. Moreover,
in Section 11.2, we introduce the Mulit-perspective Process Explorer, an interactive
tool, that uses the activity-precision measure to determine the quality of discovered
data rules and visualizes the proposed local place-precision measure.

6.6.2 Limitations

We acknowledge that there are some limitations to our multi-perspective precision
measure.

• We only estimate the precision of the process model with regard to the behav-
ior observed in the event log. Our method does not measure the precision of
the model with regard to the underlying system that generated the event log.
In the Venn diagram shown in Figure 6.1 our method considers the area Ⓕ as
imprecision and the area Ⓑ as precise representation whereas the behavior in
area Ⓕ correctly describes the underlying system and the behavior in area Ⓑ
is not part of the system behavior. We take the position that the measurement
of the model precision with regard to the system is a different and very chal-
lenging problem orthogonal to the measurement of the precision with regard
to the event log. The difference between log-precision and system-precision
is extensively discussed by works [BDA14; Jan+16].

• Our method does not consider the entire behavior of the process model
for the measurement of precision, i. e., we adopt the concept of escaping
behavior first proposed in [MC12]. Therefore, the precision measurement
does not consider the full behavior of the area Ⓔ +Ⓕ. However, this limitation
is necessary when confronted with process models that allow an infinite
amount of behavior.
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• The precision measurement of our method highly depends on the employed
state function. The state function determines what behavior needs to be
observed before considering a process model as precise. Here, we used a
state function based on full prefixes and the latest variable assignments. This
results in a very strict notion of precision. Only when every possible path
is observed with every possible variable assignment defined by the process
model is observed in the event log, then, the process model considered as
precise. Since our method allows to chose the state notion based on the
application area, we do not consider this as a serious shortcoming.

• We first repair the event log to be fully fitting the process model before mea-
suring precision. In extreme cases this can lead to an inherently unreliable
precision measurement. For example, in the extreme situation in which the
event log is not fitting at all (e. g., the event log is recorded for a different
process) our method still returns a precision value. Therefore, the fitness
score should be taken into account together with the precision score, e. g.,
by combining both measures to one score using the harmonic mean14 to
penalize such extreme cases.

6.6.3 FutureWork

It is not straightforward to apply the generic multi-perspective precision measure
to variables defined over an infinite domain, e. g., timestamps that are used in
constraints on the time perspective or the amount of a loan application. To apply the
introduced measure to such variables, the set of possible time values would need
to be discretized and made finite first. Values could be discretized and made finite
by using the values that were actually observed in the event log as guidelines for
the values that can be expected.

14Similar to the F-score used for classification techniques.





Part III

Multi-perspective Discovery and
Enhancement

Chapter 7 We position multi-perspective process discovery and enhancement in
the context of process mining.

Chapter 8 We present the Data-aware Heuristic Miner (DHM), a process discovery
method that uses classification techniques to distinguish conditional infre-
quent paths from noise. Data- and control-flow perspective of process models
are discovered together. This chapter is based on the publication [Man+17].

Chapter 9 We present the Guided Process Discovery (GPD) method, which makes
use of domain knowledge about the execution of a process. Before discover-
ing a process model, events of the event log are grouped together based on
behavioral activity patterns. Activity patterns capture domain knowledge
on the function perspective of a process. This chapter is based on the publi-
cations [Man+16c; Man+18].

Chapter 10 We present a decision-mining method that discovers, potentially, over-
lapping data rules. Overlapping rules may arise due to non-deterministic
decision making or missing information in the event log. The method aims at
returning process models with better fitness according to the event log at the
expense of precision. This chapter is based on the publication [Man+16b].
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7 Introduction to Multi-perspective
Discovery and Enhancement

In Part II of this thesis, we elaborated on techniques that check the conformance
between process models and event logs. Part III of this thesis focuses on process
discovery and enhancement techniques. This chapter is structured as follows. In
Section 7.1, we introduce process discovery and enhancement. In Section 7.2 we
discuss challenges that process discovery methods face and in Section 7.3, we
elaborate on our view on multi-perspective process discovery.

7.1 Process Discovery and Enhancement

Figure 7.1 illustrates the difference between process discovery and enhancement
methods: Process discovery methods create process models without prior knowl-
edge of existing models whereas enhancement methods assume an existing process
model. In the next two sections we introduce both in more detail.
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Figure 7.1: Discovery and Enhancement in the context of process mining [Aal16].
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7.1.1 Process Discovery

Process discovery methods automatically generate process models that describe the
real execution of a process. Process discovery methods automatically create process
models that describe the execution of a process based on data stored in event logs.
A core assumption of process discovery methods is that event logs contain events
recorded for a specific process (cf., Figure 7.1). Information systems often record
information about the execution of activities. This recorded execution data can
be transformed into event logs [Aal16]. Each log trace of an event log contains
events recorded by one execution of the process (i. e., one trace corresponds to one
process instance). The goal of process discovery methods is to derive an accurate
description of the process from the event log. Most discovery methods return process
models as compact and precise description of process behavior. When analyzing
the processes of an organization without a-prior knowledge, process discovery is
the initial exploratory step of the analysis. Other analysis methods often rely on a
model of the process, e. g., the conformance checking methods presented in Part II
of this thesis. Therefore, process discovery has received a lot of attention from both
academia and practice.

Among the first process discovery methods there was work by Cook et al. [CW98a;
CW98b] and Agrawal et al. [AGL98]. Since then, a large number of methods that
focus on the discovery of the control-flow perspective of a process model have been
proposed:

• the α-algorithm [AWM04] and its extensions [Wen+07; Wen+10];
• approaches based on Petri net region theory (e. g., the work in [CCK08] and

ILP miner [Wer+09]);
• approaches based on various heuristics (e. g., Heuristic Miner [WR11], Fuzzy

Miner [Gün09]);
• methods based on genetic algorithms (e. g., Genetic

Miner [Med06] and Evolutionary Tree Miner [Bui14]);
• divide-and-conquer methods (e. g., Inductive Miner [Lee17] and Constructs

Competition Miner [Red+14]);
• methods based on inferring negative events that are not part of the process

behavior [Goe08]; and
• several methods to discover declarative process models (e. g., Minerful [CM15],

DecMiner [Che+09], and SQL-based discovery [Sch+16c]).

Since we only aim to illustrate the relevance of process discovery, we refer to [Aug+17;
Wee+12] for a systematic comparison of the available process discovery technique.

Next to the academic interest, several commercial process discovery tools have been
developed and are successfully used in practice: e. g., Fluxicon Disco15, Perceptive

15http://www.fluxicon.com/

http://www.fluxicon.com/


7.2 CHALLENGES FOR PROCESS DISCOVERY METHODS 141

7

Process Mining16, Celonis17, Process Mining Factory18, and Processgold Enterprise
Platform19. This interest from the research community and from commercial ven-
dors illustrates that process discovery is both a challenging research problem and
highly relevant in practice.

7.1.2 Process Enhancement

Process enhancement is the category of process mining that is concerned with
improving existing process models as depicted in Figure 7.1. The input to an en-
hancement method is an existing process model and an event log. The process
model is enhanced with information that is obtained from the event log. Examples
of process mining methods that can be categorized as enhancement method are
the projection of performance indicators on the process models [Adr14; Roz+09],
building of queuing models on top of existing process models [Sen+14], the repair
of existing process models in order to better reflect the real process execution [FA15],
and the extension of process models with decision logic governing the routing of
cases [LA13b; RA06].

Next, we introduce some of the challenges that process discovery methods face.
Note that those challenges are also faced by enhancement methods. The only dif-
ference is that there is an existing process model that should be improved. For
sake of a more compact presentation, we only describe them for process discovery
methods.

7.2 Challenges for Process Discovery Methods

All process discovery methods aim to return good process models. Therefore, for
any discussion about process discovery, it is crucial to define what a good model en-
compasses. Generally, the goal is to discover a process model that rediscovers exactly
the actual process under consideration. Figure 7.2 depicts the relation between the
behavior specified by the discovered process model, the behavior observed in an
event log recorded by the process, and the possible behavior of the actual process.
To rediscover the actual process the highlighted area Ⓐ + Ⓓ + Ⓕ + Ⓖ needs to be
estimated. The behavior of the discovered process model (Ⓐ + Ⓑ + Ⓔ + Ⓕ) and the
behavior of the actual process system (Ⓐ+Ⓓ+Ⓕ+Ⓖ) should coincide. It is possible
to conduct experiments using synthetic log generated from know model to test
the rediscovery performance of a process discovery method. However, in practical
settings there is no gold-standard model which could be used to exactly determine
the quality of the discovered model. Often, the exact process is not known and may
16http://www.lexmark.com/
17http://www.celonis.com/
18http://www.icris.nl/
19http://www.processgold.com

http://www.lexmark.com/
http://www.celonis.com/
http://www.icris.nl/
http://www.processgold.com
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change over time in an uncontrolled manner. In these situations, process discovery
is valuable.

Model Log

Process (System)

Ⓐ

Ⓑ
ⒸⒺ

Ⓖ

Ⓕ Ⓓ

Figure 7.2: Goal of process discovery: discover the, unknown, original process system.

In Chapter 4, we described how conformance checking techniques estimate the
quality of a process model based on four frequently used quality dimensions:

• fitness, the model should describe the observed behavior;
• precision, the model should describe not much more than what was observed;
• generalization, the model should also describe behavior that was not observed,

but is likely to be part of the valid process behavior;
• simplicity, the model should not be unnecessarily complex.

Process discovery methods face several challenges to reach their goal: the discovery
of a fitting, precise, general, and simple process model. We discuss three challenges
faced by process discovery techniques that often arise in the context of real-life
situations: incompleteness, noise, and granularity. Figure 7.3 illustrates the challenges,
which are all due to the nature of the information recorded in real-life event logs. We
do not claim that these three challenges are the only challenges for process discovery
methods. Indeed, there are more challenges that process discovery methods face,
e. g., to detect whether activities are executed in parallel, which are not in the scope
of this thesis.

7.2.1 Incompleteness

Typically event logs do not contain all possible behavior of the underlying process.
This can be motivated by the fact that it is unlikely that a process is executed in
all possible manners. For example, a process with 10 concurrent activities can be
executed in 10! = 3, 628, 800 different ways. Thus, to observe all possible behavior
of that process (i. e., Ⓖ = Ⓕ = ∅), the event log would need to contain all those 3.6
million distinct traces. Even in an event log with 3.6 millions traces, it is extremely
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process reality event logsIncompleteness

not yet recorded
erroneously not recorded

Noise

infrequently recorded
wrongly recorded

Granularity

high-level recording

low-level recording

Figure 7.3: Incompleteness, noise, and the granularity of events are challenges for process
discovery methods when working with real-life event logs.

unlikely that all those distinct traces are present [Aal16]. Some of the execution
variants will be observed more than once, other variants will never be observed.
When adding other process perspectives and loops this incompleteness problem
grows further. In case of loops the number of potential execution traces of a process
is infinite. Therefore, process discovery algorithms need to generalize from the
observed behavior.

7.2.2 Noise

Another important challenge for process discovery methods is to handle event logs
that contain noise [Aal16; Wee+12]. Some definitions of noise only entail outliers
that were recorded due to errors [AGL98], others also include low-frequent behavior.
Examples for events that are typically considered noise are:

• events recorded by activities that were executed out of the normal order,
• events recorded due to rare exceptions,
• events recorded due to temporary workarounds,
• events wrongly recorded or lost due to logging errors, system malfunction

or other data quality issues.
However, in a real-life setting, without a-priori knowledge on the process, it is
difficult to distinguish between data quality problem (e. g., recording errors, lost
data) and valid events that are recorded infrequently. We consider noise to be any
event that corresponds to undesirable infrequent behavior [Aal+12; Aal16; BMA13;
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CLH16; Sur+17]. What is considered undesirable behavior depends on the appli-
cation setting. When looking at the mainstream behavior of the process, then, all
infrequent behavior is undesirable. When looking for workaround and divergent
process executions, some infrequent behavior may be desirable.

7.2.3 Granularity

Most process discovery methods assume that recorded events correspond to mean-
ingful activities in the instances of a process. However, events may be recorded on
different levels of granularity [Bai15]. Some events may refer to activities on a high
level of abstraction. Their execution is easily recognizable for process workers (e. g.,
a nurse reacts to an alarm raised by a patient). Other events may be recorded on a
lower level of abstraction. Multiple of such low-level events may correspond to a
recognizable high-level activity. For example, the high-level activity Patient Alarm
may be recorded as a series of low-level events: the patient presses the alarm button,
the nurse enters the room, the nurse clears the alarm state, and the nurse leaves the
room. When discovering processes based on those low-level events, the resulting
process model may be unrecognizable for process workers. The discovered model
gives a description at the wrong level of abstraction. Therefore, the discovered
model is useless, similarly to using a street map when trying to fly a place.

7.3 Multi-perspective Process Discovery

So far, we have only considered the discovery of the control-flow perspective of
the process. Indeed, the control-flow can be seen as the backbone of a process. A
good understanding how activities relate to each other in terms of ordering and
dependencies is an important prerequisite for many analysis tasks.

However, as motivated multiple times previously in this thesis (cf., Sections 1.2
and 4.2), the control-flow perspective is only one of the potential viewpoints on
a process. In this section, we extend our view towards multiple-perspectives and
give an overview of the state-of-the-art methods. Multi-perspective process discov-
ery methods consider information on the data, resource, and time, and function
perspective of the process.

One challenge when considering multiple perspectives on processes lies in the
provision of data that can be linked to the process execution. Often, data is frag-
mented across various sources and needs to be consolidated [Aa+15], e. g., by inte-
grating events from different source information systems [MLR15a]. With emerging
trends such as the Internet of Things (IoT), i. e., the connection of all physical objects
to the network, more and more data on the execution of a process will be available.
Therefore, information extracted from this recorded data can be connected to the
process execution and, thus, used for process discovery [Aal15].
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Figure 7.4: Multi-perspective process discovery methods use information about the context
of process to obtain a more complete picture of the process.

Several methods that discover process perspectives different from the control-
flow have been proposed. Some examples are methods that:

• discover social networks [ARS05],
• discover decision rules and decision models [BBW16; LA13b; LDG13; RA06],
• discover queues [Sen+15], and
• discover GANTT charts [Bal+15].

However, those methods follow a staged approach. Only one process perspective
is discovered (e. g., the social network describing the resource perspective). In this
thesis, we aim to develop methods in which multiple perspectives are intertwined.

In Chapter 8 and Chapter 9, we present two multi-perspective discovery methods
that discover integrated models in which multiple perspectives on the process are
intertwined with the control-flow. The goal is to consider multiple perspectives
on the process for the discovery of a single model. The control-flow perspective is
influenced by the data, resource, time, and functional perspective. This is different
from the staged approach that the previously mentioned methods follow, in which
perspectives are discovered step-by-step in isolation.
Figure 7.4 illustrates the goal to discover the different perspectives in an integrated
manner. The semantics of events may depend on context information on other
perspectives. Depending on the context the same event may relate to different ac-
tivities, the importance of events may differ, etc. Thus, process discovery methods
that ignore the context in which an event occurred, fail to reveal those differences.
The complete picture of the process is not discovered and, often, imprecise process
models are returned. There are many possible definitions of what the context of
a process entails. The context may consist of, e. g., the sequence of activities that
occurred beforehand, the data values that were recorded beforehand, the resources
available at the time of execution, seasonal effects, and many more possible influ-
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ence factors.
There are also methods that combine results discovered from several perspectives

into integrated models, i. e., follow the integrated approach taken in this thesis.
Here, we sketch briefly some examples of those of multi-perspective discovered
methods.

• Rozinat [Roz10] describes an approach in which the discovered control-flow
is enriched with decision rules, performance information (i. e., waiting time
and execution time distributions), and organizational information (i. e., roles
and originators). The result is a Colored Petri Net that integrates three discov-
ered perspectives: the control-flow perspective, the data perspective, and the
resource perspective. In this case the discovered information is discovered
separately and only afterwards integrated.

• Maggi et al. present a method to directly discover multi-perspective declara-
tive process models, i. e., sets of rules that cover the control-flow and data
perspective are discovered [Mag+13; Sch+16b];

• Schöning et al. present a method to discover rules expressed in the declarative
language DPIL that concern both the resource and control-flow perspective
in [Sch+16a].

• Van Eck et al. describe a method in which multiple perspectives on one
process based on the notion of process states are discovered, control-flow
and state information is intertwined [ESA16];

• Conforti et al. present the BPMN Miner, a tool which discovers functional
dependencies between activities and the control-flow of the process together.
This proposal integrates the control-flow and the function perspective in an
integrated process model [Con+16].

We discuss the research that is more closely related to our proposed methods later
in each chapter systematically and in more detail.

In this thesis, we propose two multi-perspective discovery methods and one
multi-perspective enhancement method.

• Chapter 8 presents a method that uses data recorded on multiple process
perspectives to address the noise challenge. The method aims to distinguish
infrequent paths from random noise by using classification techniques. Data-
and control-flow are learned together.

• Chapter 9 presents a method that uses domain knowledge encoded in multi-
perspective activity patterns to address the granularity challenge and can
handle noise. The method lifts low-level events to high-level activities and
discovers hierarchical multi-perspective process models.

• In Chapter 10 we introduce process enhancement and present a method to
enhance an existing process model with decision logic that constraints the
routing of process instances.
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8 Data-aware Heuristic Process
Discovery

Using all the recorded behavior in the event log (i. e., including noise) for process
discovery often leads to complex models that are unusable for the purpose of
process analysis [Aal16; Sur+17]. Therefore, noise filtering methods that distinguish
noise from the desirable, regular behavior of the process have been developed.
These aim to deal with the complex behavior recorded in real-life event logs. What
is considered as desirable behavior depends on the context of the process mining
analysis. We categorize two different types of analysis:

• analysis of frequent behavior (e. g., process highways) and
• analysis of infrequent behavior (e. g., workarounds and deviations).

Often the focus of process discovery is on frequent behavior, i. e., the goal is to discover
process highways that are able to explain the dominant behavior. In this context, all
infrequent events are undesirable since they might negatively affect the quality of
the model. Including many infrequent process paths in the discovered model might
lead to overly complicated models. However, when the focus of process discovery
is on analyzing workarounds, deviations, and other infrequent behavior, some infrequent
paths and events are part of the behavior that needs to be discovered. Otherwise,
the process model would be unsuitable to analyze this kind of behavior.

This chapter presents a data-aware heuristic process discovery technique that
aims to discover an end-to-end process model that includes possibly interesting
infrequent behavior while filtering random noise that would not yield any insight
into the process. We leverage the data perspective to identify behavior that can
be characterized by deterministic rules (i. e., conditions) over the data attributes
recorded by the process. Many processes are governed by rules. Decisions are taken
on the basis of available data, available resources, and the process context. The idea
is that some infrequent paths may be executed rarely because the corresponding
conditions are rarely fulfilled. These paths and the conditions are likely to be of great
interest to process analysts (e. g., in the context of risks and fraud). For example,
shortcuts in a process might only be taken by a specific resource or undesired
behavior might be subject to conditions. This kind of infrequent conditional process
behavior should not be set aside as noise.

The remainder of this chapter is structured as follows. In Section 8.1, we pre-
sent a motivating example. In Section 8.2, we give an overview of our method. In
Section 8.3, the core method, i. e., the discovery of conditional infrequent process
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behavior, is presented. Section 8.4 describes an extension with to multi-perspective
process models. In Section 8.5 we evaluate the noise filtering capabilities of our
method with synthetic event logs and in Section 8.6 we compare it with related
work. Finally, in Section 8.7 we conclude the chapter.

8.1 Motivation for Discovering Conditional Behavior

We start with a motivational example that is used throughout this chapter. Assume
the hospital process that is used as running example throughout this thesis. Based
on the textual description of the process in Example 1.1, there are several cases of
interesting infrequent behavior:

(A) Only in exceptional cases, patients are assigned the triage color white. Those
patients typically, leave the emergency ward after being registered.

(B) There are two different work practices regarding the activities Diagnostics
and Visit.

a) Normally, the doctor first visits the patients and, thereafter, the diagnos-
tic test is conducted.

b) Sometimes, both activities are executed in reversed order: first a medical
diagnostic is taken and, only after that, the doctor visits the patient.

(C) For a specific group of patients, those that are transferred to another hospital,
an ambulance needs to be organized.

C = white

Ⓐ

N ≠ Alice

N = Alice

Ⓑ

R = Tertiary

Ⓒ

Triage Register
C ≠white

Check
	

Visit

Diagnostic Visit

Diagnostic Decide

Prepare

Organize
Ambulance

Color Nurse

Referral

Figure 8.1: Infrequent process behavior highlighted on a BPMN model of the hospital
process.

The BPMN model in Figure 8.1 depicts a variant of the running example hospital
process (cf., Example 1.1) that we use to explain the effect of infrequent behavior on
process discovery and, subsequently, our new discovery technique. We removed
some behavior of the original process model (cf., Figure 3.4) since we want to sim-
plify the presentation of our technique.20 This process contains three examples of
20We removed the exclusive choice between activities Transfer, Discharge and Observe at the end of the
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(a) The Inductive Miner filters little of the
injected noise and fails to reveal behavior
Ⓐ and Ⓑ.

Triage

Register
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Decide

Prepare

(b) The Heuristics Miner filters the injected
noise well, but fails to show behavior Ⓐ,
Ⓑ and Ⓒ.

Figure 8.2: Models discovered by Inductive Miner and Heuristics Miner on an log generated
from the hospital process with randomly injected out-of-order events in 5% of the traces.

infrequent, data-dependent behavior: a data-dependent path (Ⓐ), data-dependent
re-sequencing (Ⓑ), and a data-dependent activity (Ⓒ). The goal of our work is to
rediscover such behavior, while ignoring random noise.

Assume that an event log recording the process behavior of the BPMN model
shown in Figure 8.1 was obtained from information systems of the hospital. The
three examples for infrequent behavior are recorded in only 1.4% (Ⓐ), 33.4% (Ⓑ),
and 1.7% (Ⓒ) of the process instances. As motivated in the introduction, it is likely
that this event log contains noise. We generated a perfectly fitting event log based
on the process model shown in Figure 8.1 and introduced a controlled degree of
noise. In 5% of the cases one additional event was introduced at a random position
in the log trace.

We applied both the Heuristics Miner21 [WR11] and the Inductive Miner22 [LFA13]
as representatives of process discovery methods that support noise filtering. Fig-
ure 8.2 shows the resulting process models of both discovery methods. We con-
verted both process models into BPMN models to facilitate the comparison. Both
methods are unaware of the data perspective. Moreover, they fail to distinguish
between the injected random noise and the infrequent data-dependent behavior

process and the loop structure regarding activities Diagnostic and Visit
21The Heuristics Miner with an observation threshold of 0.1 was used.
22The Inductive Miner infrequent variant with the default noise filtering setting of 0.2 was used.
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Ⓐ, Ⓑ, and Ⓒ. It might be possible to tweak the parameters of the algorithms to re-
veal more of the infrequent behavior (e. g., through grid search). However, finding
the correct parameter setting that does not include unrelated noise requires deep
knowledge about the underlying process. This is often infeasible.

Moreover, based on the process models in Figure 8.2 it is impossible to reveal the
infrequent data-dependent behavior by using decision mining techniques. Those
techniques can only reveal decision rules for paths that are reflected in the process
model, i. e., exclusive split gateways that model a decision between the process
paths need to included in the model. Thus, low-frequent but deterministic behavior
remains undetected. The method proposed in this chapter, discovers all three types
of infrequent conditional process behavior depicted in Figure 8.1 and successfully
filters the random noise added. Next, we are going to describe our technique.

8.2 Overview of the Data-aware Heuristic Process
Discovery Method

We present a method for data-aware heuristic process discovery. The method
extends the ideas of the Heuristics Miner [WR11] with the use of classification tech-
niques to discover the control-flow and the data perspective of the process together.
It reveals data dependencies between activities, and uses these data dependencies
to distinguish noise from infrequent conditional behavior, i. e., reveals behavior that
would otherwise have been dismissed as noise by the Heuristics Miner.

event log (L)

unconditional
dependencies

conditional
dependencies

dependencies (D)

observation
instances

C-Net (C) DC-Net (DC)

observation
instancesevent log (L)

discover (1)

discover (2)

join &
complete

(3)

discover
bindings

(4) enhance (5)

Figure 8.3: Overview of the proposed data-aware heuristic process discovery method.

Figure 8.3 gives an overview of the method. The required input is an event log
and several parameters that are used to configure the thresholds of the employed
heuristics. Moreover, we assume that the event log contains attributes encoding
information about the context of the process, i. e., resources executing activities,
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data attributes, and time information. Based on this input, the method consists of
the following five steps:

1. We discover a set of unconditional dependencies based on the heuristics
proposed by the Heuristics Miner.

2. We train classifiers to obtain an additional set of conditional dependencies,
which may be infrequent and, thus, have been dismissed by the Heuristics
Miner.

3. We join both sets of conditional and unconditional dependencies and add
dependencies for disconnected activities.

4. We discover the bindings (i. e., the split and join behavior) and create a
Causal Net (C-Net) (cf., Definition 3.13) based on the approach proposed by
the Heuristics Miner [WR11].

5. We enhance the C-Net to a multi-perspective Data Causal Net (DC-Net)
adding discovered decision rules.

In Section 8.3, we describe steps 1-4 and in Section 8.4 step 5 of the proposed
method.

8.3 Discovering Conditional Behavior

We describe how to discover conditional behavior using classification techniques
and present an integrated discovery method that returns C-Nets.

8.3.1 Dependency Conditions and Dependency Measure

To discover data-dependent behavior in the event log, we make use of classification
techniques (e. g., decision trees such as C4.5 [Qui93]). More specifically, we rely on
binary classifiers that predict the occurrence of directly-follows relations based on
attribute values recorded in the event log. We denote these binary classifiers as de-
pendency conditions: the classifier encodes the condition under which a dependency
between two activities was observed in the event log.

Definition 8.1 (Dependency conditions). Let U be the universe of values. Let VL
be a set of attributes and let dom(v) ∈ ℙ(U) be the domain of attribute v ∈ VL. Let
Σ ⊆ U be a set of activities. We define a dependency condition function:

dc ∶ (Σ × Σ) → (𝒰L
dom → {0, 1})

that returns the dependency condition for any two activities.23 A dependency con-
dition dc(a, b) is a binary classifier that predicts whether an event recording the
execution of activity a is followed directly by an event recording the execution of
23Note that 𝒰L

dom denotes a partial attribute assignment function as introduced in Definitions 2.7
and 2.10, i. e., some attributes in v ∈ VL are assigned values from their domain dom(v) ⊆ U.
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activity b based on the attribute assignment w ∈ 𝒰L
dom , i. e., dc(a, b)(w) = 1 when

b is predicted to directly follow a and dc(a, b)(w) = 0 when a different activity is
predicted. ♢

We introduce the shorthand notation dca,b = dc(a, b). Moreover, we denote with
1a,b a special dependency condition function that returns classifiers predicting 1
regardless of the attribute values, i. e., ∀a,b∈Σ∀w∈𝒰L

dom
(1a,b(w) = 1).

Example 8.1 (Dependency conditions). In the remainder of this chapter, we use an
example event log Lh that consists of 150 traces: 50 traces record the same se-
quence of activities and attributes as in σh1, 50 traces are like σh2 and 50 traces
are like σh3 (see Table 8.1). Based on event log Lh, the dependency condition
function dc could return the following decision tree (i. e., binary classifier) as
dependency condition dcD,V for activities Diagnostics (D) and Visit (V):

resource

1 0

resource = Alice resource ≠ Alice

The dependency condition predicts, based on the attributes values recorded up
to and including to the occurrence of Diagnostic, whether the next activity is likely
to be Visit (i. e., predicts class 1) or any other different activity (i. e., predicts class
0). Here, the dependency condition makes its prediction by virtue of the value
recorded for the attribute resource ∈ VL, which stores the name of the nurse that
executed activity Register in the example log Lh. If Alice registered the patient,
the next activity is predicted to be Visit; otherwise, a different activity follows.
We employ decision trees; however, any binary classifier would be suitable. We
show later in Section 8.3.2 how to build a classifier based on the event log.

Given a dependency condition, we establish the frequency with which activities
b are observed to directly follow an activity a in the event log when the condition
holds for the attributes values observed before b occurred. Thus, the condition
could have been used to predict the occurrence of activity b given the previously
observed attribute values. We denote this as: conditional directly follows.

Definition 8.2 (Conditional directly follows relation). Given activities a, b ∈ Σ
and dependency conditions dc, we write a >dca,b,L b if and only if an execution of
activity a is directly followed by an execution of activity b that is recorded as event e
under dependency condition dca,b(latest(e)), i. e., the latest attribute assignment
before activity b was observed (cf., Definition 2.11) can be used to predict the
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Table 8.1: Three exemplary traces of an event log Lh recorded by the hospital process.

(a) Trace 𝛔h1

id activity color resource referral

eh10 Triage Red
eh11 Register Joe
eh12 Check
eh13 Check
eh14 Check
eh15 Visit
eh16 Diagnostic
eh17 Decide Ward
eh18 Prepare

(b) Trace 𝛔h2

id activity color resource referral

eh20 Triage Red
eh21 Register Alice
eh22 Check
eh23 Diagnostic
eh24 Visit
eh25 Check
eh26 Decide Tertiary
eh27 Prepare
eh28 Organize Ambulance

(c) Trace 𝛔h3

id activity color resource referral

eh30 Triage Red
eh31 Register Joe
eh32 Check
eh33 Visit
eh34 Diagnostic
eh35 Check
eh36 Check
eh37 Decide Ward
eh38 Prepare
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occurrence of b. We denote the frequency of a conditional directly-follows relation
a >dca,b,L b in the event log as:

∣a >dca,b,L b∣ = ∣{e ∈ E ∣ ∃e′∈E(#act(e′) = a ∧ e′ = •e ∧ #act(e) = b
∧ dca,b(latest(e)) = 1)}∣ ♢

We use the conditional directly-follows relation to define a data-aware variant of
the dependency measure that was originally proposed by the Heuristics Miner
in [WR11].

Definition 8.3 (Conditional dependency measure). Given activities a, b ∈ Σ and
dependency conditions dc. We define a ⇒dc,L b ∈ [−1, 1] as the strength of the
causal dependency from a to b under condition dca,b in the event log:

a ⇒dc,L b =

⎧{{{
⎨{{{⎩

∣a>dca,b,Lb∣−∣b>dca,b,La∣

∣a>dca,b,Lb∣+∣b>dca,b,La∣+1
for a ≠ b,

∣a>dca,b,La∣

∣a>dca,b,La∣+1
otherwise.

♢

The intuition behind the data-aware variant of these heuristic measures is that a
relation (a, b) should be included in the discovered process model when it is clearly
characterized by a dependency condition dca,b.

Example 8.2 (Conditional dependency measure). Assume to be given the example
event log Lh introduced in Example 8.1. We want to determine the conditional
dependency measure D ⇒dc,L V from activity Diagnostic (D) to activity Visit (V).
Assume that we obtained a dependency condition dcD,V that returns 1 only if
attribute resource values takes on the value Alice. Then, we obtain the number of
times that activity Diagnostic is directly followed by activity Visit under condition
dcD,V as ∣D >dcD,V,L V∣ = 50, and the number of times activity Visit is directly
followed by activity Diagnostic under condition dcD,V as ∣V >dcD,V,L D∣ = 0.

Therefore, the conditional dependency measure under conditions dc is D ⇒dc,L

V = 50−0
50+0+1 ≈ 0.98. This dependency measure indicates a strong dependency

relation from activity Diagnostic to activity Visit under the condition dcD,V. By
contrast, if we consider the unconditional dependency measure, then we obtain
D ⇒1,L V = 50−100

50+100+1 ≈ −0.33. Thus, when disregarding the data perspective,
both activities appear to be executed in parallel.

8.3.2 Discovering Dependency Conditions

We described the conditional directly-follows relation and the conditional dependency
measure. The latter measure is used to determine which relations should be included
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in the C-net that we want to discover. Both concepts rely on dependency conditions
that need to be discovered from the event log.

We train a binary classifier that can be used as dependency condition for source
activity a ∈ Σ and target activity b ∈ Σ . Binary classifiers require the definition of a
positive and a negative class. In our case, executions of activity b are considered as
positive and executions of other activities that are not in parallel to a are considered
as negative.

Definition 8.4 (Negative candidate activities). Given a source activity a ∈ Σ, a
candidate activity b ∈ Σ, and a dependency threshold θdep ∈ [0, 1], we denote with
ΣNEG

a (θdep) the set of negative candidate activities x that directly follow a in the
event log for which the unconditional dependency measure is above the threshold:
θdep :

ΣNEG
a (θdep) = {x ∈ Σ ∣ (a ⇒1,L x) ≥ θdep} ⧵ {b}. ♢

To train a classifier, we need to define a set of training or observation instances. We
build a set of observation instances for every combination of activities (a, b) ∈ Σ×Σ
of activities that are recorded in the event log. Events recording the execution of
activity b are added as instances for the positive class and events recording the
execution of activities in Σa(θdep) are added as instances of the negative class.

Definition 8.5 (Observation Instance Function). Let C = {1, 0} be the set of target
classes. Let L = (E, Σ, #, ℰ) be an event log. Let EL(a, b, θdep) ⊆ E be the subset of
events that directly follow an event that records an execution of activity a ∈ Σ
and refer to negative candidate activities in Σa(θdep) or to the positive candidate
activity b ∈ Σ, i. e.,

EL(a, b, θdep) = {e ∈ E ∣ #act(•e) = a ∧ #act(e) ∈ (ΣNEG
a (θdep) ∪ {b})}.

We define function OIL ∶ (Σ × Σ × [0, 1]) → 𝔹(𝒰L
dom × C) to return multi-sets of

observation instances24 for any pair of activities:

OIL(a, b, θdep) = ⨄
e∈EL(a,b,θdep)

[(latest(e), class(e))]

where class(e) = { 1, if #act(e) = b
0, otherwise. ♢

Conceptually, our method is independent of the used classification algorithm. Con-
cretely, we employ decision trees (C4.5) [Qui93] as an efficient method that result in
human interpretable conditions. We build the dependency conditions dc by assem-
bling a set of observation instances OIL(a, b, θdep) and, then, use a C4.5 decision
tree builder buildTreeC,mi(OI) ∈ ℙ(EXPR(VL) × C) to build a decision tree for each
possible relation (a, b) ∈ Σ × Σ.

24The concept of observation instances is introduce in Definition 2.12.
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Example 8.3 (Collecting observation instances). Assume the dependency threshold
θdep = 0.9 and the same event log Lh as in Example 8.2. We train a classifier for the
dependency condition dcD,V, i. e., the dependency relation from Diagnostic (D) to
Visit (V) using the observation instances OIL(D, V, θdep). First, we identify the neg-
ative candidate activities ΣNEG

D (θdep), i. e., those activities that are different from
activity Visit and that are observed to occur not in parallel to activity Diagnostic.
Set ΣNEG

D (θdep) is determined based on the user-specified dependency threshold
θdep = 0.9. In this case, we obtain ΣNEG

D (θdep) = {Decide}. Activity Check (C) is
not a negative candidate activity since the unconditional dependency measure
D ⇒1,L C is below the threshold of 0.9. The collected observation instances
are OIL(D, V, θdep) = [((color ↦ Red, resource ↦ Joe), Decide)50, ((color ↦
Red, resource ↦ Alice), Visit)50]. Since activity Check is not a negative candi-
date activity, the instances based on trace σh3 are not included.

We train a C4.5 decision tree and obtain the dependency condition dcD,V
with dcD,V(resource ↦ Alice, …) = 1 and dcD,V(resource ↦ Joe, …) = 0, i. e.,
the decision tree classifier described in Example 8.1 predicts that activity Visit
follows directly after activity Diagnostic when the patient was registered by
nurse Alice. All other attribute values are irrelevant for the decision.

Not all dependency conditions are of the same quality. We aim to distinguish
those dependency conditions with good discriminative power from those with
a high error rate. For this purpose, we introduce a quality score for dependency
conditions.

Definition 8.6 (Quality of a Dependency Condition). Let L = (E, Σ, #, ℰ) be an
event log. Let dca,b be a dependency condition for activities a, b ∈ Σ. We denote
with

qualityL(dca,b) ∈ [0, 1]

the quality score of dependency condition dca,b given the observations recorded
in the event log. ♢

In Definition 8.6, we abstract from the exact manner in which the quality score is
determined based on the event log. We recommend to use standard evaluation
techniques that avoid overfitting such as using cross validation or separating the
source data into a training set (used as observation instance according to Defini-
tion 8.5) and a validation set that is used to determine the quality. Doing so reduces
the risk of discovering a dependency condition that is overfitting the data, and,
thus, finding many irrelevant and non-generalizing (cf., the discussion on quality
measures in Section 7.2).

There are many possible existing performance measures for binary classification
algorithms that can be used to estimate the quality score of a dependency condition,
e. g., Accuracy, RMSE, F1-score, AUCROC [Bra97], Cohen’s kappa [Coh60] and
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AUK [KBP12], Matthews correlation coefficient [Pow11], etc. None of the measures
is universally accepted to be used in all situations, the correct choice depends on
the concrete application area [Pow11].

We opted for Cohen’s kappa (κ) [Coh60] to evaluate the quality of discovered
dependency conditions. It has been recommended to evaluate nonparametric bi-
nary classifiers, such as C4.5, on data with imbalanced class priors [Ben08]. Kappa
was introduced to measure the agreement between two raters, which is the same
situation as to measure the agreement between class predictions made by a binary
classifier and the observed classes:

κ =
po − pc
1 − pc

.

Term po is the accuracy of the prediction, i. e., the agreement between the prediction
and the observation. Kappa also includes term pc, which estimates the agreement
by chance that can be expected when randomly guessing. The term pc is estimated
based on the class distribution. A κ-value greater than 0 indicates that the predic-
tion was better than by weighted random selection [Coh60]. Kappa favors a good
prediction of the minority class in situations with imbalanced class distributions
(i. e., as likely to be encountered in our setting) since mostly predicting the majority
class would not yield better agreement than to be expected by chance. However, we
do not claim κ to be the best measure in all cases and, thus, foresee other measures to
be plugged-in to our method depending on the application area and the employed
classification technique.

8.3.3 Discovering Causal Nets with the DHM

We describe how we realize our data-aware heuristic process discovery method as
the Data-aware Heuristic Miner (DHM) that uses conditional dependencies and
the conditional dependency measure to discovery process models in the C-net
notation (cf., Section 3.3). Figure 8.4 shows the C-net that is discovered by the DHM
based on an event log recorded by the hospital process as depicted in Figure 8.1.

The DHM supports four user-specified thresholds that can be used to tune the
noise filtering capabilities to specific needs of the user and the situation:

• θobs ∈ [0, 1], is the observation threshold, which controls the required fre-
quency of relations relative to the number of traces in the event log to be
included in the model;

• θdep ∈ [0, 1], is the dependency threshold, which controls the required
strength of the unconditional dependency measure of relations to be in-
cluded in the model;

• θcon ∈ [0, 1], is the condition threshold, which controls the required qual-
ity of the conditional dependencies to be considered for inclusion, i. e., the
κ-value that is required; and
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Figure 8.4: The simplified variant of the hospital process modeled as C-Net.

• θbin ∈ [0, 1], is the binding threshold, which controls the required relative
frequency of observations of a bindings to be included in the model.

The DHM discovers a C-net (Σ, ai, ao, D, I, O) from event log L = (E, Σ, #, ℰ) and
thresholds θobs , θdep , θbin , θcon in the following three steps:

1. we guarantee a unique start activity ai and a unique end activity ao,

2. we discover the set of unconditional- and conditional dependency relations,
which together from the set of dependency relations D of the C-net,

3. we determine the input bindings I and the output bindings O.

Unique Start- and End activities

We pre-process all traces of the event log by adding artificial start- and end events.
This ensures that the resulting C-net has unique start and end activities. Thus, we
assume that activities ai and ao exist, i. e., {ai, ao} ⊆ Σ and that any trace starts with ai,
ends with ao, and ai and ao do not appear at any other position, i. e., ∀σ∈ℰ∀1≤i≤n(σ =
(ei, e1, … , en, eo) ∧ #act(ei) = ai ∧ #act(eo) = ao ∧ #act(ei) ≠ ai ∧ #act(ei) ≠ ao).

Example 8.4 (Ensure artificial start- and end activities). Take trace σh1 =
⟨eh10, eh11, eh12, eh13, eh14, eh15, eh16, eh17, eh18⟩ that is shown in Table 8.1. We
extend trace σh1 to trace σ′

h1 = ⟨ei, eh10, eh11, eh12, eh13, eh14, eh15, eh16, eh17, eh18, eo⟩
with #act(ei) = ai and #act(eo) = ao. No further attributes are assigned by
artificial start event ei and artificial end event eo.
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Discovering Dependency Relations

The main challenge when discovering a C-net from an event log is to determine
the set of dependency relations D. A dependency relation (a, b) ∈ D represents
a causal dependency from activity a to activity b, i. e., the execution of activity a
depends on a prior execution of activity b. We adopt the main idea of the Heuristics
Miner presented in [WR11] and use the dependency measure to determine the
strength of a dependency relations based on how often activity a is observed to be
directly followed by activity b in the event log. Strong dependency relations are
likely to indicate causal dependency between activities that should be reflected in
the C-net.

Differently from the Heuristics Miner algorithm, we also consider the conditional
dependency measure defined in Section 8.3.1 and discover the set of dependency
relations in the following three steps:

1. We build the set of unconditional dependency relations as follows:

Dudr = {(a, b) ∈ Σ × Σ ∣ a ⇒1,L b ≥ θdep ∧
∣a >1,L b∣

∣ℰ∣ ≥ θobs}.

2. We discover the dependency condition function dc by training a classifier
that uses the observation instances OIL(a, b, θdep) for each pair of activities
(a, b) ∈ Σ × Σ. We use dc to discover the conditional dependency relations
to D. As threshold, we use θcon instead of θobs to also obtain infrequent,
high-quality data conditions:

Dcdr = {(a, b) ∈ Σ × Σ ∣ a ⇒dc,L b ≥ θdep ∧ qualityL(dca,b) ≥ θcon}.

3. We build the set of dependency relations of the C-Net D as the union of
unconditional- and conditional dependencies:

D = Dudr ∪ Dcdr.

Some activities s ∈ Σ might not have a predecessor or successor in the directed
graph induced by D. Intuitively, each task in a process should have a cause (prede-
cessor) and an effect (successor) [WR11], all tasks in the C-net should be connected.
Therefore, we propose a new heuristic to enforce this: the accepted-task-connected
heuristic25. We repeatedly connect only those activities that are already part of the
dependency graph using their best neighboring activities until all activities, except
the artificial start activity ai and the artificial end activity eo, have a cause and an

25The all-task-connected heuristic proposed in [WR11] could also be used. However, it has the shortcoming
that all activities of the process are included, regardless of their occurrence frequency. This might
obstruct the view on the conditional infrequent behavior.
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(a) Unconditional dependencies fulfilling thresholds θobs and θdep .
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(b) Added conditional dependencies fulfilling threshold θcon .
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(c) Dependency added by the accepted-task-connected heuristic to connect activity Organize
Ambulance.

Figure 8.5: Dependency relations are discovered in three steps: (1) discovery of unconditional
dependencies (Dudr), (2) discovery of extra conditional dependencies (Dcdr), and (3) adding
extra missing dependencies through the accepted-task-connected heuristic (Datc).



8.3 DISCOVERING CONDITIONAL BEHAVIOR 161

8

effect. Then, set Datc of relations necessary to connect all accepted activities is:

Datc = {(a, b) ∈ (Σ ⧵ {ai}) × (Σ ⧵ {ao}) ∣
(∄x((a, x) ∈ D ∧ ∀y((a ⇒1,L b) ≥ (a ⇒1,L y))))

∨(∄x((x, b) ∈ D ∧ ∀y((a ⇒1,L b) ≥ (y ⇒1,L b))))}.

We extend the dependency relations with the new relations, i.e., D = D ∪ Datc.
There might be new, unconnected activities in D. Therefore, we repeat adding the
best neighboring activities until set Datc is empty.

Example 8.5 (Building the set of dependency relations). Figure 8.5 shows how the
DHM discovers the dependency relations in three steps. Assume a noise-free
event log that is generated by the hospital process depicted in Figure 8.2.

1. The standard (unconditional) dependency relations, which are shown in
Figure 8.5a, are discovered. Infrequently observed relations are missing.

2. Four additional conditional dependencies are discovered based on de-
pendency conditions obtained from the attributes in event log. All the
infrequent process paths are discovered. Adding the dependencies leads
to the inclusion of activity Organize Ambulance, which was previously not
part of the model. However, activity Organize Ambulance is unconnected,
i. e., no outgoing dependency relation was discovered.

3. Therefore, in the third step, the unconnected activity Organize Ambulance
is connected by using the proposed accepted-tasks-connected heuristic by
adding the dependency with the highest unconditional dependency score.
In this case, the only successor activity ao is added.

Discovering Input- and Output Bindings

The input and output binding functions of the C-net need to be discovered to deter-
mine the type of causal dependency between activities. Assume both (a, b) ∈ D
and (a, c) ∈ D are discovered dependencies s. t. b ≠ c. Then, we need to deter-
mine whether, after executing activity a, there is a choice between activities b and
c or both activities should be executed in parallel. There are several methods to
determine the input- and output bindings of a C-net. There are two categories:

• methods that use alignments to compute optimal bindings based on a cost
function [ADA11b] and

• methods that use heuristics to determine likely bindings, which may be
suboptimal [WA03; WAA06; WR11].
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For the DHM, we use the heuristic proposed by the HM [WR11], since it is compu-
tationally more efficient than alignment techniques. We repeat its definition for the
sake of completeness.

For the output binding function O of an activity a ∈ Σ, we need to determine
which executions of b ∈ Σ (with (a, b) ∈ D) were caused by an execution of activity
a. The heuristic considers activity b to be caused by activity a only if it is the nearest
activity that may have caused b. Any other activity x executed in between a and b
should not be a possible cause of b, i. e., (x, b) ∉ D.

Definition 8.7 (Set of activities caused by an event). Let L = (E, Σ, #, ℰ) be an
event log. Let σ = ⟨e1, … , ei, … , en⟩ ∈ ℰ be a trace. Let D ⊆ Σ × Σ be the set of
discovered dependencies. We obtain the set of activities that were caused by an
event ei as:

actCaused(ei) = {b ∈ Σ ∣ #act(ei) = a
∧ ∃i<j≤n #act(ej) = b ∧ (a, b) ∈ D

∧ ∀i<k<j (#act(ek), b) ∉ D}. ♢

We determine the frequency |o|L,a ∈ ℕ of an output binding o ⊆ Σ for activity
a ∈ Σ in the event log L as:

|o|L,a = ∣{e ∈ E ∣ #act(e) = a ∧ actCaused(e) = o}∣ .

Then, we build the complete multi-set of output bindings with the most frequent
bindings. Those bindings that fulfill the user-specified binding threshold θbin :

O(a) = {o ⊆ Σ ∣ maxo⊆Σ(|o|L,a) > 0 ∧
|o|L,a

maxo⊆Σ(|o|L,a)
≥ θbin}.

The input binding function I is obtained by reversing the same approach.

Example 8.6 (Building the output binding function). Take, an event log that consists
only of the three exemplary traces shown in Table 8.1 and the dependency rela-
tions shown in Figure 8.5c. Assume that we want to determine the set of output
bindings for activity Diagnostic, i. e., the set O(Diagnostic). We need to determine
the frequencies |o|L,a for each possible output binding o ⊆ Σ. We consider only
activities that are in a dependency relation with activity Diagnostic. Thus, the
set of candidate output bindings is reduced to: {{Decide}, {Visit}, {Decide, Visit}}.
We compute the frequencies of each output binding as:

∣{Decide}∣L,Diagnostic = 2

|{Visit}|L,Diagnostic = 1

∣{Decide, Visit}∣L,Diagnostic = 0.
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Thus, the candidate output binding {Decide} is activated twice, in 𝛔h1 and in 𝛔h3,
and candidate output binding {Visit} is activated once, in 𝛔h2. The output binding
candidate {Decide, Visit} is never activated since according to the dependency
relations both Diagnostic and Visit are possible causes for activity Decide. None
of the events referring to an execution of activity Diagnostic can have caused
both Decide and Visit. For example, in trace 𝛔h2, there is an Visit event (eh24) in
between the execution of Diagnostic (eh23) and Decide (eh26). Thus, we obtain set
actCaused(eh23) = {Decide}.

Combining the DHMwith Existing Heuristics

Within the scope of this chapter, we do not elaborate on the various other heuristics
defined by the HM [WR11], such as the long-distance heuristic, the length-two
loop heuristic, and the relative-to-best heuristics. Those heuristics and further im-
provements proposed to the HM, e. g., those proposed by the Fodina miner [Bro14]
can be used together with the DHM. However, the choice which heuristics to apply
highly depends on the process at hand.

8.4 Extending Causal Nets with Multiple Perspectives

So far, we described how the DHM uses attributes values recorded in the event
log to detect conditional dependencies. We use the information about the data-,
resource, and time-perspective of a process that is stored in the event log to discover
the control-flow of the model (i. e., the C-Net). However, the C-Net discovered by
the DHM is agnostic to those other perspectives, i. e., only the control-flow of the
process is defined. In this section, we propose an extension to the C-Net notation
that captures the additional perspectives: Data Causal Nets (DC-Nets). Also, we
show how to extend the C-Net that is discovered by the DHM to a DC-Net, i. e., we
describe the last Step 5 in Figure 8.3.

8.4.1 Data Causal Nets

We adopt a similar notation as used for DPNs and extend the C-Net with attributes,
write operations, and guard expressions. However, DC-Nets remain to be defined
using replay semantics (i. e., only complete sequences are part of the behavior).

Definition 8.8 (Data Causal Net (DC-Net)). Let AS = {X ⊆ ℙ(Σ) ∣ X = {∅} ∨ ∅ ∉
X} be a set of sets of activities. A DC-Net is a tuple DC = (C, VL, dom ,wr , gd) where:

• C = (Σ, ai, ao, D, I, O) is a C-Net;
• VL is a set of attributes;
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(a) The guarded output bindings as1, … , as9 are highlighted.

Binding Guard expression

as1 color = White
as2 color ≠ White ∧ resource = Alice
as3 color ≠ White ∧ resource ≠ Alice
as4 resource = Alice
as5 resource ≠ Alice
as6 resource ≠ Alice
as7 resource = Alice
as8 referral = Tertiary
as9 referral ≠ Tertiary

(b) Guards assigned to output bindings.

Activity Variables

Triage color
Register resource
Decide referral

(c) Variables written by activities.

Figure 8.6: Multiple perspectives of the simplified hospital process modeled as a DC-net.

• dom ∶ VL → ℙ(U) returns the (potentially infinite) domain for each attribute
v ∈ VL;

• wr ∶ Σ → ℙ(VL) returns the set of write operations for each activity;
• gd ∶ (Σ × AS) ↛ EXPR(VL) returns the boolean guard expression that is asso-

ciated with each output binding of each activity, i. e., dom(gd) = {(a, as) ∈
Σ × AS ∣ as ∈ O(a)}.26 ♢

Attributes are updated by activities through write operations. Guard expressions
need to be fulfilled before an output binding can be activated. Thus, it is possible to
formulate multi-perspective constraints based on information encoded in attributes.
We denote an output binding that is assigned a guard expression different from
true as guarded output binding. We use the same function names as used by the
DPN notation since the underlying concepts are similar and the applicable function
should be clear from the context.
26If an output binding as ∈ O(a) is associated with no guard, we set gd(a, as) = true.
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Example 8.7 (Simplified hospital process modeled as DC-Net). Figure 8.6 depicts a
DC-Net that describes the behavior of the simplified hospital process. We ex-
tended the C-Net shown in Figure 8.4 with guarded output bindings for activities
Register, Diagnostic, Visit, and Prepare. Moreover, we added write operations to ac-
tivities Triage, Register, and Decide. Activities that write attributes are highlighted
with a document symbol and Figure 8.6c lists the attributes that are written,
e. g., the Triage activity writes the color attribute. Guarded output bindings are high-
lighted with circled dots and we assigned them identifiers and list the expression
in Figure 8.6b. For example, there are three guarded output bindings for activity
Register: as1, as2, and as3. The guards of the DC-Net correspond to the rules
defined by the BPMN model shown in Figure 8.1.

Next, we formalize the execution semantics of a DC-net analogous to the seman-
tics of a C-net by introducing its binding sequences, the state of a DC-Net, and its
language through the set of valid binding sequences. Since, in a DC-Net, activities
may write attributes, the binding sequences are extended with the current attribute
assignment.

Definition 8.9 (Binding sequence of a DC-net). Let DC = (C, VL, dom ,wr , gd) be
a DC-Net. We denote the set of possible data-aware bindings of DC as:

DB = {(a, w, asI, asO) ∈ (Σ × 𝒰L
dom × ℙ(Σ) × ℙ(Σ)) ∣ asI ∈ I(a) ∧ asO ∈ O(a)}.

A binding sequence of a DC-net is a sequence of data-aware bindings: 𝛔 ∈ DB∗.♢

Definition 8.10 (State of a DC-Net). Let DC = (C, VL, dom ,wr , gd) be a DC-Net.
The state of a DC-Net STDC = (α, OBL) ∈ 𝒰L

dom × 𝔹(Σ × Σ) consists of the current
attribute assignment α and a multiset of pending obligations OBL. We define function
stateDC ∶ DB∗ → STDC that returns the state after executing binding sequence
stateDC(𝛔) as:

• stateDC(⟨⟩) = (∅, [])
• stateDC(𝛔 ⋅ (a, w, asI, asO)) = (α ⊕ w, OBL ⧵ (asI × {a})) ⊎ ({a} × asO) s. t.

(α, OBL) = stateDC(𝛔)

for any binding sequences 𝛔 ⋅ (a, asI, asO) ∈ DB∗. ♢

Both binding sequence and the state of DC-Net keep track of the attribute assign-
ment by activities. As in a C-Net the pending obligations can be seen as tokens,
which need to be consumed by subsequent activities. However, pending obligations
may be only consumed if the guard expressions on the guarded output bindings
are fulfilled wrt. to the current attribute assignment of the state.
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Definition 8.11 (Valid binding sequences of a DC-Net). Let DC = (C, VL, dom ,
wr , gd) be a DC-Net. Let 𝛔 = ⟨(a1, w1, asI

1, asO
1 ), … , (an, wn, asI

n, asO
n )⟩ ∈ DB∗ be

a binding sequence. Sequence 𝛔 is a valid binding sequence of DC if and only if:

1. a0 = ai ∧ ∀1<j<n(aj ∈ (Σ ⧵ {ai, ao})) ∧ an = ao;

2. there are no pending obligations, i. e., stateDC(𝛔) = (α, []); and

3. for any prefix ⟨(a1, w1, asI
1, asO

1 ), … , (aj, wj, asI
j , asO

j )⟩ = 𝛔′ ⋅ (aj, wj, asI
j , asO

j ) ∈
pref (𝛔) and stateDC(𝛔′) = (α, OBL) we require that:

• (asI
j × {asj}) ≤ OBL, i. e., bindings may only remove pending obligations

for the current activity asi;
• dom(wj) = wr(aj), i. e., the activity writes the required attributes;
• ∀v∈dom(wj)(w(v) ∈ dom(v)), i. e., the written attribute values are valid

according to the domain; and
• eval(gd(aj, asO

j ), α) = true, i. e., the guard expression is fulfilled.

BSDC is the set of valid binding sequences of the DC-net DC. ♢

Example 8.8 (Valid binding sequences). Take the DC-Net shown in Figure 8.6. We
abbreviate activities as follows: atri is the activity Triage, areg is the activity Register
etc.. The following binding sequence corresponds to trace 𝛔h1 (cf., Table 8.1):

𝛔 = ⟨(ai, ∅, ∅, {atri}),

(atri, (color ↦ Red), {ai}, {areg}),

(areg, (resource ↦ Joe), {atri}, {ache, avis}),

(ache, ∅, {ache}, {ache}), (ache, ∅, {ache}, {ache}), (ache, ∅, {ache}, {apre}),

(avis, ∅, {areg}, {adia}), (adia, ∅, {avis}, {adec}),

(adec, (referral ↦ Ward), {adia}, {apre}),

(apre, ∅, {ache, adec}, {ao}),

(ao∅, ∅, ∅)⟩.

Binding sequence 𝛔 is a valid binding sequence of the DC-Net, i. e., 𝛔 ∈ BSDC
since: (1) 𝛔 starts with ai and ends with ao, (2) there are no pending obligations
in state stateDC(𝛔), (3) all prescribed write operations are present, and (4) all
guard expressions are fulfilled.

We abbreviate attributes as follows: res refers to resource, ref refers to referral,
and col refers to color. The state of the DC-Net changes as follows while replaying
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binding sequence 𝛔. All conditions are fulfilled in every step:

𝛔1 = ⟨⟩, STDC(𝛔1) = (∅, [])
𝛔2 = 𝛔1 ⋅ (ai, ∅, ∅, {atri}), STDC(𝛔2) = (∅, [(ai, atri)])

𝛔3 = 𝛔2 ⋅ (atri, (col ↦ Red), {ai}, {areg}), STDC(𝛔3) = ((col ↦ Red), [(atri, areg)])

𝛔4 = 𝛔3 ⋅ (areg, (res ↦ Joe), {atri}, {ache,avis}), STDC(𝛔4) = ((col ↦ Red, res ↦ Joe), [(areg, ache), (areg, avis)])

𝛔5 = 𝛔4 ⋅ (ache, ∅, {ache}, {ache}), STDC(𝛔5) = ((col ↦ Red, res ↦ Joe), [(ache, ache), (areg, avis)])

𝛔6 = 𝛔5 ⋅ (ache, ∅, {ache}, {ache}), STDC(𝛔6) = ((col ↦ Red, res ↦ Joe), [(ache, ache), (areg, avis)])

𝛔7 = 𝛔6 ⋅ (ache, ∅, {ache}, {apre}), STDC(𝛔7) = ((col ↦ Red, res ↦ Joe), [(ache, apre), (areg, avis)])

𝛔8 = 𝛔7 ⋅ (avis, ∅, {areg}, {adia}), STDC(𝛔8) = ((col ↦ Red, res ↦ Joe), [(ache, apre), (avis, adia)])

𝛔9 = 𝛔8 ⋅ (adia, ∅, {avis}, {adec}), STDC(𝛔9) = ((col ↦ Red, res ↦ Joe), [(ache, apre), (avis, adec)])

𝛔10 = 𝛔9 ⋅ (adec, (ref ↦ Ward), {adia}, {apre}), STDC(𝛔10) = ((col ↦ Red, res ↦ Joe, ref ↦ Ward),

[(ache, apre), (adec, apre)])

𝛔11 = 𝛔10 ⋅ (apre, ∅, {ache, adec}, {ao}), STDC(𝛔11) = ((col ↦ Red, res ↦ Joe, ref ↦ Ward), [(apre, ao)])

𝛔12 = 𝛔11 ⋅ (ao, ∅, {apre}, ∅), STDC(𝛔12) = ((col ↦ Red, res ↦ Joe, ref ↦ Ward), []).

We highlighted guarded output bindings such as as3 = {ache,avis}, which was
added in 𝛔4. The guard of binding as3 needs to be fulfilled in state STDC(𝛔4), i. e.,
gd(Register, as3) ← (color ≠ ∧resource ≠ Alice) needs to hold. The attribute
assignment in state STDC(𝛔4) is (color ↦ Red, resource ↦ Joe) and, thus, the
guard is fulfilled.

We can, now, express the behavior of a DC-Net using the trace set notation that
we introduced in Section 3.1, i. e., we can use DC-Nets as input to other presented
methods that require trace sets as input. For example, alignments and the fitness
and precision of DC-Net can be defined. The C-Net notation does not distinguish
between observable activities and process transitions as well as between attributes
and variables. Therefore, we assume Σ = T and VP = VL since a separate definition
of a labeling function is not required. To obtain the trace set of a DC-Net, we take
the sequence of activity executions and write variable assignments and remove the
introduced artificial activities ai and ao since they do not represent real work in the
process.

Definition 8.12 (Trace set of a DC-Net). Let BSDC be the set of valid binding se-
quences of the DC-net DC = (C, VL, dom ,wr , gd). Let T = Σ be the set of process
transitions. Let VP = VL be the set of process variables. Let PS = (T × 𝒰P

dom) be the
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set of all possible process steps. We define the trace set of DC-Net as:

TSDC = {⟨(t1, w1), … , (tn, wn)⟩ ∈ PS∗ ∣ ∃σ∈BSDC
(σ = ⟨(ai, wi, asI

i , asO
i ),

(t1, w1, asI
1, asO

1 ), … ,
(tn, wn, asI

n, asO
n ),

(ao, wo, asI
o, asO

o ))}. ♢

We can also convert the DC-Net to a DPN that over-approximates its behavior. We
use the transformation from C-Nets to Petri nets that is proposed by Aalst et al. in
[AAD11] and extend the resulting Petri net with the write operations and guard
expressions of the DC-Net. This conversion enables us to leverage existing meth-
ods for DPNs and Petri nets, such as the balanced alignment method presented in
Chapter 5. Figure 8.7 shows such a conversion from the hospital process DC-Net to
a DPN. Each input- and output binding is transformed to an invisible routing tran-
sition. Guards on output bindings are transformed to guards on the corresponding
invisible transitions.

8.4.2 Discovering DC-Nets

We extend the C-Net by discovering the write operations and guarded output
bindings of a DC-Net. We already discovered conditional dependencies between
activities. For example, the dependency relation between activities Prepare and
Organize Ambulance was discovered to be associated with the condition: referral =
Tertiary. However, those conditions were discovered on the level of dependency
relations (i. e., the edges between Prepare and Organize Ambulance) and not on the
level of output bindings. One dependency relation may be element of several output
bindings. Therefore, we cannot directly use the dependency conditions that were
discovered in Section 8.3.2. Here, we make use of existing decision mining methods,
such as the one later presented in Chapter 10 or the one presented in [LA13b]. Since
we will elaborate on decision mining method in more detail in Chapter 10, we only
introduce the idea briefly.

The main challenge for all decision mining methods is to build a set of obser-
vation instances based on the event log, i. e., for which attribute values a certain
alternative was taken. Here, the alternatives are the different output bindings
for an activity (e. g., O(Prepare) = {{Organize Ambulance}, {ao}}). Our goal is to
find a good guard function for the DC-Net, i. e., good guard expressions for the
output bindings of each activity based on the attribute values recorded before-
hand. For example, we would like to infer that the guard expression for the output
binding {Organize Ambulance} of activity Prepare is: (referral = Tertiary), i. e.,
gd(Prepare, {Organize Ambulance}) ← (referral = Tertiary). The set of observa-
tion instances for an activity of a DC-Net based on an event log is obtained as
follows.
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Figure 8.7: Conversion from the DC-Net of the hospital process to a DPN that over-
approximates its behavior. Each input- and output binding is transformed to an invisible
routing transition. Guards on output bindings are transformed to guards on the correspond-
ing invisible transitions. We simplified the DPN to improve the legibility of the figure by
removing the introduced invisible transitions for activities with only one input- or output
binding. Those transitions are not strictly necessary.
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Definition 8.13 (Observation instances for a C-Net activity). Let L = (E, Σ, #, ℰ)
be an event log. Let C = (Σ, ai, ao, D, I, O) be a C-Net. Let AS = {X ⊆ ℙ(Σ) ∣ X =
{∅} ∨ ∅ ∉ X} be a set of sets of activities. Function OIAS,L ∶ Σ → 𝔹(𝒰L

dom × AS)
returns the multi-set of observation instances for each activity of the C-Net:

OIAS,L(a) = ⨄
e∈E ∣ #activity(e)=a

[(latest(e), actCaused(e))]
♢

Having determined the observation instances, we use the techniques presented
in [LA13b] and Chapter 10 to discover guards for the output bindings, i. e., we
estimate the guard function gd . Here, we do not elaborate further on how guards
are obtained since this is discussed in-depth in Chapter 10.

As last step, we discover the write operations of the DC-Net. We assume that
each activity writes the attributes that have been observed to be written in the
event log for that activity. We retain the attributes that are used in the guards of
the DC-Net since not all attributes may be important.

Example 8.9 (Discovering guarded output bindings). Assume that we want to dis-
cover the guards for the output bindings of activity Prepare. We collect a set of
observation instances based on the three exemplary traces:

OIAS,L(Prepare) = [((color ↦ Red, resource ↦ Joe, referral ↦ Ward), {ao})2,
((color ↦ Red, resource ↦ Alice, referral ↦ Ward), {Organize Ambulance})].

Based on the observation instance, we can employ, e. g., a C4.5 decision classifier
to build the following decision tree:

color

Organize
Ambulance ao

referral = Tertiary referral ≠ Tertiary

Then, the obtained guard function returns the following guards for activity
Prepare:

gd(Prepare, {Organize Ambulance}) ← (referral = Tertiary)
gd(Prepare, {ao}) ← (referral ≠ Tertiary)

The leafs of the decision tree are converted to terms of the guard expression.
The exact conversion from a C4.5 decision tree to as set of guard expression is
explained more detailed in Chapter 10.
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8.5 Evaluation

We evaluated the DHM based on both real-life and synthetic data sets. To evaluate
the method, we implemented the DHM in the DataAwareCNetMiner package of the
open-source framework ProM 6.7. In Section 11.1 we describe the implementation,
which provides an interactive tool, which allows to quickly discover C-nets for
different parameter settings and to explore the discovered data dependencies.

In the interest of a clear separation between the more theoretical contributions of
this thesis and their applications to case studies, we describe the evaluation on real-
life data sets separately as part of the presentation of case studies in Sections 12.4,
13.4 and 15.4.

The experiments for the synthetic data show that the DHM is resilient to a certain
degree of randomly injected noise, which is not characterized by data conditions.
It rediscovers the original model, whereas earlier techniques either show too much,
or too little behavior.

8.5.1 Event Log and Methods

We generated an event log with 100,000 traces and approximately 1,000,000 events
by simulating the process model shown in Figure 8.1 using CPN Tools [JKW07].
Three data attributes are recorded in the event log: color, resource, and referral. We
adjust the frequency distributions of the recorded attributes values such that paths
Ⓐ, Ⓑ, and Ⓒ in model Figure 8.1 are recorded infrequently. Specifically, only:

• 1.4% of the traces have an event setting the attribute color = White,
• 33.4% of the traces have an event setting the attribute resource = Alice, and
• 1.7% of the traces have an event setting the attribute referral = Tertiary.

We checked that the generated event log is fully fitting the hospital process model
shown in Figure 8.1. Our method (DHM) was compared with the following two
methods: the Heuristics Miner [WR11] with frequency filtering based on θobs (HMF)
and the Heuristics Miner [WR11] without frequency filtering (HMA). For all three
methods, we used the following standard parameters: θobs = 0.1 (0.0 for HMA),
θdep = 0.9, θbin = 0.1, θcon = 0.5, and the accepted-task-connected heuristic. To discover
dependency condition, we used C4.5 as classifier and estimated its performance
with 10 times 10-fold cross validation to obtain the quality score.

8.5.2 Experimental Design

The experiment aims to assess the efficiency and effectiveness, in term of noise filtering
capabilities, of our method. For this purpose, we injected three different types of
noise into the event log by randomly:

• adding one additional event to an increasing number of traces,
• removing one additional event to an increasing number of traces, and
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• swapping one event with another randomly selected event in an increasing
number of traces.

Then, we compared the discovered dependency relations with those of the C-net
reference model (Figure 8.4) in terms of graph edit distance (GED) [DDG09]. GED
measures the difference between two C-Nets based on the number of edit operations
required to transform one C-Net into the other C-Net based on the two operations:
adding or removing an activity and adding or removing a dependency relation.
Note that we ignore the difference in bindings for this experiment since we are
solely interested in discovering the correct dependency relations.

For this evaluation, we did not use fitness, precision, or behavioral comparison
measures as those measures would not be applicable in this setting. Fitness and
precision do not measure the quality of the model with regard to a reference model
(gold standard). Moreover, when the discovered models are not sound (e. g., hav-
ing a deadlock), the behavior may be undefined even when the model is close to
the original model and provides insights. Behavioral measures would also fail to
distinguish the difference between the data-dependent re-sequencing of activities
(pattern Ⓒ in Figure 8.4) and simple parallelism. For example, both in Figure 8.2b
and in Figure 8.2a activities Visit and Diagnostics can be interleaved in any order.

8.5.3 Results

Regarding the efficiency of the method, we could discover all C-Nets in less than 3
seconds of computation time using 2 GB of memory on a standard laptop. Most of
the computation time was spend in the training and validation of the C4.5 classifier,
which we use to discover data conditions. Since we employed cross validation, the
training procedure was repeated 10 times each time for 10 folds. Thus, we consider
that the DHM can be used in a real-life settings with large event logs.

Next, we investigated the effectiveness of our method, i. e., whether the DHM
able to rediscover the infrequent conditional relations and distinguish them from
random noise. Without any noise, our method was able to rediscover the relations Ⓐ,
Ⓑ, and Ⓒ, i. e., the highlighted edges in Figure 8.4. The original rules Color = White
and Referral = Tertiary were discovered for relations Ⓐ and Ⓒ. For path Ⓒ, two rules
were discovered: Nurse = Alice for the edge from Diagnostics to Visit and Nurse ≠
Alice for the edge from Visit to Diagnostics. Thus, our method discovered the
conditional re-sequencing of activities Visit and Diagnostics, whereas the standard
Heuristics Miner (cf., the model in Figure 8.2b) considered both activities as parallel.
Moreover, when extended the C-Net to a DC-Net, we could discover the guard
expressions shown in Figure 8.6.

We added increasing levels of noise to the event log and compared the discov-
ered models with the reference model. Figure 8.8 shows the result of the GED
measurement for noise levels ranging from 0% to 100% (i. e., up to 100% of the
traces are injected with noise) and the three considered types of noise.
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Figure 8.8: GEDs between the relations discovered by the compared methods and relations
of the reference model for varying noise levels and noise types.

Add Event. Our method (DHM) handles the added noise well until 15% of the
traces were modified. Until 65% of the traces were affected by noise the DHM
returns a models that is closer to the reference model than the one returned by
the standard Heuristics Miner with noise filtering (HMF). The HMF method is
rather insensitive to the injected noise. However, it fails to discover the reference
model even without noise, as shown in Figure 8.8 and evident in Figure 8.8. When
lowering the observation frequency threshold to 0.0 (method HMA), already 5%
of injected noise affect the discovery and undesirable dependencies appear.

Remove Event. Interestingly, neither the DHM nor the HMF method seem to be af-
fected by that kind of noise. However, as before the HMF method does not discover
the infrequent relations for the event log without noise. This can be explained by
the distribution of the different events in the event log. Since activity Check can be
repeated, it occurs more frequently in the event log than other activities. Therefore,
it is more likely that an event recorded the Check activity is removed. Removing
one event of the many events that refer to the Check activity is unlikely to have a
large effect on the mined C-net.
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Swap Event. Swapping two events randomly in an increasing number of traces
quickly challenges both the classical Heuristics Miner method (HMF) as well as
our DHM. The reference model is rediscovered for up to 10% noise. Then, as the
classical HMF method also our method get affected by the injected noise. This can
be expected because by swapping events the recorded attribute values might also
be swapped, which makes it more unlikely to discover the correct data conditions.

In all of the comparisons, we did not include the IM in Figure 8.8, as it returns
models with a different structure than C-nets. Therefore, a direct comparison would
not be fair. However, the models returned by the IM already fail to rediscover the
original model for an event log with 5% noise as shown in Figure 8.2a.

8.6 RelatedWork

Most related to the work presented in this chapter are approaches for noise filtering
and multi-perspective process discovery.

8.6.1 Noise Filtering Techniques

Early techniques for process discovery often assumed noise-free event logs, e. g.,
the Alpha algorithm [AWM04] and the region-based approaches [CCK08]. These
techniques are of limited use in real-life settings. Most of the more recent process
discovery methods support some type of noise filtering [Wee+12].

These noise-filtering methods are often based on frequencies and ignore the event
payload (i. e., attributes). All those methods fail to distinguish infrequent behavior
that is characterized by deterministic rules from random noise. For example, the
Fuzzy Miner [GA07], the Heuristics Miner [WR11], the Inductive Miner [LFA13], the
Constructs Competition Miner [Red+14], methods based on maximal-pattern min-
ing proposed in [LYC15], and genetic methods such as the Genetic Miner [MWA07]
and the Evolutionary Tree Miner [BDA12] are all based on counting frequencies
when distinguishing noise from regular process behavior. Further examples are
a method based on injecting negative events (i. e., events that are not supposed
to occur) that discover declarative models [Goe+09], a method that uses negative
events to improve existing discovery methods [PCB15], a method that includes prior
knowledge on probability distributions [Rem+13], and a method that discovers a
models expressed in a probabilistic logic [BRL16].

Dedicated noise filtering methods have also been proposed, e. g., a method based
on automata [CLH16] and a method based on outlier detection [Ghi+08]. Again,
both methods are based on the control-flow perspective.

All of the discussed methods are tailored towards filtering infrequent noise based
on the control-flow perspective. Thus, those methods are not able to distinguish
conditional infrequent behavior from random infrequent behavior.
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8.6.2 Multi-perspective Discovery

Decision mining methods have been proposed to discover conditional behavior
of processes. Smedt et al. proposed to distinguish two types of decision mining
techniques [De +17a; De +17b]:

(A) decision-annotated process mining, i. e., first discover a suitable control-flow
and, then, annotate the model with decision rules and

(B) decision-aware control-flow, i. e., control-flow and decision are discovered
together in an holistic manner.27

We consider our method to be of type (B). The dependency conditions discovered
with decision mining techniques based on the event log influence the control-flow
of the discovered C-Net. Both control-flow and data are discovered in a holistic
manner. However, differently to [De +17b] we do not integrate a full decision model
(e. g., a DMN decision requirement diagram [DMN16]) into the model but only
annotate dependencies with rules.

There are several existing process discovery methods that use a staged approach
(i. e., type A) to discover data-aware process models. First, the control-flow is dis-
covered and, then, the process model is enhancement with other perspectives. Ex-
amples of such approaches are the following decision mining techniques [Bat+15;
BBW16; LA13b; LDG13; Roz+09] and the proposed method to discover overlap-
ping rules in Chapter 10. However, these staged approaches do not leverage the full
potential of other perspectives on the process. Process discovery method should
consider multiple perspectives together: data- and control-flow perspective need
to be discovered together.

There are also some proposals for method of type B, which are related to our work.
For example, recent work on declarative process discovery [Sch+16b] considers the
data perspective first. However, similar to association rule mining, sets of rules
rather than full process models are returned. Moreover, work on the discovery of
artifact lifecycles [PFD15] can be considered to follow a data-first approach, i. e.,
business artifacts and their lifecycles are considered to be the starting point for
process discovery. Still, the role of noise and infrequent behavior is not discussed.
The approach presented in [De +17b] also goes beyond discovering the decision
for an existing control-flow model. However, in [De +17b] a decision requirement
diagram [DMN16] instead of a control-flow model with integrated decision logic
is discovered based on information recorded in the event log. Finally, [Aa+16]
describes a method that aims to separate the decision logic, which is often implicitly
encoded in process model, from the control-flow. Thus, the method considers the
integration of decision logic with control-flow. However, the method does not use
an event log as source of information about the process.

27The two types of decision mining are denoted as Q3 and Q4 respectively in the quadrant presented
in [De +17a; De +17b]. However, Q1 (control-flow discovery) and Q2 (data mining without a process
model) are not applicable in our setting.
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8.7 Conclusion

In this chapter, we presented the Data-aware Heuristic Miner (DHM), a process
discovery method that reveals conditional infrequent behavior from event logs.

8.7.1 Contribution

The DHM distinguishes undesired noise from infrequent behavior that can be
characterized by conditions over the data attributes of the event log. This is the first
approach that uses both event labels and data attributes when discovering the control-flow.
Data- and control-flow are learned together. We employ classification techniques
to discover conditional dependencies based on the attribute values recorded in
the event log. Then, we use those conditional dependencies to discover C-Nets
based upon the ideas proposed by the Heuristic Miner [WR11]. The discovered
C-Nets are annotated with information on the data perspective, i. e., the discovered
classification rules. Moreover, we extend the C-Net notation, which is still focused
on the control-flow perspective, to the data-aware DC-Net notation. By using the
DC-Net notation existing methods for decision mining can be applied on the C-
Net discovered by the DHM. We systematically evaluated the DHM by using a
synthetic data set. The evaluation showed that our approach can efficiently handle
large event logs with several attributes and distinguish between typical levels of
random noise and conditional infrequent behavior.

We implemented the DHM as an interactive tool in the open-source process
mining framework ProM. The tool is described in Section 11.1. Later in Sections 12.4,
13.4 and 15.4, we describe how we used the interactive DHM (iDHM) in three case
studies. In all three case studies, we revealed interesting infrequent conditional
behavior from real-life event logs.

8.7.2 Limitations

We acknowledge that there are some limitations to our method.

• We only considers conditional directly-follows dependencies. Like most
process mining approaches, our method requires sufficiently large event
logs. Small event logs might, by chance, not contain all directly-follows rela-
tions. Moreover, more complex patterns of conditional infrequent behavior,
e. g., longer sequences or sub-processes, cannot be discovered.

• There is a risk that the C-Nets returned are unsound [AS11] since our method
is based on the Heuristics Miner, which does not guarantee soundness.

• We only tested the noise filtering capabilities of our method based on the
example hospital process. Therefore, only limited claims on the general ap-
plicability of the noise filtering capabilities of the method can be made.
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8.7.3 FutureWork

There are several directions for future work that are worthwhile exploring.

• The idea could be extended from directly-follows relations to more complex
patterns of conditional behavior (e. g., conditional long-term dependencies).
Our method successfully reveals data dependencies based on directly-follows
relations, but dependencies that cannot be captured by directly-follows rela-
tions might be missed.

• Recent research shows that it is possible to structure models discovered by
the Heuristics Miner to prevent the discovery of unsound models [Aug+16].
Since our method returns the same type of models as discovered by the
Heuristic Miner (i. e., C-Nets), it would be interesting to apply this structuring
method together with our method to reveal infrequent conditional behavior.

• Our method supports the time perspective when it is encoded as data at-
tribute, e. g., conditional relations that appear for cases with a high through-
put time. However, the time perspective has particular characteristics that
warrant further investigation, e. g., time is monotonically increasing within a
process instance and the duration of process activities is usually determined
by several correlated events recording life-cycle transitions.
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9 Guided Multi-perspective Process
Discovery

Most process mining techniques assume that recorded events correspond to mean-
ingful activities in the instances of a process (i. e., cases). The information about
recorded executions of activities can then be used, e. g., to discover models describ-
ing the observed behavior or to check conformance with respect to existing regula-
tions, procedures, and process documentation. The ability to identify executions
of activities based on events and discover recognizable models is crucial for any
process mining technique. Events that do not directly correspond to high-level activi-
ties recognizable for process workers are unsuitable for process analytics since their
semantics are not clear to domain experts. Process models discovered based on
such low-level events are often incomprehensible to stakeholders. Process discovery
methods need to consider the function perspectives when dealing with such event
logs. Events recording the execution of low-level activities should be abstracted to
activity instances of high-level activities prior to applying process discovery methods.

Table 9.1: Low-level and high-level activities on the type and instance level. The goal of
this chapter is to identify the instances of high-level activities (i. e., activity instances) from
events recording instances of low-level activities.

abstraction level low high

type level low-level activity high-level activity

instance level event activity instance

As shown in Table 9.1, we assume that the events in the input event log are recorded
at a low abstraction level, i. e., instances of low-level activities are recorded in a
low-level event log. Our goal is to identify executions of high-level activities, which
we denote as activity instances, from the event log. Before presenting our proposal
for an event abstraction method, we motivate the need for event abstraction with
an example.
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9.1 Motivation for Event Abstraction

We introduce event abstraction using a motivating example. Here, we do not use
the running example hospital process example since that process is less suited for
the challenges we want to illustrate. Instead, we use the actual hospital system of a
Norwegian hospital, which will be described in more detail as part of the case study
in Chapter 14. The hospital uses digital whiteboards to manage the work of nurses
on the hospital ward. The whiteboards record the work of nurses at fine granularity:
each action of the nurse is registered. Moreover, the system is connected to the call
signal system of the hospital. This system records events when a patient presses an
alarm button and when nurses clear the alarm state by pressing a different button.

The upper part of Figure 9.1 depicts four high-level activity instances that were
carried out by nurses of the hospital for one patient: Shift, Alarm, Alarm, and Han-
dover. The second instance of Alarm and Handover are carrier out in parallel. The
lower part of Figure 9.1 shows the events that are actually recorded by the digital
whiteboard system while nurses carried out the four high-level activities. As de-
picted in Figure 9.1 one high-level activity instance may result in multiple low-level
events being recorded. For example, the first activity instance Shift resulted in three
low-level events being recorded. Groups of low-level events correspond to instances
of high-level activities. Note that there are different sequences of events that corre-
sponding to an instance of high-level activity Shift. Also note that low-level events
can be mapped to different activities instances (e. g., CallSignal0 is both recorded
instances of Shift and Alarm).

… Nurse
Changed

Call
Signal1

Call
Signal0

… Call
Signal4

Call
Signal1

… Call
Signal4

Call
Signal1

Nurse
Changed

Call
Signal0

Low-level
events

Shift Alarm Alarm

High-level
activity

instances

Handover

Figure 9.1: Mapping between events recording the occurrence of low-level activities and
instances of the actual high-level activities that were executed for a process instance.

As illustrated by the example, events recorded by information systems often
do not match instances of high-level activities [BMW14; GRA10], i. e., there are
functional dependencies between events that are not uncovered by process discov-
ery methods. Generally, there can be an n:m-relation between recorded low-level
and high-level activities both on the type and instance level [BMW14; GRA10], i. e.,
one high-level activity instance may result in multiple low-level events being recorded
and, vice versa, one such low-level event may relate to multiple high-level activity
instances.

When applying process discovery methods on low-level event logs, semantically
related activities are not presented as such. Grouping those related activities to-
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gether into higher level activities facilitates model comprehension [RMD11]. Thus,
event abstraction, the grouping of events to recognizable activities on a higher ab-
straction level, can help to guide process discovery methods towards discovering
a process model that can be understood by stakeholders and is more useful for
answering process questions. This chapter reports on an event abstraction method,
which groups sequences of low-level events to high-level activity instances.

There are several challenges for event abstraction methods [Bai15]:

• shared functionality, i. e., a low-level activity is carried out as part of the work
for more than one high-level activity;

• noise, i. e., missing and additional unexpected low-level events are recorded
in the event log;

• repetition, i. e., high-level activities reoccur; and
• parallelism, i. e., two or more high-level activities are carried out in parallel.

The goal is to obtain the original mapping between the events recording low-level
activities and the actual high-level activity instances, i. e., we want to determine the
upper part of Figure 9.1 based on the low-level events in the lower part. We now
introduce the motivational example in more detail in Table 9.2 and Example 9.1.

Table 9.2: Excerpt of an example trace 𝛔wb ∈ ℰL from an log-level event log LL that contains
low-level events recorded by low-level activities executed on an electronic whiteboard. The
last two columns hl activity and hl instance indicate which instance of which high-level
activity caused the recording of a low-level event.

low-level events 𝛔wb high-level activity instances

id ll activity time nurse hl activity hl instance

… … … … … …
e12 NurseChanged 122 Nancy Shift 3
e13 CallSignal1 122 Shift 3
e14 CallSignal0 124 Shift 3
… … … … … …
e20 CallSignal4 185 Alarm 6
e21 CallSignal1 194 Alarm 6
… … … … … …
e30 CallSignal4 310 Alarm 11
e31 CallSignal1 311 Alarm 11
e32 NurseChanged 312 Nathan Handover 12
e33 CallSignal0 315 Alarm 11
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Example 9.1 (Low-level event log and high-level activity instances). The first four
columns of Table 9.2 show an excerpt of a trace σwb ∈ ℰL obtained from a
low-level event log LL = (EL, ΣL, #L, ℰL) that is recorded by a digital whiteboard,
which supports the work of nurses in a hospital. We omitted the initial events
of trace σwb. The low-level events were caused by the execution of several
high-level activities. The two last columns show which instance of a high-level
activity, according to domain expert knowledge, caused the recording of the
corresponding low-level events in the same row.

For example, during one execution of the high-level activity Shift, i. e., a shift
change between nurses, three low-level events are recorded: NurseChanged (NC),
CallSignal1 (CS1), and CallSignal0 (CS0). First, the name of the new responsible
nurse is changed in the whiteboard system and recorded as event e12 (NC). Then,
the call signal system of the hospital recorded event CS1: The nurse entered the
room of the patient and pressed a button indicating her presence. After 2 minutes
the nurse left the room and pressed another button, which is recorded as CS1
event. All three low-level activities occurred within 2 minutes. The sequence of
three events strongly indicates that the high-level activity Shift has been executed.

An hour later the call signal system recorded the execution of the low-level
activity CallSignal4 (CS4) as event e20 and, again, low-level activity CS1 as event
e21. Event CS4 indicates that an alarm button has been pressed and event CS1
indicates, again, that the nurse indicated her presence in the room of the patient.
Thus, both events together give evidence that the high-level activity Alarm oc-
curred. However, the event CS0, which indicates that the nurse left the room, is
missing. Maybe the event was not recorded, or the nurse forgot to press the respec-
tive button. We denote such missing events as noise. Moreover, both high-level
activities Shift and Alarm are known to cause events for the low-level activity
CS1 to be recorded. Low-level activity CS1 is an example of shared functionality,
i. e., the respective button is used in both high-level activities.

Finally, two high-level activities are executed: again an Alarm activity instance
and, additionally, a Handover activity instance. The handover takes place during
the alarm, a second nurse Nathan takes over the responsibility for the patient, e. g.,
because nurse Nancy is required elsewhere. For the activity Alarm the three events
CS4, CS1, and CS0 are registered. Moreover, the name of the new nurse Nathan
is recorded. For the activity Handover, only one event recording the execution
of low-level activity NC is present. Again, this low-level activity is an example
of shared functionality since it was also recorded by an instance of the high-level
activity Shift (cf., e32 and e12). Moreover, both high-level activity instance are
examples for the parallel execution of high-level activities.
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9.2 Guided Process Discovery Method

In this chapter, we describe the Guided Process Discovery method (GPD). We use
event abstraction based on domain knowledge on the process to guide process
discovery techniques towards a process model that can be recognized by process
stakeholders. We assume that multiple low-level events grouped together indicate
the execution of a high-level activity. Moreover, we assume that domain knowledge
on the presumed grouping between high-level activities instances and low-level
events can be provided. For example, in Table 9.2 the execution of the high-level
activity Shift is manifested as sequence of three low-level events NurseChanged,
CallSignal1, and CallSignal0.

Domain knowledge about the behavior of activities at a higher level of abstraction
is captured by activity patterns. Activity patterns describe complex interactions of
the control-flow, time, resource and, data perspective in terms of low-level events.
An activity pattern can be seen as description of the work practice on a fine level
of granularity, i.e., low-level of abstraction. Multiple activities on a lower level of
abstraction are captured within one activity pattern. With a set of activity patterns
at hand, we leverage alignment techniques (e. g., the method described in Section 5.2)
to find an optimal mapping between the behavior defined by these activity patterns
and the observed low-level events in the event log.

In Section 9.2.1, we give an overview of the method and the inputs required. Sec-
tions 9.2.2 to 9.2.8 describe the individual steps of the GPD method. In Section 9.3,
sketch the implementation of the method. we In Section 9.4, we sketch the evalua-
tion of the method that is based on its application in four case studies. Finally, in
Section 9.5 we discuss related work and conclude this chapter in Section 9.6.

9.2.1 Overview of the GPD Method

The input to the GPD method is:

(A) a low-level event log LL = (EL, ΣL, #L, ℰL) with low-level events EL describing
the execution of a process in terms of low-level activities ΣL and

(B) domain knowledge on how the recorded low-level activities relate to in-
stances of meaningful high-level activities ΣH that helps to identify activity
patterns.

We transform the low-level event log to an abstracted event log LH = (EH, ΣH, #H, ℰH)
at the desired level of abstraction by using domain knowledge on the relation between
low-level activities and high-level activities. Our method can deal with noise, reoc-
curring and concurrent behavior, and shared functionality.

The GPD method consists of the following 7 steps that are depicted in Figure 9.2:

1. We identify and encode a set of activity patterns that describe domain knowl-
edge on high-level activity behavior. Each activity pattern represent the
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Figure 9.2: Overview of the seven steps of the proposed GPD method.

assumed behavior for one high-level activity.
2. We compose activity patterns in an integrated abstraction model CP.
3. We align the abstraction model CP with the low-level event log LL. The use of

alignments is justified by the fact that, in general, event logs are noisy. Hence,
not all low-level events can be mapped onto instance of high-level activi-
ties. Furthermore, the search for an optimal mapping requires considering
entire traces. Alignment-based techniques do this by solving optimization
problems.

4. We abstract the low-level event log LL to a high-level event log LH using the
alignment mapping.

5. Based on this abstracted event log, we can analyze the process at the desired
level of abstraction. Often, we want to discover a process model LNH at the
desired level of abstraction based on the abstracted high-level event log.

In case a high-level process model LNH was obtained, we need to validate its quality.
The GPD method encompasses two additional steps that can be employed.

6. We expand high-level activities in the discovered high-level process model with
their corresponding activity patterns to get an expanded process model LNE.

7. Finally, we validate the expanded process model LNE against the original event log
LL by computing an alignment. This is possible since the expanded process
model is defined over the original low-level activities recorded in LL.

In the following sections, we describe each step of the GPD method in detail.

9.2.2 Encoding the High-level Behavior in Activity Patterns

We represent knowledge about the relation between low-level activities ΣL and high-
level activities ΣH with multi-perspective activity patterns. An activity pattern can
be seen as description of the high-level activity in terms of work practice on a fine
level of granularity, i.e., the steps required to execute the high-level activity on
a low-level of abstraction. We encode activity patterns as trace sets to allow the
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specification of complex interactions of the control-flow, time, resource and, data
perspective in terms of low-level events. The trace set specifies those events that
are expected to be seen in the event log for one instance of the corresponding high-level
activity.

Activities have life-cycles [Aal16]. Therefore, we introduce a set of life-cycle tran-
sitions LT. The LT may include life-cycle transitions such as: schedule, assign,
start, suspend, resume, and complete. In the remainder of this chapter, we use
only the start and the complete life-cycle transitions, i. e., we assume that LT =
{start, complete}.

Definition 9.1 (Activity Pattern). Let U be an universe of values. Let VP ⊆ V be a
set of variables with domain function dom . Let T be the set of transitions used in
the activity pattern. Let ΣH ⊆ U be a set of high-level activities. Let LT be a set of
life-cycle transition. We define an activity pattern as ap = (TS, λ, ν, hl , lt):

• (TS, λ, ν), is a labeled trace set that defines the behavior expected for the
execution of one instance of a high-level activity, i. e., TS ⊆ (T × 𝒰P

dom)∗ = PS∗

is the set of execution instances of the pattern.
• hl ∶ T → ΣH, is a mapping between transitions and high-level activities.
• lt ∶ T ↛ LT, is a mapping between transitions and life-cycle transitions.

We denote the set of all activity patterns (i. e., atomic and composite) with AP. ♢

We distinguish between atomic and composite activity pattern. Atomic activity patterns
encode the behavior of a single high-level activity instance, i. e., mapping function hl
maps to only one high-level activity: ∀t∈T∀t′∈T(hl(t) = hl(t′)). In each execution
trace 𝛔ap ∈ TS of an atomic activity pattern, steps (t, w) ∈ 𝛔ap correspond to the
low-level transitions t and the low-level variable assignments w that are expected
to be executed as part of the high-level activity hl(t) ∈ ΣH. For composite activity
patterns, we do not restrict the range of the mapping function hl , i. e. multiple high-
level activities may be encoded. Later in Definition 9.2, we compose several atomic
activity patterns to composite activity patterns. Mapping lt is specified by the user
and it is motivated by the observation that activities rarely happen instantaneously.
Usually, there will be at least one transition being mapped to the start life-cycle
transition and one transition to the complete life-cycle transition.

We require that process transitions are not shared between activity patterns, i. e.:

∀(TS1,λ1,ν1,hl1,lt1)∈AP

∀(TS2,λ2,ν2,hl2,lt2)∈AP({t ∈ T ∣ ∃𝛔ap∈TS1
∃w∈𝒰P

dom
((t, w) ∈ 𝛔ap)}

∩ {t ∈ T ∣ ∃𝛔ap∈TS2
∃w∈𝒰P

dom
((t, w) ∈ 𝛔ap)} ≠ ∅)

⟹ ((TS1, λ1, ν1, hl1, lt1) = (TS2, λ2, ν2, hl2, lt2).

Similarly, we require that variables are not shared between activity patterns, so
that we can uniquely identify to which pattern a process step belongs. This is
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Figure 9.3: Three activity patterns apa, apb, apc ∈ AP for the example with process models
in DPN notation. The respective label functions λ are implicitly encoded in the abbreviated
transition names (e.g., λa(CS1A) = CallSignal1).

not limiting: If this condition does not hold, the process transitions and process
variables of the activity pattern can be renamed to avoid overlaps in names. Still,
process transitions t1, t2 ∈ T from two different patterns may be associated with the
same activity name, i. e., λ1(t1) = λ2(t2). Activity patterns can share functionality.

Example 9.2 (Three activity patterns for the hospital whiteboard process). Here, we
use DPNs [Man+16c] as language that operationalizes the language-independent
GPD method. This is just for the purpose of illustration: Other languages could
be used. Figure 9.3 shows three activity patterns apa = (TSa, λa, νa, hla, lta),
apb = (TSb, λb, νb, hlb, ltb) and apc = (TSc, λc, νc, hl c, ltc) that are implemented
as DPNs. We use the abbreviated low-level activity names concatenated with
the pattern name for transitions. For example, transition CS1A models activity
CallSignal1, i.e., λa(CS1A) = CallSignal1. We depict the life-cycle transition
mapped to a transition in italics below the transition, e.g., lta(NCA) = start.

The first pattern apa describes the high-level activity Shift, i.e., for all transi-
tions t in the pattern we assign hla(t) = Shift. First, the nurse responsible for the
patient changes (NCA) and the name of the nurse is recorded in variable Na. Vari-
able Na is mapped to the attribute nurse, i.e., νa(Na) = nurse. Within 30 minutes
(T′

a − Ta ≤ 30min with νa(Ta) = time), the responsible nurse visits the patient
and the call signal system records a button press (CS1A). Finally, the nurse leaves
the room and another button press is registered (CS0A) resetting the status.

The second pattern apb describes a similar sequence (i. e., transitions CS1B
and CS0B), but represents a different high-level activity: The patient is attended
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outside of the normal routine. Transition CS4 has to be executed at most 10
minutes beforehand (i. e., T′

b − Tb ≤ 10min). The low-level activity corresponding
to CS4B is an alarm triggered by the patient. We assign hlb(t) = Alarm for each
transition t in the pattern.

The third pattern apc describes a simple handover between nurses: Only the
responsible nurse changes (NCC) without any consultation of the patient. We
assign hl c(t) = Handover for each transition t in the pattern. Transition NCC is
an example of shared functionality. Both transitions NCC and NCA are labeled
with the same activity name, i.e., λa(NCA) = λc(NCC) = NurseChanged.

9.2.3 Identifying the Activity Patterns

Activity patterns represent the knowledge about how high-level activities are re-
flected by low-level events in the event log. Please note that we do not expect an
activity pattern to be an exact representation of every possible way a high-level ac-
tivity manifests itself in the event log. In fact, in Section 9.2.5 we show that our
method is able to deal with approximate matches. Since obtaining suitable activity
patterns is crucial for the GPD method, we elaborate here on how to obtain them.
We categorize activity patterns based on the way they have been obtained into:
manual patterns and discovered patterns. Table 9.3 provides a list of sources and
examples for activity patterns.

Table 9.3: Sources for manual and discovered activity patterns.

Source Category Examples

Expert knowledge Manual Patterns apa, apb, apc (Figure 9.3)
Process questions Manual Different admission variants (Chapter 13)
Standard models Manual Transactional life-cycle model [Aal16] (Fig-

ure 9.4), clinical protocols
Local behavior Discovered Local process models [Tax+16a], frequent sub

sequences [JA09], episodes [LA15], instance
graphs [DGP16]

Decomposed behavior Discovered Region theory [Car12], clustering [HVA14]
Data attributes Discovered Discovery per department (Chapter 13)

Manual patterns

Manual patterns are created based on domain knowledge about the high-level
activities of the process at hand. We further subdivided manual patterns based
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Figure 9.4: An activity pattern capturing the life-cycle of the high-level activity X-Ray.

on the source of the employed domain knowledge into patterns based on expert
knowledge, process questions, and standard models.

Expert knowledge. Manual patterns based on expert knowledge encode assumptions
on the system. Stakeholders of the process can provide initial assumptions on how
high-level activities are manifested in the event log. Moreover, semantically related
activities can be grouped together to form sub-processes. If the expected behavior
of such a sub-process is known, it can be captured as an activity pattern. The sub-
process captured by the activity pattern can be seen as a single activity on a higher
level of abstraction. In Example 9.2 (Figure 9.3), we describe three activity patterns
that are based on expert knowledge. The patterns encode the assumption that the
low-level activities CS1 and CS0 both occur in the context of shift change and in
the context of an alarm. This knowledge was obtained from a domain expert who
is familiar with the system.

Process questions. Often, questions on the process can be used as a source for activ-
ity patterns. These patterns are not driven by knowledge about the questions, but
knowledge about the required type of output. For example, in one of the case stud-
ies (cf., Chapter 13) we use an activity pattern that is based on the process question:
“What are the trajectories of patients in the hospital based on their admission?”.
The activity pattern encodes the different variants of the admission.

Standard models. Some behavioral patterns appear across several domains. Often,
these are based on domain independent standard models, e. g., the transactional
life-cycle model [Aal16]. Discovering such patterns from event logs is challeng-
ing for state-of-the-art process discovery algorithms. For example, a specialized
algorithm exist for event logs with life-cycle information [LFA16]. It is possible
to encode the expected behavior as activity patterns and, thus, to use standard
algorithms. For example, in Figure 9.4 we show how to adapt the transactional
life-cycle model to encode the transitions for the high-level activity X-Ray. An X-Ray
is scheduled (xscheduled), started (xstart), possibly suspended (xsuspended), resumed
(xresumed), and eventually completed (xcomplete). The XES standard [IEEECIS16]
defines an extension for the transactional life-cycle model.
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Discovered patterns

It is also possible to automatically discover patterns from the low-level event log.
We distinguish between patterns that are discovered based on local behavior, based
on decomposed behavior, and based on data attributes.

Local behavior. There are dedicated pattern mining techniques [DGP16; JA09; LA15;
Tax+16a] that discover patterns of local behavior from event logs. Such patterns
do not capture the behavior of the complete traces. The models describe subsets
of the events and the same event can be part of several patterns. Such discovered
local patterns can be directly used as input to the GPD method, e. g., in [MT17] we
sketched an initial exploration of using local process models as patterns. However,
it can be challenging to automatically assign good labels to discovered patterns and
there is no guarantee that local process models, indeed, represent abstract activities.
Methods for automatic labeling of process fragments [Leo+14b] do exist.

Decomposed behavior. Work on decomposed process discovery [Aal13; Car12; HVA14]
could be leveraged to obtain activity patterns that represent parts of the observed
behavior. Different from methods that discover patterns of local behavior, the event
log is decomposed into several disjunct sub-logs using an automated technique.
Then, a full process model is discovered for each of the logs using standard process
discovery techniques. This process model can be used as activity pattern.

Data attributes. Next to automatic decomposition approaches, information can be
exploited on the hierarchical structure that is stored in the data attributes of the
event log. For example, later in the evaluation (Section 9.4), we use information on
the department in which an event occurred. We split the event log into sub logs
based on the department and discover three separate process models that are used
as activity patterns.

9.2.4 Composing the Activity Patterns to an Abstraction Model

With a set of activity patterns for the process under analysis at hand, we compose
their behavior into an integrated abstraction model by using composition functions.

Composition Functions

The composition of activity patterns may restrict the interaction that is possible
between the high-level activities that are captured by the activity patterns. By
restricting the interaction, we help to find a more precise mapping between low-
level events and high-level activities.
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Definition 9.2 (Composition Function). A composition function f ∶ AP∗ ↛ AP
combines activity patterns ap1, … , apn into a composite activity pattern cp ∈ AP,
i.e., f(ap1, … , apn) = cp. We denote the set of all composition functions as F ∶ AP∗ ↛
AP. ♢

Given activity patterns api = (TSi, λi, νi, hl i, lt i) ∈ AP with i ∈ ℕ and TSi ⊆
(T × 𝒰P

dom)∗ = PS∗
i , we define the semantics for five basic composition functions:

sequence, choice, parallel, interleaving and repetition. Our abstraction method is not
restricted to these functions. Further composition functions can be added.

• Sequence composition ⊙ ∈ F with dom(⊙) = {⟨ap1, ap2⟩}:

ap1 ⊙ ap2 = (TS, λ, ν, hl , lt) with
TS = {σ1 ⋅ σ2 ∣ σ1 ∈ TS1 ∧ σ2 ∈ TS2}, and
λ = λ1 ⊕ λ2, ν = ν1 ⊕ ν2, hl = hl1 ⊕ hl2, lt = lt1 ⊕ lt2.

The binary operation ⊙ is associative. We write ⨀1≤i≤n api = ap1 ⊙ ap2 ⊙
… ⊙ apn to compose sequences of patterns in sequence. Moreover, we define
⨀1≤i≤0 api = {⟨⟩}.

• Choice composition ⊗ ∈ F with dom(⊗) = {⟨ap1, ap2⟩}:

ap1 ⊗ ap2 = (TS, λ, ν, hl , lt) with
TS = TS1 ∪ TS2, and
λ = λ1 ⊕ λ2, ν = ν1 ⊕ ν2, hl = hl1 ⊕ hl2, lt = lt1 ⊕ lt2.

The binary operation ⊗ is commutative and associative. We write ⨂1≤i≤n api =
ap1 ⊗ ap2 ⊗ … ⊗ apn to compose sequences of patterns in choice.

• Parallel composition ⋄ ∈ F with dom(⋄) = {⟨ap1, ap2⟩}:

ap1 ⋄ ap2 = (p, λ, ν, hl , lt) with
TS = {σ ∈ (PS1 ∪ PS2)∗ ∣ proj (σ, PS1) ∈ TS1 ∧ proj (σ, TS2) ∈ PS2} and
λ = λ1 ⊕ λ2, ν = ν1 ⊕ ν2, hl = hl1 ⊕ hl2, lt = lt1 ⊕ lt2.

The binary operation ⋄ is commutative and associative. We write♦1≤i≤n api =
ap1 ⋄ ap2 ⋄ … ⋄ apn to compose sequences of patterns in parallel.

• Interleaving composition ↔ ∈ F with dom(↔) = AP∗ and p(n) denoting the
set of all permutations of the numbers {1, …,n}:

↔ (ap1, … , apn) = ⨂
(i1,…,in)∈p(n)

⨀
1≤k≤n

apik
.
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• Repetition composition [n, m] ∈ F with dom([n, m]) = AP, n ∈ ℕ0, m ∈
ℕ ∪ {∞}, and n ≤ m:

ap[n,m]
1 = ⨂

n≤i≤m
⨀

1≤k≤i
ap1.

We build a composed abstraction model cp = (TS, λ, ν, hl , lt) ∈ AP with a formula
that composes all patterns of interest. The trace set TS ⊆ PS∗ corresponds to the
overall behavior that we expect to observe for the execution of all high-level activities
in a single process instance.

Example 9.3 (Composition of activity patterns). Given the activity patterns APa,
APb and APc shown in Figure 9.3, we can compose their behavior to

cp = (↔ (ap[0,∞]
a , ap[0,∞]

b ))[0,∞] ⋄ ap[0,∞]
c .

Here, we allow that all of the three patterns are repeated an unbounded number
of times and may be skipped, i. e., the repetition composition [0, ∞]. We allow
the absence of patterns using the repetition composition as the corresponding
high-level activities might not have been executed in every process instance.
Then, we first interleave patterns ap[0,∞]

a and ap[0,∞]
b , i. e., instances of the high-

level activity represented by apa need to finish before instances of the high-level
activity represented by apb can start and vice versa. The combined behavior may,
again, be repeated indefinitely and may also be skipped. We restrict cp to only
contain the interleaving of patterns apa and apb as there is only one responsible
nurse per patient. Therefore, the activities expressed by apa and apb can occur in
any order but should not happen in parallel. Finally, we compose the combined
behavior in parallel with pattern ap[0,∞]

c , i. e., the high-level activity represented
by apc may be executed in parallel to both apa and apb. We add apc using the
parallel composition as handovers can take place in parallel to apa and apb.

The result of this composition is the abstraction model cp. Model cp corre-
sponds to all behavior that could be observed for executions of the three high-
level activities. For example, process trace

⟨(NCA, (Na ↦ Nancy, Ta ↦ 0)), (CS1A, ∅), (NCC, (Nc ↦ Nathan)),
(CS0A, (Ta ↦ 29))⟩

belongs to the set of process traces of the composed abstraction model. Whereas
the process trace

⟨(NCA, (Na ↦ Nancy, Ta ↦ 0)), (CS1A, ∅), (CS4B, ∅), (CS0A, (Ta ↦ 29))⟩

is not part of the process behavior of cp.
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Figure 9.5: Overview of the graphical notation for the composition functions.

We designed a graphical representation for each composition function, which can
be used to design abstraction models in the implementation of our approach. It is
also possible to use BPMN, Petri nets, or Process trees to visualize the composition
of patterns. However, abstraction models are not meant to be full specifications of
a process. Mostly basic composition functions, such as parallel, interleaving, and
repetition are used. Process discovery based on the resulting high-level event log
is still necessary. Therefore, we use this compact graphical representation.

Figure 9.5 shows the graphical notation for each of the introduced composi-
tion functions: sequence, choice, parallel, interleaving, and repetition. We attach
the unary repetition composition directly to the patterns. If necessary, we draw a
box around composed patterns to clarify the precedence of operations. Patterns
composed in parallel to each other do not influence the execution of each other.
Therefore, we do not draw any edge between the patterns. The interleaving compo-
sition is depicted by connecting interleaved patterns to the interleaving operator
↔. Patterns are composed in choice by connecting all patterns in choice to a choice
operator ⊗. The sequence composition is depicted by a directed edge between two
patterns.

Figure 9.6: Abstraction model cp created by composing the patterns apa, apb, and apc.

Example 9.4 (Abstraction model for the whiteboard process). For example, Figure 9.6
shows the graphical representation of the composition of activity patterns apa,
apb, and apc to the abstraction model

cp = (↔ (ap[0,∞]
a , ap[0,∞]

b ))[0,∞] ⋄ ap[0,∞]
c ,

which was introduced in Example 9.3.
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Implementation of Composition Functions as DPN

Each of the proposed composition functions is implemented using the DPN nota-
tion as described in Figure 9.7. We assume that activity patterns apa = (pa, λa, νa, hla, lta),
apb = (pb, λb, νb, hlb, ltb) ∈ P are implemented as DPNs with source places sa, sb
and sink places ea, eb.28 We describe how to compose apa and apb to a combined
pattern for each of the introduced composition functions. We focus on the composi-
tion of their process models pa and pb since the remaining mapping functions are
combined by taking their union.

Figure 9.7: Implementation of the composition functions using the DPN notation

Sequence. Pattern apa and pattern apb are composed in sequence by adding two
places (source, sink) as the entry and exit points of the composed pattern. Moreover,

28Requiring single source and single sink places is not a limitation. Any Petri net can be transformed in
this way by adding invisible transitions.
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transitions t1, t2, t3 are added to connect the source places sa, sb and sink places
ea, eb of both patterns in sequence.

Choice. Pattern apa and pattern apb are composed in choice by adding two places
(source, sink) as the entry and exit points of the composed pattern. Additionally
four transitions (t1, t2, t3, t4) are added. The control-flow is split after place source
such that either t1 or t2 has to be executed. Transition t1 is connected to the source
place sa of pattern apa and transition t2 is connected the source place sb of pattern
apb. The sink places of the patterns are connected the exit place sink via transitions
t3 and t4, respectively.

Parallel. Pattern apa and pattern apb are composed in parallel by adding two places
(source, sink) and two transitions (t1, t2). The control-flow is split using transition t1
such that both patterns pa and pb have to be executed. The exit places ea and eb are
connected to transition t2, which merges the parallel branches.

Interleaving. Pattern apa and pattern apb are composed in interleaving by adding
seven places (source, sink, p1, p2, p3, p4 and px) and six transitions (t1, t2, t3, t4, t5, t6)
as shown in Figure 9.7. Intuitively, the interleaving of pa and pb can be expressed
as choice between any possible ordering of pa and pb. The control-flow is split in
parallel using t1 enabling any possible re-ordering of patterns pa and pb. Place px is
added restricting the behavior such that only either pa or pb can be executed at the
same time. Finally, transition t6 merges the control-flow from places px, p3 and p4.

Repetition. The repetition of a pattern apa is modeled by adding three places
(source, sink, p1) and three transitions (t1, t2, t2). We use a counter variable i that
keeps track of the repetitions and add guards to transitions t1, t2 and t3 that constrain
the maximum allowed and minimum required number of repetitions accordingly.
Transition t3 increases the counter i on each iteration. Because we have a-priori
knowledge of the number of repetitions such a construct can always be unfolded
to a normal Petri net, e. g., by repeated use of the sequence and choice composition
and duplicating the pattern. In the case m = ∞, the guard i < m can be removed.
Moreover, in case the number of repetitions is unbounded, i.e., m = ∞ and n = 0
we can simplify the construction as shown on the right-hand side of Figure 9.7.

Example 9.5 (Implementation of an abstraction model with a DPN). Figure 9.8 de-
picts the DPN implementation of the abstraction model cp. To simplify the
composition, we assume that the DPNs of activity patterns have a single
source place and a single sink place. The abstraction model starts with a single
source place src and ends with a single sink place snk. We model the parallel
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Figure 9.8: DPN created by our implementation for the abstraction model cp. The process
models of the activity patterns apa, apb, apc are depicted as dashed rectangles pa, pb, pc
with source places sa, sb, sc and sink places ea, eb, ec. Black transitions are invisible routing
transitions, which are not recorded in event logs.

composition of ap[0,∞]
c , i. e.:

↔ (ap[0,∞]
a , ap[0,∞]

b )[0,∞]

by adding invisible transitions split and merge, which realize a parallel split and
join. Invisible transitions cannot be observed; they are only added for routing
purposes. We use place mutex to model the mutual exclusion constraint of the
interleaving composition of patterns ap[0,∞]

a and ap[0,∞]
b . Place mutex guarantees

that only either apa or apb can be executed at the same time, yielding the interleav-
ing of apa and apb. Each repetition composition is implemented by adding two
invisible transitions loop and skip, which allow to repeat the pattern indefinitely
or to skip its execution, respectively.

9.2.5 Aligning the Event Log and the Abstraction Model

With an abstraction model at hand, we need to relate the behavior in the low-level
event log to process traces defined by the abstraction model cp = (TS, λ, ν, hl , lt).
More specifically, we need to determine the mapping between low-level events in
traces 𝛔 ∈ ℰL of the event log and process steps in process traces of the labeled trace
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set LTS = (TS, λ, ν) that is defined by the abstraction model cp. Concretely, we use
the alignment technique for DPNs presented in Chapter 5 to establish alignments
𝛄𝛔 ∈ Γ𝛔

LL,LTS between log traces and process traces. The alignment guarantees
that its sequence of model steps without ≫-steps is a process trace defined by the
composed abstraction model. Moreover, by computing an optimal alignment, we
guarantee that we obtain one of the process traces with the least deviations from
the events recorded in the log trace 𝛔. Please note that we can uniquely identify
sub-sequences of the initial (uncomposed) activity patterns in the alignment since
we required transitions to be unique among activity patterns.

Table 9.4: The first two columns show an excerpt of an alignment 𝛄𝛔wb
∈ Γ𝛔wb

LL,LTS between
the whiteboard example log trace 𝛔wb ∈ ℰL and the trace set of the composed abstraction
model LTS. Low-level events e ∈ EL are paired with process steps (t, w). The first row
shows the attributes #(e) of the respective aligned events. The last two columns depict
an excerpt of an abstracted trace 𝛔H ∈ ℰH from created high-level event log. The events
ê ∈ EH and corresponding attributes #H(ê) are returned by the GPD method.

alignment 𝛄𝛔wb high-level trace 𝛔H

#(e) (e, (t, w)) ê #H(ê)

(activity ↦ NC, time ↦ 122, ● (e12, (NCA, w1)) ê5 (activity ↦ Shift, time ↦ 122,

nurse ↦ Nancy) nurse ↦ Nancy,

lifecycle ↦ start, instance ↦ 3)

(activity ↦ CS1, time ↦ 122) ● (e13, (CS1A, w2)) - -
(activity ↦ CS0, time ↦ 124) ● (e14, (CS0A, w3)) ê6 (activity ↦ Shift, time ↦ 124,

lifecycle ↦ complete, instance ↦ 3)

… … … …

(activity ↦ CS4, time ↦ 185) ● (e20, (CS4B, w4)) ê11 (activity ↦ Alarm, time ↦ 185,

lifecycle ↦ start, instance ↦ 6)

(activity ↦ CS1, time ↦ 194) ● (e21, (CS1B, w5)) - -
- ◒ (≫, (CS0B, w6)) ê12 (activity ↦ Alarm, time ↦ 194,

lifecycle ↦ complete, instance ↦ 6)

… … … …

(activity ↦ CS4, time ↦ 310) ● (e30, (CS4B, w7)) ê21 (activity ↦ Alarm, time ↦ 310,

lifecycle ↦ start, instance ↦ 11)

(activity ↦ CS1, time ↦ 311) ● (e31, (CS1B, w8)) - -
(activity ↦ NC, time ↦ 311, ● (e32, (NCC, w9)) ê22 (activity ↦ Handover, time ↦ 312,

nurse ↦ Nathan) nurse ↦ Nathan,

lifecycle ↦ complete, instance ↦ 12)

(activity ↦ CS0, time ↦ 315) ● (e33, (CS0B, w10)) ê23 (activity ↦ Alarm, time ↦ 315,

lifecycle ↦ complete, instance ↦ 11)
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Example 9.6 (Alignment between low-level log and composed abstraction model). The
first two columns of Table 9.4 show an excerpt of an alignment 𝛄𝛔wb

∈ Γ𝛔wb
LL,LTS

between the whiteboard example log trace (Table 9.2) and a process trace of
the abstraction model introduced in Figure 9.6. The first column repeats the
attributes of the low-level events and the second column shows the sequence
of alignment moves. Thus, the process projection (Section 4.3) of the sequence
depicted in the second column is a process trace of the abstraction model.
From the executed transitions, it can be deduced that both patterns apa and
apc are executed once and pattern apb is executed twice. For example, the
sub-sequence ⟨(CS4B, w4), (CS1B, w5), (CS0B, w6)⟩ captures one execution of the
activity pattern apb, i. e., this sub-sequence would be a process trace of activity
pattern apb. Please note that step (CS0B, w6) was inserted as model move (◒)
by the alignment, i. e., there is no corresponding event in the event log. Thus,
the execution instance of activity apb was only partially observed in the event
log. Moreover, the execution instances of two activity patterns may overlap as
is the case with the activity pattern apc, which consists only of transition NCC.
Transition NCC was mapped to event e32, which occurred while an instance of
activity pattern apb was not yet completed.

9.2.6 Abstracting the Event Log

We describe how to build the high-level event log (EH, ΣH, #H, ℰH) using an align-
ment of the low-level event log with the abstraction model. In general, there might
be scenarios where one event could be mapped to several activity instances. We
simplify the discussion by assuming that events are only mapped to single activity
instances. This is not a limitation, as described by Baier et al. [BMW14]: Those
events could be duplicated in a pre-processing step beforehand.

Abstraction Algorithm

The last two columns of Table 9.4 show how we obtain the high-level event log
from the information provided by the alignment. We align each trace 𝛔 ∈ ℰL of the
low-level event log with the abstraction model cp = (TS, λ, ν, hl , lt) and obtain an
alignment 𝛄𝛔 ∈ Γ𝛔

LL,LTS, as shown in the second column of Table 9.4. Then, we use
this alignment and the mapping functions hl and lt to build the high-level event log
as specified by Algorithm 4. New events ̂e for high-level activities are added to EH
for those alignment moves (e, (t, w)) for which transition t is mapped to a life-cycle
transition, i. e., in our case either start or complete. Those transitions correspond to
visible life-cycle transitions in the life-cycle of the high-level activity.

In Algorithm 5, we show how each new event ̂e is assigned a name based on the
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Input: Low-level Event Log LL = (EL, ΣL, #L, ℰL), Abstraction Model
cp = (TS, λ, ν, hl , lt)

Result: High-level Event Log LH = (EH, ΣH, #H, ℰH)

1 LTS ← (TS, λ, ν) // labeled trace set of cp
2 EH ← ∅, ΣH ← {actH ∣ ∃actH∈Σ(hl(actL) = actH)}
3 ai ∶ ΣH → ℕ0 s. t. ∀actH∈ΣH

(ai(actH) = 0)
4 for σ ∈ ℰL do
5 𝛄𝛔 ← optimalAlignment(𝛔, LTS) // cf. Definition 4.4
6 σH ← ⟨⟩
7 for (e, s) ∈ 𝛄𝛔 s.t. s ≠≫ ∧ s = (t, w) ∧ t ∈ dom(lt) do
8 EH ← EH ∪ {ê}
9 𝛔H ← 𝛔H ⋅ ⟨ê⟩

10 assignAttributes(ê, (e, (t, w)), 𝛄𝛔, ai , hl , lt) // activity name, etc.
11 if lt(t) = complete then ai(hl(t)) ← ai(hl(t)) + 1 // next instance

12 ℰH ← ℰH ∪ {𝛔H}
13 return (EH, ΣH, #H, ℰH)

Algorithm 4: Procedure building a high-level event log based on an abstraction model
and a low-level event log.

mapping hl(t), a unique activity instance identifier29 for each execution of an activity
pattern, and its life-cycle transition obtained from the mapping lt(t). Moreover, we
copy the values of all variables defined in the abstraction model v ∈ dom(w) to
the attributes of the new high-level event ̂e. In this manner, we create a high-level
trace in ℰH for each low-level trace in ℰL. After processing all low-level traces in this
manner, Algorithm 4 returns the abstracted high-level log LH = (EH, ΣH, #H, ℰH).

Example 9.7 (Building of a high-level event log based on Algorithm 4). For example,
events ̂e5 and ̂e6 in Table 9.4 are created based on the alignment of low-level
events e12 and e14 to transitions NCA and CS0A. We assign event ̂e5 the activ-
ity name Shift, i.e., #H

activity( ̂e5) = Shift. We assign the unique activity instance
identifier 3 to both events, i.e., #H

instance( ̂e5) = #H
instance( ̂e6) = 3. Instance 3 of the

high-level activity Shift was started by event ̂e5 and completed by event ̂e6. Then,
we assign the life-cycle transition start to ̂e5 (i.e., #H

lifecycle( ̂e5) = start) and the life-
cycle transition complete to event ̂e6. Finally, we copy the values of the variables
NA and TA as #H

nurse( ̂e5) = Nancy and #H
time( ̂e5) = 122.

We ensure that every high-level event ̂e ∈ EH is assigned a timestamp. We consider
two cases depending on the alignment move (e, (t, w)):
29A unique instance identifier concept:instance is defined in the concept extension of the XES stan-

dard [IEEECIS16].
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Input: Event ê, Alignment move (e, (t, w)), Alignment 𝛄𝛔, Instance mapping ai ,
High-level activity mapping hl , Life-cycle mapping lt

1 #H(ê)(activity) ← hl(t) // assign activity name
2 #H(ê)(instance) ← ai(hl(t)) // assign activity instance
3 #H(ê)(lifecycle) ← lt(t) // assign life-cycle
4 for v ∈ dom(w) do #H(ê)(ν(v)) ← w(v) // copy variables
5 if e ≠≫ then
6 #H(ê)(time) ← #L

time(e) // assign timestamp
7 else
8 #H(ê)time ← obtainTime(𝛄𝛔, (e, (t, w)), lt(t))

Algorithm 5: Procedure assignAttributes that assign the attributes of newly created
events. Each event represents the execution of a transition in the life-cycle of a high-level
activity instance.

1. the process step was aligned to a low-level event e ∈ EL and
2. the process step was mapped to e =≫, i. e., a model move.

In the first case, we assign the timestamp of the aligned low-level event to the
high-level event. For example, #H

time( ̂e11) = #time(e20) = 185. In the second case,
there are several possibilities to determine the most likely timestamp for a model
move (e. g., based on statistical methods [Rog+13]). Therefore, we abstract from
the concrete implementation of the method by using function obtainTime, which
may be plugged-in depending on the use case. For all case studies presented in
Chapters 12 to 15, we implemented obtainTime by using the timestamps of the
clostes neighboring low-level (i. e., the earliest event for the start life-cycle and the
latest event for the complete life-cycle) events that are mapped to the same high-level
activity instance. For example, for the unmapped high-level event ̂e12, we use the
timestamp from the neighboring event e21, i. e., #H

time( ̂e12) = #time(e21) = 194.

Quality of the Abstraction

The alignment enables the definition of two quality measures for the abstraction
mapping. First, we use global matching error ϵLL,cp ∈ [0, 1] as a measure for
how well the entire low-level event log LL matches the behavior imposed by the
composed abstraction model cp. In this context, a fitness measure such as the one
defined in Section 4.4 can be seen as global measure for the quality of the used
abstraction model. A low fitness indicates that there are many events that cannot
be correctly matched, which indicates that the abstraction model does not capture
the entire process well. The resulting abstracted event log does not allow a reliable
analysis when the overall fitness is low. In case of low fitness, the assumptions
made in the identification and encoding of the activity patterns should be revised.

Second, we define a local matching error ϵLL,cp(actH) ∈ [0, 1] for of each recog-
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nized high-level activity actH ∈ ΣH. Some process steps in the alignment are not
matched to an event in the log, i. e., the event is missing. To obtain ϵL,cp(actH), we
determine the fraction of incorrect and model moves for process activities that are
part of the activity pattern for the high-level activity actH over the total number
of all alignment moves for actH. For the local matching error, we do not consider
the log moves since we cannot reliably attribute them to a specific high-level activ-
ity. However, log moves are accounted for in the fitness score used by the global
matching error.

Definition 9.3 (Local matching error). Let LL = (EL, ΣL, #L, ℰL) be a low-level event
log. Let cp = (TS, λ, ν, hl , lt) ∈ AP be an abstraction model. Let LTS = (TS, λ, ν)
be the labeled trace set of cp. We define the matching error ϵL,cp(actH) ∈ [0, 1] as
the fraction of incorrect and model moves over the total number of all moves for
process activities that are mapped to high-level activity actH ∈ ΣH in the alignment
𝛄𝛔 ∈ Γ𝛔

LL,LTS between log traces 𝛔 and the labeled trace set LTS:

ϵL,cp(actH) =
∑σ∈ℰ ∣proj (γ𝛔, Γerr(actH))∣
∑σ∈ℰ ∣proj (γ𝛔, Γ(actH))∣ , where

Γ(actH) = {(e, s) ∈ ΓLL,LTS ∣ s ≠ ≫ ∧ s = (t, w) ∧ hl(t) = actH}, and
Γerr(actH) = {(e, s) ∈ Γ(actH) ∣ (≫, s) is a model move or

(e, s) is an incorrect synchronous move}. ♢

The matching error can be used to exclude individual unreliable activity pattern
matches, which exceed a certain ϵ-threshold.

Example 9.8 (Local matching error). For example, in Table 9.4 one execution of
process activity CS0B in the activity pattern for the Alarm activity is mapped
to ≫. The local matching error ϵLwb,cp(Alarm) is 5

6 for high-level activity Alarm
based on the alignment shown in Table 9.4.

9.2.7 Discovering a High-Level Process Model

After creating the abstracted event log LH, we discover a process model based on
the abstracted high-level activities ΣH. For the process discovery, any state-of-the-
art process discovery technique can be employed. However, as the abstracted event
log contains information on the life-cycle of activities (i. e., the start- and the complete
transition), we propose to use a process discovery technique that can harness this
information, such as the Inductive Miner with the life-cycle extension as proposed
in [LFA16]. We could use the discovered process model directly for further analysis
(e. g., performance analysis, deviation analysis, decision rule mining etc.).
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Figure 9.9: A discovered high-level model in DPN notation. We distinguish high-level activi-
ties from transitions used in activity patterns by using a gray background.

Example 9.9. Figure 9.9 shows an example of a high-level model in DPN notation
that can be discovered based on the abstracted event log. The discovered process
starts with a change of shifts. Then, in parallel, patients raise one or more alarms
and, sometimes, a handover takes place. In fact, in Table 9.4 the Alarm and the
Handover activity are observed to be overlapping each other. An instance of
the activity Handover occurs in parallel with the instance of the Alarm activity,
i. e., event ̂e22 occurs between the start (event ̂e21) and the complete (event ̂e23) of
instance of the Alarm activity.

9.2.8 Expanding the High-level Activities and Validating the Model

The abstracted event log LH hides details on the low-level events. Events in the
high-level event log LH might have been introduced by the approximate abstraction
mapping that was obtained through the alignment. As we allow log moves and
model moves in the alignment, some parts of the abstracted event log might be
based on our assumptions on the process rather than the actual data in the original,
low-level event log. We can quantify this error by using the previously introduced
measures fitness and matching error. However, even a small error during the abstrac-
tion can be amplified by the discovery algorithm. In other words, we might have
misguided the discovery processs and resulting process model does reflect our
assumption rather than reality. This is clearly undesirable.

To evaluate the quality of the discovered high-level model, we generate a so-
called expanded process model. We substitute each high-level activity with the DPN
representation associated with the activity. In fact, the high-level activities in the
discovered process model can be seen as composite activities and the activity
patterns as sub-processes. This step depends on the concrete modeling notation.

The expansion of high-level activities with sub-processes cannot be described
using solely the language of the process model. When defining a process model
through its trace set (i. e., as in Definition 3.2), it is not possible to distinguish
whether two high-level activities acta and actb are executed in parallel, or their
execution is only interleaved. Take, e. g., the two execution traces ⟨acta, actb⟩ and
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⟨actb, acta⟩, i. e., the two activities a and b can be executed in any order. Assume that
activity acta should be expanded with the sub-process that allows for the low-level
behavior ⟨x, y⟩ and activity actb with ⟨z⟩. Based on the execution traces, we cannot
decide whether the execution sequence ⟨x, z, y⟩ (i. e., acta and actb are parallel and
not interleaved) should be part of the behavior of the expanded process.

However, since the steps are similar in each modeling notation, we focus on the
case in which DPNs are employed. For the concrete approach described here, we
assume that the discovered model and the activity patterns are provided as DPNs
(e. g., as in Figure 9.9).

Figure 9.10: Expansion of a single high-level activity a with input places i1, … , in and output
places o1, … , on in the discovered model with the DPN modeling the activity pattern apa.

The mapping from high-level activities to activity patterns can be obtained auto-
matically through function hl . Each pattern is mapped to exactly one high-level
activity. We replace each transition with the entire corresponding activity pattern.
Figure 9.10 illustrates the expansion of a high-level activity a with the process model
of the associated activity pattern apa. Again, we assume that activity patterns are
provided as DPNs with a single source and a single sink place (i. e., workflow nets).
With the help of two invisible routing transitions s and c, we connect the source
place src and sink place snk of the activity pattern to the input places i1, … , in and
output places o1, … , on of the replaced high-level activity. The resulting expanded
process model describes the behavior of the discovered model in terms of low-level
events, i.e., each high-level activity is replaced with a sub process that captures its
behavior on a lower abstraction level.

Example 9.10 (Expanded model). Figure 9.11 shows a partially expanded high-
level model. We replaced activity Shift in the model shown in Figure 9.9 by
the DPN modeling activity pattern apa. Routing transitions s and c have been
added. Transition s is connected to input place i of activity Shift and to the source
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Figure 9.11: A partially expanded high-level model. Activity Shift in the high-level model
has been replaced by the DPN that models activity pattern apa.

place src of the activity pattern. Transition c is connected to the only sink place
snk of the activity pattern and to both output places o1 and o2 of the high-level
activity Shift. The invisible routing transition s is not strictly necessary. The ac-
tivity pattern has a single source place. We can simplify the expanded model
by fusing places i and src and removing transition s. We use standard reduction
rules for this [Mur89].

We can now validate the quality of the expanded model against the low-level input
event log. We use existing conformance checking techniques (e. g., alignment-based
techniques [AAD12; Man+16c]) that determine the quality (e. g., fitness) of a process
model given an event log. We need to validate the model against the original input
event log rather than against the abstracted event log. Otherwise, the validation
would be biased by the domain knowledge that we introduced in the abstraction.
However, when measuring the quality of the expanded model against the original
event log, the result is independent from the domain knowledge assumed by using
the activity patterns.

9.3 Implementation

The GPD method has been implemented as a set of operators in the RapidMiner
extension RapidProM [BLA16].30 Figure 9.12 shows a workflow in RapidProM that
implements the entire GPD method.31

First, the original event log is imported from a XES file. Then, we import manu-
ally created patterns and use discovery methods (e. g., Inductive Miner) to obtain
discovered patterns in the sub-process Identify (i. e., step 1 of the method). All pat-
terns are composed in the Compose sub-process. The Compose operator implements
step 2 of the method and requires a collection of process models and a composition
formula as input. By default all patterns are composed in parallel. We used a sub
30RapidProM is available http://rapidprom.org.
31The RapidProM workflow can be downloaded under: https://svn.win.tue.nl/repos/prom/

Packages/LogEnhancement/Trunk/data/gpd-workflow.rmp

http://rapidprom.org
https://svn.win.tue.nl/repos/prom/Packages/LogEnhancement/Trunk/data/gpd-workflow.rmp
https://svn.win.tue.nl/repos/prom/Packages/LogEnhancement/Trunk/data/gpd-workflow.rmp
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(1) (2) (3) + (4) (5) (6)

(7)

Figure 9.12: A RapidMiner workflow that implements the GPD method. The operators
Identify and Compose are sub-processes, in which the activity patterns are imported or
discovered and composed with an operator that implements the composition functions.

process for both steps to ensure that the workflow fits in a figure. We apply the
Align & Abstract operator, which implements steps 3 and 4 of the method. The
required inputs are the event log, the abstraction model and a mapping between
the event and transition labels. Afterwards, the standard Inductive Miner operator
is used to discover a high-level process model (step 5). Subsequently, this process
model is expanded with the new Expand operator (step 6). Finally, we use the stan-
dard conformance checking capabilities of RapidProM to measure the fitness of
the expanded model (step 7).

9.4 Evaluation

We evaluated the effectiveness of the GPD method in a qualitative way by applying
it on several real-life data sets. We present the result for three data sets as part of
the case studies in Sections 12.5, 13.5 and 14.2. We separated the evaluation of the
GPD since the evaluation is based on the insights provided for the case studies (i. e.,
a qualitative evaluation). The quality of the discovered model highly depends on
the kind of domain knowledge that is used during the abstraction. Therefore, the
evaluation requires knowledge of the respective background of the event logs that
are used. In this section, we evaluate the efficiency of the proposed method. The
main complexity of the GPD method stems from the usage of alignment techniques
to obtain an optimal abstraction mapping, i. e., the step presented in Section 9.2.5.
We already extensively discussed the efficiency of the alignment computation in
Section 5.3. However, the special structure of activity patterns and their composition
justifies a separate experiment.

As noted, the computation time of the GPD method is dominated by the align-
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Figure 9.13: Average computation time per trace of the alignment used in the GPD method.
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ment computation in step 3 of the method (Section 9.2.5). Computing an optimal
alignment has exponential worst-case complexity (cf., Section 5.2.6). The abstrac-
tion itself was described in step 4 (Section 9.2.6) and can be computed in time linear
to the size of the input trace. Therefore, we evaluated the efficiency of our method
by computing alignments for several models and traces. All experiments have been
conducted on a standard laptop with 16 GB of memory. We tested the computation
time for a set of eight randomly generated process models (25–263 transitions) and
event logs (6–340 events per trace) that were previously used in [LM17]. We decom-
posed each model based on the method described in [MCA14] to obtain between
3 and 25 activity patterns for each model. Then, we compared the performance
of using the parallel and the interleaving composition of all activity patterns for
increasing levels of noise (10%–30% of swapped events as described in [LM17])
that was injected into the event log.

Figure 9.13 shows the resulting average computation time per trace of our method
when applied to each of the event logs. We limited the computation time to 100
seconds (100,000 ms) per trace since we consider this to be a computation time that
is still acceptable in practice. The computation time grows exponentially both with
increasing length of the traces as well as with the increasing number of activity
patterns. Moreover, composing activity patterns in parallel leads to a longer com-
putation time than using the interleaving composition. This is expected due to the
large state-space that needs to be explored in case of parallel branches.

Overall, the experiment showed that it is feasible to use the GPD method with
up to 25 activity patterns and traces of up to length 350 on occasion of the interleav-
ing composition. When composing all of the patterns in parallel, the computation
finished within the maximum of 100 seconds in the cases when less than 13 activity
patterns and an event log with less than 20% noise were tested. Conversely, the
computation did not finish within 100 seconds for some traces when using the par-
allel composition. In situations with 13 or more activity patterns, more than 10%
noise, or traces that are longer than 150 events our method would have required a
longer computation time. Readers should however notice that a composition con-
figuration with all patterns in parallel is the worst case that rarely happens. Usually,
an abstraction model is built using a combination of the available composition
patterns.

9.5 RelatedWork

Literature provides several proposals for event abstraction methods. Moreover,
there is a large body of work on activity recognition [Liu+16] and event process-
ing [CM12]. We focus on work that is related to the field of process mining (i. e., an
explicit process representation is used). We categorize the related work in unsuper-
vised and supervised event abstraction methods.
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Unsupervised methods. There are several approaches for unsupervised event ab-
straction in the field of process mining. Unsupervised method generally try to
determine this relation based on identifying sub-sequences. Among the first pro-
posals for event abstraction in process mining was the Fuzzy Miner by Günther et
al. [GA07]. Activities are grouped together based on the significance of the edges
between activities. Bose et al. [JA09] proposed to use common patterns based on
repeating sequences to abstract events. Later, Günther et al. [GRA10] used agglom-
erative hierarchical clustering to build a hierarchy of event clusters that can be used
for event abstraction. Cook et al. [CKR13] proposed an unsupervised algorithm for
activity discovery based on sensor data that is guided by the minimum description
length principle. Folino et al. [FGP15] turned event abstraction into a predictive
clustering problem and did not assume the notion of an event label in the new
approach. Unsupervised abstraction methods do not take existing knowledge into
account and should be only applied when no domain knowledge can be used as
input. Here, we assume to have some knowledge about those patterns. This knowl-
edge should be leveraged when available because it allows for obtaining more
accurate results.

Supervised methods. Approaches for supervised event abstraction assume some
knowledge on the relation between low-level events and activities. Methods based
on Complex Event Processing (CEP) [CM12] and activity recognition [Liu+16]
typically assume a stream of events over which queries are evaluated. When a query
is matched a high-level activity is detected. Traditionally, CEP does not consider
the notion of process instance (i. e., case) and in case of overlapping queries (e. g.,
shared functionalities) both high-level activities would be detected. Still, there is
some work that uses CEP withing a business process context [Bül+14; HV14; Oli+13;
Wei+14]. However, none of these works provides a complete process discovery
method based on domain knowledge.

There are also proposals for supervised event abstraction that are more closely
related to the field of process mining. Tax et al. [Tax+16b] assume the existence
of a labeled training set of traces. Moreover, the approach is limited to processes
without concurrent high-level activities. Conditional random fields are used to
infer the correct mapping. George et al. [GCW16] also assume a labeled training
set of events organized in traces. They apply frequent sequence mining and, then,
learn constraints from the events. However, the approach does not deal with noise
in the event data. Senderovich et al. [Sen+16b] determine an optimal mapping
between sensor data of a real-time locating system and activities based on finding
an optimal mapping using integer linear programming. Ferreira et al. [FSR13]
assume a complete process model of the high-level activities. They use hierarchical
Markov models together with an expectation maximization method to find the
mapping between low-level events and the high-level activities in the process model.
Later work [FSR14] proposed a different, greedy approach that can better deal with
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noise in the event log. Fazzinga et al. [Faz+15] proposed a probabilistic method
to find a mapping between an existing high-level model and events. They report
in [Faz+15] that their method is feasible only for short traces of less than 30 events.

Most related to our work are the methods developed by Baier et al. [Bai+15; Bai15;
BMW14]. Again, the methods assume knowledge about a single high-level model
for the overall process. The goal is to automatically discover the relation between
events and activities. Therefore, these methods are mainly targeting the situation
where the process is assumed to be well known. The proposed methods use clus-
tering methods and heuristics when challenged with event logs from processes
that feature concurrent high-level activities and noise (i. e., erroneous or missing
events). A later proposal using constraint programming approach (cf., [Bai15]) only
considers the control-flow perspective, i. e., rules based on data are not supported.
Begicheva et al. proposed a method for supervised log abstraction in [Beg17]. Their
proposed method requires a mapping from low-level activities to high-level ac-
tivities as input. The method abstracts low-level events by directly replacing the
low-level events with the corresponding high-level activities. However, it works
only for non-cyclic high-level process models, i. e., high-level activities may not be
repeated, and it does not consider shared functionality and noise in the low-level
event log.

To conclude, none of the related work tackles the problem of systematically
guiding process discovery methods towards discovering a better model by using
supervised event abstraction that can deal with noise, concurrency, shared behavior,
and multiple process perspectives.

9.6 Conclusion

We presented a new method that uses multi-perspective event abstraction based on
domain knowledge to guide process discovery towards better results.

9.6.1 Contribution

The GPD method uses multi-perspective activity patterns that encode assumptions
on how high-level activities manifest themselves in terms of recorded low-level
events, i. e., we use activity patterns to encode domain knowledge on the relation
between low-level events and high-level activity instances. We use this domain
knowledge to establish the functional perspective of the process. An abstracted
event log is created on the basis of an alignment between activity patterns and
the low-level event log. We use the abstracted event log to discover a high-level
process model. Since the high-level process model is not defined over the same
activities as recorded in the low-level event log, we added two further steps to the
method. First, we expand the high-level activities of the high-level process model
with the activity patterns. Then, we use the expanded process model, which is
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defined over the same activities as in the low-level event log, to validate the quality
of the discovered process model. We evaluated the efficiency of the method and
showed that it can be applied to examples of moderate size and complexity that are
often encountered in practice. Later in Sections 12.5, 13.5 and 14.2, we demonstrate
that the GPD method could be used for real-life event logs usingthree case studies.

9.6.2 Limitations

We acknowledge that there are some limitations to our method.

• The performance of the method highly depends on the quality of the activity
patterns used. We introduced the expansion step in the GPD method to
limit the risks of using low-quality activity patterns, i.e., patterns that do not
properly capture the real execution of the process. The expanded process
model can be validated on the original event log. Hence, quality problems
can be detected.

• If a sequence of events fits two activity patterns perfectly, one of them will
be chosen arbitrarily. This is due to the particularities of the underlying
alignment method employed. The cost-based alignment techniques that we
use to determine the optimal mapping chooses an arbitrary pattern in case
there are multiple mappings with the same cost.

• Since the GPD method relies on alignment techniques, it requires a lot of
resources. Computing alignments is a computationally expensive operation
and may be infeasible for event logs with very long traces and many activity
patterns. However, approximate and more efficient alignment techniques
are being developed, e. g. [Don+17; TC16].

9.6.3 FutureWork

There are several directions for future work that are worthwhile exploring.

• Obtaining suitable activity patterns for abstraction may be difficult in sit-
uation with little domain knowledge. Methods to derive activity patterns
automatically from an event log could help to provide an initial set of likely
patterns. Such methods could be, e. g., based on pattern mining techniques
such as local process model discovery [Tax+16a] or episode discovery [LA15].
Initial results using local process model discovery have already been pre-
sented in [MT17].

• Work on decomposing or approximating the alignment computation for
abstraction models could help to alleviate the performance problems of
the method. Since an abstraction model imposes a specific structure on the
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composition of activity patterns, we believe that tailor-made decomposition
method could be created.

• As mentioned, a limitation to our method is that if there are multiple optimal
alignments for a sequence of events, i.e., multiple different instantiations of
activity patterns could explain the observed behavior, then, one of them will
be chosen arbitrarily. A prioritization of activity patterns used during the
alignment computation could be introduced. Moreover, it would be possible
to introduce a simple heuristic that minimizes the number of pattern instanti-
ations by introducing a small cost for instantiating a pattern to the alignment
technique.
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10 Enhancing Models with Overlapping
Decision Rules

This chapter describes a method to enhance an existing process model with decision
logic that further constrains the routing of process instances: we present a novel
decision mining [RA06] method, which discovers potentially overlapping decision
rules based on an event log. Overlapping (i. e., non mutually-exclusive) decision
rules are often encountered in practice since contextual information relevant for the
actual decision making is unavailable. We introduce the general idea of decision
mining in Section 10.1 and motivate the need to overlapping decision rules in
Section 10.2. Then, we present our decision mining method in Section 10.3 and
evaluate it using real-life event logs in Section 10.4. We review related work in the
fields of process mining, classification, and rule learning in Section 10.5. Finally,
we conclude this chapter in Section 10.6.

10.1 Introduction to Decision Mining

To introduce decision mining we first briefly motivate the need for decision rules
in Section 10.1.1 and, then, presenting the state-of-the-art of decision mining tech-
niques in Section 10.1.2.

10.1.1 Decision Rules

Generally, process models describe the activities (i. e., units of work) and their
dependencies in a graphical representation, which specifies the order of activities
in the process execution. However, during the execution of any non-trivial processes,
next to the ordering of activities, decisions between multiple alternative activities
need to be made. Those choices can be modeled in process models as so-called
decision points. Take, e. g., the process model shown in Figure 10.1. When place p2 is
marked with a token, then, an exclusive choice between the execution of transitions
τ1 and τ2 needs to be made. The patient is either admitted to the emergency ward
(τ1) or discharged without admission (τ2). We denote place p2 as decision point,
which specifies the alternatives available.32 Process decision can be based on several
32Here, we consider only the simple form of decision points. Generally, more complex decision points

can be defined with Petri nets, e. g., when multiple tokens need to be synchronized, then, multiple
places can be involved in the same decision.
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Figure 10.1: A decision rule that governs the routing of process instances at the decision
point p2 of the hospital process.

Figure 10.2: Decision table for the rules at place p2 as specified by the DMN standard.

perspectives on the process: available resources might influence the routing of cases
(resource perspective), deadlines might trigger the routing of exception handling
activities (time perspective), and as shown in Figure 10.1 data values gathered
during the process execution might affect the routing (data perspective).

An important challenge when using process models is to understand the deci-
sion that need to be made in a process, and the conditions under which certain
alternative activities are performed. Awareness is increasing that modeling and ana-
lyzing decisions made during the process execution is of major interest in BPM. See,
e. g., the interest in the Decision Model and Notation (DMN) standard [DMN16]
supported by vendors such as Signavio and Camunda. Camunda provides a free
online editor dmn-js for DMN decision tables.33 Figure 10.2 shows the decision
rules regarding transitions τ1 and τ2 as a decision table created with dmn-js.

33dmn-js can be downloaded from https://github.com/bpmn-io/dmn-js

https://github.com/bpmn-io/dmn-js
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10.1.2 Mining Decision Rules

There are several decision mining methods to learn the decision logic of a process
by using event logs. Most existing work [BBW16; Gri+04; LA13b; RA06; Roz+09]
employs classification techniques to determine decision rules. A crucial assumption
for decision mining is that the events used for decision mining contain process data,
which was available when the activity was performed (i. e., attributes), and that
this process data influenced the routing decision.

Table 10.1: Excerpts of 4 traces of an event log Ldec recorded by the hospital process.

(a) Trace 𝛔d1

id activity color

ed10 Triage White
ed11 Register

(b) Trace 𝛔d2

id activity color

ed20 Triage Red
ed21 Register
ed22 Check
… …

(c) Trace 𝛔d3

id activity color

ed30 Triage Orange
ed31 Register
ed32 Check
… …

(d) Trace 𝛔d4

id activity color

ed40 Triage Green
ed41 Register
ed42 Check
… …

Decision mining techniques transform the rule discovery problem into a classi-
fication problem. The considered features are the data attributes that have been
observed before the decision point was reached and the classes to be predicted are
the alternative activities that may occur. The challenge decision mining methods
face is to build a suitable set of training instances based on an event log.

Take, for instance, the four traces recorded in Table 10.1. The rule discovery
problem for decision point p2 and transitions τ1 and τ2 is transformed into a
classification problem that tries to predict the two classes: τ1 and τ2 based on
previously recorded attributes values (e. g., color in Table 10.1). In case the activities
involved in a decision point are visible activities (e. g., decision point p10 with
activities Transfer, Observe, and Check) and the event log is fully fitting the process
model, then, training instances are easy to obtain. For each occurrence of an event
referring the the activity name Transfer a training instance associated with the class
Transfer is built. The attribute values of that training instance are determined by
taking the latest values of all attributes.

However, often event logs contains noise, i. e., deviations from the behavior pre-
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scribed by the process model. Decision mining methods require process traces (i. e.,
execution sequence of the process model). However, log traces may be not fitting
and may not contain the executions of routing activities (e. g., invisible transitions
in a DPN). In these cases it is not straightforward to determine whether a training
instance should be created for an event if so for which transition. For example, for
decision point p2 in Figure 10.2 it is not obvious how to build the training instances
for the invisible activities τ1 and τ2 because, by definition, no event records their
execution.

Therefore, decision mining techniques need to relate recorded events reliably
to activities of the process model. This challenge has been addressed by using
heuristics [RA06] and by using alignment techniques [LA13b] such as the one
presented in Chapter 5.

In case of event log Ldec, an alignment of the traces to the Petri net of the hospital
process (i. e. the model shown in Figure 3.2 without guards and variables) would
indicate that transition τ2 needs to be executed in trace 𝛔d1 to end the process, i. e.,
an optimal alignment is:

𝛄𝛔d1
= ⟨(ed10, (ttri, ∅)), (ed11, (treg, ∅)), (≫, (𝛕2, ∅))⟩.

The optimal alignments obtained for the other three traces would indicate that
transition τ1 needs to be executed:

𝛄𝛔d2
= ⟨(ed20, (ttri, ∅)), (ed21, (treg, ∅)), (≫, (𝛕1, ∅)), (ed22, (tche, ∅)), …⟩;

𝛄𝛔d3
= ⟨(ed30, (ttri, ∅)), (ed31, (treg, ∅)), (≫, (𝛕1, ∅)), (ed32, (tche, ∅)), …⟩;

𝛄𝛔d4
= ⟨(ed40, (ttri, ∅)), (ed41, (treg, ∅)), (≫, (𝛕1, ∅)), (ed42, (tche, ∅)), …⟩.

Based on those alignments, we can obtain the following multi-set of training
instances. Each instances is composed of the latest observed attribute values in the
event log and the outgoing transition that was observed on the decision point p2:

[((color ↦ White), τ2),
((color ↦ Red), τ1), ((color ↦ Orange), τ1), ((color ↦ Green), τ1)]

Applying a standard classification technique such as the decision tree learner
C4.5 [Qui93] (cf., Definition 2.13) on this set of training instance yields the decision
tree shown in Figure 10.3.

color

τ1 τ2

color ≠ White color = White

Figure 10.3: Decision tree learned from a multi-set of training instances.
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Decision mining methods [LA13b; RA06] transform such a decision tree into deci-
sion rules that restrict the possibility to execute transitions τ1 and τ2. The problem
of decision mining can be regarded as that of discovering a DPN that characterizes
the process: given a Petri net, we aim to discover the variables, write operations
and guards of a DPN. In this case a variable datacolor written by transition ttri and
the following guard expressions are introduced:

gd(τ1) = datacolor ≠ White
gd(τ2) = datacolor = White.

This yields the DPN that is shown in Figure 10.1. In case the decision tree contains
multiple conditions (i. e., its depth is greater than 1) or multiple leafs for the same
transition, the decision rule for a transition t is built as follows. For each leaf, a rule
is built by taking the conjunction of all conditions represented by those nodes that
are encountered on a path from the leaf node up to the root node [LA13b]. Then,
the rules for all leafs that are labeled with transition t are combined in disjunction.
This way, mutually-exclusive rules for each transition are obtained.

10.2 Motivation for Overlapping Decision Rules

Traditionally, decision mining methods [Gri+04; LA13b; RA06; Roz+09] use deci-
sion tree learning techniques such as C4.5 [Qui93] to determine the rules governing
the process execution based on event logs. As explained in Section 10.1.2, the
recorded attribute values are used as feature, while the choice between the transi-
tions is used as target class. Then, mutually exclusive rules for each activity are built
using the obtained decision tree. By doing so, the choice at the decision point is
entirely determined by the values of the attributes.

Existing decision mining techniques for exclusive choices rely on the strong
assumption that the rules attached to the alternative activities of a exclusive choice
need to be mutually exclusive. However, in when dealing with real-life event logs,
this is not always the case. Root causes for non mutually-exclusive rules may be
(A) business rules that are non-deterministic and (B) missing information on the
attributes that determine the decision in the event log.

Regarding (A), business rules may be non-deterministic due to conflicting rules
or due to missing contextual information. Oten, this ambiguity “cannot be solved
until the business rule is instantiated in a particular situation” [RW02]. For example,
decisions taken by process workers may depend on contextual factors, which are
not encoded in the system and, thus, cannot be captured in automatic decision
support.

Regarding (B), even if all those factors are encoded in the system event logs
extracted from systems are often incomplete [BMA13]. Without complete informa-
tion in the event log, the mutually exclusive rules underlying the decision-making
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(a) Process model of the hospital process.

Transition Guard expression

ttra datareferral ≠ Home
tobs datareferral ≠ Home ∧ datastate = Unstable
tdis datareferral = Home ∨ (datareferral ≠ Home ∧ datastate = Stable)

(b) For some assignments two out of the three guards expressions are fulfilled.

Figure 10.4: Overlapping decision rules at decision point p10 of the hospital process model.

cannot be discovered. Hence, the assumption of mutually exclusive rules is often
not met in the reality of a process mining analysis with incomplete data.

For example, consider the process model shown in Figure 10.4, which depicts
guard expressions for output transitions of the decision point p10 of the hospital
process34. At decision point p10 only one out of the three alternative transitions
ttra, tobs, and tdis can be taken. Thus, the decision point models an exclusive choice35,
still the specified guard expressions are overlapping. For process instances with
the variable assignment (datareferral ↦ Tertiary, datastate ↦ Unstable) patients may
be transferred (ttra) or allocated to the observation ward (tobs).

This means that for a decision point more than one of multiple activities may be
executed under the same condition, i. e., when the same attribute values have been
observed beforehand. The actual decision between both activities is not specified. It
might depend on an unavailable contextual factor. Some patients may be transferred
even when their state is unstable because the appropriate means of transport (e. g.,
an helicopter) is available. The availability of the means of transport is not recorded
in an information system or the information is not available for the analysis.
34In Figure 10.1, we refined the basic guard expressions introduced in Figure 3.3 with an additional

variable datastate for the sake of illustrating our decision mining technique.
35Note that p10 does not model an inclusive choice that would allow the execution of multiple alterna-

tives. Inclusive choices may also be associates with overlapping rules, but this is considered out of
scope here.
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State of the art techniques for decision mining [Gri+04; LA13b; RA06] cannot
discover this class of rules. For instance, current techniques fail to discover the
decision rule in Figure 10.1.

10.3 Discovery of Overlapping Decision Rules

We describe the technique that discovers overlapping rules in those cases that the
underlying observations are characterized better by such rules. The method is
published in [Man+16b]. We aim to deliberately trade the precision of mutually-
exclusive rules, i. e., only one alternative is possible, against fitness, i. e., overlapping
rules that are less often violated. Before presenting the decision mining technique,
we clarify the required input and describe the parameters of our method.

10.3.1 Parameters and Assumptions on the Input

As depicted in Figure 10.5 the input to our method is an event log containing infor-
mation about process executions and a process model, e. g., a Petri net or process
model that can be converted to a Petri net (e. g., BPMN, EPC, C-Net). Moreover, we
support three parameters: the set of selected attributes, min instances, and the merge
ratio:

• Parameter selected attributes, VSEL
L ⊆ VL, determines which attributes of the

event log are used as features of the classification technique.
• Parameter min instances, mi ∈ ℕ, controls the level of detail of the rules that

are to be discovered. The lower this parameter, the more complex rules are
returned since the decision tree learner may return larger trees.

• Parameter merge ratio, mr ∈ [0, 1], controls the error that may be introduced
by using majority votes of the underlying decision tree to create overlapping
rules.

For the sake of a simpler presentation, we make six assumptions regarding the
input event log L = (E, Σ, #, ℰ).

1. All recorded process instances are perfectly fitting with regard to the process
represented by the Petri net (P, T, F).

2. The event log contains events for invisible routing transitions.
3. The executed transition in the Petri net can be uniquely determined for each

event e ∈ E of the event log, i. e., we are given a transition mapping function
trans ∶ E → T with which each event can be uniquely mapped onto a single
transition of the model.

4. All the attributes a ∈ VL of the event log are selected for decision mining
and, thus, we assume VL = VSEL

L .
5. Events write attributes consistently, i. e., if an event e writes an attribute

a ∈ #(e), then all events e′ ∈ E corresponding to the same transition, i. e.,
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Figure 10.5: Overview of the proposed overlapping decision mining method.

trans(e) = trans(e′), also write attribute a ∈ #(e′).
6. We assume to be given the initial values INIT ∶ 𝒰L

dom of each selected attribute
a ∈ VL.

Those assumptions do not limit the applicability of the method. For any event
log that does not meet these requirements, we can transform the event log to the
closest event log matching those requirement. For example, we can use alignment-
based techniques as presented in Chapter 5 to meet the first three assumptions. We
create an event log that is the closest to a fully compliant event log and includes
artificial events for invisible routing transitions. Then, we remove all unselected
attributes from the event log. Regarding the last two assumption, we show later in
Section 10.3.4 how to handle event logs that do not meet those requirements.

10.3.2 Overall Decision Procedure

We describe the overall decision procedure, which abstracts from the method with
which concrete decision rules are discovered. The overall procedure is adopted
from the approach proposed in [LA13b]. The goal is to build a DPN N = (P, T, F,
VP, dom , in ,wr , gd) based on an event log L = (E, Σ, #, ℰ) and a Petri net (P, T, F).

DiscoveringWrite Operations and Variables of the DPN

We build the set of variables VP ⊆ V with their domain dom and discover the write
operations wr based on the event log as follows:

1. We build the set VP of variables of the DPN based on the set VL of selected
attributes. For each selected attribute a corresponding variable v ∈ VP is



10.3 DISCOVERY OF OVERLAPPING DECISION RULES 219

10

created. For a less verbose presentation, we assume in the remainder of this
section that VP = VL, i. e., the DPN is defined directly over the set of selected
attributes. The domain dom of each attribute can be determined, e. g., by
taking all values that occur in the event log36 or information available in
meta-data of the XES format [IEEECIS16].

2. For each transition t ∈ T of the Petri net if there exists an event e ∈ E
with trans(e) = t, then variables v ∈ VP are written with the values of the
corresponding attributes:

∀v∈VP
∀t∈T(∃e∈E(trans(e) = t ∧ v ∈ dom(#(e))) ⟹ v ∈ wr(t))

After having discovered the write operations wr , domain dom and variables VP,
we describe how to discover the guard expressions gd in the next section.

Discovering Guard Expressions

For each decision point p ∈ P (i. e., places with two or more output transitions) we
construct a set of observation instances that are related to place p. Those observation
instances are later used to train the decision tree classifier that is used to discover
the guards of the DPN. We use ⨄ to generalize the sum of multi-sets to the sum of
a set of multi-sets, i. e., ⨄x∈{X,Y,Z} x = Y ⊎ Y ⊎ Z.

Definition 10.1 (Observation Instances). Let U be a universe of possible values.
Let VL ⊆ V be a set of attributes. Let dom(v) ∈ ℙ(U) be the domain of a variable
v ∈ VL. Let L = (E, Σ, #, ℰ) be a perfectly fitting event log. Let (P, T, F) be a Petri
net. Function obsInstL ∶ P → 𝔹(𝒰L

dom × T) returns the multi-set of observation
instances37 for a place p ∈ P:

obsInstL(p) = ⨄
{e∈E ∣ trans(e)∈p•}

[(INIT ⊕ latest(e), trans(e))]
♢

For each event e ∈ E that refers to an output transition of p, i. e., trans(e) ∈ p•, the
set of observation instances of p contains an instance (w, t) ∈ obsInstL(p), where
w ∈ 𝒰L

dom are the observed values of the attributes, and t the observed transition execution.
The values of w are obtained by taking overriding the latest observed value for the
attributes in preceding events and the initial values.

Example 10.1 (Building the set of observation instances). Take the event log shown
in Table 10.2 and the Petri net of the hospital process. Since we assumed that
the event log is fully fitting and contains events for invisible routing transitions,

36This can be computed in a single pass through the event log.
37We already introduced the multi-set of observation instances in Definition 2.12.
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Table 10.2: Excerpts of 4 traces of the event log Ldec that have been extended to meet our
assumptions: fully fitting and including events for invisible transitions.

(a) Trace 𝛔d1

id activity color

ed10 Triage White
ed11 Register
ed12 τ2

(b) Trace 𝛔d2

id activity color

ed20 Triage Red
ed21 Register
ed22 τ1
ed23 Check
… …

(c) Trace 𝛔d3

id activity color

ed30 Triage Orange
ed31 Register
ed32 τ1
ed33 Check
… …

(d) Trace 𝛔d4

id activity color

ed40 Triage Green
ed41 Register
ed42 τ1
ed43 Check
… …

the set of observation instances can be built in one pass through the event log.
For example, for trace 𝛔d1, one instance ((color ↦ White), τ2) is added since
latest(ed12) = (color ↦ White) and trans(e) = τ2. Please note that multiple
instances can be added for one trace when the process contains loops. The set of
observation instances for place p2 is:

obsInstLdec
(p2) = [((color ↦ White), τ2),

((color ↦ Red), τ1),
((color ↦ Orange), τ1),
((color ↦ Green), τ1)]

This corresponds the the set that was informally introduced in Section 10.1.2.

Algorithm 6 describes the overall discovery method for the entire Petri net. Us-
ing the observation instances obsInstL(p), we build the guard estimation function
estp ∶ T ↛ EXPRVP

for each decision point p ∈ P through function buildEstimator .
Function returns a set of potentially overlapping decision rule for each output
transition of place p. We introduce the implementation of function buildEstimator ,
which forms the main ingredient of our method, in Section 10.3.3. Having obtained
the guard function, we assign each transition the conjunction of all rules obtained
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Input: Petri net ((P, T, F)), perfectly fitting event log (L = (E, Σ, #, ℰ)), minimum
instances (mi), merge ratio (mr )

Result: Guard function of the DPN (gd )
1 foreach p ∈ P s.t. ∣p•∣ > 1 do
2 OIp ← obsInstL(p)
3 estp ← buildEstimator(p, OIp,mi ⋅ ∣OIp∣ ,mr)

4 foreach t ∈ T do
5 gd(t) ← true
6 foreach p ∈ •t do
7 gd(t) ← gd(t) ∧ estp(t)

8 return gd

Algorithm 6: Procedure that discovers the guards of a DPN based on an event log.

from its input places. All guard expressions need to be fulfilled for a transition to
be enabled.

10.3.3 Building Overlapping Guard Expressions

The construction of the observation instances with function obsInstL and the overall
discovery procedure share similarities with the previous work [LA13b]. However,
our actual discovery technique considerably differs in how the rules are obtained
through function buildEstimator . Our contribution is a new algorithm that discov-
ers guards that may be partially overlapping, i. e., two or more transitions may
be enabled for some state reachable in the DPN. The technique builds an initial
decision tree based on observations from the event log. Then, for each decision tree
leaf, the wrongly classified instances are used to learn a new decision tree possibly
leading to new rules. These new rules are used in disjunction with the initial rules,
which yields overlapping rules of the form expr1 ∨ expr2.

Next, we describe how to define function buildEstimator , which discovers over-
lapping guards for place p given the observation instances OI = obsInstL(p), the
set of variables VP, and two user-defined parameters: the minimum number of
instances mi and the merge ratio mr . Algorithm 7 describe the procedure that
builds a guard estimation function estp ∶ T ↛ EXPRVP

for place p.
Initially all transitions are assigned a placeholder value void . For notational con-

venience, we assume that void does not influence the result of a boolean expression,
i. e., ∀expr∈EXPRV

((expr ∨ void) = (expr ∧ void) = expr) (line 1).
First, a base decision tree baseTree = buildTreemi(OI) is built based on all observa-
tion instances.38 Each leaf (expr , t) of the base decision tree corresponds to a rule
expr that predicts a single transition t as outcome (line 2). Each discovered rule is
38Remember that buildTreemi returns the leafs of a decision tree trained with C4.5, cf. Definition 2.13.
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Input: Place (p), variables (VP), observation instances (OI), minimum instances (mi),
merge ratio (mr )

Result: Guard Estimation Function (estp)

1 ψ ∶ T ↛ EXPRVP
∪ {void} s. t. ∀t ∈ p• ∶ ψ(t) ← void

2 foreach leaf: (expr , t) ∈ buildTreemi(OI) do
3 ψ(t) ← ψ(t) ∨ expr
4 WI ← [(w, t′) ∈ OI ∣ t ≠ t′ ∧ expr evaluates to true for w]
5 mi ← mi ⋅ |WI|

∣OI∣

6 subTree ← buildTreemi(WI) // tree based on wrong instances
7 if ∣subTree ∣ > 1 then
8 foreach subLeaf: (subExpr , t′) ∈ subTree do
9 ψ(t′) ← ψ(t′) ∨ (expr ∧ subExpr)

10 else
11 {(true, t′)} ← subTree // majority vote for t′

12 if |WI| > mi and (ψ(t′) ≠ void or
∣{(w,t)∈WI∣ t≠t′}∣

|WI| < ϵ) then
13 ψ(t′) ← ψ(t′) ∨ (expr)

14 foreach t ∈ p• do
15 if ψ(t) = void then
16 estp(t) ← true // no rule could be found

17 else
18 estp(t) ← ψ(t)

19 return estp

Algorithm 7: Procedure buildEstimator , which a guard estimator that computes partly
overlapping guards.

added to the helper function ψ(t) in disjunction to the already discovered rules
(line 3). In case no rule has been discovered yet, the placeholder value void has no
influence on the result. For each leaf of the base decision tree leaf = (expr , t), we
extract those instances WI that have been wrongly classified by the base classifier:
WI contains all those instances (w, t′) ∈ OI for which the predicted transition t′ is
different from the transition t in leaf (line 4).

For each leaf, we build an new decision tree subTree based on those WI that have
been wrongly classifier by the base classifier. Since the size of WI can be significantly
smaller than that of OI, we scale down the parameter mi to mi = mi ⋅ |WI|

∣OI∣ (lines 5-6).
The idea is that the second decision tree subTree can further discriminate between the
observed transitions among the wrongly classified instances. The second decision
tree possibly introduces partial overlap with the existing rule. Please note that a
new decision tree can be discovered since we reduce parameter mi . Moreover, the
base decision tree might have been pruned to prevent overfitting. There are two
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possible cases:

1. a decision tree with more than one leaf is found: |subTree | > 1;
2. only a single-leaf decision tree (true, t′) representing a majority vote is found.

In the first case, we build rules for each leaf subLeaf = (subExpr , t′) ∈ subTree
by taking the conjunction of the rule expr from leaf subLeaf of tree baseTree and
the newly discovered rule subExpr . We obtain the new guard of transitions t′ by
adding newly discovered rules in disjunction to the existing ones (lines 8-9).

In the second case the decision tree represents a majority vote, i. e., the transition
that was most often observed within the wrong instances is predicted. In this case
we add rule expr to the existing guard ψ(t′), but only if two conditions are met to
avoid overfitting the data and to avoid introducing poorly fitting rules (line 12):

1. the set of wrong instances is larger than the original user-specified number
of minimum instances mi and

2. the base decision tree already contained a rule regarding transition t′ or
the fraction of observation instances in WI referring to t′ is larger than the
user-specified merge ratio mr .

The second condition is added to prevent introducing a rule for leafs that represent
a bad majority vote (e. g., leafs in which only 51% of the instances refer to transition
t′). Finally, we assume that all transitions for which no rule could be found , i. e.,
that are still mapped to void , are always enabled (lines 14-18).

Example 10.2 (Estimating Partly Overlapping Guard Expressions). Assume we
want to use Algorithm 7 to estimate the guards of the process model in
Figure 10.1. We obtained the following multi-set of observation instances for
place p10:

obsInstLdec
(p10) = [((referral ↦ Home, state ↦ Stable), tdis)100, ((referral ↦ Ward, state ↦ Stable), tdis)10,

((referral ↦ Ward, state ↦ Stable), ttra)50, ((referral ↦ Ward, state ↦ Unstable), ttra)50,

((referral ↦ Ward, state ↦ Unstable), tobs)10, ((referral ↦ Tertiary, state ↦ Stable), tdis)5,

((referral ↦ Tertiary, state ↦ Stable), ttra)10, ((referral ↦ Tertiary, state ↦ Unstable), tobs)5,

((referral ↦ Tertiary, state ↦ Unstable), ttra)10]

The base decision tree returned by C4.5 is:

referral

tdis ttra

referral = Home referral ≠ Home

l1 l2
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Based on this base decision tree, we obtain the initial expressions:

ψ(tdis) ← datareferral = Home
ψ(ttra) ← datareferral ≠ Home

Then, we collect the set of wrongly predicted instances for leaf l1, i. e., all instance
that fulfill the associated expression (referral = Home) but were not recorded for
transition tdis. This set WIl1

= [] is empty, i. e., there are not such instances. Thus,
no subtree can be discovered for leaf l1. However, for the other leaf l2 there are
multiple wrongly classified instances:

WIl2
= [((referral ↦ Ward, state ↦ Stable), tdis)10,

((referral ↦ Ward, state ↦ Unstable), tobs)10,
((referral ↦ Tertiary, state ↦ Stable), tdis)5,
((referral ↦ Tertiary, state ↦ Unstable), tobs)5].

We use set WIl2
to build the following subtree:

state

tdis tobs

state = Stable state = Unstable

l3 l4

Now, we combine the expression obtained for leaf l2 of the base decision tree
with the newly discovered expressions in conjunction and combine the result in
disjunction to any existing expressions:

ψ(tdis) ← ψ(tdis) ∨ (datareferral ≠ Home ∧ datastate = Stable)
= (datareferral = Home ∨ (datareferral ≠ Home ∧ datastate = Stable))

ψ(tobs) ← ψ(tobs) ∨ (datareferral ≠ Home ∧ datastate = Unstable)
= (void ∨ (datareferral ≠ Home ∧ datastate = Unstable))
= (datareferral ≠ Home ∧ datastate = Unstable).

Thus, we discovered the partly overlapping guards of the hospital process shown
in Figure 10.1: (1) stable patients with a referral to the ward or a tertiary hospital
may also be discharged instead of being transferred; and (2) unstable patients
with a referral to the ward or a tertiary hospital may also be observed instead of
being transferred.
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10.3.4 DealingWith Real-life Event Logs

In Section 10.3.1 made several assumptions to explain the key idea: the event log fits
the Petri net perfectly, the set of attributes written events is consistent throughout
the log, and every attribute value is initialized in the first event. Generally, real-life
event logs do not satisfy these requirements. We already discussed how to deal
with the assumption of a perfectly fitting event log. Next, we show how to deal with
the remaining two assumptions: attributes are recorded consistently and initial
values are available.

Inconsistent Attributes. We restricted the set of write operations for a transition
to those variables that are consistently given a value by every event connected
to this transition. In real-life event logs attribute values can be missing due to
temporary recording errors leading to an inconsistent recording of attributes for a
given transition. Moreover, the alignment might need to introduce artificial events
in case events are missing. For these events, the attribute values are unknown.
Therefore, we introduce a user-defined threshold K like in [LA13b] and add a way to
deal with missing values to it. A variable v ∈ V is added to the set of write operations
of a transition t ∈ T when the variable is observed to be given a value by K% of the
events e of transition t (i. e., trans(e) = t). As a result, attributes might be missing
from the set of attributes written for an event e ∈ E, i.e., dom(#(e)) ≠ wr(trans(e)).
Every time an event e does not assign a value to a variable v even though it should
(i. e., v ∈ wr(trans(e)) and v ∉ dom(#(e))), we assume latest(e)(v) to be ⋄. Symbol
⋄ indicates that the value is missing. Decision tree building algorithms, such as C4.5,
can deal with such missing values.

Unassigned Attributes. Classical decision trees cannot deal with uninitialized at-
tributes (similar to NULL values in databases). In real-life event logs, attributes might
be uninitialized if some of the first events of the log’s traces do not assign a value
to all attributes. This issue can be mitigated by defining default values that are
used when attribute have not taken on values yet. For example, for an attribute
approval that is observed to be assigned values {0, 1} in the event log we may use
−1 as default value since it is not used in the real execution data. Hence, rules
based on the default value can be discovered, e. g., reject claims with uninitialized
approval < 0.

10.4 Evaluation

We evaluated our technique using two real-life data sets, and compare the obtained
results to standard methods like decision tree induction algorithms. An imple-
mentation of our technique is available in the MultiPerspectiveExplorer [MLR15b]
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package of the open-source process mining framework ProM 6.7, which will be
presented in Section 11.2.

10.4.1 Evaluation Setup

Performance Measures. We measured the performance of the approaches in terms
of a local fitness measure and a local precision measure. We use measures local
to a specific decision point since we are only interested in how the approaches
trade-off precision and fitness on that decision point. The local precision measure
is described in Section 6.3. We measure the local fitness of a decision-point place
p ∈ P based on how often guard expressions on output transitions of the place are
violated in an alignment of the event log to the process model. Let Ep ⊆ E be the
set of events that are aligned to output transitions p• of place p.

localFitness(LTS, L, p) = 1−
∣{e ∈ Ep ∣ Guard associated with trans(e) is violated}∣

∣Ep∣

Approaches. We compared the performance of our approach with three other
methods. We chose two methods at the extreme ends of the respective measure, and
one method that naïvely introduces overlap. In total, we compared the following
four approaches:

WO. The model without rules, i. e., the guard true is used for all transitions. This
results in a perfect place fitness, no guard is violated.

DTF. The model with rules discovered by a decision tree as in work [LA13b] using
false as guard for transitions that are not part of the decision tree. This
method will always result in a perfect place precision as there is never more
than one enabled transition.

DTT. The model with rules the same rules as in DTF, but using true as guard
for transitions not part of the decision tree. This method naïvely introduces
overlap by enabling all these transitions.

DTO. The model with rules discovered by our approach as described in Sec-
tion 10.3.3.

The DTF and WO methods are at the extreme ends of the respective measures.
Our approach aims at providing better place fitness (i. e., less violated guards) at
the expense of some place precision (i. e., multiple enabled transitions). Therefore,
our approach should provide better place fitness than the DTF method together
with better place precision than the a model without rules (WO). Method DTT is
included to investigate whether our approach improves over a naïve method to
introduce overlap.
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Event Logs and Process Models. We used two anonymized real-life data sets: road
fines and sepsis. The road fines event log was taken from an information system
handling road-traffic fines by an Italian local police force [LM15]. The road fines
log contains more than 150,000 cases with approximately 500,000 events. There are
9 data attributes recorded including the fine amount and the payment amount. The
sepsis event log [Man16a] contains events about the pathways of patients within
a hospital that have a suspicion for sepsis, a life threatening condition typically
caused by an infection. This event log contains data recorded during a full year
resulting in 1056 cases with about 15,000 events39 and 39 data attributes, e. g., the
results of blood tests and information about the patient from checklists filled in by
nurses.

For both event logs, we obtained a normative process model of the control-flow
and, thus, without any guards. We used the control-flow of the process model
presented in [Man+16a] for the road fines data set. For the sepsis data set, we
created a model with help of domain experts from the hospital similar to the one
presented in [MB17]. Both models allow for most the behavior observed in the logs,
but are lacking precision. We checked this using the fitness measure defined for
DPNs in Chapter 5 (road fines: 99.7%, sepsis: 98.6%) and the precision measure
for DPNs proposed in Chapter 6 (road fines: 63.9%, sepsis: 16.5%). Therefore, both
models are good candidates for adding precision through discovered rules.

Experimental Design. We performed experiments for every decision point for the
road-fines and sepsis models, with the exception of four decision points of the
sepsis model for which no technique was able to discover rules. We used the C4.5
implementation of the WEKA toolkit with activated pruning and a merge ratio
mr of 0.05 in all experiments. For each technique, we used 10 different values of
minimum number of instances (mi ) parameter that were equally distributed within a
certain interval, which is determined as follows. The smallest value of the interval
was chosen such that the discovered guards were not composed by more than 7
terms (cf., Definition 2.8). This choice was based on the assumption that guards
with more than 7 terms are too complex and, hence, of no business value. The
upper bound of the interval was the smallest value that could still return a rule.
In fact, for a too large value of the mi-parameter no rule would be returned. It is
worth observing that the interval may have changed with varying the decision
point and the technique (DTO, DTT, and DTF).



228 10 ENHANCING MODELSWITH OVERLAPPING DECISION RULES

n = 150 n = 150 n = 1500.00

0.25

0.50

0.75

1.00

DTO DTF WO
Approach

P
la

ce
 fi

tn
es

s

(a) Place fitness

n = 150 n = 150 n = 1500.00

0.25

0.50

0.75

1.00

DTO DTF WO
Approach

P
la

ce
 p

re
ci

si
on

(b) Place precision

Figure 10.6: Place fitness and local precision achieved by the proposed method (DTO)
compared to the standard decision tree classifier (DTF), and the model without guards
(WO).

10.4.2 Results and Discussion

We conducted the experiments and recorded the obtained place fitness and place
precision for 15 places and 10 parameter settings.40 The boxplot in Figure 10.6
shows the average place fitness and place precision achieved by our method and
the approaches DTF and WO for all 15 places. We did not include the naïvely
approach DTT in the general comparison of fitness and precision as shown in
Figure 10.6 since the DTT approach differs from the DTF approach only if there are
decision points with more than two outgoing transitions. Only in those cases some
transitions may not have been part of the decision tree. Therefore, we compare our
method with the naive DTT approach for all decision points with more than two
outgoing transitions separately in Figure 10.7.

In the following paragraphs, we interpret the results and discuss the differences
between our method and the three other approaches DTT, DTF, and WO.

DTO vs. WO. Compared to WO, the results from our experiment (Figure 10.6b)
show clearly that DTO provides rules that increase the place precision against
the process model without guards. For some decision points and some parameter
settings, our approach deliberately trades precision to obtain better fitting guards.
This result is in line with the expectation that our approach returns overlapping
rules that lose some precision for a better fitness. The large spread of the obtained
place precision indicates that in some cases our method discovers rules with too
much overlap, i. e., the discovered overlapping rule is not much more precise than

39Please note that we used a variant of the sepsis cases event log that contains more data than the one
made publicly available as [Man16a]. Due to privacy concerns, we cannot disclose that event log.

40The data used for the evaluation is available under http://purl.tue.nl/844997340832257. For confi-
dentiality reasons we cannot share the variant of the sepsis event log that was used.

http://purl.tue.nl/844997340832257
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no rule at all.

DTO vs. DTF. The experimental results show that DTO discovers decision rules
that lead to a better place fitness than the rules discovered by DTF (Figure 10.6a)
with, on average, a limited trade-off for lower precision. The outliers for DTO in
Figure 10.6a deserve some discussion. We inspected them and found that for some
combinations of parameter settings and places, our approach failed to discover
overlapping guards. It discovers the exact same rules as returned by DTT. Mostly,
this happens for decision points with only two outgoing transitions and high set-
tings of the mi parameter. This can be expected for decision trees with instances
from two classes {A, B}. The wrong instances on a leaf l = (expr , A), which predicts
transition A, can only belong to the other transition B. Therefore, our approach will
not discover a second decision tree with leafs predicting B, but rather use rule expr
from leaf l for the majority vote transition B. Our approach only allows this if the
number of instances for B is above the setting of the mi parameter. Thus, for high
settings of mi and decision points with two outgoing transitions our approach is
unlikely to improve over the normal decision tree classifier approach.
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Figure 10.7: Average place fitness and place precision achieved by the DTO method compared
to the DTT method. Here, only decision points with more than two outgoing transitions
are shown.

DTO vs. DTT. We also compared DTO against DTT, which naïvely assumes the
guard true for transitions that are not predicted by the decision tree. For this
comparison, we compared the results for decision points with more than two
outgoing transitions, ∣p•∣ > 2, as the results obtained through DTT can only differ
from the results of DTF only for these decision points. Figure 10.7 shows the fitness
and precision for those places averaged over the considered 10 parameter settings.
Each place is given a name for reference. The results in Figure 10.7a show that
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Figure 10.8: Simplified variant of the process model used for evaluating the decision mining
method on the sepsis cases event log. After a triage form is filled, infusions are given and
blood tests are taken patients are admitted to normal care, intensive care, or not admitted
(τ3). Two relevant attributes are recorded: lactic acid, (L) and hypotension (H).

DTO is able to discover overlapping guards that fit the observations better: for all
of the considered decision points, the decision rules returned by our approach
increase the place fitness against those rules returned by DTT. Furthermore, the
results show that for all except one decision point our approach discovered rules
with higher place precision. In other words, it discovered more precise guards
without loosing fitness. In fact, for decision point S-p31 our approach obtained an
average place precision of 0.58 whereas the rule returned by the DTT approach
scores only 0.26. Our approach discovered guards for all six outgoing transitions
whereas DTT only discovers guards for three transitions. On the remaining three
DTT used true as a guard, i.e., always enabled. The only decision point for which
DTO obtained a worse precision score than DTT is S-p15. Our approach discovered
guards that correspond to true for all three alternatives. This is possible since our
method discovered overlapping rules in the form of x = true ∨ x = false and
we employ a rudimentary tautology check, which reduces such expression to the
guard true. However, this is not necessarily a bad representation of the observed
data. In fact, the guards discovered by DTT cause the lowest place fitness in our
experiment 0.64, i. e., the guards discovered by DTT are wrong in one third of the
cases.

Example. Figure 10.8 shows a part of the DPN that we used for the sepsis data
set. Table 10.3 shows the guards discovered by DTF, DTT and DTO, the approach
presented in this chapter, for the three alternative activities on decision point S-p5.
All rules are based on two attributes: Lactic acid (L) and Hypotension (H). DTF
discovers the rule that patients with a lactic acid measurement (i.e., L > 0) are
generally admitted to normal care and patients without lactic acid measurement
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Table 10.3: Guards discovered by the compared approaches at decision point S-p5

Approach Normal Care Intensive Care Not Admitted (τ3)

DTF L > 0 false L ≤ 0
DTT L > 0 true L ≤ 0
DTO L > 0 L > 0 ∧ H = true (L > 0 ∧ H = false) ∨ L ≤ 0

(L ≤ 0) leave the hospital. The guard for the admission to intensive care is returned
as false. This leads to the situation where patients are never admitted to intensive
care even if it is part of the model and observed. Obviously, this cannot be correct.
DTF is unable to find a mutually-exclusive rule that includes this alternative activity
given the information recorded in the event log. DTT discovers the same rules but
naïvely assumes the guard true for admission to intensive care. Clearly, the DTT
results are not satisfying as DTT would convey no rules about the admission of
patients to intensive care. Our approach – DTO – discovers that patients with a
lactic acid measurement (L > 0) can always be admitted to normal care. As an
alternative to normal care, for case in which H = true holds (i. e., the hypotension
flag was checked) patients can also be admitted to intensive care; otherwise, if
H = false (i. e., the hypotension flag was not checked) patients leave the hospital.
The guards for the activities overlap and the final decision is likely to be made on
the basis of contextual factors, which are not encoded in the event log.

10.5 RelatedWork

We discuss the related work in the fields of process mining, classification, and rule
learning. Moreover, we also discuss the relation to the DMN standard and related
research.

Process mining. There are several approaches for decision mining in the context
of process mining [AAD11; BBW16; BW16; Cat+14; Dun+14; Gri+04; GSP14; JJ13;
LA13b; LDG13; RA06]. All these methods assume to be given an event log with his-
torical data about the process. Furthermore, in all of these approaches the decision-
mining problem is translated into a classification problem, and solved using classi-
fication analysis techniques such as C4.5 [Qui93]. All of these approaches discover
only mutually-exclusive rules, i. e., there is no other work about discovering overlap-
ping rules from data labeled with single classes for decision mining in the context
of process mining.

Classification. Most related from the traditional classification field to our approach
is work about multi-label classification [Bou+04; TK07]. In a multi-label classification
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problem classes are not mutually exclusive, instances can be labeled with multiple
classes, and the goal is to find the correct set of classes for unseen instances. Our
setting is still different as we deal with instances that are only associated with one
class, i. e., the executed transition. Classifier chains methods are the closest to our
work. They decompose the problem into multiple binary classification problems,
one for each label [Rea+11]. These methods also assume that instances are labeled
with multiple classes, which is not the case in our setting.

Rule learning. Methods for association rule mining [AIS93], rule learning based
on rough sets [Ste98], and rule learning based on fuzzy sets [Zad65] are also related
to our work. Association rule mining methods return a large set of, potentially
overlapping, rules. Methods based on rough sets are based on the idea that given
the information in the observation instances (or a subset of attributes of the in-
stances) classes may be indiscernible, e. g., given two classes A and B and instances
[((X ↦ 1, Y ↦ 0), A), ((X ↦ 1, Y ↦ 1), B)] it is not possible to define a rule to
distinguish between class A and class B based on attribute X. Rough set based
rule learning method can discover certain rules (i. e., classes can be distinguished)
and approximate rules (i. e., the rules overlap) [Ste98]. Discovered approximate rules
would be suitable candidates for overlapping guard expressions. However, the
main problem of these rule learning methods is that a potentially large set of rules
is usually returned, failing to provide insights that are easy to interpret. As an
alternative to our approach, rule learners based on fuzzy sets, e. g., fuzzy deci-
sion trees [Jan98], could also be used to obtain rules that may overlap due to the
the non-binary membership function employed in fuzzy sets. Appropriate mem-
bership functions would need to be inferred (e. g., by using an approach such as
NEFCLASS [Nau03]) or designed manually. Moreover, the precision and fitness
measures for DPNs would need to be adapted for fuzzy rules.

DMN standard and Decision Tables. DMN is a standard for the modeling of deci-
sions using decision requirements diagrams and decision tables. Decision require-
ment diagrams are envisioned as a notation for the internal structure of decision
marking. Decision tables are used for the decision logic [DMN16]. DMN takes a
broader view at decision making. It is not only concerned with routing decisions
that describe which activities may be executed next. Moreover, DMN also considers
forms of decision that are different from routing decision in processes, e. g., DMN
may be used to model the decision what percentage of discount is granted to a
customer. Research related to DMN has also been addressing the discovery and
management of decision rules. In work [Cal+16] DMN decision tables are analyzed
and overlapping rules are detected. This approach is useful when overlap between
rules is considered as quality problem. As motivated in Section 10.3.3, there are sit-
uations in which overlapping rules are inevitable because of the non-deterministic
nature of human behavior. Amongst the research on DMN, work on fuzzy decision
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tables [Baz+17; VWC96] shares a similar goal: representing imprecise decision rules.
In [VWC96] decision tables based on fuzzy rules are introduced and their seman-
tics are discussed. However, the decision table is not automatically discovered. In
work [Baz+17], fuzzy logic is incorporated into DMN decision tables and fuzzy
rule learners are employed to infer fuzzy classification rules from event data. The
result is a set of fuzzy rules that can be transformed to natural language statements
like: “If loan duration is long, then risk is very high” [Baz+17]. Differently from our
approach, the precision and fitness of the obtained process model is not considered
and overlap between rules is introduced only for numerical attributes. Moreover,
the execution semantics proposed for fuzzy decision tables selects a single rule to
be executed at runtime, i. e., no overlap is introduced at runtime, which is different
from our goal. Compared to our approach, DMN is not only concerned with the
decision logic. It also models the dependencies on data that is required to yield a
decision: the decision requirements diagram. There is recent work [De +17b] that
aims to automatically extract a decision requirements diagram from an event log.
The write operations preceding a decision point in a DPN also make the required
data for the decision explicit. Still, the structure of a decision requirement diagram
cannot be directly inferred from the write operations of a DPN.

10.6 Conclusion

We proposed a new technique for the discovery of overlapping rules in process
models using event data. Existing techniques only return rules that assume com-
pletely deterministic decisions. This assumption often does not hold in real-life
settings. The data recorded in event log is often incomplete and real-life decision
making may be non-deterministic according to this information.

10.6.1 Contribution

Our technique is the first proposal of a discovery technique for decision logic in
process models that introduces overlapping rules. This chapter is based on our
publication [Man+16b]. The technique aims to create process models that trade
the precision of mutually-exclusive rules for the fitness of overlapping rules when
the observed behavior gives evidence to such rules. To evaluate our technique
we used several real-life data sets. We measured the fitness and precision of the
process models with discovered rules (cf., the conformance checking technique in
Part II). The evaluation showed that our technique is able to produce models with
overlapping rules. The discovered models fit the observed behavior better without
loosing too much precision. For some decision points with more than 2 alternative
activities, our technique returns rules that are both more fitting and more precise
than the existing method [LA13b].
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10.6.2 Limitations

The results show that our technique is successful in uncovering overlapping rules
in processes from event logs, and that these rules provide in some cases a much
better characterization of the observed behavior. Still, the proposed technique has
some limitations.

• We evaluated our technique to provide good results on two real-life event
logs. More experiments using event logs from different settings are required.
Moreover, a qualitative evaluation that involves domain experts to judge the
pragmatic quality of the discovered rules would be required.

• An inherent limitation of our approach is that it only uses the majority vote to
introduce overlapping guards for a decision point with two output transitions.
This might cause the guard of one transition to be turned into the rule true,
e. g., when the initial guards were based on a single condition. It might also
affect the place fitness negatively in case no initial condition was found for
the transition.

• Our approach tends to discover guards that are more complex: Guard may
become unreadable if algorithm’s parameters are not carefully chosen. In
the implementation of our method we attempt to simplify rules by removing
tautologies (e. g., rule X = true ∨ X = false is simplified to true) and
collapsing numeric intervals (e. g., rule X > 10 ∧ X > 20 is simplified to
X > 20). Simplification of boolean expressions is not trivial in the general
case; however, more advanced methods from this domain could be used.

10.6.3 FutureWork

There are several directions for future work that are worthwhile exploring.

• It would be beneficial to investigate the application of other techniques dif-
ferent from decision trees to decision mining and decision mining of overlap-
ping rules. It would be useful to have a parameter that influences the expected
degree of overlap of the rules to be found. This would allow us to steer the
discovery of data-aware process models in the spectrum between fully fit-
ting and fully precision models. A possible realization could be based on
rule induction approaches, e. g., based on association rules [AIS93] or rough
sets [Ste98]. Rule mining approaches based on rough sets can yield overlap-
ping rules that can be steered in the spectrum from mutually-exclusive (crisp
part of the set) towards overlapping (rough part of the set). However, the
challenge on how to select appropriate rules from a large set of candidates
needs to be addressed.
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• Another important future work is to address limitations of decision mining
techniques for data sets with imbalanced distributions of classes. Imbalanced
distributions are a phenomenon often found in business process (e. g., de-
cisions regarding exceptions or infrequently visited paths of the model).
Although we note that our technique is able to reveal rules when one tran-
sition is only observed for a small fraction of the cases, a more thorough
investigation of this phenomenon is needed.

• Linking our method with work [Baz+17; Cal+16; De +17b] that has been
done on discovering decision requirement diagrams and decision tables
such as defined by the DMN standard would be interesting. Our method
could benefit from integrating decision requirement diagrams into DPN
and using decision tables as an alternative representation for guard-based
decision rules. Vice versa, overlapping decision rules could be integrated
into DMN.





Part IV

Applications

Chapter 11 We present two interactive tools that implement our proposed meth-
ods in the process mining framework ProM.

Chapters 12 to 15 We describe four case studies that we conducted using the
method proposed in this thesis.





11

11 Tool Support

In the following two sections, we describe two tools that were developed as part of
this thesis. We start in Section 11.1 by presenting the Interactive Data-aware Heuristic
Miner (iDHM), which implements the process discovery technique described in
Chapter 8 and additionally constitutes a general platform for heuristic process
discovery. Then, in Section 11.2 we describe the Multi-perspective Process Explorer
(MPE), which realizes the methods described in Chapters 5, 6 and 10.

11.1 Interactive Data-aware Heuristic Miner

First, we present the Interactive Data-aware Heuristics Miner (iDHM), an open-source
tool in the ProM framework41 that implements the process discovery method pre-
sented in Chapter 8. Parts of the content of this section were published in [MLR17].
The iDHM aims to address the following five shortcomings of many of the existing
heuristic-based process-discovery tools:

1. the large parameter space of heuristic methods needs to be explored manu-
ally;

2. several of the many available heuristics can be chosen from;
3. data attributes (i.e., the event payload) are not used for process discovery;
4. discovered C-Nets are not visualized as described in literature; and
5. existing tools do not give reliable quality diagnostics for the discovered

models despite the lack of quality guarantees offered by heuristic approaches.

The iDHM provides interactive exploration of the parameter space and includes
built-in conformance checking to diagnose the quality of the discovered model.
Thus, it is easier to explore a large parameter space and directly spot conformance issues,
e. g., deviating and missing behavior in the event log. Furthermore, the iDHM uses
data attributes of the event log to reveal infrequent conditional dependencies as
described in our data-aware heuristic process discovery method in Chapter 8.

The iDHM visualizes discovered models as Causal Nets (C-Nets) (cf., Section 3.3)
and Data Causal Nets (DC-Nets) (cf., Section 8.4). C-Nets depict the split- and join
gateways of a process in a concise graphical notation with clear semantics. Existing
tools do not directly visualize the C-Net notation but rely on a tabular or external
description of the discovered split- and join gateways. The exact semantics are not

41Available in the DataAwareCNetMiner package of ProM 6.7: http://promtools.org

http://promtools.org
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visible directly in those tools. Finally, the iDHM is build with a plug-in architecture
that allows to add new heuristics.

11.1.1 Overview of the iDHM

Event Log Dependency
Relations (1)

Conditional
Relations (2)

Splits and
Joins (3)

Decision
Rules (4)

Confor-
mance (5)

Figure 11.1: An overview of the five discovery steps of the iDHM.

We distinguish five steps of data-aware process discovery as depicted in Figure 11.1:
1. mining dependencies,
2. mining conditional dependencies,
3. mining split- and join information,
4. discovering decision rules, and
5. checking conformance.

11.1.2 Walk-through of the iDHM

We present a walk-through of the iDHM using an event log obtained from the
billing process of a regional hospital in The Netherlands. A more comprehensive
analysis of this process is described in Chapter 15. Figure 11.2 shows the main
screen of the iDHM. The required input is an event log in the XES format. Traces
from the event log may be filtered by using a SQL-like query syntax À. The figures
in this section show the output in form of a DC-Net, but other output formats such
as Petri net or Data Petri net can also be chosen based on the translation described
in Section 8.4 Á. Each step of the iDHM can be configured Â and several thresholds
(cf., θobs , θdep , θbin , and θcon defined in Section 8.3.3) may be used to configure the
employed heuristics Ã. At the bottom of the screen a legend explains the color
coding that is used Ä.

Step 1: Discover Dependency Relations

First, the set of dependency relations is determined. A dependency relation (a, b)
between two activities represents a causal dependency from activity a to activity
b. Figure 11.3 depicts the dependency relations discovered for the threshold set-
tings of the iDHM chosen in Figure 11.2. Figure 11.3 is automatically generated
by the iDHM, i. e., it is possible to view the results of each step in isolation. For
example, activity DELETE depends on a prior execution of activity NEW. This is
depicted as a directed edge between both activities. Only strong dependencies that
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Figure 11.2: The main screen of the iDHM shows conformance information projected on a
discovered DC-Net. The dotted edge between activity RELEASE and activity BILLED is
currently selected and the discovered dependency condition is shown.

exceed a configured dependency threshold and are observed more often than a config-
ured observation frequency threshold are included. The configuration corresponds
to setting the thresholds described in Section 8.3.3 to θobs = 0.05 and θdep = 0.9.
Several heuristics have been proposed to discover dependency relations and their
strength. A suitable method can be chosen from four implemented methods: the
Flexible Heuristics Miner (FHM) [WR11], the Alpha Miner [AWM04], the Fuzzy
Miner [GA07], and the average of these miners. In Figure 11.2, we used the FHM
method. New methods can be added as plug-ins to the iDHM.

Step 2: Discover Conditional Dependency Relations

Second, the data perspective is taken into account when discovering the control
flow of a process. Classification techniques are used to reveal data dependencies
between activities. These data dependencies are used to distinguish random noise
from infrequent conditional dependencies. This greatly extends existing techniques,
which are solely based on the control-flow perspective and, hence, would disregard
such infrequent behavior as noise. Conditional dependencies may provide insights for
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Figure 11.3: Dependency relations determined by the iDHM in its first step.

Figure 11.4: Two conditional dependencies highlighted in red, were added in the second
step.

process analysts since they could indicate, e.g., workarounds and deviations from
normal process behavior. In Figure 11.4, e.g., the dependency between FIN and
the end of the process is a conditional dependency and the dependency between
RELEASE and BILLED is also a conditional dependency.

In the resulting C-Net, conditional edges are highlighted in red. Further statistics
on the discovered condition can be obtained by right-clicking on the respective
edges of the DC-Net (or C-Net), e. g., in Figure 11.2 the edge between FIN and
the end of the process is selected and a pop-up (see Å) shows that data condition
closeCode = H was discovered for that edge, which was associated with a quality
score of 0.98. We only include conditional dependencies for which the quality
of the underlying data condition exceeds the configured condition threshold (in
Figure 11.2 we use θcon = 0.7). The iDHM implements our data-aware heuristic
discovery method as presented in Chapter 8 to discover conditional dependencies.
We implemented two variants of this technique: a plug-in that evaluates the data
conditions with Cohen’s kappa as described in Section 8.3.2 and a plug-in that
evaluates the data conditions using the standard F1-score for binary classification.
In this walk-through, we use Cohen’s kappa as quality measure.

Step 3: Discover Split- and Join Information

Third, the split- and join information of the C-Net, i. e., its input- and output bind-
ings, need to be discovered to obtain a model with precise semantics. The bindings
of the C-Net are visualized as dots on the edges between two activities. Discon-
nected dots represent exclusive splits (XOR) and connected dots represent parallel
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splits (AND). In Figure 11.5 there are two output bindings defined for activity
RELEASE. After executing RELEASE an exclusive choice between either BILLED
or CODE OK is modeled, i. e., the two binding dots are not connected with each
other. Currently, the heuristic proposed by the FHM in [WR11] is implemented
and only frequent bindings exceeding the bindings threshold are displayed. In future
work, other heuristics, e.g., the structuring approach presented in [Aug+16] may
be added.

Step 4: Discover Decision Rules

Figure 11.5: Bindings and
guarded bindings.

Fourth, decision rules that determine which of the
possible output bindings may be activated are dis-
covered. Bindings with attached decision rules, i.e.,
guarded bindings, are depicted by a double border.
In Figure 11.5 decision rules could be discovered
both output bindings of RELEASE. The binding
from RELEASE to CODE OK is activated only for
cases with the caseType attribute values A,B, and
D. The binding from RELEASE to BILLED is acti-
vated only for caseType attribute values C, F, and
G. Additional information on the decision rule
such as details on its evaluation in terms of the
chosen quality measure can be accessed by right-
clicking on the binding. Decision rules may be
filtered based on a decision-rule quality threshold.
We implemented two decision mining methods,
one based on C4.5 decision trees and one based
on overlapping decision rules described in Chap-
ter 10.

Step 5: Check Conformance of theModel

Model move

Log
move

Synchronous
 move

Deviation indicator

Figure 11.6: Conformance
statistics

Finally, we apply conformance checking techniques on
the C-Net and the event log to project frequencies on the
activities and bindings. In Figure 11.5, the size and color
of the binding dots scales with the frequency of their acti-
vation estimated by the employed conformance technique.
For example, the binding from RELEASE to CODE OK oc-
curs much more often than the other output bindings of
RELEASE. Activities are also color-coded, cf. the different
colors of the activities in Figure 11.2. Moreover, confor-
mance problems are projected on the activities. Here, we
use the conversion between DC-Nets and DPN that is de-
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scribed in Section 8.4 and use the multi-perspective balanced alignment method
presented in Chapter 5 to compute an salignment (cf., Section 4.3). Following the
definition of the alignment, we categorize deviations in:

• log moves, i. e., the event cannot be matched to the process model;
• model moves, i. e., the model activity cannot not be matched to an event; and
• synchronous moves, for which there is no control-flow discrepancy between

event log and model.
Statistics on the number of log-, model-, and correct moves are projected on the

activities using the color-coding shown in Figure 11.6. Additionally, we add a small
circle of the respective color to the top left of the activity as binary deviation indica-
tor to signal the presence or absence of conformance issues. This helps to enables to
spot activities with a low number of conformance issues, which would be difficult
using only the color-coded bar below the activity. Moreover, it is possible to convert
the DC-Net to a DPN as shown in Figure 11.7 and use it with the Multi-perspective
Explorer (MPE) tool (cf., Section 11.2) to further analyze the deviations in more
detail and compute the fitness and precision measures proposed in Section 4.4 and
Chapter 6. We describe the MPE tool in Section 11.2.

p0 RELEASE p1

(( caseType  ==  "C"
||  caseType  ==  "F")
||  caseType  ==  "G")

(( caseType  ==  "D"
||  caseType  ==  "A")
||  caseType  ==  "B")

p2 FIN p3

(( closeCode  ==  "X"
||  closeCode  ==  "H")
||  closeCode  ==  "BA")

(((((((((((((((((((((((((((( closeCode
==  "C" ||  closeCode

==  "K") ||  closeCode
==  "Y") ||...

p4 CODE OK

F
• NEW

p6 DELETE

p8 CHANGE DIAGN

p10

BILLED

p13

( caseType  ==  "D" ||
caseType  ==  "B")

( caseType  ==  "F" ||
caseType  ==  "A")

p16

p18

p20

p21

p22

p26

caseType

closeCode

Figure 11.7: DPN converted from the discovered DC-Net by the iDHM tool. The DPN can
be used, e. g., for further analysis in the MPE tool.

Several heuristic and exact approaches are available to compute the conformance
statistic. Currently, we only implement our multi-perspective balanced alignment
method Chapter 5. Possible additions in future work would be, e. g., the heuristic
execution semantics proposed in [Bro14], the fuzzy log replay proposed in [Roz10],
or approaches that approximate an optimal alignments, e. g., work [Don+17; TC16],
to provide faster feedback.

11.1.3 Plug-in Architecture

As described, it is possible to choose from one of the implemented heuristics for
each of the steps 1-5. The iDHM is built on a plug-in architecture, each of the
heuristics is implemented as plug-in of the iDHM; thus, it is possible to extend
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the tool with new heuristics by implementing a Java interface and adding the new
class to ProM.42

11.1.4 Conclusion of the iDHM

We presented the iDHM, an interactive data-aware heuristic process discovery tool.
The tool integrates several heuristics and can be used as testbed for new heuristics.
The tool integrates with the ProM framework so that the obtained results can be
used for further analysis. We showed that the iDHM addresses some of the common
shortcomings of academic tools for heuristic process discovery. It allows for quick
exploration of the parameter space (1) and several different heuristics (2). It uses
data attributes for control-flow discovery (3) and visualizes the result as models
with clear semantics (4). Finally, it provides built-in conformance checking (5).

We successfully tested the iDHM on several non-trivial real-life event logs of
considerable size, which confirms that it has reached a high degree of maturity.
In this paper, we showed its application to the event logs of a hospital billing
process with 100,000 traces and more than 450,000 events. The tool has also been
successfully applied to larger events logs with more than 1,000,000 traces and
6,000,000 events.

A limitation of the iDHM is its dependence on an automatic layout based on the
GraphViz software. Very complex C-Nets are unlikely to be readable and it is not
yet possible to manually adjust their layout. As future work we plan to apply the
iDHM to more case studies and further improve its usability. Moreover, we plan to
enrich the C-Net notation with perspectives different than control-flow.

11.2 Multi-perspective Process Explorer

Next, we describe the Multi-perspective Process Explorer (MPE), a tool that is tailored
towards multi-perspective process exploration for enhancement and conformance
analysis. It integrates our work on multi-perspective process mining as described
in Chapters 5, 6 and 10 as well as existing decision mining methods [LA13b] in
a scalable and flexible tool. Moreover, the MPE provides interactive data-aware
visualizations and filtering facilities.

Applying multi-perspective process mining techniques in practice is a laborious
task, especially in cases when the data contains a large number of different attributes
with high variability. A substantial amount of manual work by analysts is required,
because they need to filter and transform event data as well as to select relevant
features. Also, results need to be explored and, if not satisfactory, these steps need
to be repeated multiple times by hand. The MPE aims to support this task and
provides three main features:

42Details on developing iDHM plug-ins can be found at http://fmannhardt.de/g/dhm

http://fmannhardt.de/g/dhm
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• integration of multi-perspective conformance checking, analysis of deviations
and performance analysis techniques;

• interactive efficient discovery of decision rules governing the process;
• built-in filtering and event log exploration based on context-sensitive charts

and a trace variants explorer.
In the following sections, we give an overview on the functionality of the MPE

and present a brief walk through showing the sequence of steps required to discover
and evaluate a multi-perspective process model. Parts of the work presented here
was published in [MLR15b].

11.2.1 Overview of the MPE

Figure 11.8: Main screen of the MPE showing the input process model (base model).

The MPE is implemented as plug-in of the ProM framework in the DataAwareEx-
plorer package43. Starting point for the usage of the MPE is an event log and a
process model. Both the event log and the model need to be available as objects in
the ProM framework.

Event log. ProM supports loading event logs in the XES format [IEEECIS16] and
from CSV files. To support large event logs in which events carry several attributes
as payload, we developed the XESLite libary [Man16b], which efficiently stores
43The DataAwareExplorer is available in ProM 6.7.
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typical event logs on commodity hardware. XESLite is used by the MPE to store
the input event log as well as the alignment between the event log and the process
model. The alignment is stored in a standard format, which extends the XES stan-
dard for the storage of alignments.44

Process model. The MPE supports process models in the DPN notation. This in-
cludes also classical Petri net without variables and guards. Petri nets can be dis-
covered, e. g., by using the many process-discovery techniques available in ProM.
Alternatively, ProM supports the import of Petri nets in the PNML format. Thus,
process models can be created manually with an editor such as WoPeD45 or the
ProM plug-ins Create Petri net (Text language based)46 and Create DPN (Text language
based). Optionally, the MPE can also be used with hand-made DPNs that already
contains decision rules.

Figure 11.8 shows the start screen of the MPE when applied to a process model
(i. e., Petri net) of the road traffic fine management process and the corresponding
publicly available event log [LM15]. We use this data set to describe the functionality
of the MPE. The event log, the process, and the normative process model are
described in more detail as part of the case study in Chapter 12. The user interface
of the MPE consists of six parts that are marked with numbers in Figure 11.8:

À The main area of the MPE screen shows the process model and, in some modes,
additional information is projected on top of the model. Selected nodes (e. g., here
Create Fine) are highlighted with dashed borders.

Á In the lower area of the MPE information on the currently selected model ele-
ments and general information on the model and the event log is shown.

Â Integral part of the MPE is the computation of an alignment between the process
model and the event log. The MPE uses the balanced multi-perspective alignment
method presented in Chapter 5 to compute such an alignment. The alignment
computation can be started and configured using the button (Re)compute Align-
ment.

Ã Often, it is useful to focus on a specific sub set of the traces based on data
attributes stored in the event log. The MPE provides a flexible filtering mechanism,
which can be used to query a sub set of traces based on a SQL-like query language.
Moreover, it is possible to filter the event log based on selecting model elements,
e. g., to retain only those traces in which certain transitions were executed or
certain places were marked. This selection based filtering relies on alignments to
establish the connection between model elements and log events.

Ä The functionality of the MPE is divided in several modes:
• model mode,

44The XES alignment extension is published as ProM package XESAlignmentExtension.
45Available at http://woped.org/
46Available in the DataPetriNet package of ProM 6.7.

http://woped.org/
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• data discovery mode,
• performance mode,
• fitness mode, and
• precision mode.

Each of these modes supports a specific use case of the MPE. We will describe the
features of each mode in the walk-through of the MPE.

Å Finally, it is possible to open two additional views in separate windows:
• The trace view allows to explore the traces of the event log and the computed

alignments to the process model in more detail.
• The chart view allows to explore the distribution of data values during the

process.

11.2.2 Walk-through of the MPE

We now describe a step-wise walk-through of the MPE based on the scenario in
which we want to enhance the process model of the road traffic fine management
process with decision rules, check the quality of the resulting process model, and
analyze some parts of the process in more detail. All figures in this section are
directly taken from the MPE. In some cases, we did small adjustments on the
layout of the models to improve readability.

Step 1: Analysis of the Input Model.

The first step of the walk-through is to analyze the process model that was provided
as input, i. e., the normative model for the road traffic fine management process
(Figure 11.9) without guard expressions and variables. We determine which paths
of the process model are frequented more often and how well the process model
represents the observed process behavior as recorded in the event log.

• Create Fine Payment

Send Fine

Send Appeal
Receive Result

Notify Offender

Payment

Noti�cation

Send for
Credit

CollectionAppeal to
Judge

Payment

Add Penalty

Appeal to
Prefecture

F

Figure 11.9: Petri net of the road traffic fine management process used as input to the MPE.
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Figure 11.10: Configuration options of the MPE performance mode

First, we first switch the MPE to the performance mode. To determine the quality
of the model and project frequency information, the MPE computes an optimal
alignment between the traces of the event log and the process model. Parameters
such as the employed cost function, a mapping between activities and transitions,
and a mapping between attributes and variables (cf., the mapping functions λ and
ν in Section 3.2) can be configured. The default configuration assigns a cost of three
for log moves, a cost of three for model moves, and a cost of one for each incorrect
write operation. We choose this default setting for the MPE since we assume that
the control-flow of the user-defined process model can be trusted more than the
guard expressions to be discovered.

Moreover, it is possible to change several expert configuration options. We elaborate
on two more commonly used options: the choice of the used MILP solver, we
support both the open-source solver lpsolve47 and the commercial solver Gurobi
Optimizer48, and the handling of uninitialized variables. Uninitialized variables
may occur in a DPN if a guard expression uses the value of a variable when it is
still assigned the initial value (cf., function in in Definition 3.6). To simplify some
common use cases, we provide two modes to handle the initial value of variables:
(1) Uninitialized variables are assumed to be FREE, which means that they may take
on any value or (2) NULL (the standard), which means that they will be mapped to
a special value. This may also be used in guard expressions.

After the alignment is computed, it is possible to select which of several available
performance measures are projected on the edges and transitions of the DPN. The
following measures are supported by the MPE:

• frequency, the absolute number of traces traversing an edges;
• percentage (local), the frequency of traces traversing an edge relative to the

number of traces reaching or leaving a place of the DPN;
• percentage (trace), the frequency of traces traversing an edge relative to the

number of all traces;
• several waiting time statistics (average, median, minimum, maximum, first

quartile, and third quartile).

47http://lpsolve.sourceforge.net
48http://www.gurobi.com

http://lpsolve.sourceforge.net
http://www.gurobi.com
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...

...

1st measure 2nd measure

Edge measure
Edge scaling

Color-code

Figure 11.11: Visualization options of the MPE: Two measures can be visualized on the edge
labels, the edge width can be scaled according to one measure, and edges and transitions
may be colored according to their absolute frequency.

Figure 11.10 shows the configuration screen that allows to change the following
options:

• 1st measure, configuring the first measure that is shown on the edges;
• 2nd measure, configuring the second measure that is shown on the edges;
• edge measure, configuring the measure that controls the edges width;
• edge scaling, configuring the transformation that is applied on the edge

measure (linear, square root, logarithm) to prevent outliers from dominating
the visible differences; and

• color-code, configuring whether edges and transitions should be colored
according to their absolute frequency.

The effect of the configuration options chosen in Figure 11.10 on the visualization is
shown in Figure 11.11. The overall percentage of traces passing through an edge was
selected as first measure and the average waiting time between transition as second
measure. Note that measures are only shown when relevant. For example, time-
based measures are not shown on edges to routing transitions since the alignment
provides no execution time for those. Also, the measures are not shown on the
outgoing edges of transitions since the number of traces that passes through the
transition is equal to the number of traces that pass through each outgoing edges.
By doing so, the visualization is kept compact.
Figure 11.12a shows the visualization that is shown when selected the measure
percentage (trace) to be projected both on the edge labels (i. e., 1st measure) and as
edge measure. Moreover, the transitions and edges are color-coded according to their
overall frequency. It is clearly visible that some parts of the process, e. g., Appeal
to Judge and Insert Data Appeal to Prefecture, are executed less often. Figure 11.12b
shows the result of projecting the average waiting time measure on both the edge
labels and the edge width. In Figure 11.12b, we used the square root transformation to
reduce the visual impact of outliers, since the average waiting time for activity Send
for Credit Collection is very high (1.4 years) in comparison to the waiting time of the
other activities. Note that there is no waiting time for invisible routing transitions
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(a) Percentage (trace) measure projected on the process model and color-coded activities.

(b) Average waiting time between enabling of transitions until their execution.

Figure 11.12: Two examples of performance statistics projected on the process model.
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since they are not matched to events in the event log.

• Create Fine Payment

Send Fine

Send Appeal
Receive Result

Notify Offender

Payment

Noti�cation

Send for
Credit

CollectionAppeal to
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Payment

Add Penalty

Appeal to
Prefecture

F

Figure 11.13: Fitness diagnostics projected on the process model.

To analyze how well the input process model represents the observed process be-
havior, we switch the MPE to the fitness mode. Figure 11.13 shows the fitness diag-
nostics projected on the process model along with the used color scale. The color of
a transition t represents a local fitness statistics that is determined based on the num-
ber of model moves (countModelMovest) and incorrect moves (countIncorrectMovest)
observed in the alignments moves of transition t compared to the overall number of
alignment moves (countAllMovest) observed for that transition, i. e., the measure is
calculated as:

1 −
countModelMovest + countIncorrectMovest

countAllMovest
.

Log moves are not counted towards the local fitness statistics of transitions since
they cannot reliably be matched to a certain transition. Therefore, we also introduce
a local fitness statistic for places. The local fitness statistic for a place p is based on
the number of log moves observed while place p was marked with at least one token
(countLogMovesp) compared to the overall number of alignment moves observed
while place p contained at least one token (countAllMovesp), i. e.:

1 −
countLogMovesp

countAllMovesp
.

Most deviations are recorded for transitions Insert Date Appeal to Prefecture, Send
Appeal to Prefecture, Receive Result Appeal from Prefecture, and Notify Result Appeal to
Prefecture. However, none of the deviations are assigned a fitness score less than 0.8.

For the road traffic fine management process, we obtain a good overall fitness-
score of 0.996. Thus, the process model is able to describe almost all of the behavior
observed in the event log (cf., Section 4.4 for the definition of the fitness-score).
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Figure 11.14: Precision diagnostics projected on the process model.

Next to the fitness score, we are also interested in the precision of the process model
with regard to the event log. Therefore, we switch the MPE to the precision mode
and determine the multi-perspective activity precision measure as described in
Chapter 6. It is possible to the set of data attributes that should be considered for
the calculation of precision measure (i. e., those attributes are added as variables
to the DPN). In our case, we specified the following data attributes of the road
traffic fine management event log: amount, dismissal, expense, lastSent, notificationType,
paymentAmount, points, and totalPaymentAmount. The average activity precision
score of the road traffic fine management process model is 0.664, which can be
seen on the information panel of the MPE (not shown in Figure 11.14). Figure 11.14
depicts the precision diagnostics projected on the process model by the MPE. It
shows that places pl7, pl10, pl12, and pl14 are the main source of imprecision.

Step 2: Data-aware Discovery.

Figure 11.15: Configuration options of the MPE data discovery mode.

In the second step, we discovered decision rules (i. e., the guard function of
the DPN) based on the event log to increase the precision of the process model.
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Create Fine
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(a) Guards are shown on the edges leading to the respective transitions. The guards and the
underlying decision trees can be further explored by selecting the transition in the MPE.
We manually added the labels of the invisible routing transition and we omitted the write
operations and variable to improve the readability of the model.

Transition Guard expression

Send Fine totalPaymentAmount ≤ 18
Payment totalPaymentAmount ≤ 18
Inv1 totalPaymentAmount > 18
Inv4 dismissal = G
Inv5 dismissal = NIL
Inv6 expense ≤ 15.6
Receive Result expense > 15.6

(b) Tabular view of the discovered guards added for better legibility.

Figure 11.16: Process model with discovered guard expressions for the output transitions of
the places pl10, pl12, and pl14 by applying the overlapping decision mining method.
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We switch the MPE to the data discovery mode (cf., configuration option Ä in
Figure 11.2). In the data discovery mode, an additional configuration panel appears
that allows users to configure the employed decision mining algorithm and its
parameters. Figure 11.15 shows the configuration panel with the configuration
that we use to discover the decision rules for place pl12 of the road traffic fine
management process. The configuration allows users to configure which guard-
discovery algorithm to use, which data attributes to consider, and the configuration
of the following parameters:

• the minimum number of instances at decision-tree leafs (min instances),
• the minimum fitness of trace to be considered (min fitness),
• whether to apply 10-times 10-fold cross validation, and
• whether to force the discovery of binary rules.

In our case, we choose our proposed overlapping decision mining approach (cf.,
Chapter 10) and set the min instances (mi) parameter to 0.01, i. e., the parameter
is set of 1% of the instances reaching the decision point pl12. The min instances
parameter influences whether the discovered guards are over-fitting (values too
low), or under-fitting (value too high). The resulting process model that is enhanced
with decision rules is depicted in Figure 11.16. We discovered decision rules for
three of the places: pl10, pl12, and pl14. The actual decision rules are analyzed later
in Chapter 12 as part of a case study. Here, we only use them to introduce the
features of the MPE.

Step 3: Fitness and Precision Computation.

Having discovered or obtained a normative multi-perspective process model from
other source, we can use the MPE to evaluate the quality of the discovered process
model. This requires to change the MPE to its fitness mode and, subsequently, to its
precision mode. Please observe that there is a substantial difference compared with
the analysis done in the first step: now the model contains the data perspective, i. e.,
guard expressions are defined for several transitions. On average the newly discov-
ered process model gets a fitness score of 0.996, i. e., the average fitness does not
change considerably, and an average precision score of 0.695, i. e., the average preci-
sion was improved by 0.033 percentage points. The detailed diagnostics displayed
by the fitness- are the precision mode are shown in Figure 11.17. In comparison
to the fitness diagnostics for the input model (cf., Figure 11.13) the coloring of
transitions did not change considerably. Only the first Payment and the Send Fine
activity are diagnosed with a few more fitness problems. On a closer inspection,
the local fitness score for both activities is almost 1.0. In comparison to the preci-
sion diagnostics for the input model (cf., Figure 11.14), the coloring of the places
pl10, pl12, and pl14 changed considerably. The guards discovered for the respective
output transitions increased the local activity precision measure on these places.
Please note that the activity precision for place pl12 is not 1.0 since the discovered
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(b) Output of the precision mode

Figure 11.17: Quality diagnostics for the process model with discovered data perspective in
terms of fitness and precision as shown by the MPE.

decision rules are overlapping.

Step 3: Detailed Analysis Using the Trace- and Chart View.

Beyond analyzing fitness and precision of multi-perspective process models, the
end user may want to explore specific traces and attributes of the event log in
detail. For example, some traces may correspond to problematic process instances.
Also, the distribution of some attributes may be potentially interesting; however,
no decision rule could be discovered. To answer these questions, the MPE provides
two complementary views on the process that allow to explore the event log using
the process model in more detail: the trace view and the chart view.
Figure 11.18 shows the trace view that opens on a second screen upon pressing the
Toggle Trace View button. For each log trace, the corresponding alignment is shown.
Traces are grouped based on the sequence of activity executions (i. e., the same
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(a) The trace view of the MPE. The left panel shows alignments grouped based on the same
sequence of activities and the right panel shows individual alignments for the selected
groups.

Trace: S55213

Fitness 77.78%
Create Fine

dismissal:=NIL

totalPaymentAmount:=0.0

Send Fine

expense:=0.0≠21.95

Insert Fine Notification Add penalty

dismissal:=NIL

Inv6

Synchronous

move ●

Incorrect synchronous 

move ⊗ 

Log

move ◓

Attributes

(b) Alignment of trace S55213 as displayed in the trace view of the MPE.

Figure 11.18: Trace view of the MPE showing details on the alignment of individual traces
to the process model.
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behavior in the control-flow perspective) on the left side of the window. Individual
traces and their data attributes can also be explored on the right side of the window.
Log and model moves are highlighted with yellow and purple color above the
move, incorrect synchronous moves (i. e., a move with invalid data assignment)
is highlighted with white color as shown for the move Send Fine in Figure 11.18b.
Moves related to the same activity are painted with the same color. For example, all
moves for the transition Create Fine are painted in light blue in Figure 11.18, which
allow to quickly spot patterns across traces.

Figure 11.19: Chart view comparing the distribution of values of the attribute expense in the
log projection of the alignment for the two output transitions of place pl14.

The chart view, shown in Figure 11.19, provides more details on the distribution
of data attributes at certain states within the process model using three types of
diagrams: histograms, box-plots, and bar-charts depending on the attribute type.
Figure 11.19 shows a context-sensitive boxplot of the distribution of the values
of attribute expense before the occurrence of the activities Receive Result Appeal
from Prefecture (blue) and the invisible step Inv6 (red), which are the two output
transitions of place pl14. It is possible to show either the actual values observed in
the log projection of the alignment or the values of the process projection of the
alignment, which may be corrected to fulfill the guard expressions for incorrect
synchronous moves. In Figure 11.19, the values observed in the log projection
of the alignment are shown. This allows end users to visually analyze whether
certain ranges of values are usually observed together with the occurrence of given
activities. For instance, the distribution depicted illustrates the discovered decision
rule for place pl14: cases with an expense of more than 15 EUR are more likely to
continue the process with activity Receive Result Appeal from Prefecture.

11.2.3 Conclusion of the MPE

We presented the MPE as a tool for multi-perspective process exploration, which
has reached a high degree of maturity. It has been used in several real-life case
studies and on event logs of considerable size. This is also testified by its application
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on the analysis of several real-life event logs that are presented in Chapters 12 to 15.
For example, as part of the case study presented in Chapter 15, we applied it an
event log with over 1,000,000 traces and more than 6,000,000 events. A limitation
of the MPE is its reliance on the automatic graph layout provided by the ProM
GraphViz package.49 The automatic graph layout works well in simple cases, but
produces poor layouts for cyclic structures and many variable nodes and guard
expressions. Future work on better visualizations and better layout methods for
complex DPNs is needed.

11.3 Conclusion

We presented the Multi-perspective Process Explorer (MPE) and the Interactive
Data-aware Heuristic Miner (iDHM), two interactive tools that implement methods
proposed in this thesis. Both tools are released as open-source software in the ProM
framework and have been successfully used in several real-life settings as we show
in the next four case-study chapters. Still there is a gap to available commercial
tools with regard to to the ease of use and the intuitiveness of the user interface.
In particular both tools provide many parameters influencing the analysis result.
A good direction for future work would be to provide better insights in the effect
on the result that each of those parameters has. Finally, it would be beneficial to
integrate the Guided Process Discovery (Chapter 9) method into the iDHM. Process
analysts would be able to directly see how and if injected domain knowledge
improves the discovered process.

49The external software GraphViz (http://www.graphviz.org) is used to compute a good layout using
the layout manager DOT.

http://www.graphviz.org
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12 Case Study: Road Traffic Fine
Management

In this chapter and in the following three chapters, we present four case studies
that we conducted to show that the proposed method are applicable in real-life
situations, i. e., that it is feasible to apply them to real-life problems and that they
provide valuable insights. In contrast to a classical case study, our emphasis here
is on the validation of our methods. Therefore, we choose to structure the case
studies along the proposed method instead of the business questions raised.

This chapter presents the road traffic fine management fines (abbreviated as fine
management) case study. We conducted it in the context of the process of manag-
ing road traffic fines by a local police force in Italy. Parts of this case study were
published in [Man+14].

We structure this chapter as follows. First, we describe the context of the case,
specific process questions, the event log, and a hand-made normative process
model in Section 12.1. Then, we describe how we applied each of the four proposed
methods to the fine management case. We started by checking the conformance
of the normative process model in Section 12.2. Afterwards, we enhanced the
normative model with automatically discovered decision rules in Section 12.3. Then,
we evaluated what results could be achieved using a purely data-driven approach,
i. e. without the normative model. We discovered and analyzed process models
using both our DHM method (Section 12.4) and our GPD method (Section 12.5).

12.1 Case Description

We analyzed the process of managing road traffic fines by a local police force in Italy.
An ad-hoc information system that is purpose-built supports the management and
handling of their road traffic fine management process. This information system
is not process-aware, i. e., there is no formal specification on how it should be
used to manage the road traffic fines. Also, the documentation does not provide
a description of the process. However, we were able to interview stakeholders
to obtain some information on the process. In the next three subsection, we are
describing the process questions that were formulated (Section 12.1.1), elaborate
on the extracted event log and the semantics of the events (Section 12.1.2), and
present a normative process model that we designed based on our knowledge of
the process (Section 12.1.3).
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Table 12.1: Activities recorded in the fine management event log.

Activity Frequency Description

Create Fine 150,370 The initial creation of the fine in the information
system.

Send Fine 103.087 A notification about the fine is sent by post to the
offender.

Insert Fine Notification
(Notification)

79,860 The notification is received by the offender.

Add Penalty 79,860 An additional penalty is applied.
Payment 77,601 A payment made by the offender is registered.
Send For Credit Collection 59,013 A separate credit collection process is started for

unpaid fines.
Insert Date Appeal to Prefecture
(Appeal to Prefecture)

4,188 The offender appeals against the fine to the pre-
fecture.

Send Appeal to Prefecture
(Send Appeal)

4,141 The appeal is sent to the prefecture by the local
police.

Receive Result Appeal from Prefec-
ture (Receive Result)

999 The local police receives the result of the appeal.

Notify Result Appeal to Offender
(Notify Result)

896 The local police informs the offender of the ap-
peal result.

Appeal to Judge 555 The offender appeals against the fine to a judge.

12.1.1 Process Questions

Even though there system and the documentation does not provide a description
of the underlying process, the managing of road traffic fines is regulated by the
Italian law. Thus, there are some constraints that the process needs to adhere to.
The main question of the case study was whether the real execution of the process
as recorded by the information system matched these constraints (e. g., the fine
is sent out in due time). Moreover, we also checked whether the assumptions of
the stakeholders on the process as represented in our normative model (e. g., the
entire fine amount is paid) were correct. We present the respective assumptions
and constraints later in Section 12.1.3 when describing the normative model.

12.1.2 Event Log

The information system records data about its operations in a PostgreSQL database.
We obtained a snapshot of the database that was taken in June 2013 and converted
it to a XES standard compliant event log [IEEECIS16]. The resulting event log
was made available for further process mining research purposes as part of the
collection of real-life event logs of the IEEE Task Force on Process Mining [LM15].50

The event log contains 150,370 traces and 561,470 events that were recorded
between January 2000 and June 2013. Most of the traces are short: on average, a
50The road fines event log can be obtained from https://doi.org/10.4121/uuid:

270fd440-1057-4fb9-89a9-b699b47990f5

https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
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Table 12.2: Attributes recorded in the fine management event log.

Attribute Shorthand Domain Description

amount am continuous The amount due to be paid for the fine.
article ar discrete The number of the article of the Italian road-traffic law

that is violated by the offender.
dismissal di literal A flag indicating whether and how the fine is dismissed.

Several values are possible: G encodes a dismissal by the
judge, # encodes that the fine was dismissed by the pre-
fecture, and NIL encodes that the fine was not dismissed.
There are several other values used for which we cannot
reveal the semantics.

expense ex continuous The additional amount due to be paid for postal ex-
penses.

notificationType nt literal A code indicating to whom the fine refers. The codes
used in the event log are P (the owner of the car) or C
(the driver that committed the offense). When the actual
offender is unknown (e. g., was not stopped), a fine is
created for the owner of the car.

org:resource or literal A code indicating the employee who handled the case.
We cannot disclose more information regarding these
codes.

paymentAmount py continuous The amount paid by the offender in one transaction.
points po discrete The penalty points deducted from the offender’s license.

In Italy each driver starts with 20 points on their license
and may loose point for each offence. Drivers who loose
all their points need to take a new driving test.

totalPaymentAmount
(payment)

pa continuous The cumulative amount paid by the offender.

vehicleClass vc literal The kind of vehicle used by the offender.

trace consists of four events only. The longest trace consists of 20 events. The event
log contains 11 different activities that are conducted as part of managing the road
traffic fines. Table 12.1 lists the activities in the order of their frequency and provides
a brief description of each activity. Moreover, 12 data attributes are recorded. The
attributes relate to the fine amount due, the payments made by the offender, and,
possibly, the outcome of appeals against the fine. Table 12.2 shows the attributes.
For readability, we shorten the names of some activities and variables as shown in
Tables 12.1 and 12.2.

From a basic analysis of the event log, we noticed that cases are usually completed
within 6 months, including those cases that end with a referral to credit collection.
For the analysis, we wanted to consider only finished cases. As a heuristic to ensure
that we only retained finished cases, i. e., we filtered out any case that started after
June 2012. Since the relevant laws and procedures are rather stable over the past
years, we assumed that the last year of the event log shows the same behavior as
in previous years. The resulting filtered event log contains 145,800 log traces and
543,538 events, which were recorded between January 2000 and June 2012. For
43% of the traces the process ends after two events: the fine is either directly paid
(Payment) or the letter with information about the fine is sent out (Send Fine) but
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the fine is not yet paid. In contrast to this simple part of the log, 51% of the traces
recorded five or more events and 62% of the cases take longer than 100 days to
finish. This suggests that many offenders did not pay the fine in time or appealed
against the decision.

12.1.3 Normative Process Model

We manually created a normative DPN that encodes the Italian laws regarding the
management of road fines. The DPN is shown in Figure 12.1a and it’s guards are
listed in Figure 12.1b.
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(a) DPN of the road fines management process. We use the abbreviated from of variables.

Transition Guard

Send Fine delaySend′ < 90 days
Appeal to Judge delayJudge′ < 60 days
Appeal to Prefecture delayPrefecture′ < 60 days
Receive Result dismissal = NIL
Send for Credit Collection payment < amount + expenses
Inv1 (dismissal ≠ NIL) ∨ (payment ≥ amount ∧ points = 0)
Inv2 payment ≥ amount + expenses
Inv3 payment ≥ amount + expenses
Inv4 dismissal = G
Inv5 dismissal = NIL
Inv6 dismissal = #

(b) Guards expression function of the DPN

Figure 12.1: The normative DPN created for the road fines management process.

The process starts with the Create Fine transition that writes four variables amount,
points, payment, and dismissal. Variable amount refers to the amount that needs
to be paid by the offender. Variable points records the number of points that are
deducted from the offender’s license. Variable payment specifies the total amount
that has been paid by the offender, i. e., the variable corresponds to the log attributes
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totalPaymenbtAmount. It is always initialized as payment = 0.0. Variable dismissal
stores a character that encodes the reasons why a certain fine was dimissed. A
value of NIL encodes that the fine was not dismissed (i. e., it has to be paid). In
general, the offender can pay the fine (partly or fully) at many moments in time:
Right after the creation, after a road fine notification is sent by the police to the
offender’s place of residence, or when such a notification is received by the offender.
If the entire amount is paid (or, even, by mistake, more than that amount), the fine
management is closed. This motivates the presence of the invisible transitions Inv1,
Inv2, and Inv3. If a notification is sent, the offender needs to also pay the postal
expenses.

If the offender does not pay within 180 days, a penalty is added, which is usually
as much as the initial fine’s amount. After being notified by post, the offender can
appeal against the fine through a judge and/or the prefecture. If the appeal is
successful, the variable dismissal is set to value G or #, respectively, and the case
ends (by firing either Inv4 or Inv6).51 Otherwise, the case continues by firing Inv5
or Receive Result Appeal. If the offender does not pay, eventually the process ends
by handing over the case for credit collection.

The Italian laws specifies a number of time constraints. The fine notification must
be sent within 90 days since its creation. After the notification, the offender may
only appeal to a judge/prefecture within 60 days. To check the conformance of the
fine management with respect to these laws, we have preprocessed the event log
and introduced three additional variables that record the various delays: delaySend,
delayJudge, and delayPrefecture with the respective shorthand notations ds, dj,
and dp.

12.2 Conformance Checking

In this section, we describe how we applied the balanced multi-perspective confor-
mance checking method (cf., Chapter 5) to the normative process model and the
fine management event log.

12.2.1 Configuration Settings and Cost Function

Computing an optimal alignment for conformance checking requires the definition
of a cost function κ (cf., Definition 4.3). Since the fine’s amount and the deducted
points are defined by law and the expenses follow the Italian post tariffs, their
values cannot be modified to give an explanation of deviations. In order to respect
this domain characteristic, we assigned significantly higher costs to their deviations
in comparison to those for deviations of the values of Payment and Dismissal as well

51In [Man+16a], we mistakenly swapped the meaning of values G and # for the fine dismissal in the
normative process model.
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Table 12.3: Cost function κ for the fine management process. The cost for a synchronous
move is 0 for all transitions. Log moves for invisible transitions are assigned an infinite
cost. The cost for an incorrect synchronous move is obtained by summing the specific costs
associated with each variable for which a missing or incorrect value has been written.

Transition Model Move Log Move

Create Fine 1 1
Send Fine 1 1
Payment 1 1
Notification 1 1
Add Penalty 1 1
Appeal to Judge 1 1
Appeal to Prefecture 1 1
Send for Credit Collection 1 1
Send Appeal 1 1
Receive Result 1 1
Notify Offender 1 1
Inv1, …, Inv6 0 ∞

Variable Missing Incorrect

delaySend (ds) 1 1
delayPrefecture
(dp)

1 1

delayJudge (dj) 1 1
amount (am) 1 3
expense (ex) 1 3
payment (pa) 1 3
points (po) 1 3
dismissal (di) 1 1

as the control flow. This ensures that these values are never varied while building
an alignment.

The employed cost function is specified by Table 12.3 according to Definition 4.3.
A tabular representation is used to enhance the readability. A cost for a model
move (≫, (t, w)) for a transition t is equal to the cost for t in the left-hand side table
plus the cots of the missing writing of variables in w in the right-hand side table.
Similarly, the cost for a log move (e, ≫) for an event e equal to the cost of #act(e)
in the left-hand side table. Finally, the cost for an incorrect synchronous move for
(e, (t, w)) for an event e and a transition t is equal to the sum of the cost of incorrect
write operations as shown in the right-hand side table.

As an example, consider an alignment move (e, (t, w)) in which event e recorded
the execution of activity Create Fine, i. e., #activity(e) = λ(t) = CreateFine and two
out of the four prescribed write operations recorded incorrect values, e. g., for both
variable v1 with ν(v1) = di and variable v2 with ν(v2) = am the value is incorrect:
w(v1) ≠ #ν(v1)(e), w(v2) ≠ #ν(v2)(e). Then, the cost according to the cost function
specified in Table 12.3 is: κ((e, (t, w))) = 1 + 3.

12.2.2 Conformance Checking Results

We applied both the balanced alignment method presented in Chapter 5 as well as
the non-balanced alignment method that is described in [LA13a]. Both methods
were applied using the same cost function, which was just described, as parameter.
We show that it is necessary to use the balanced alignment method that guarantees
an optimal alignment with regard to to a cost function defined for all perspectives
of the process.

First, we present the result of the balanced alignment method. Figure 12.2 shows
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Figure 12.2: Conformance diagnostics projected on the road fine traffic management DPN
as produced by the MPE fitness mode for the balanced alignment method.

the resulting projection of conformance problem onto the model in the fitness mode
of the MPE (cf., Section 11.2 for the calculation of local fitness measures used to
color the places and transitions). The overall fitness score was 0.96, which testifies
a very good conformance of the event log with the process model. In particular,
53.1% of the log traces are characterized by a fitness level of 1.0.

However, as the fitness projection indicates, several deviations are still present.
For example, transitions Send Fine and Appeal to Judge are colored with the darkest
color. The deviations are mainly due to the constraints on the time perspective of
the process. In 25.9% of all traces, the value written to delaySend by transition Send
Fine is incorrect, i. e., the notification is sent to late. Moreover, in 20,4% of the traces
in which an appeal to a judge is made (Appeal to Judge), the value of delayJudge is
incorrect. This suggests that authorities are currently unable to handle road fines
in a timely and correct manner. Therefore, to remedy this situation, more resources,
i. e., police officers, should be assigned by the municipality. Alternatively, some
parts of the management should be outsourced, e. g., the steps necessary to print
fine notifications, put these in envelops, and send them by post. Indeed, these are
manual steps that require a lot of time from the involved police officers.

A valuable insight is that there are deviations recorded for the Send for Credit
Collection transition. In 8.2% of all traces the transition appears as a model move
in the alignment. For 8.2% of the fines, within 1 year, neither have their amount
been paid in full nor have they been forwarded for credit collection. Considering
that sending for credit collection is supposed to usually occur within 6 months
after the fine has been opened, this finding suggests that there may be issues (e. g.,
unmotivated delays) with managing unpaid fines.

12.2.3 ComparisonWith the Non-Balanced Method

In order to compare the results of our balanced method with those returned by
a non-balanced method [LA13a], we also applied the latter. For the comparison
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Figure 12.3: Comparison of the MPE fitness mode output for both methods. The color-coding
returned for the non-balanced method is shown on the left side of transitions and variables
and the color-coding returned for the balanced method is shown on the right side. The
darker the color, the higher the percentage of detected deviations for the transition or the
variable. The figure clearly shows that the balanced method provides different results sug-
gesting that the method to first construct control-flow alignments may provide misleading
results.

we use only the non-perfectly fitting traces (68,330), since there is no difference in
fitness to be expected for perfectly fitting traces52.

First, we directly compared the difference in fitness level between both methods
in Figure 12.4. Section 12.2.3 shows that for a large group of about 12,000 traces, the
difference in fitness between the balanced method and the non-balanced method
is more than 0.14. For a smaller group of 117 traces the difference in fitness level is
even 0.29. Section 12.2.3 indicates that the balanced method improved the fitness
for many traces in the whole range of fitness values. The fitness improved for every
trace that is placed in a box above the diagonal.

Second, we compare the output of the MPE fitness mode for both the balanced
and the non-balanced method in Figure 12.3 to give an indication on where the
differences are. The color-coding returned by the non-balanced method is shown
on the left side of transitions, places, and variables and the color-coding returned
by the balanced method is shown on the right side. The comparison shows that
there are seven larger differences (À-Æ) in the identification of the root-causes of
the deviations. In particular, when applying the non-balanced method, the net pro-
jection highlights that many traces are deviating due to wrong values of variables
amount (Ä) and payment (Ã). Indeed, the color on the left side of these variables
is yellow and dark yellow. Vice versa, the right side of the corresponding variables
is white-colored. Regarding the variable amount, according to the Italian law any
root cause that consists of changing the assignment of such a data variable (i. e.,

52Generally, the non-balanced method may align even a perfectly fitting control-flow such that it results
in a data-based deadlock, such as described in Section 5.3. However, this did not occur in the road
fines case.
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Figure 12.4: Comparison between the fitness level computed by the balanced and non-
balanced method.

an incorrect write operation) is not acceptable. After all, this amount is defined
by the Italian law and police officers use road-fine forms in which the amount is
predetermined.

Table 12.4: Exemplary trace 𝛔A with an unpaid fine.

id activity am ex po pa di ds dj

e10 Create Fine 131.0 0 0 NIL
e11 Send Fine 10.0 1152

Third, in order to understand the reason for the difference in the identification
of root causes, we have inspected the individual alignments returned by the two
methods. We found out that there are alignments for hundreds of log traces of the
form of 𝛔A, as shown in Table 12.4. Figure 12.5 compares the output of the trace
view diagnostics of the Multi-perspective Explorer (MPE) for the trace σA when
using the balanced and non-balanced method. Moreover, for completeness, we
show both alignment in a tabular form in Table 12.5. The non-balanced method
highlights that the fine at creation time should have already been associated with a
payment of 5,000 EUR. This is in contrast with the balanced method which suggests
that the fine should have been dismissed with any code different from NIL (e. g.,
here our alignment method arbitrarily choose the code ANY) and never been sent
out. Thus, the non-balanced method diagnoses more deviations regarding the
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Trace: V9962
Fitness 76.92% Create Fine

pa:=5000.0≠0.0
am:=131.0..

Send Fine

ds:=1152
ex:=10.0

Inv2

(a) The non-balanced alignment (fitness
0.77): Create Fine is marked as incorrect
synchronous move (white) and Send Fine
as correct synchronous move (green).

Trace: V9962
Fitness 84.62% Create Fine

di:=> ANY VALUE≠NIL
am:=131.0..

Send Fine Inv1

(b) The balanced alignment (fitness 0.85): Cre-
ate Fine is marked as incorrect synchronous
move (white) and Send Fine as log move (yel-
low).

Figure 12.5: Output of the trace view diagnostics of the MPE for trace 𝛔A

Table 12.5: Non-balanced and balanced alignment for the log trace 𝛔A.

(a) Non-balanced alignment with a fitness-score of 0.77.

Event attributes (#(e)) Move (e, (t, w)) Process variables (w)

(am ↦ 131.0, pa ↦ 0.0, po ↦ 0,
di ↦ NIL)

⊗ (e10, (Create Fine, w′
10)) (am ↦ 131.0, pa ↦ 5000.0, po ↦ 0,

di ↦ NIl)

(ex ↦ 10.0, ds ↦ 1152) ● (e11, (Send Fine, w′
11)) (ex ↦ 10.0, ds ↦ 1152)

◒ (≫, (Inv2, ∅))

(b) Balanced alignment with a fitness-score of 0.85.

Event attributes (#(e)) Move (e, (t, w)) Process variables (w)

(am ↦ 131.0, pa ↦ 0.0, po ↦ 0,
di ↦ NIL)

⊗ (e10, (Create Fine, w10)) (am ↦ 131.0, pa ↦ 0.0, po ↦ 0,
di ↦ ANY)

(ex ↦ 10.0, ds ↦ 1152) ◓ (e11, (Send Fine, ∅))
◒ (≫, (Inv1, ∅))
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variable payment (Ã) than the balanced method whereas the balanced method
indicates more deviations regarding the variable dismissal (Å) and log moves for
Send Fine (Æ) than the non-balanced method. This this case, the alignment returned
by the non-balanced method is not plausible from a domain perspective, since it
should be impossible to create a fine that already has a full payment associated
to it. According to our domain knowledge of the process, it is more likely that the
dismissal code was not correctly recorded at the start of the process. The payment
by necessity can only be made at a later stage. We encoded this domain knowledge
in the employed cost function, which was accounted for by the balanced method,
but not by the non-balanced method.

Moreover, there is a smaller number of traces like trace 𝛔B, as shown in Table 12.4.
Trace 𝛔B also has conformance problems. First, the fine was sent too late, since
the delay is longer than what law permits. Second, the fine has been closed with a
payment of 149 EUR, which corresponds to the initial amount 138 EUR plus the
postal expenses of 11 EUR. Unfortunately, a penalty was added to the fine, which
the offender did not pay. Therefore, the fine management should not have been
closed.

Table 12.6: Exemplary trace 𝛔B with an underpaid fine.

id activity am ex po pa di ds dj

e20 Create Fine 138.0 6 0 NIL
e21 Send Fine 11.0 3409
e22 Notification
e23 Appeal to Judge NIL 840
e24 Add Penalty 275.0
e25 Payment 149.0

Trace: S113180
Fitness 76.47% Create Fine

am:=138.0
di:=NIL..

Send Fine

ds:=0≠3409
ex:=11.0

Notification Appeal to Judge

di:=NIL
dj:=840

Inv5 Add Penalty

am:=0.0≠275.0

Payment

pa:=149.0

Inv3

(a) The non-balanced alignment with a fitness score of 0.76 marks Send Fine and
Add Penalty as incorrect synchronous move (white).

Trace: S113180
Fitness 88.24% Create Fine

am:=138.0
di:=NIL..

Send Fine

ds:=0≠3409
ex:=11.0

Notification Appeal to Judge

di:=NIL
dj:=840

Inv5 Add Penalty

am:=275.0

Payment

pa:=149.0

(b) The balanced alignment with a fitness score of 0.88 marks Send Fine as incorrect synchro-
nous move (white) and Send for Credit Collection as model move (purple).

Figure 12.6: Output of the trace view diagnostics of the MPE for trace 𝛔B



272 12 CASE STUDY: ROAD TRAFFIC FINE MANAGEMENT

As shown by the trace view diagnostic output of the MPE Figure 12.6 and the
tabular listing of the alignments in Table 12.7, both methods highlight the problem
that the fine is sent too late. The observed value for variables delaySend (ds) is 3,409
hours but according to the process model, the fine should have been sent out within
90 days, i. e., 2,160 hours. There is a second observation that does not conform to
the behavior prescribed by the process model: the payment of 149 that was made
does not cover the full fine amount. For this second source of non-conformance, the
non-balanced method suggests that, after applying the penalty, the due amount is
set to zero. This results in a higher number of deviations regarding variable amount
reported by the non-balanced method compared to the balanced method (cf., Ä
in Figure 12.3). This is definitely not plausible since adding a penalty needs to
result in a higher amount to be paid. As a matter of fact, the Italian law states that,
besides very few exceptions, the due amount should even be doubled, excluding
expenses. By contrast, the balanced method returns a meaningful result: The fine
was not paid in full and, hence, needs to be sent for credit collection. Therefore, the
balanced method reports more deviations for the transition Send for Credit Collection
(cf., Ä in Figure 12.3) compared to the non-balanced method.

The reason for the differences in the returned alignments is related to the fact that
the non-balanced method constructs alignments by initially aligning the control-
flow and, only later, by aligning the other perspectives. The non-balanced method
makes the assumption that control-flow deviations are more costly and, hence, they
can be aligned first. If this assumption does not hold, such as for this case study, the
returned alignments are not optimal and this may lead to implausible explanations.

We conclude this section by briefly reporting on the execution time of both
methods. Finding the alignments took on average 4.8 milliseconds per trace for the
balanced method, versus 1.3 milliseconds for the non-balanced one. The balanced
method required more time but is justified by the more meaningful explanations
for the deviations.
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Table 12.7: Non-balanced and balanced alignment for the log trace 𝛔B.

(a) Non-balanced alignment with a fitness-score of 0.76.

Event attributes (#(e)) Move (e, (t, w)) Process variables (w)

(am ↦ 138.0, pa ↦ 0.0, po ↦ 0,
di ↦ NIL)

⊗ (e20, (Create Fine, w′
20)) (am ↦ 138.0, pa ↦ 0.0, po ↦ 0,

di ↦ NIL)

(ex ↦ 11.0, ds ↦ 3409) ● (e21, (Send Fine, w′
21)) (ex ↦ 11.0, ds ↦ 0)

∅ ● (e22, (Notification, ∅))

(di ↦ NIL, dj ↦ 840) ● (e23, (Appeal to Judge, w′
23)) (di ↦ NIL, dj ↦ 840)

◒ (≫, (Inv5, ∅))

(am ↦ 275.0) ⊗ (e24, (Add Penalty, w′
24)) (am ↦ 0.0)

(pa ↦ 149.0) ● (e25, (Payment, w′
25)) (pa ↦ 149.0)

◒ (≫, (Inv3, ∅))

(b) Balanced alignment with a fitness-score of 0.88.

Event attributes (#(e)) Move (e, (t, w)) Process variables (w)

(am ↦ 138.0, pa ↦ 0.0, po ↦ 0,
di ↦ NIL)

⊗ (e20, (Create Fine, w20)) (am ↦ 138.0, pa ↦ 0.0, po ↦ 0,
di ↦ NIL)

(ex ↦ 11.0, ds ↦ 3409) ● (e21, (Send Fine, w21)) (ex ↦ 11.0, ds ↦ 0)
∅ ● (e22, (Notification, ∅))
(di ↦ NIL, dj ↦ 840) ● (e23, (Appeal to Judge, w23)) (di ↦ NIL, dj ↦ 840)

◒ (≫, (Inv5, ∅))
(am ↦ 275.0) ● (e24, (Add Penalty, w24)) (am ↦ 275.0)
(pa ↦ 149.0) ● (e25, (Payment, w25)) (pa ↦ 149.0)

◒ (≫, (Send for Credit Collection, ∅))
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12.3 Discovery of the Data Perspective

We also checked whether additional rules can be discovered that are not described
in the normative model. Therefore, we applied our overlapping decision mining
method (cf., Chapter 10) on the normative process model. We used a Petri net
version of the DPN shown in Figure 12.1a, i. e., all existing guards and variable
write operations were removed. We employed the MPE data discovery mode with
the same configuration settings as described in Section 11.2 and evaluated the
quality of the resulting multi-perspective model with both our precision measure
(cf., Chapter 6) and our fitness measure (cf., Section 4.4).
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(a) Decision rules have been discovered for the places of the DPN that are highlighted in red.
The guards listed in Figure 12.7b have been assigned to transitions with a double-border.

Transition Guard expression

Send Fine totalPaymentAmount ≤ 18
Payment totalPaymentAmount ≤ 18
Inv1 totalPaymentAmount > 18
Inv4 dismissal = G
Inv5 dismissal = NIL
Inv6 expense ≤ 15.6
Receive Result expense > 15.6

(b) Tabular view of the discovered guard expression.

Figure 12.7: Process model enhanced using the overlapping decision mining method.

The process model enhanced with decision rules is depicted in Figure 12.7.53

In total, we discovered decision rules for three of the places: pl10, pl12, and pl14.
The decision rule discovered for transitions Inv4 and Inv5 (place pl10) is mutually
exclusive and confirms the rule specified in the normative process model (cf., Fig-
ure 12.1). The decision rule regarding transitions Receive Result and Inv6 is also

53Figure 12.7 shows the same process models as in Figure 11.16, which was used for the introduction
of the data discovery feature of the MPE.
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mutually-exclusive and suggests that appeals to the prefecture with low postal ex-
penses are more often successfully appealed against. Finally, the guards discovered
for the transitions Send Fine, Payment, and Inv1 are overlapping. Note that this rule
cannot be returned by state-of-the-art decision mining techniques [LA13b]. From
a domain point-of-view the overlap of the different guards is plausible since both
the Payment activity and the Send Fine activity are likely to be executed for those
fines which have not yet been paid in full (i. e., less than 18 EUR has been paid).
Conversely, the routing transition Inv1 should only be executed for those fines that
have been paid.
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(a) Output of the fitness mode.
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(b) Output of the precision mode.

Figure 12.8: Quality diagnostics for the enhanced model as shown by the MPE.

We computed the multi-perspective precision and fitness scores for the process
model enhanced with decision rules. On average the fitness of the process model
with decision rules was 0.996, i. e., fitness did not change considerably, and the
precision score is 0.695, i. e., precision improved by 0.033. The detailed diagnostics
displayed by the fitness and the precision mode of the MPE are shown in Figure 12.8.
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In comparison to the fitness diagnostics for the input model (cf., Figure 12.8a) the
coloring of transitions did not change considerably. The local fitness only decreased
for the first Payment transition at place pl12 and the Send Fine activity. However, on
a closer inspection the score is still almost 1.0 for both activities. In comparison
to the precision diagnostics for the input model (cf., Figure 12.8b), the coloring of
the places pl10, pl12, and pl14 changed considerably. The guards discovered for
the respective output transitions increased the local activity precision measure on
these places.

12.4 Data-aware Process Discovery

Next, we investigated the results that could be achieved without using the nor-
mative process model. We applied the data-aware process discovery method (cf.,
Chapter 8) to the fine management event log and discovered a DC-Net that reveals
infrequent data-dependent paths.

12.4.1 Configuration Settings

We used the following parameter settings for the iDHM (cf., Section 11.1) that we
experimentally determined:

• the all-task-connected heuristic, since we know that each activity is of interest;
• the observation threshold θobs = 0.01 (i. e., relations that appear in more than

1% of the log trace), because we want to capture the main flow of the process;
• the dependency threshold θdep = 0.8 to discover only strong dependencies;
• the binding threshold of θbin = 0.001 to exclude very infrequent bindings.

Moreover, we used eight of the attributes to discover dependency conditions and
guarded bindings.54 We used C4.5 with 10 times 10-fold cross validation and only
accepted classifications with a conditional dependency measure of θcon ≥ 0.5 (cf.,
Section 8.3.1). Thus, only good classifiers that generalize well are used to add
conditional dependencies. We also used C4.5 to discover the binding guards. Here,
we used F1-score as an evaluation measure, since the bindings are not necessarily
infrequent. We included those guards that obtain an F1-score of at least 0.8.

12.4.2 Discovery Results

Figure 12.9 shows the DC-Net discovered by the iDHM for the fine management
event log. The model was discovered within four seconds of computation time.
54Specifically, we included the following attributes: amount, article, dismissal, expense, isPaid, paymen-

tAmount, points, and totalPaymentAmount. We added the boolean attribute isPaid that encodes
whether the fine is paid in full, i. e., isPaid is true if totalPaymentAmount ≥ amount and false,
otherwise. This attribute is of interest for the analysis of the process since a full payment is desirable.
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Figure 12.9: DC-Net discovered for the fine management event log. The numbered red edges
(À–Ã) were added by our DHM method and the double-bordered bindings (Ⓐ–Ⓔ) are
assigned the guards listed in Table 12.9.
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Conditional Dependencies

Our method reveals three additional dependencies (red edges) compared to model
returned by the the standard Heuristics Miner. We numbered the additional de-
pendencies in Figure 12.9 as À–Ã. Table 12.8 lists the conditional dependency
measure, the frequency of occurrence according to the binding heuristic, as well as
quality-score (i. e., Cohen’s kappa) and used attributes of the obtained dependency
condition for each relation. The computation time to discover the DC-Net with the
iDHM was 12 seconds.

Table 12.8: Dependency conditions discovered for the fine management event log. We list
the frequency with which the binding was activated according to the binding heuristic,
the quality score of the dependency condition (i. e., Cohen’s kappa), and the dependency
measure of the relation.

Nr Source Target Frequency Quality Dependency Attributes

À Appeal to
Judge

Add Penalty 275 0.85 0.93 amount, article, dismissal,
points

Á Payment Add Penalty 3,363 0.89 1 amount, isPaid
Â Notify Result End 62 0.52 0.98 dismissal, expense
Ã Send Appeal Receive

Result
509 0.82 0.97 dismissal, expense

Added dependencies À and Á. The first two dependencies target both target ac-
tivity Add Penalty and have a quality score (i. e., Cohen’s kappa) above 0.8, which
can be considered as very good. The decision rule for dependency À from Appeal
to Judge to Add Penalty mainly depends on the value of the dismissal attribute. Cases
with values G do not receive a penalty, whereas cases with value NIL receive a
penalty. Next to the value of the dismissal attributes, this rule also depends on the
fine amount, the number of points, and the article. According to the normative
process model this is to be expected as those cases are dismissed by the judge.
Dependency Á from Payment to Add Penalty is mainly based on the attribute isPaid.
Unpaid fines with a small amount of less than 35 EUR receive a penalty.

Added dependency Â. Dependency Â from Notify Result to the artificial activity
End was discovered for cases with a dismissal value of # or G. The quality score of
the classifier is 0.52 and, thus, slightly worse that the quality score of dependencies
À and Á. However, a value of above 0.5 for Cohen’s kappa can still be considered as
acceptable for our purpose [LK77]. It is to be expected that the process finishes for
cases with this code, since these cases are dismissed by the prefecture. Interestingly,
this relation also occurs for cases with a dismissal value of NIL and high postal
expenses. This should not happen, since these fines still need to be paid according
to the normative process model.
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Added dependency Ã. Dependency Ã from Send Appeal to Receive Result was dis-
covered based on a dependency condition that is based on the attributes expense
and dismissal. The quality score of the dependency condition is high. The obtained
classification rule indicates that this dependency can be predicted for cases with
postal expenses above 19.85 Euros and the dismissal value of NIL, which encodes
that the appeal was not successful. By further inspecting the dependency condi-
tion and the event log, we discovered that in a large number of cases the processing
of the fine ends with the activity Send Appeal to Prefecture if the recorded dismissal
value was different from NIL. Thus, differently than prescribed in the normative
process model, the activity Receive Result is not logged for these cases.

In summary, the iDHM revealed four infrequent data dependencies that give more
insights into the recorded behavior without obstructing the process model with
infrequent dependencies that cannot be explained through data attributes.

Guarded Bindings

In addition to the conditional dependencies, we also discovered several guarded
bindings by applying the decision mining and including discovered guards that
exceed the configured decision quality threshold. Table 12.9 lists the discovered
guard expressions that are highlighted using the letters Ⓐ–Ⓔ in Figure 12.9.

Table 12.9: Decision rules discovered for the guarded bindings.

Nr Source Target Guard Expression

Ⓐ Send Fine Notification totalPaymentAmount ≤ 30.0
Ⓑ Payment End isPaid = true

∨ (paymentAmount ≤ 18.78 ∧ amount > 35.0 ∧ isPaid = false)
∨ (paymentAmount > 62.5 ∧ amount > 35.0 ∧ isPaid = false)

Ⓒ Payment Add penalty amount ≤ 35.0 ∧ isPaid = false

Ⓓ Send Appeal End (expense ≤ 15.6 ∧ amount > 33.6)
∨ (expense > 15.6 ∧ dismissal = ”#”)
∨ (expense > 16.0 ∧ expense <= 19.85 ∧ dismissal = ”NIL”)

Ⓔ Send Appeal Receive Result (expense ≤ 15.6 ∧ amount ≤ 33.6)
∨ (expense > 15.6 ∧ dismissal = ”$”)
∨ (expense > 15.6 ∧ expense <= 16.0 ∧ dismissal = ”NIL”)
∨ (expense > 19.85 ∧ dismissal = ”NIL”)

Decision rule Ⓐ. The guard expression for the binding Ⓐ ([Notification]) of the
activity Send Fine suggests that the fine processing continues only for cases in
which the offender paid less than 30 Euros before the fine was sent. Indeed, we
know that some fines are paid directly before the fine notification is received by
the offender. The rule suggest that this happens mainly for inexpensive fines.

Decision rules Ⓑ and Ⓒ. The second guard expression was found for the binding
Ⓑ of the activity Payment. The binding includes only the artificial end activity.
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The rule indicates that the fine processing may finish for fines that are fully paid.
However, the fine process may also finish for cases with a fine amount above 35
Euros and a low paymentAmount (i. e., the amount last paid) of below 18.78 or a
high paymentAmount of above 62.5 Euros. We manually inspected the event log
and found that, indeed, there are a few thousand cases in which the processing
ends with unpaid fines in that range. In all of these cases a penalty had been
applied. The guard for output binding Ⓒ shows that Payment is followed by the
Add penalty activity for cases with a low fine amount and in which the full fine
amount was not yet paid.

Decision rules Ⓓ and Ⓔ. The fourth and the fifth guard expressions for bindings
Ⓓ and Ⓔ are both attached to the activity Send Appeal. The guard expressions are
similarly to the decision rule discovered for transitions Receive Result and INv6
(which directly leads to the end of the process) in Section 12.3. It seems to depend
on the expense attribute whether the result of the appeal was received. However,
the rules regarding Ⓓ and Ⓔ are more fine-grained, which is due to different
settings when using C4.5.

Quality of the Discovered DC-Net

We checked the fitness and the precision scores of the discovered DC-Net by ap-
plying our multi-perspective conformance checking methods.55 The fitness score
is 0.95, which indicates that most of the observed behavior can be successfully
replayed on the DC-Net. The multi-perspective precision score of the DC-Net with
regard to to the event log and the attributes selected for guard discovery is 0.69.
Figure 12.10 presents the conformance diagnostics that are returned by the iDHM
tool. From the more detailed conformance diagnostics, it can be seen that some
of the bindings are grayed out. This indicates that these bindings are never acti-
vated when aligning the event log to the DC-Net, i. e., the routing transitions added
the DPN for each binding of the DC-Net (see Section 8.4) are never executed. For
example, the binding Ⓓ for which a guard expression was discovered is actually
never used. There are some more local conformance issues. For example, more
than half of the occurrences of the activities Appeal to Prefecture and Send Appeal are
only observed in the log (log move) but cannot be matched to the model behavior.
Thus, even though the DC-Net is overall a good representation there are some local
conformance issue. The good overall measures can be explained by the relative
infrequency of the activities and bindings with conformance issues.

12.4.3 Comparison with State-of-the-art Techniques

We compared the result with two standard process discovery techniques:

55We transformed the DC-Net into a DPN as described in Section 8.4 to apply our proposed methods.
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Figure 12.10: Conformance information projected on the discovered DC-Net. The color of
the activity indicates its frequency and the color bar at the bottom of activities indicates the
number of deviations in terms of model moves and log moves as described in Section 11.1.
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Figure 12.11: C-Net discovered by the standard Heuristic Miner for the fine management
log.
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Figure 12.12: Petri net discovered by the Inductive Miner for the fine management log.

• the Heuristics Miner56 (Figure 12.11) and
• the Inductive Miner57 (Figure 12.12).

The C-Net returned by the Heuristics Miner contains many more dependencies
than the DC-Net in Figure 12.9. It is very likely that some of these dependencies
are the result of noise in the event log. For example, the dependency from Appeal
to Prefecture to Receive Result is likely to be random noise since the result of the
appeal can only be receive if the appeal has been sent beforehand. Moreover, the
dependency from Payment to Add penalty, which was identified as conditional
dependency Á in Figure 12.9 is not shown in Figure 12.11.

In the model obtained by the Inductive Miner none of the four relations added
by our DHM method (À-Ä) are present. Moreover, applying decision mining tech-
niques on the model discovered by the Inductive Miner will not provide the rules
discovered by the iDHM since the necessary decision points are missing. For exam-
ple, in Figure 12.12 there is no place that models the direct relation from Payment
to Add Penalty. Thus, the conditional dependency À would not be discovered on
that model.

Clearly, it is possible to use different parameter settings for both methods. We
tried several parameter settings and could not obtain a better result for both the
Inductive Miner and the Heuristics Miner. The Inductive Miner returns a very
imprecise model upon reducing the noise filtering parameter. Conversely, when
increasing the noise filtering still none of the four relations is included in the
model. Regarding the Heuristics Miner, it was possible to remove some of the
dependencies that we consider as noise and retrieve a model similar to Figure 12.9
by increasing the θobs-parameter. However, already for a slight increase to 0.005 only
the conditional dependency Ä remained in the discovered model. The remaining
conditional dependencies were removed by the noise filtering of the Heuristics

56We simulated the standard Heuristics Miner using the iDHM without considering the conditional
dependencies and set θobs = 0, which is the default setting of the Heuristics Miner.

57We used the Inductive Miner infrequent with the standard noise filtering parameter, i. e., 0.2.
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Miner.

12.5 Guided Process Discovery

Finally, we applied the GPD method (cf., Chapter 9) to the fine management
event log. We tested whether using some domain knowledge on the functional
perspective of the process improves the process model discovered by state-of-the-
art process discovery techniques.

12.5.1 Activity Patterns

(a) Activity pattern modeling the high-level activity Postal Notification.

(b) Activity pattern modeling the high-level activity Appeal Prefecture.

(c) Abstraction model composing both patterns in parallel.

Figure 12.13: The atomic activity patterns and the composed abstraction model used as
input to the GPD method. Both atomic activity patterns were designed based on domain
knowledge about the process.

The GPD method requires a set of activity patterns as input. We created two ac-
tivity patterns based on our domain knowledge about the process that we obtained
from the normative process model in Figure 12.1. The activity patterns capture the
behavior of two high-level activities:

1. appealing against the fine to the prefecture denoted as Postal Notification (P),
and

2. sending and handling the postal fine notification denoted as Appeal Prefecture
(A).

Figure 12.13 shows the DPN implementation of both activity patterns. We com-
posed both patterns to the abstraction model (P[0,∞] ⋄ A[0,∞]) (cf., Figure 12.13c),
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i. e., we do not provide more domain knowledge: both high-level activities may be
executed in parallel and be repeated indefinitely.

12.5.2 Discovery Results

①

②

F

(a) High-level process model discovered when applying GPD.
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(b) Expanded process model in which high-level activities have been replaced by the activity
patterns.

Figure 12.14: Process models discovered by the Inductive Miner when applying GPD.

We discovered a process model by applying the GPD method together with
the Inductive Miner. Figure 12.14 shows the discovered process model. We first
obtained an high-level event log from low-level events that are captured by the
two activity patterns: Postal Notification and Appeal Prefecture. The matching error (cf.,
Section 8) was 0 for the high-level activity Notification and 0.04 for the high-level
activity Appeal Prefecture, i. e., the activity patterns are of high quality. The global
matching error was 0.247, i. e., 24.7% of the events could not be captured by the
two activity patterns used as input (cf., line 8). We investigated the root cause and
inspected the alignment that was computed as by the GPD method. There are
several traces in which the an event recorded the activity Send Fine occurs without
a subsequent event recording the activity Notification. Thus, the Send Fine event are
diagnoses as log moves. Note that the choice whether to diagnose Send Fine as log
move or to insert an model move with transition Notification depends on the cost
function employed. Here, we preferred log moves over model moves.
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Some events in original event already correspond to executions of high-level
activities (i. e., activities Create Fine, Payment, Appeal to Judge, Add penalty, and Send
for Credit Collection). Since the unmapped events are relevant for the process, they
were added to the high-level event log in a post-processing step.

Then, we discovered the high-level process model shown in Figure 12.14a by
applying the Inductive Miner on the resulting high-level event log. We expanded
the two high-level activities in Figure 12.14a that we defined as input for the GPD
method with the Petri nets of the corresponding activity patterns. Figure 12.14b
shows the resulting expanded process model that is using the original low-level
activities. As described in our GPD method (cf., Section 9.2.8). we can use this
expanded model for conformance checking with regard to to the original event log.

The main flow of the normative model that was shown in Figure 12.1 is reflected
in the expanded model in Figure 12.14b, i. e., the sequence Create Fine, Send Fine,
and Notification as well as the choice between two options to appeal against the
fine. Thus, it may be easier to understand for stakeholders. However, the expanded
process model excludes some of the process variants (e. g., the sequence Create Fine
and Send Fine without further processing). Still, the fitness score of the expanded
model is 0.81, which is not much lower than the fitness score 0.96 of the normative
model. This indicates that these variants are infrequently observed.

12.5.3 Comparison with State-of-the-art Methods

We also compared the process model that was discovered by the Inductive Miner58

on the original event log (denoted as low-level event log in the remainder of this
section) with the expanded version of the process model that was discovered by
applying the GPD method. The process model discovered by the Inductive Miner
on the low-level event log was already shown in Figure 12.12 (cf., Section 12.4). This
process models fits the event log better (fitness 0.99) compared to the expanded
process model provided by our GPD method (fitness 0.81). However, it is not very
precise (precision 0.61) since most activities can be skipped and executed in parallel.
Again, the expanded process model is a more precise representation of the recorded
events (precision 0.75). Thus, the process model discovered by the GPD method
strikes a better balance between fitness and precision. Moreover, the semantically
related activities Appeal to Prefecture, Send Appeal, Receive Result, and Notify Offender
are not presented as such in Figure 12.12. For example, Send Appeal and Appeal to
Prefecture are placed in different parts of the process model and may be executed
in parallel. Conversely, the expanded process model in Figure 12.14b semantically
groups related activities together and provides a view on the function perspective
of the process. We exploit the hierarchical structure that was imposed by using the
activity patterns.

58Again, we used the Inductive Miner infrequent with its standard noise filtering parameter, i. e., 0.2.
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12.6 Conclusion

We applied all of our proposed methods in the context of the fine management process
for which we obtained a real-life event log and a normative process model.

• In Section 12.2, the analysis of the normative process model with our pro-
posed balanced alignment conformance checking technique provided valuable
insights regarding the adherence of the process to regulations, which would
be not returned by earlier multi-perspective alignment techniques. For ex-
ample, the approach discussed in [LA13a] returns futile results in a number
of cases, such as diagnosing non-plausible deviations on the amount of the
fines. The insights obtained show that unpaid fines should be monitored
more closely.

• In Section 12.3, the decision mining method discovered several guards. The
guards discovered for one of the decision points were overlapping and found
to be plausible. Moreover, the discovered overlapping guards helped to bal-
ance fitness and precision of the discovered data-aware model.

• In Section 12.4, we showed that several infrequent process paths associated
with deterministic data-based rules can be revealed by using the DHM
method. Each of the discovered conditional dependencies could be inter-
preted in the context of the fine management process and provided new
insights into the actual process behavior.

• In Section 12.5, we used the GPD method to abstract several activities to
higher-level activities. We used the function perspective of the process to
improve the process model discovered by the Inductive Miner. The model
discovered by the GPD method strikes a better balance between precision
and fitness than the model discovered by Inductive Miner on the original
event log.

Overall, all proposed methods could be successfully applied and provided action-
able insights that may be used to improve the fine process.
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13 Case Study: Sepsis

In our second case study, we applied the methods proposed in this thesis to a
real-life event log that we obtained from an Enterprise Resource Planning (ERP)
system59 of a regional hospital in The Netherlands. Parts of this case study were
published in [Man+16b; MB17].

This chapter is structured as follows. First, we describe the context of the case, spe-
cific process questions, the extracted event log, and a hand-made normative process
model in Section 13.1. Then, we present the application of our multi-perspective
conformance checking method on the normative process model in Section 13.2
followed by an evaluation of the proposed decision mining method in Section 13.3.
Then, we describe how we applied both our DHM method (Section 13.4) and our
GPD (Section 13.5) method to automatically discover process models without using
the normative process model.

13.1 Case Description

We conduced the sepsis case study in a regional hospital in The Netherlands. The
regional hospital has about 700 beds at several locations and is visited by about
50,000 patients per year. The scope of our case study was on the trajectories of
patients that are admitted to the emergency ward of the hospital. From the side
of the hospital, the head doctor and a nurse from the emergency department as
well as a data analyst from the business intelligence department of the hospital
were involved. The medical staff provided medical domain knowledge, process
questions, and validated our results, whereas the data analyst helped with the data
provision.

We focused on a specific sub group of patients: those that were suspected of having
a sepsis. As illustrated in Figure 13.1, sepsis is a life-threatening condition that
requires immediate treatment [Rho+17]. We considered all patients that displayed
any symptom that may be related to sepsis, i. e., all patients that were more closely
screened in the emergency ward of the hospital. Typical symptoms of a sepsis are:

• increase body temperature,
• increased heart rate,

59The system used is based in SAP and customized for the hospital.
60Retrieved on 21/8/2017 from http://survivingsepsis.org/SiteCollectionDocuments/

Surviving-Sepsis-Campaign-2016-Guidelines-Presentation-Final.pptx

http://survivingsepsis.org/SiteCollectionDocuments/Surviving-Sepsis-Campaign-2016-Guidelines-Presentation-Final.pptx
http://survivingsepsis.org/SiteCollectionDocuments/Surviving-Sepsis-Campaign-2016-Guidelines-Presentation-Final.pptx
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Figure 13.1: Definition of sepsis and septic shock as provided by the Surviving Sepsis
Campaign60. All of the patients considered in the case study have been screened for sepsis
in the emergency ward of the hospital.

• high respiratory rate, and
• abnormal white blood cell count.

Together these symptoms are known as Systemic Inflammatory Response Syn-
drome (SIRS) criteria, which have been used as indications for sepsis.61 Patients
with multiple SIRS criteria are of particular interest for the hospital since patients
that develop a sepsis are associated with a high mortality risk and patients with
septic show with an even higher risk. Thus, we focused on a single group of patients
for which a specific treatment is to be expected. By doing so, we aimed to avoid
some of the complexity and flexibility associated with health care processes [RF12].

13.1.1 Process Questions

Figure 13.2 shows an illustration of the patient flow that was created by process
stakeholders from the emergency department (i. e., a nurse and the head doctor).
This document served as starting point for the process mining analysis. It helped
to clarify the assumptions and perspectives on the process of nurses and doctors
in the emergency ward. Based on Figure 13.2, we identified several question and
analysis tasks together with all stakeholders from the hospital:

1. Are particular medical guidelines (i. e., the guideline in [Rho+17]) for the
treatment of sepsis patients followed? More specifically:

61More recently, after we conducted the case study, the SIRS criteria are not recommended as sole
criteria for sepsis anymore by the current guidelines. Amongst other because they are overly sensi-
tive [M+16].



13.1 CASE DESCRIPTION 291

13

Total ER Patients

Which SIRS criteria?

Type of visit?

Which diagnostics  
are ordered?

IV therapy: Yes/No

Antibiotics: Yes/No

Filter: Time, Delay, ..

Is there organ dysfunction?

Continuation

Discharge Home

Admission 
Normal Ward Admission ICU

Admission from ER 
to  Normal Ward +
Admission to ICU 
up to 72 hours after 
ER visit

Figure 13.2: Patient flow and questions as described by the process stakeholders.
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Table 13.1: Activities recorded in the sepsis cases event log.

Activity Frequency Description

Leucocytes 3,383 Inserting the measurement of the white blood-cell count into the system.
CRP 3,262 Inserting the measurement of the C-reactive protein level into the system.
LacticAcid 1,466 Inserting the measurement of the lactic acid level into the system.
Admission NC 1,182 Admission of the patient to a normal care ward.
ER Triage 1,053 Filling of the general triage document finished.
ER Registration 1,050 Initial registration of the patient in the emergency ward.
ER Sepsis Triage 1,049 Filling of the specific sepsis triage document finished.
IV Antibiotics 823 Administering of antibiotics via intravenous therapy.
IV Liquid 753 Administering of liquid via intravenous therapy.
Release A 671 Discharge of the patient with code A.
Return ER 294 Return of the patient to the emergency ward.
Admission IC 117 Admission of the patient to a intensive care ward.
Release B 56 Discharge of the patient with code B.
Release C 25 Discharge of the patient with code C.
Release D 24 Discharge of the patient with code D.
Release E 6 Discharge of the patient with code E.

• Are patients administered antibiotics within one hour62 and
• are lactic acid measurements done within three hours?

2. Visualize and investigate the following specific trajectories:
• discharge without admission,
• admission to the normal care,
• admission to the intensive care, and
• admission to the normal care and transfer to intensive care.

3. What are the trajectories of patients that return within 28 days since these
patients are assumed to be problematic for the hospital.

We will use these questions to guide the application of our proposed multi-perspective
process mining techniques and to show that they can address relevant questions
in real-life cases.

13.1.2 Event Log

Based on the document shown in Figure 13.2 and together with stakeholders from
the hospital, we could identify several sources for event data:

• the triage document filled in for sepsis patients with information on
— the time the triage was conducted,
— the symptoms present (SIRS criteria for sepsis),

62Here, the hospital aims to exceed the three hour recommendation by the guideline in [Rho+17]
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Table 13.2: Attributes recorded in the sepsis cases event log.

Attribute Domain Description

Age discrete Age of the patient grouped in 5-year intervals and a
single group for patients of age 90 years or older.)

CRP, Leukocytes, Lactic Acid continuous Blood sample measurement results
Diagnose literal Code for the diagnosis
DiagnosticArtAstrup,
DiagnosticBlood, …

boolean Various checkboxes that can be ticked on the triage
document.

DisfuncOrg boolean Checkbox on the triage document indicating a dis-
functional organ.

Hypotensie boolean Checkbox on the triage document indicating hy-
potension, i. e., low blood pressure.

Hypoxie boolean Checkbox on the triage document indicating hypoxia,
i. e., low oxygen supply.

InfectionSuspected boolean Checkbox on the triage document indicating
whether an infection is suspected.

Infusion boolean Checkbox on the triage document indicating
whether intravenous infusions are required.

Oligurie boolean Checkbox on the triage document indicating a re-
duced output of urine (Oliguria).

SIRSCritHeartRate boolean Checkbox on the triage document indicating an ele-
vated heart rate (above 90 beats per minute).

SIRSCritLeucos boolean Checkbox on the triage document indicating a low
white blood cell count.

SIRSCritTachypnea boolean Checkbox on the triage document indicating a high
respiratory rate (Tachypnea).

SIRSCritTemperature boolean Checkbox on the triage document indicating an el-
evated temperature (less than 36°C or greater than
38°C).

SIRSCriteria2OrMore boolean Flag that indicates whether two or more of the SIRS
criteria checkboxes have been ticked.

— the diagnostics ordered, and
— the time infusions of liquid and antibiotics were administered;

• documents created by the laboratory for several blood tests; and
• information about the further trajectory of the patient recorded by financial

systems.

All documents and records are stored in different databases of the ERP system that
is used by the hospital. We collected data about several activities that are executed
for this group of patients from three different information systems of the hospital.

The activities can be coarsely categorized into medical or treatment activities and
logistical or organizational activities [LR07]. We collected the event data from several
sources and consolidated it into a single anonymized event log covering the traces
that were recorded for 1,050 patients over the course of 1.5 years in the hospital’s
ERP system. The resulting event log was made available for further process mining
research purposes as part of the collection of real-life event logs of the IEEE Task
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Force on Process Mining [Man16a].63

The event log contains events for 16 activities, which are listed together with their
frequencies in Table 13.1. Most activities captured in that event log are based on
organizational activities, e. g., the discharge of the patient or the registration in the
emergency ward. However, we also include some patient treatment related events
such as the filling the triage document with information on the condition of the
patient and the measurements of some typical indicators for a sepsis: leukocytes,
CRP, and lactic acid.

Next to the information about the execution of activities, the event log contains
several data attributes, all of which are listed in Table 13.2. Most of the data attrib-
utes originate from a sepsis triage form, which is usually filled at the start of the
process. On this form, the medical staff (i. e., nurses) enter data about the condition
of the patient. The triage form is organized in the form of a checklist.64 The blood
measurement attributes CRP, Leukocytes, and Lactic Acid are updated several
times throughout the process.

13.1.3 Normative Process Model

Together with the data analyst from the hospital, we iteratively created a normative
process model that can be used to visualize the patient trajectories and to check the
conformance to some of the medical guidelines. The normative model in the DPN
notation is shown in Figure 13.3. We use two guard expressions and two variables
to encode the two constraints on the time perspective of the medical guideline for
sepsis patients. According to the international sepsis guidelines [Rho+17], patients
should be administered antibiotics within one hour (i. e., 60 minutes) and the
lactic acid measurement should be finished within three hours (i. e., 180 minutes).
Variable timeTriage records the time at which the activity ER Sepsis Triage was
executed, i. e., it is only written by that activity. Variable timeAntibiotics records the
time at which activity IV Antibiotics is executed and variable timeLacticAcid records
the time at which activity LacticAcid is executed. The variables record the time in
minutes since the start of the case, i. e., the time relative to the start of the case.
Table 13.3 lists the guard expressions of the guarded transition in Figure 13.3.

Table 13.3: Guard expressions encoding the time constraints of the sepsis process.

Activity Guard Expression

LacticAcid timeLacticAcid′ ≤ timeTriage + 180min
IV Antibiotics timeAntibiotics′ ≤ timeTriage + 60min

63The sepsis cases event log can be obtained from: https://doi.org/10.4121/uuid:
915d2bfb-7e84-49ad-a286-dc35f063a460

64For confidentiality reasons we cannot disclose the underlying checklist.

https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
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Figure 13.3: Hand-made normative process model for the trajectories of sepsis patients.
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13.2 Conformance Checking

The normative process model encodes rules from the medical guideline with regard
to to sepsis patients. We checked the overall conformance between event log and
the normative process model using a multi-perspective alignment (cf., Section 5.2).
Thus, we focused on the first two process questions regarding the administration
of antibiotics and the measurement of lactic acid.

13.2.1 Configuration Settings and Cost Function

We enriched each event of the sepsis event log with an additional attribute time,
which records the elapsed time since the start of the trace in minutes. We mapped
all three DPN variables timeTriage, timeAntibiotics, and timeLacticAcid to the attribute
time, e. g., ν(timeTriage) = time (cf., Definition 3.12 for the variable label function
ν). The transitions of the DPN are mapped to activities in the event log with the
same name with the exception of the transition Transfer NC, which is mapped to the
activity Admission NC, i. e., λ(TransferNC) = AdmissionNC (cf., Definition 3.12 for
the activity label function λ). Regarding the cost function, we use a cost function
that assigns high cost to log moves (cost 10 each), medium cost to model moves (cost
5 each), and low cost to incorrect synchronous moves (cost 1 each). This encodes
our assumption that a violation of the time perspective rules is more likely than
a violation of the control-flow of the process.65 Moreover, we want to reduce the
number of log moves introduced by the alignment. The assumption is that the
process model is correct and it is more likely that an event has not been recorded.
Here, the cost function does not directly reflect the severity of violations from a
domain viewpoint but it is used to steer the alignment towards the most likely
alignment.

13.2.2 Conformance Checking Results

Figure 13.4 shows the resulting projection of conformance information on the
process model. The rule regarding administering antibiotics within one hour is
sometimes violated: IV Antibiotics and timeAntibiotics in Figure 13.4 are colored
orange. The average time between ER Sepsis Triage and IV Antibiotics is 1.7 hours
and the rule is violated for 58.5% of the cases. The situation regarding the lac-
tic acid measurement rule is much better. This rules, which encodes the timely
measurement of lactic acid within three hours, is only violated in 0.7% of the cases.

The high number of violations regarding the antibiotics rule can be explained be
two factors:
65Additionally, we set the uninitialized variable mode to FREE since it might happen that activity

LacticAcid occurs before the variables timeTriage has been written. This should not be considered as
deviation.
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Figure 13.4: Projection of the events on the normative process model as returned by the
MPE. There are violations regarding the variable timeAntibiotics are visible (highlighted in
orange) and some violations regarding variable timeLacticAcid. For some of the transition a
few model moves are diagnosed (highlighted in yellow).
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11 Bijlage II Digitaal sepsis formulier/protocol SEH
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Figure 13.5: Digital triage form that is filled out in the emergency ward.

1. Some guidelines recommend administering antibiotics within one hour [Rho+17];
however, it was acknowledged that this is not always feasible. Moreover, not
all patients in our event log show sufficient symptoms of a sepsis. Thus, the
one hour rule followed by the hospital is rather strict.

2. The data about the infusion of antibiotics is entered manually by nurses and
doctors in a form as shown in Figure 13.5. When looking at the data, we found
some cases in which the entered antibiotics timestamp is 24 hours after the
triage and other cases in which the antibiotics timestamp was before the triage
document was filled in. Thus, it is difficult to interpret these measurements
since some of the diagnostics may result from poor data quality.

Still, the application of conformance checking was considered useful by the data
analyst and head doctor of the emergency ward. It revealed an underlying data
quality issue and a doctor found the analysis to be “a magnificent way to clarify
patient flow”.

13.3 Discovery of the Data Perspective

Next, we checked whether additional rules can be discovered without decision
mining technique (cf., Chapter 10). As input to the MPE data-discovery mode,
we used a Petri net version of the DPN shown in Figure 13.3, i. e., all existing
guards and variable write operations were removed. We set the parameters to non-
binary rules and a minimum instances ratio of 0.1. Figure 13.6 shows the decision
rules that were discovered by the overlapping decision mining technique. The
discovered guards are defined using four variables: Hypotensie, DiagnosticLacticAcid
, SIRSCriteria2OrMore, and LacticAcid (cf., Table 13.2).

The first two guards in Figure 13.6b suggest that the execution of the activity
LacticAcid is determined by the value of DiagnosticLacticAcid. Indeed, we confirmed
that this flag indicates that the lactic acid level should be conducted as measured for
that specific patient. The next two guards concern the invisible routing transitions
Inv2 and Inv3. Inv2 is executed if the checkbox SIRSCriteria2OrMore was ticked (i. e.,
SIRSCriteria2OrMore = true). Executing Inv2 in turn requires that both liquid and
antibiotics are administered via intravenous therapy. A doctor from the hospital
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(a) DPN discovered by the overlapping decision mining method. We highlighted the places
for which we discovered decision rules in red.

Transition Guard expression

Inv1 DiagnosticLacticAcid = false
LacticAcid DiagnosticLacticAcid = true
Inv2 SIRSCriteria2OrMore = true
Inv3 SIRSCriteria2OrMore = false
Admission NC LacticAcid > 0
Admission IC LacticAcid > 0 ∧ Hypotensie = true
Inv4 (LacticAcid > 0 ∧ Hypotensie = false) ∨ LacticAcid ≤ 0
Inv5 LacticAcid ≤ 0
Release A LacticAcid > 0

(b) Guards discovered by the overlapping decision mining method.

Figure 13.6: DPN discovered by the overlapping decision mining method when applied on
the sepsis cases event log and the normative process model without guards.

confirmed that those patients should, indeed, be administered antibiotics and liquid.
These guards were discovered by standard decision mining techniques [LA13b] as
well since the expressions are mutually exclusive.

We also discovered a decision rule for the decision point that determines the
type of admission: normal care (Admission NC), intensive care (Admission IC), no
admission to the hospital (Inv4), or the problematic trajectory, i. e., first an admission
to normal care and, then, an admission to the intensive care. For this decision point,
our overlapping decision mining method discovered the overlapping decision rule
listed in Figure 13.6b. Patients with a lactic acid measurement (LacticAcid > 0) can
always be admitted to normal care. As an alternative to normal care, if attribute
Hypotensie = true then patients can also be admitted to intensive care; otherwise, if
Hypotensie = false patients leave the hospital. The guards for the activities overlap
and the final decision is likely to be made on the basis of contextual factors, which
are not encoded in the event log. Note that we already discussed these guards in
Section 10.4 as part of the method’s evaluation. Standard decision mining methods
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did not return a rule for transition Admission IC, which can be interpreted either as
the always fulfilled guard true (i. e., a fully overlapping rule) or the never fulfilled
guard false (i. e., a strict mutually-exclusive rule). Our method aims to strike the
balance between these two extremes.

Finally, our approach discovered a second overlapping decision rule for the
decision point that is concerned with the discharge of the patients. Unfortunately,
guard expressions could be discovered only for two transitions: Release A, the most
frequent discharge type, and Inv5, patients without any discharge information. All
other transitions are always enabled, i. e., the guard expression true was discovered.
Patients without a lactic acid measurement (i. e. LacticAcid ≤ 0) are likely to be
leaving the hospital without discharge information. From a more detailed analysis
of these patients it could be seen that most of them have never been admitted to
the hospital ward.

13.4 Data-aware Process Discovery

We also tried to discover a process model from scratch by applying our data-aware
process discovery method to the event log. We used the iDHM (cf., Chapter 8
and Section 11.1) to discover a DC-Net that reveals both the main process behavior
as well as infrequent data-dependent paths.

13.4.1 Configuration Settings

Figure 13.7 shows the DC-Net discovered by the iDHM for the sepsis cases event
log. This took about 3 seconds. We used the following, experimentally determined,
parameter settings for the iDHM:

• the accepted-task-connected heuristic, since some activities might not be of in-
terest;

• the observation threshold θobs = 0.1 (i. e., relations that appear in more than
10% of the log trace), because we want to capture the main flow of the process
and there is a lot of variability in the event log;

• the dependency threshold θdep = 0.95 to discover only very strong depen-
dencies;

• the binding threshold of θbin = 0.001 to exclude very infrequent bindings.

Moreover, we used all of the attributes that are available to discover dependency
conditions and guarded bindings. We used C4.5 with 10-times 10-fold cross valida-
tion and only accepted classifications with a conditional dependency measure of
θcon ≥ 0.7 (cf., Section 8.3.1). Thus, only very good classifiers that generalize well
were used to add conditional dependencies. We also used a standard C4.5 classi-
fier to discover the binding guards. Here, we used the F1-score as an evaluation
measure. We included those guards that obtain an F1-score of at least 0.8.
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13.4.2 Discovery Results

The iDHM revealed two conditional dependencies that are highlighted with the
color red and assigned numbers in Figure 13.7 (À and Á). Moreover, three bindings
of the DC-Net are assigned a guard expression (Ⓐ, Ⓑ, and Ⓒ).

①

②Ⓑ

Ⓐ

Ⓒ

Figure 13.7: DC-Net discovered by applying the iDHM to the sepsis cases event log.

Conditional Dependencies

The two conditional dependencies both concern the activity ER Sepsis Triage. The
first conditional dependency added (À) reveals that some patients leave the hospital
after the sepsis triage form was filled in. The discovered dependency condition
(InfectionSuspected = false) is almost perfect (Cohen’s kappa value of 0.95) and
was observed to be fulfilled in 47 cases. Indeed, based our the domain knowledge
this dependency condition seems to be valid. Patients that are not suspected of
having an infection are more likely to skip treatment under the sepsis protocol.
However, further confirmation from the medical staff would be required. The
second conditional dependency added (Á) is associated with the negation of the
rule for dependency À, i. e., InfectionSuspected = true.

Guarded Bindings

Three guards (Ⓐ, Ⓑ, and, Ⓒ) are discovered for output bindings of the activities ER
Sepsis Triage and Admission NC. Interestingly, the decision rules for the bindings of
ER Sepsis Triage (Ⓐ and Ⓑ) are based on the attribute SIRSCriteria2OrMore and not
on the attribute InfectionSuspected. For a value of true, the patient remains in the
hospital and for a value of false, the patient leaves the hospital. It might come as
a surprise that the condition discovered for the bindings differs from the condition
discovered for the dependency conditions. The explanation for the difference is as
follows. For the discovery of decision rules for output bindings only events that
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match the discovered C-Net structure are used whereas all events are used for the
discovery of dependency conditions. Moreover, both attributes SIRSCriteria2Or-
More and InfectionSuspected are likely to be correlated. Patients without an infection
are expected to show less of the SIRS criteria. Note that our method did not discover
a guard for the output binding {IVAntibiotics, End}. Indeed, this output binding
does not make sense from a domain perspective since the End activity needs to
be executed by all cases. The binding was discovered due the employed heuristic
based on the Flexible Heuristics Miner [WR11].

Quality of the DC-Net

Figure 13.8 shows the result of applying the multi-perspective conformance check-
ing feature of the iDHM. The optimal alignment between the DC-Net (i. e., the
DPN representation of it) and the event log could be computed within 90 seconds.
Generally, it shows that the activities that are included in the DC-Net can be aligned
well to the event log. However, there is a considerable number of model moves
diagnosed for activity Release A, which indicates that it does not always follow the
activity Admission NC. In fact, in comparison with the normative process model
(cf., Figure 13.3) all other Release activities are missing. This is because we focused
the discovery on the main process flow and only includes infrequent behavior that
can be characterized by deterministic rules over the process data.

Figure 13.8: Conformance diagnostics obtained by a multi-perspective alignment. The iDHM
projects the alignment information onto the DC-Net.

13.5 Guided Process Discovery

We used the GPD method on the event log of the sepsis patients to discover a
process model that is close to the assumptions of the stakeholders of the process.
We show that the process model obtained with the GPD is suitable to answer the
process questions. Moreover, the discovered process model is comprehensible by
stakeholder and, thus, it is more useful in the communication with them than
process models discovered by state-of-the-art process discovery techniques. Note
that in contrast to Section 13.2, in which we use the normative model to conduct
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conformance checking, the GPD method only requires some limited knowledge on
the process as input. Here, we do not assume complete knowledge of the desired
process model.

We aim to use the discovered process model to address the following three
specific process questions that are based on the more generic process questions
were introduced in Section 13.1:

1. What are the trajectories of patients depending on how they were initially
admitted to the hospital? Is there any influence on the remaining process,
e.g., does a certain category of patient return more often. Specifically, the
hospital is interested in the following three categories: (1) patients that are
first admitted to the normal care ward, (2) first to the intensive care ward, or
(3) patients that are first admitted to the normal care ward and, only then, to
the intensive care ward? Each of the categories is of interest to the hospital
because the location of the first admission indicates the severity of the sepsis
condition. In particular, the third category is of high interest as it indicates
that the patient’s condition has worsened after being admitted. The hospital
is interested in minimizing the number of these patients. Moreover, they
want to visualize the effects of this category of patients to the operation of
the hospital, e. g., in terms of the outcome and the time that those patients
remain in the hospital.

2. Are patients with a sepsis condition given antibiotics and liquid and, if so,
what is the delay from the initial triage activity until antibiotics are admin-
istered in the emergency ward? The rationale for this question is a medical
guideline that recommends the administration of antibiotics within one hour
after a sepsis condition has been identified.

3. Are there decision rules that can be discovered based on the attributes
recorded in the event log? Discovering such rules may lead to insights on
what kind of patients follow a certain trajectory in the process. It would be
interesting for the hospital to know the most likely trajectory of a patient in
order to prevent problems from arising early in the process.

First, we define a set of manually designed and discovered activity patterns
in Section 13.5.1. Then, we apply our GPD method and discuss the results in Sec-
tion 13.5.2. Finally, we show that state-of-the-art process discovery methods applied
directly on the low-level event log provided process models that were unsuitable
to answer these questions (Section 13.5.3).

13.5.1 Activity Patterns

We identified two manual and three discovered activity patterns. The manual pat-
terns are shown in Figure 13.9a and Figure 13.9b. Both patterns are based on the
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(a) Admission pattern that models three different vari-
ants of an admission.

(b) Transfer pattern that models a
series of transfers.

Figure 13.9: Two manual patterns that were created for the sepsis event log. The respective
activity mapping is defined by removing the prefixes A_ or T_ from the transition name
(e.g, λA(A_Admission IC) = Admission IC).

(a) ER pattern discovered for departments A and C.

(b) Lab pattern discovered for department B.
(c) Discharge pattern discov-
ered for department E.

Figure 13.10: Three discovered patterns that were obtained by splitting the log based on the
department attribute and using the Inductive Miner on the resulting sub logs.

Figure 13.11: Abstraction model used for the case study. We added the restriction that the
high-level activity Transfer can only occur after the high-level activity Admission.
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activities Admission NC and Admission IC, which relate to the admission of a patient
to an normale care or intensive care ward, respectively. We designed the manual
patterns together with the data analyst of the hospital based on the first process
question that was articulated by a doctor from the hospital. Activity pattern Admis-
sion (Figure 13.9a) encodes the three admission variants, which were also encoded
in a similar manner in a flowchart-like process documentation provided by the
emergency department (cf., Figure 13.2). We deliberately duplicated the activities
to encode the problematic third variant of admission that is of great interest to the
doctor. Since a patient may further be transferred between the different wards of
the hospital, there may be further events that record one of the low-level admission
activities. Subsequent transfers are not of interest to the emergency department.
Therefore, we added activity pattern Transfer (Figure 13.9b), which encodes that
any number of subsequent transfers may occur.

Moreover, we obtained three discovered patterns based on information on the
organizational perspective that is part of the event log. Based on the department that
executed the activity, we extracted three sub logs. Each log contained all activities
performed by employees of a certain department. Then, we discovered a process
model for each of the sub logs using the Inductive Miner (Figure 13.10). Activity
pattern ER (Emergency Department) is shown in Figure 13.10a. All activities in
pattern ER are executed in the emergency department (departments A and C in the
event log). Therefore, we denote this pattern as ER. First, the patient is registered
and triage checklists are filled. Then, antibiotics and liquid infusions can be given.
Figure 13.10b shows activity pattern Lab discovered for department B, clearly this
is the laboratory department responsible for blood tests. Figure 13.10c is based on
a sub log obtained for department E and contains five different activities that relate
to different (anonymized) variants on how patients are discharged.

We composed the five activity patterns into an abstraction model (Figure 13.11).
We used the composition functions to add the constraint that a Transfer can only
occur after an Admission has taken place. Clearly, patients need to be admitted
before they can be transferred. Overall, we used only basic domain knowledge on
the process and organizational information taken from the event log to build an
abstraction model.

13.5.2 Discovery Results

We created an abstracted high-level event log with the abstraction model shown in
Figure 13.11. The abstracted event log has about 8,300 events for the six high-level
activities.66 The abstracted event log could be computed in less than 2 minutes
using 2 GB of memory. The global matching error of the abstraction model was
ϵ = 0.02. Only for pattern ER a non-zero local matching error ϵ(ER) = 0.006 was
recorded, i.e., all other patterns match perfectly.

66We did not create an activity pattern for one activity: Return ER.
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(a) High-level Petri net

(b) Expanded Petri net

Figure 13.12: High-level and expanded Petri net discovered using IM when applying the
GPD method. Gray transitions are abstracted high-level activities.

Next, we discovered the guided process model shown in Figure 13.12a on the
abstracted event log using the Inductive Miner67. This process model describes
the trajectory of a patient on a high level of abstraction. Results of blood tests are
obtained during the whole process (Lab). First, patients are in the emergency room
(ER). Then, patients are either admitted to a hospital ward (Admission) or they
leave the hospital. Admitted patients are possibly transferred (Transfer) to another
hospital ward and eventually discharged (Discharge). Finally, patients may return
to the emergency room at a later time (Return ER). The process model matches
the high-level description of the process by stakeholders from the hospital that we
obtained beforehand.

We expanded the high-level activities of the guided process model with the
corresponding activity patterns as described in Section 9.2.8. Figure 13.12b shows
the resulting expanded process model. We validated the quality of the discovered
process model by measuring the average fitness (0.978) and the average precision
(0.338) of the expanded process model with regard to the original event log. The
process model fits most of the behavior seen in the event log. Thus, we can use the
expanded process model to reliably answer the three initially posed process ques-
tions. Based on the average precision score, the models seems to be very imprecise.
However, note that almost all of the imprecision stems from the laboratory activ-
ities CRP, Leucocytes, and LacticAcid. These activities may be executed in parallel
to the remainder of the process. When focusing on the remaining activities and
abstracting from the exact behavior of the high-level activity Lab the model is is
67We used the Inductive Miner infrequent with a noise threshold of 0.2 (the default setting).
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Figure 13.13: Performance information and a decision rule projected on the expanded model
discovered for the sepsis event log.

more precisely captured.

Category of Admission. The first question on how patients are initially admitted
to the hospital wards can be answered using the expanded process model. We
projected the low-level event log on the process model using the MPE as described
in Section 11.2. Figure 13.13 shows the output of the MPE. We could determine
that 24 (2.9%) of the admitted patients are of the problematic category: They are
first admitted to the normal care ward and, then, re-admitted to the intensive care
ward. Around 694 (86.2%) of the patients are admitted to the normal care ward
and 87 (10.8%) of the patients are admitted to the intensive care ward. Moreover,
we used the filtering capabilities of the MPE to visualize only the trajectories of the
problematic patients. This revealed that 56.5% of these patients return to the emer-
gency room within one year (i. e., activity Return ER). Among the other patients
only 27.4% return. Thus, patients of the problematic category return more often.
The hospital could, e. g., monitor these patients more closely.

Infusions. We used the discovered process model to investigate whether antibiotics
and liquid infusions are given to patients with a sepsis condition. There are several
criteria that are checked to determine a sepsis. The event log contains the attribute
SIRSCriteria2OrMore, which indicates whether two or more of these criteria are
fulfilled. We used the MPE to retain only cases for which SIRSCriteria2OrMore
is true and projected these cases on the expanded process model. This revealed
that 95.3% of patients for which two or more SIRS criteria have been recorded
eventually get an antibiotics infusion. However, according to the event log 15%
of those patients do not receive a infusion of liquid (i. e., the alignment includes
a model move for activity IV Liquid). To investigate the delay between filling in
the triage form and the infusion activities, we projected the average time between
activities in the entire event log on the process model. This revealed that it takes,
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on average, 1.68 hours until the antibiotics are administered (Figure 13.13). When
reporting both findings to the hospital, we found that data about the infusions is
entered manually into the ERP system. Therefore, it is unclear whether the average
time represents the real waiting time. Moreover, missing liquid infusions are, most
probably, simply not registered.

Decision Rules. We also applied our decision mining techniques presented in
Section 10.1 to discover decision rules for the decision points in the expanded
process model. We discovered that it depends on the attribute SIRSCriteria2OrMore
whether patients receive infusions. This can be expected as patients with more
than two criteria for a sepsis should definitely receive infusions. We also discovered
decision rules regarding the three different variants of admission. We found rules
for the admission of patients to the normal care and intensive care. However, we
did not find a good rule for the problematic category based on the attributes in the
event log.

Overall, using the process model shown in Figure 13.12b we could provide mean-
ingful answers to the process questions. For example, we found that the data quality
of the IV Antibiotics events needs to be improved to show that the hospital acts
according to their own standards. By guiding the process discovery with activity
patterns, we show that it is possible to discover a model that is comprehensible to
domain experts. By visualizing the patient trajectories on such a comprehensible
model, it is possible to discuss the obtained diagnostics together with the process
stakeholders.

13.5.3 Comparison to State-of-the-Art Methods

We applied four state-of-the-art discovery methods directly to the original low-level
event log: the Heuristics Miner (HM) [WR11], the ILP Miner [ZDA15], the Inductive
Miner (IM) [LFA16], and the Evolutionary Tree Miner (ETM) [Bui14]. We compared
the insights that can be obtained from the process model that was discovered on
the original event log with the insights gathered from the process model shown
in Figure 13.12b. We used the expanded process model to compare our results to
those returned by state-of-the-art methods on the same abstraction level. Thus, we
ignore the added benefit that our method provides a high-level process model.

Heuristics Miner (HM). The process model discovered by the HM (Figure 13.14) is
unsound, it contains unbounded behavior that prevents the process from complet-
ing.68 Process models that are unsound are not suited for a wide range of analysis
tasks [Aal16]. Therefore, we could not use the process model discovered by the
HM. We still calculated the fitness (0.519) and precision measure (0.763), which

68We used the ProM 6.7 plug-in Mine for a Heuristics Net using Heuristics Miner.
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Figure 13.14: Unguided Petri net discovered using HM without applying the GPD method.

show that even when considering the subset of valid firing sequences the model
does not fit the observed behavior.
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Figure 13.15: Unguided Petri net discovered using ILP Miner without applying the GPD
method.

ILP Miner. The process model discovered by the ILP Miner (Figure 13.15) is precise
(precision 0.804) and is fitting the event log well (fitness 0.803), but it is very complex
with several non-free choice constructs69. This made it impossible to explain it to
the stakeholders (i.e., doctor and data analyst) of the hospital. Thus, the model is
unsuitable in our case.

Evolutionary Tree Miner (ETM). The process model discovered by the ETM (Fig-
ure 13.16) after running for 100 generations is fitting the event log well (fitness
0.838) and is relatively precise (precision 0.743). However, it was missing the infre-
69We used the ProM 6.7 plug-in ILP-Based Process Discovery (Express).
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Figure 13.16: Unguided Petri net discovered using ETM without applying the GPD method.
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quently occurring activities Admission IC, Release B, Release D, and Release E.70 Since
these activities are an important part of the process this model could not be used.

Figure 13.17: Unguided Petri net discovered using IM without applying the GPD method.

Inductive Miner (IM). Figure 13.17 shows the process model discovered by the
IM.71 Among the state-of-the-art methods, we consider this the best model for our
purposes. Still, note how difficult it is to use this process model to directly answer
any of the process questions posed before. The model does have a comparable
average fitness (0.994) and a slightly higher precision (0.470), but it fails to properly
reflect the structure of the process. Semantically related activities are not grouped
together since the IM does not take the organizational information and the domain
knowledge on the admissions into account. For example, antibiotics and liquid
infusions are placed on different decision points and the blood tests are placed
within the main process flow. Moreover, it is possible to repeat most of the process
after the two discharge activities Release A and Release B occurred. We know from
the stakeholders that administering antibiotics is not repeated in the context of
the treatment in the emergency room and this is supported by the event data.
Based on the model in Figure 13.17 it is impossible to answer the first question on
the problematic category of patients. Similarly, it is difficult to answer the second
question on the antibiotics and liquid infusions as the process model does not
contain a decision point for the infusions. The application of decision mining (i. e.,
the third question) requires suitable decision points to be present in the process
model. The decisions modeled in Figure 13.17 are on a very low level of abstraction,
i. e., on the level of skipping a single low-level activity. Therefore, we were not able to
find the decision rules described in the previous paragraph. To conclude, traditional
unguided process model discovery is less suited for the analysis questions we have
in mind.

70We used the ProM 6.7 plug-in Mine Pareto fron with ETMd.
71We used the same parameter settings as when using the IM in the GPD method.
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13.6 Conclusion

In this chapter, we showed that we could successfully apply all our proposed methods
to the sepsis cases event log. We used them in the context of a case study conducted
with a regional Dutch hospital.

• In Section 13.2, we analyzed a hand-made normative process model and two
constraints on the time perspective with our multi-perspective conformance
checking method. We used the cost function to indicate that violations on
the time perspective are more likely explanations for the observed behavior
than violations on the control-flow perspective. The analysis showed that the
medical guideline for the timely administration of antibiotics was violated
in several cases. However, we also found that the quality of the recorded
timestamps was poor due to manual data entry.

• In Section 13.3, we showed that our decision mining method discovered sev-
eral guard expressions. One of the guard expressions is overlapping, which
highlights that the discovery of overlapping rule is relevant in practice.

• In Section 13.4, we showed that two conditional dependencies could be
revealed by the proposed DHM method. These conditional dependencies,
which are observed infrequently, would not have been revealed by state-of-
the-art heuristic process discovery methods. Moreover, the DHM method
provided decision rules regarding both dependencies that could be inter-
preted by the users.

• In Section 12.5, we used the GPD method to discover a process model that
is meaningful for the process stakeholders by using domain knowledge on
the function perspective in the form of activity patterns. We showed that we
could semi-automatically discover a useful process model without requiring
as much domain knowledge as necessary to create the the normative model
used in Section 13.2. The discovered process model was recognizable for the
stakeholders and can be used to investigate relevant questions on the process
whereas state-of-the-art process discovery techniques return models that are
less suited for our analysis questions.

Overall, all proposed methods could be successfully applied and provided action-
able insights such as problems with the data quality of the antibiotics infusions
and useful visualizations of patient trajectories.
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14 Case Study: Digital Whiteboard

We also applied the methods proposed in this thesis to a real-life event log that we
obtained from a digital whiteboard system of a large Norwegian hospital. An initial
version of this case study was published in [Man+16c]. In Section 14.1, we describe
the context of the case, specific process questions, and the event log. Then, we
describe how we applied our GPD method in Section 14.2.

14.1 Case Description

We conducted this case study with data obtained from a digital whiteboard system
of a Norwegian university hospital. The regional hospital has about 1,000 beds at
several locations and is visited by about 750,000 patients per year.

Digital whiteboard systems are used to improve health care processes by raising
situation awareness among nurses and to support coordination of care [Won+09].
In our case, we the digital whiteboard supports the daily work of nurses in the
observation unit of the hospital. We conducted this project together with a project
manager of the hospital who was responsible for the digital whiteboard system.
We visited the observation ward of the hospital to observe how the system is used
in the daily work practice of nurses.

Figure 14.1: Screenshot of the digital whiteboard software that is used by the Norwegian
hospital with a similar structure.
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A screenshot of the whiteboard software72 is shown in Figure 14.1. The white-
board is used to manage information about admitted patients. Information is dis-
played in a tabular manner, where each row shows information about a single
patient. The cells are used for various purposes, such as displaying logistical and
medical information about the patient. Furthermore, a call signal system is inte-
grated with the whiteboard. The current state of the call signal system is shown on
the whiteboard. The call signal system consists of several buttons that are located
in each room. These buttons are used by nurses to indicate their presence in the
room or to call for assistance. Moreover, patients may also trigger an alarm directly.
Generally, there are few constraints on how the whiteboard is actually used.

14.1.1 Process Questions

The main two questions that we wanted to answer with this case study were
1. How is the whiteboard system actually used by nurses in their daily work?
2. How is the the integrated call signal system used by the nurses?

We were told by the project manager that there are likely to be different work
practices with regard to the call signal system. Some nurses would not use the full
functionality and prefer a quick way of working. We will elaborate on this different
between the normal and quick usage when presenting our results.

14.1.2 Event Log

We obtained data from the database of the whiteboard in the observation unit
and created an event log with 8,487 traces and 286,000 events recorded between
04/2014 and 12/2015. Each trace records events for the visit of a single patient. On
average, traces contain 34 events. Events are recorded for changes of single cells
of the whiteboard. Such very fine grained logging leads to a low-level event log.
Events in the log do not directly represent recognizable activities. In total, there
are 42 distinct low-level activities in the log.

Varying work practices among nurses lead to changing events being recorded
for the same high-level activity. The event log is challenging for any kind of process
analytics as the semantics of results are not clear to process workers. We do not
list individual names of the low-level events since we explain them when applying
steps 1–5 of our GPD method in the next section.

14.2 Abstraction and Guided Process Discovery

This case study triggered the development of the event abstraction method that is
used at the core of the GPD method. The pre-requisite to apply any process mining
72The whiteboard system used is Imatis Visi: http://www.imatis.com

http://www.imatis.com
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technique are events at the right level of abstraction. Therefore, we first describe how
we created an abstraction model based on our domain knowledge (Section 14.2.1)
and, then, report on the results of the event abstraction (Section 14.2.2).

14.2.1 Abstraction Model

Figure 14.2: Abstraction model used in the case study. Most activities can only be interleaved
(i. e., they are not concurrent) as there is only one nurse assigned to a patient.

We created an abstraction model with 18 activity patterns as shown in Figure 14.2
to apply the GPD method. The activity patterns are based on information on the
whiteboard system and interviews with a domain expert from the hospital, who
observed the actual work of nurses. Note that the designed activity patterns do
not cover all 42 low-level activities, i. e., we considered some events recorded by
low-level activities not to be relevant for our analysis.

Table 14.1: Activity patterns used for the digital whiteboard case study. The number of
process activities, the number of low-level activity names shared with other patterns, and
the number of recognized activity instances and the matching error are listed.

Activity Name Transitions (Shared) Matches Matching Error (ϵ)

Lo
gi

st
ic

s

Announcement (Ann) 8 (6) 29 0.02
Change Room (CR) 5 (4) 662 0.09
Discharge (Dis) 7 (4) 8,054 0.0
Registration (Reg) 6 (6) 9,855 0.01
Transfer (Tra) 6 (6) 575 0.09
Update Report (UR) 4 (0) 6,912 0.0
Update Arrival (UA) 5 (1) 4,626 0.0

C
al

lS
ys

te
m

Handover (H) 1 (1) 24,228 0.0
Shift (S) 3 (3) 405 0.04
Call Nurse (CN) 2 (2) 12,416 0.08
Alarm Normal (AN) 3 (3) 8,842 0.02
Alarm Quick (AQ) 2 (2) 12,730 0.0
Alarm Assist (AA) 5 (3) 32 0.17

M
ed

ic
al

CT 4 (2) 1,443 0.0
MRI 4 (2) 124 0.0
Surgery (Sur) 3 (3) 297 0.17
Ultrasound (Ult) 5 (3) 1,164 0.0
X-Ray 4 (2) 1,117 0.0

All 18 activity patterns are listed in Table 14.1 together with the number of
transitions modeling low-level activities, the number of shared transitions, and the
name of the modeled high-level activity. The last two columns of Table 14.1 shows
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statistics about the results of our abstraction method, which we will elaborate on
in Section 14.2.2. The activities can be grouped into three categories:

1. those related to patient logistics,
2. those related to the call signal system and nurse handovers, and
3. those related to ordered examinations and surgeries.

Figure 14.3 depicts three of the activity patterns that are used for patient logistics
high-level activities: the registration of the patient, a transfer to another ward, and
the discharge of a patient. All three activity patterns share the low-level activity Bed
Status, which indicates that the occupancy status of the bed assigned to the patient
has changed. Also the low-level activity Transfer is shared by all three activity
patterns. Note that the system records duplicate low-level events for Bed Status,
Transfer, and Move to History. Two wards and two digital whiteboards are involved
in both the high-level activity Transfer and Discharge. The events are recorded by
both systems. We use the data perspective to distinguish between the Transfer and
the Discharge high-level activities: variables Org1 and Org2 are mapped to the same
attribute in the event log that records the identifier of the whiteboard from which
the event occurred. Amongst other indicators, we use this identifier to distinguish
an execution of the high-level activity Transfer from an execution of the high-level
activity Discharge. For the Discharge activity the special organizational identifier 207
is used. Figure 14.5 shows three examples of activity patterns that were created to
capture medical high-level activities related to the examinations ordered for the
patient. Finally, Figure 14.4 shows three examples for activity patterns related to
the call signal system. In fact, we used these activity patterns as running examples
(apa, apb, and apc) for illustrating our method in Chapter 9.

14.2.2 Event Abstraction

We applied the first four steps of the GPD method (cf., Chapter 9) to the event
log and successfully obtained a smaller abstracted event log with 206,054 high-
level events for 103,027 activity instances (i.e., each instances has a start and a
complete event). In the context of this case study, we did not execute the expansion
and validation step of the GPD method. The computation of the abstracted event
log took one hour and used 6 GB of memory. We decomposed the DPN of the
abstraction model into two smaller DPNs that did not share labels. The overall
fitness with regard to the log was 0.91, which indicates that most of the observations
could be explained. Even though 9% of the events could not be associated with
any activity pattern, this is a good result for further analysis. Due to the flexibility
of the information system, we can expect the event log to contain a considerable
amount of noise, i. e., events unrelated to any modeled high-level activity.

The abstracted event log contains 25 high-level activities: 18 activities were ob-
tained through abstraction and 7 further activities were already at the appropriate
level of abstraction. Table 14.1 shows the resulting number of activity instances that
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(a) Registration pattern

(b) Transfer pattern

(c) Discharge pattern

Figure 14.3: Three activity patterns that model high-level activities regarding the patient
logistics: Registration, Transfer, and Discharge. The system records duplicate low-level events
since two wards are involved in both the Transfer and Discharge activity.
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Figure 14.4: Three activity patterns that model high-level activities in the nurse call system:
Shift, Alarm Normal, and Handover. We already used these patterns under the names
apa, apb, and apc in Chapter 9 to illustrate our method.

Figure 14.5: Three activity patterns for the diagnostic high-level activities: Surgery, CT, and
Ultrasound. Similar patterns have been modeled for the other diagnostics-related activities.
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were matched, as well as the corresponding matching error. It should be noted that
the relatively high error for the activity Surgery stems from the fact that this activity
is sometimes recorded in a different manner, i.e., one event is missing. Regarding
the error for activity Alarm Assist we found that the assist button can be pressed
without a prior alarm by the patient, which is different from our initial assumption.

Given the absence of a perfectly abstracted event log as ground truth, we evalu-
ate our method by comparing the results obtained using three process analytics
techniques with and without the abstraction. Using the abstracted event log, we ob-
tained several insights into work practices of nurses in clinical processes. A domain
expert from the hospital stated that the analysis: “[..] gives insight beyond the usual
reports and analysis that we have access to. It gives a fresh and ”new” perspective on how
we understand the processes involved in running a ward or department.” By contrast, we
show that using the low-level event log directly does not lead to any insights for
stakeholders, because the semantics of low-level events are unclear.

We explored the high-level event log by discovering process models using the
Inductive Miner with its life-cycle extension [LFA16] (Section 14.2.3), checked the con-
formance of the discovered model (Section 14.2.4), and used dotted charts [SA07]
to answer a specific process question about the nurse call system (Section 14.2.5).

14.2.3 Discovery of the Inductive Miner

• Age Changed
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NurseChanged

CallSignal4

Arrival Date
Changed

Municipality Code
Changed

Symptom Other
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Ultrasound
Planned

CT Done

MR Planned
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CallSignal5

Figure 14.6: Petri net discovered for the low-level event log.

We analyzed two parts of the whiteboard system by discovering process models
by using the Inductive Miner [LFA16] with its life-cycle extension.73 We used only
those events from the original event log that are used in the respective activity
patterns, i. e., not all 42 low-level activities are present in the filtered event log. This

73We used the Inductive Visual Miner plug-in of ProM 6.7 to discover models.
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indicates what results could be obtained by only filtering the original log based
on some knowledge about the low-level events. For both event logs we used the
same noise filtering settings. Since the process is very flexible we focus on the
main behavior and set the noise filtering parameter to 0.5 and use a frequent traces
pre-filter to consider only 50% of the most occurring traces.

•
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Alarm
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Alarm
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Discharge

Figure 14.7: Petri net discovered for the high-level event log.

Figure 14.6 shows the Petri net discovered by the Inductive Miner for the low-level
event log and Figure 14.7 shows the Petri net discovered for the high-level event log.
Note that some activities in the input event log were already at the desired level of
abstraction. Therefore, the model in Figure 14.7 includes more than 18 activities.
The overall fitness of the high-level model with regard to to the high-level log is 0.66
and the overall precision score is 0.60. In comparison, the process model discovered
on the filtered low-level log fits better (fitness 0.89) since it allows for almost any
behavior but has a poor precision score of 0.25.

Apart from the measures, the low-level process model gives little insights into the
usage of the whiteboard system. Almost all of the activities may be repeated in any
order. The high-level model in Figure 14.7, instead, contains recognizable activities
that can be used to investigate the usage of the call signal system further. For exam-
ple, it is visible that some patients are announced before they are registered and
that the process generally starts with the registration of the symptoms of the patient.
In parallel to this, the call signal system may be used and the report column might
be updated. The complicated control-flow structure with many invisible routing
transitions in this branch is created by the Inductive Miner because it discovered
an OR-split, i. e., any combination of the three activities Alarm Quick, Alarm Normal,
and Update Report may be executed. Another structure that was discovered is that
for multiple patients the planning and execution of surgeries and updating the
diagnose occur together in parallel. Finally, patients are discharged and for some
patients a transfer is prepared. By using activities on the same abstraction level, the
process model in Figure 14.7 offers a better insight into the process. Moreover, it
allows to discuss the observations with process workers.

We also used the MPE to project frequencies based on an optimal alignment
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Figure 14.8: Output of the MPE fitness model for the Petri net discovered from the high-level
event log.
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(here only the control-flow is aligned) onto the model. Figure 14.8 shows the output
model. Transitions are colored according to their local fitness score (cf., Section 11.2)
and their frequency is written on the incoming edges. This revealed that the local
fitness measure of the X-Ray and Alarm Assist activities in the discovered high-level
model is very poor. Thus, events are missing for executions of these activities.

14.2.4 Conformance Checking of the Discovered Model

Figure 14.9: Average time between events projected on a process model modeling the usage
of the call signal system.

Finally, analyzed differences between the work practice of nurses when respond-
ing to patient-initiated call signals using the MPE (Section 11.2). Figure 14.9 shows
the output of the MPE performance mode for a small process model with three
variants. Indeed, there are differences between activities Alarm Normal (AN) and
Alarm Quick (AQ). For activity AN the nurse first indicates her presence in the room
by using a button on the call signal system, after which she attends the patient.
However, within activity AQ nurses do not use this functionality. The average ser-
vice time for activity AN (7.3 min) is longer than for activity AQ (1.5 min). This
might be because nurses do not use the full functionality of the call signal system
for minor tasks, which may be important for the hospital to investigate further.

We were also interested in investigating whether some nurses use the Alarm
Quick activity more often than the standard way of handling the call signal system.
Figure 14.10 shows a comparison between the frequency with which nurses use
Alarm Quick (blue bars) and Alarm Normal (red bars) that is created by using the
MPE chart view. It seems that there are some nurses that do not always stick to the
standard procedure more often than others. This has been already suspected by
the domain expert of the hospital. Note that we anonymized the identifiers before
conducting the case study to protect the privacy of the employees.
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Figure 14.10: Chart view of the MPE reveals that some nurses use the quick variant (blue
bars) of responding to an alarm instead of the desired variant (red bars) more often than
others. The identifiers have been anonymized beforehand.
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(a) Dotted chart of the following events
in the low-level event log: NurseCall
(NC) in blue, CallSignal1 (CS1) in green,
and CallSignal0 (CS0) in yellow.
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Shift 2 Shift 3
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(b) Dotted chart of the high-level Shift
events. Each of the vertical lines (i. e.,
groups of events) corresponds to a
change of shifts. The events on the diag-
onal are caused by admissions.

Figure 14.11: Dotted charts of events related to the activity Shift. Traces are shown on the
y-axis and sorted by the time of day of the first event in a trace.
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14.2.5 Dotted Chart Analysis of the High-level Log

Figure 14.11 shows two dotted charts created with ProM.74 Figure 14.11a was
created using the original low-level event log. It shows the distribution of events
NC, CS1 and CS0 over the course of a day. As expected, the NC event (i. e., the
responsible nurse changed) mostly occurs when a patient is admitted (i. e., on
the blue diagonal) and during one of the three shift changes (i. e., the three blue
vertical lines numbered À–Â). Still, the responsible nurse also changes between
those well-defined times. Yet, from Figure 14.11a it is not evident whether nurses
use the call signal system when visiting a patient after their shift started. Looking
at Figure 14.11b, which shows only the high-level events Shift from the abstracted
event log, it is clearly visible that our assumption was correct. Activity pattern Shift
captures a meaningful high-level activity. Figure 14.11b shows that nurses did use
the call signal system to indicate their presence in the room of the patient after
taking responsibility for a patient. In contrast to the dotted chart in Figure 14.11a,
event Shift only occurs after admissions (dots on the main diagonal) and after
shift changes (the three vertical lines named Shift 1, Shift 2, and Shift 3). Still, by
comparing the number of activity instances in Table 14.1 it is clear that activity
Shift (405 times) happens rarely in comparison to activity Handover (24,228 times).
Two likely reasons for this are that nurses do either not attend the patient after a
shift change, or that they do not use the system to indicate their presence. This is
a valuable insight on how the whiteboard system is used in practice. This insight
was only obtained using the abstraction method and could not be obtained by
conventional approaches.

14.3 Conclusion

We applied the GPD method to the event log obtained from the digital whiteboard
system. We did not apply the remaining methods since the event log is missing
attributes that could be used to discover relevant rules. Moreover, we did not obtain
a data-aware normative model that would be suitable to test our multi-perspective
conformance checking methods. However, we showed that it was possible to obtain
a high-level event log based on activity patterns and alignments. Using this log, we
could conduct a preliminary analysis of the work practices of nurses with regard
to to the digital whiteboard. Further refinement of the collected data (e. g., with
suitable data attributes) and the formulation of more specific process questions
would be needed to leverage the remaining methods proposed in this thesis.

74We used the ProM 6.7 plug-in Log Projection.
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15 Case Study: Hospital Billing

In our forth case study, we applied the methods proposed in this thesis to a real-
life event log that we obtained from the financial modules of the ERP system of
a regional hospital in The Netherlands. Parts of this case study were published
in [Man+17].

This chapter is structured as follows. First, we describe the context of the case,
specific process questions, the extracted event log, and a handcrafted normative
process model in Section 15.1. Since the designed normative process model does
not include any multi-perspective constraints, we started by applying our pro-
posed decision mining method in Section 15.2. Then, we check the conformance of
the enhanced process model with decision rules in Section 15.3 in terms of multi-
perspective precision and fitness. We also describe the application of the DHM
method (Section 15.4) to the event log.

15.1 Case Description

In Progress Closed Released Billable Billed

Figure 15.1: The desired path through the billing process runs through five states.

We conducted this case study in the context of the billing process for medical ser-
vices in a regional hospital in The Netherlands. In the process under observation,
several medical services (e. g., medical diagnostics, hospitalization, treatment, surg-
eries, etc.) are collected in a billing package75 and billed together after a certain
amount of time has passed or the treatment ends.

Figure 15.1 depicts the desired path of the billing process in which the billing
package runs through five states. Newly created billing packages (i. e., instances
of a combination of a diagnose and the treatment) start in the in progress state.
These packages need to be closed and released before an invoice can be sent. Often,
a separate declaration code needs to be obtained before the package is billable. This
code can be used to send the package (often together with others in batches) to the
75In the Dutch healthcare system billing packages are referred to as diagnose-behandelcombinatie

(DBC), i. e., they are a combination of a specific diagnose and the corresponding treatment. For
simplicity, we refer to it as billing package in the remainder of this thesis.



326 15 CASE STUDY: HOSPITAL BILLING

responsible healthcare insurance in the form of an invoice. Normally, this would be
the end of the process that we analyze and the billing packaged would be marked
as billed in the system.

15.1.1 Process Questions

At a first glance, the process seems to be straightforward as depicted in Figure 15.1.
However, in for some the process is more complex. The rules and regulations
around the billing of medical services have changed every year. There exists a
large number of special situations and mistakes are made when determining what
should be the correct billing package and declaration code. Thus, in some cases the
billing package is reopened, rejected, or canceled and further changes are needed. The
goal of our case study was to visualize and analyze this billing process with our
proposed methods. Specifically, we aimed to answer the questions: “Why are some
billing packages reopened multiple times and their invoicing is delayed?” In the
next two sections, we describe the event log extracted from the ERP system of the
hospital and the manually created process model, which describes the expected
variants of how the billing package is handled.

15.1.2 Event Log

We extracted an event log from the financial part of the ERP system76 of the hospital.
The event log originates from the tables of the ERP system that store information
about the status and processing of billing packages. We took a random sample of
100,000 traces with events spanning a time frame of three years and anonymized
the activity names and attributes. Therefore, information on the actual medical
services used and the code used for declaration was removed. The resulting event
log contains events for 17 activities as listed in Table 15.1 and 16 attributes as listed
in Table 15.2. The anonymized event log was made available for further process
mining research purposes as part of the collection of real-life event logs of the IEEE
Task Force on Process Mining [Man17].77

15.1.3 Normative Model

Figure 15.2 shows a manually created process model of the billing process that
we used to visualize and analyze the handling of the billing packages by the fi-
nancial department of the hospital. It is a normative model of the process in the
sense of depicting the expected variants of process behavior as communicated
by the stakeholders from the hospital’s financial department. However, since we
are investigating the internal management of the billing package, the model in
76The employed ERP system is based on SAP and is customized for the hospital.
77The hospital billing event log can be obtained from: https://doi.org/10.4121/uuid:

76c46b83-c930-4798-a1c9-4be94dfeb741

https://doi.org/10.4121/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741
https://doi.org/10.4121/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741
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Table 15.1: Activities recorded in the hospital billing event log.

Activity Frequency Description

NEW 101,289 A new billing package is created.
FIN 74,738 The billing package is closed, i. e., it may not be changed anymore.
RELEASE 70,926 The billing package is released to be sent to the insurance company.
CODE OK 68,006 A declaration code was successfully obtained.
BILLED 67,448 The billing package has been billed, i. e., the invoice is sent out.
CHANGE DIAGN 45,451 The diagnosis that the billing package is based on was changed.
DELETE 8,225 The billing package was deleted.
REOPEN 4,669 The billing package was reopened, i. e., additional medical services may be

added or existing services removed.
CODE NOK 3,620 The declaration code was obtained with an error message.
STORNO 2,973 The billing package was canceled.
REJECT 2,016 The invoice sent to the insurance company was rejected.
SET STATUS 705 The status (i. e., new, closed, etc.) was manually changed.
EMPTY 449 The status (i. e., new, closed, etc.) was manually changed.
MANUAL 372 The billing package was manually changed from a non-standard system.
JOIN-PAT 358 Two billing packages are joined together since they refer to the same patient.
CODE ERROR 75 The declaration code could not be obtained.
CHANGE END 38 The projected end date of the billing package was changed.

Table 15.2: Attributes recorded in the hospital billing event log.

Attribute Domain Description

actOrange boolean A flag that is used in connected with services that may not be covered by the standard
health insurance.

actRed boolean A flag that is used in connected with services that may not be covered by the standard
health insurance.

blocked boolean A flag that is used when the billing may not proceeed (i. e., is blocked).
caseType literal A code for the type of the billing package, which may influence it’s handling.
closeCode literal There may be several reasons to close a billing package, this attribute stores the code

used.
diagnosis literal A code for the diagnosis used in the billing package.
flagA literal An anonymized flag.
flagB literal An anonymized flag.
flagC literal An anonymized flag.
flagD literal An anonymized flag.
isCancelled boolean A flag that indicates whether the billing package was eventually cancelled.
isClosed boolean A flag that indicates whether the billing package was eventually closed.
msgCode literal The code returned by activity CODE NOK.
msgCount discrete The number of messages returned by activity CODE NOK.
msgType literal The type of messages returned by activity CODE NOK.
speciality literal A code for the medical speciality involved.
state literal Stores the current state of the billing package.
version literal A code for the version of the rules used.
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Figure 15.2: Manually created process model for the billing process that we used for visual-
ization purposes and decision mining.

Figure 15.2 does not encode rules and regulations for the billing of medical services.
The process starts with creating the billing package (NEW). Sometimes, the regis-
tered diagnosis needs to be adjusted after the billing packages has been created
(CHANGE DIAGN). Moreover, for some billing packages the initially determined
end date78 is changed. Thereafter, the process continues with it’s main part. Some
of the billing packages are directly deleted (DELETE) at this stage of the process
and for some the processing ends (tau1). In the remaining cases the package is
closed after some time (FIN). There are several options to continue:

1. the processing ends (tau2),
2. the package gets deleted,
3. the package gets opened again (REOPEN), or
4. the package gets released (RELEASE).

In case the package was released (option 4), the declaration code may be obtained
successfully or with problems (CODE OK or CODE NOK). Afterwards, for a small
number of cases the state is manually adjusted (SET STATUS). Again, there are
several options to continue:

1. the processing ends (tau3),
2. the package is not directly billed (tau4),
3. the package is sent to the insurance company (BILLED), or
4. the package is reopened (REOPEN).

For those packages that were billed (option (3)) we model several exception vari-
ants that may occur. Sometimes invoices get rejected or need to be canceled for
other reasons. Activities STORNO and REJECT are executed in these cases. Rework
is needed for those billing packages, which may get reopened or directly billed
again.79 Finally, for some packages (most of them were reopened) the processing

78Each billing package covers all medical services provided in a certain time period.
79In these cases the rework has been done outside of the system under observation.



15.2 DISCOVERY OF THE DATA PERSPECTIVE 329

15

starts over (tau6), some packages are declared empty (EMPTY) or deleted (DELETE),
and for the remaining packages the process ends.

15.2 Discovery of the Data Perspective
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(a) DPN of the hospital billing process enhanced with guards and write operations.

Transition Guard expression

CHANGE DIAGN caseType = B
tau0 caseType ≠ B
tau1 speciality = K
FIN speciality ≠ K
tau2 closeCode = H
REOPEN #1 closeCode ≠ H
tau6 caseType = F ∨ (caseType ≠ F ∧ caseType ≠ C ∧ closeCode ≠ A)
CODE NOK (caseType ≠ F ∧ caseType = C) ∨ (caseType ≠ F ∧ caseType ≠ C ∧ closeCode = A)
REOPEN #2 caseType = B ∨ (caseType ≠ B ∧ closeCode ≠ A)
tau4 caseType ≠ B ∧ closeCode = A
STORNO #1 (isClosed = true ∧ closeCode ≠ A) ∨ isClosed ≠ true
STORNO #2 isClosed = true ∧ closeCode = A
BILLED isClosed = true
REOPEN #3 isClosed ≠ true
DELETE #2 isClosed ≠ true
tau5 isClosed = true

(b) Guards discovered by the overlapping decision mining method.

Figure 15.3: Decision rules discovered for the hospital billing process using the overlapping
decision mining method. We numbered the transitions referring to the same activity to
uniquely identify the transitions that were assigned a guard expression.

We applied our overlapping decision mining technique to the hospital billing event
log. Figure 15.3 shows the resulting DPN in which we discovered guard expres-
sions for 16 transitions at eight decision points (labeled p1 … p8) of the process.80

The discovered decision rules are based on four attributes of the process: caseType,

80We used binary rules, set the minimum instances parameter to 0.15, and excluded the following
attributes state, org:resource, version, msgCode, msgCount, and msgType to avoid overly complex rules.
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speciality, closeCode, and isClosed. Some of the discovered decision rules are over-
lapping. Our method first discovered the guard expression true, i. e., the transition
is unconditionally activated, based on a majority vote and, then, discovered a deci-
sion rule among the misclassified instances. For example, transition CODE OK is
unconditionally enabled and, hence, the guard expression overlaps with the rules
discovered for transitions tau6 and CODE NOK. We briefly discuss the discovered
rules for each of the decision points.

Place p1. Only for the cases of type B, the diagnosis is changed after creation of
the billing package. Indeed, this is expected for these cases since they are created
for patients without a prior treatment.

Place p2. Cases of the speciality K are not processed further. When confronting
the stakeholders of the hospital with this rules, we found that these cases are not
actually billed by the hospital and, thus, get assigned a dummy speciality.

Place p3. Cases with the close code H are not processed further. We found that
this code means that the billing package is empty, i. e., no billable services were
carried out.

Place p4. For cases of case type F no declaration code needs to be obtained. This
could be explained, since this code is associated with intensive-care activities for
which the code is, often, not required. Moreover, the code seems to be NOK for a
close code of A or a case of type C. Cases of type C represent services that billed
separately outside of the normal billing package process. We could not find an
explanation regarding the close code A.

Place p5. Cases of type B or cases with a close code different from A are apparently
reopened more often than others. We could not find an explanation for this rule.

Place p6. For cases that are not yet closed (i. e., not yet successfully finished upon
taking the random sample) the variant STORNO and REJECT is observed more
often. Also, the decision depends, again, on close code A. Unfortunately, the
interpretation of this rule is unclear.

Place p7. Cases which have been reopened at this decision point are not yet closed
in contrast to cases which are billed at this decision point.

Place p8. Deleted cases are not in the close status as to be expected.

When using standard decision mining techniques such as the one presented
in [LA13b], some of the insightful decision rules were not discovered. Next, we
check how the precision and fitness of the process model changed when adding
the discovered decision rules.
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15.3 Conformance Checking

We used our multi-perspective conformance checking techniques to assess the
original model (Figure 15.2) and the multi-perspective model (Figure 15.3) in terms
fitness and precision score. The computation took 10 minutes. On average the
fitness of the model without data rules was 0.991 and the fitness of the model with
data rules was 0.987. As to be expected the discovered guard expressions were
not fulfilled by the observed data in all the cases. Still, the discovered rules are
representative for the majority of the cases. We also computed the multi-perspective
activity-precision score (Section 6.2.3) to investigate how much precision was added
by enhancing the process model with decision rules.81 The precision of the original
model without data rules was 0.594, which was increased by the added decision
rules in the enhanced model by 0.106 to a score of 0.700.

Figures 15.4 and 15.5 show the influence of the added decision rules by com-
paring the local fitness and precision scores for both models. On the one hand,
the fitness score decreases for several of the output transitions of decision points
that are assigned decision rules. Also, the local fitness of the transition NEW de-
creased since three of the variables that are used by the decision rules are written
by this transition. In total, there are 3,898 incorrect write operations diagnosed for
transition NEW compared to 296,102 correct write operations namely 1.2% . On
the other hand, the local precision score increases for the places p1, … , p8 since
fewer transitions are activated for the observed behavior, i. e., according to the
control-flow and the data perspective. In conclusion, the discovered decision rules
improved the precision of the process model without sacrificing too much fitness.
The multi-perspective process model provides a better balance between fitness and
precision.

81We only considered the attributes which were used in decision rules as sources of imprecision, i. e.,
VPR = {caseType, speciality, closeCode, isClosed} in both cases.
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(a) Fitness measure projected on the normative model without decision rules (cf., Fig-
ure 15.2).
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(b) Fitness measure projected on the enhanced model with partly overlapping decision rules
(cf., the guard in Figure 15.3 for double-bordered transitions).

Figure 15.4: Fitness measure projected on both the hospital billing process models without
and with decision rules. The local fitness score decreases for several transitions since some
observed attribute assignments do not fulfill the discovered guards, e. g., transitions NEW
and CHANGE DIAGN.
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rules (cf., the guard in Figure 15.3 for double-bordered transitions).

Figure 15.5: Precision measure projected on both the hospital billing process models without
and with decision rules. The local precision score increases for several places (p1, … , p8)
fewer transitions are activated for the observed attribute values.
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15.4 Data-aware Process Discovery

We also applied the data-aware heuristic discovery method that was introduced in
Chapter 8 to the hospital billing event log. Here, we do not use the initial normative
model but try to discovery a process model from the event log.

15.4.1 Configuration Settings

We experimentally determined the following parameter settings:
• the accepted-task-connected heuristic, as some activities might not be relevant;
• the observation threshold θobs = 0.04 (i. e., relations that appear in more than

4% of the log trace), because we want to capture the main flow of the process;
• the dependency threshold θdep = 0.9 to discover only strong dependencies;
• the binding threshold of θbin = 0.001 to exclude very infrequent bindings.

We used 13 of the attributes82 to discover dependency conditions and guarded
bindings. We used C4.5 with 10 times 10-fold cross validation and only accepted
classifications with a conditional dependency measure of θcon ≥ 0.6.

15.4.2 Discovery Results

Figure 15.6 shows the DC-Net discovered by the iDHM in about 3 seconds for the
hospital billing event log. The discovered model fits 97% of the observed behavior.

Conditional Dependencies

Compared to the model returned by the standard Heuristics Miner, our method
revealed six additional dependencies. We numbered these relations in Figure 15.6
and list the conditional dependency measure, the frequencies of occurrence accord-
ing to the binding heuristic, as well as quality-scores (i. e., Cohen’s kappa) and used
attributes of the obtained dependency conditions for each relation in Table 15.3.
We discussed the discovered conditional dependencies with a domain expert from
the hospital who works in this process.

Added dependency À. The relation from FIN to END is based on a special closeC-
ode attribute that is used when nothing can be billed and, hence, the process
ends.

Added dependency Á. The relation between RELEASE and CODE NOK occurs
mostly for two specific caseType values. According to the domain expert both case
types correspond to exceptional cases: one is used for intensive care and the other
for cases for which the code cannot be obtained (CODE NOK).

82Specifically, we included the following attributes: caseType, closeCode, blocked, flagA, flagB, flagC,
msgCode, msgType, speciality, isClosed, isCancelled, and version.



15.4 DATA-AWARE PROCESS DISCOVERY 335

15

①

②
③

④

⑥

Ⓐ

Ⓑ

Ⓒ

Ⓓ

Ⓔ Ⓕ

Ⓖ

Ⓗ ⑤

Figure 15.6: DC-Net discovered for the hospital billing event log. The numbered red edges
(À–Æ) were added by the DHM. The double-bordered bindings (Ⓐ–Ⓗ) are assigned the
guards listed in Table 15.4.



336 15 CASE STUDY: HOSPITAL BILLING

Table 15.3: Dependency conditions discovered for the hospital billing log.

Nr Source Target Frequency Quality Dependency Attributes

À FIN END 3,619 0.98 1 closeCode
Á RELEASE CODE NOK 1,674 0.62 0.99 caseType
Â RELEASE BILLED 468 0.93 0.98 caseType
Ã CODE NOK BILLED 1,481 0.84 0.99 caseType, specialty
Ä REOPEN DELETE 1,128 0.83 0.81 isClosed
Å REOPEN CHANGE DIAGN 212 0.97 0.99 isClosed

Added dependency Â. The relation from RELEASE TO BILLED is, again, related
to a specific caseType. This case type F is used for intensive-care activities as well
and, often, does not require a code to be obtained.

Added dependency Ã. The relation from CODE NOK to BILLED is also related to
the caseType. Moreover, also the medical specialty is used by the classifier learned.
This could not be explained by the domain expert.

Added dependencies Ä and Å. Both relation from REOPEN to DELETE and from
REOPEN to CHANGE DIAGN are conditional to the attribute isClosed, which in-
dicates whether the invoice is closed or not. Clearly, deleted cases should not be
in the closed status, whereas reopened cases with a change in diagnosis can be
eventually closed in the future.

Overall, the process model discovered by the DHM provides a balanced view
on the interesting infrequent paths of the billing process together with the more
frequent, regular behavior. Moreover, additional insights are provided by revealing
the conditions with which infrequent paths occur.

Guarded Bindings

In addition to the conditional dependencies, we also discovered several guarded
bindings. Table 15.4 lists the discovered guard expressions that are highlighted
using the letters Ⓐ–Ⓗ in Figure 15.6.

The discovered guards are based on the attributes caseType, closeCode, and isClosed
and similar to the overlapping decision rules discovered in Section 15.2. However,
the setting is now different. We did not use a normative model and used different
parameter settings.

Quality of the Discovered DC-Net

We computed the fitness and precision score of the discovered DC-Net83. The
fitness score is 0.967 and the precision score is 0.808. Thus, the DC-Net is more
83As described before in Section 12.4.2, we use a DPN translation of the DC-Net for this purpose.
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Figure 15.7: Conformance information projected on the discovered DC-Net of the billing
process based on a multi-perspective alignment. Some local conformance issues are visible.
Many events referring to the activities on the path from STORNO to REOPEN are diagnosed
as log moves.



338 15 CASE STUDY: HOSPITAL BILLING

Table 15.4: Decision rules for the billing process DC-Net.

Nr Source Target Guard Expression

Ⓐ NEW FIN caseType = A ∨ caseType = F
Ⓑ NEW CHANGE DIAGN caseType = B ∨ caseType = D
Ⓒ FIN END (ao) closeCode = H ∨ closeCode = X ∨ closeCode = BA
Ⓓ FIN RELEASE closeCode ≠ H ∧ closeCode ≠ X ∧ closeCode ≠ BA
Ⓔ RELEASE BILLED caseType = F
Ⓕ RELEASE CODE OK caseType = A ∨ caseType = B ∨ caseType = D
Ⓖ REOPEN CHANGE DIAGN isClosed = true

Ⓗ REOPEN DELETE isClosed = false

precise than the manually created normative model that we enriched with decision
rules in Section 15.2. However, its fitness score is slightly lower since we do not
include all the activities in the model to focus on the main behavior and avoid noise
affecting the discovery algorithm. Figure 15.7 shows the detailed conformance
diagnostics that are returned by the iDHM tool. Despite the good overall fitness
of the DC-Net, there are some local conformance issues apparent in Figure 15.7.
Many events referring to the activities on the path from STORNO to REOPEN are
diagnosed as log moves, i. e., the alignment was not able to match them to an activity
execution. Indeed, when comparing the DC-Net with the manually created model
in Figure 15.2 it is clear that those activities may also be executed for cases in which
CODE OK was not executed beforehand. The overall fitness score is not heavily
affected since these unmatched events are infrequent.

15.4.3 Comparison with State-of-the-art Techniques

We compared the obtained results with two standard data-unaware process discov-
ery techniques:

• the Inductive Miner84 (Figure 15.8) and
• the Heuristics Miner85 (Figure 15.9).

The Petri net in Figure 15.8 shows that the Inductive Miner does not succeed
in filtering out the noise of the event log. Almost every transition of the Petri net
may be repeated due to the loop back to the beginning of the process. Indeed, for
some cases the process is repeated. However, activities such as FIN, RELEASE, and
BILLED are not shown in the expected order, i. e., the package should first be closed
before being release (cf., Figure 15.1).

Probably the exceptional cases in which a single billing package gets reopened
and closed several times pose a problem for Inductive Miner. Adjusting the noise
84We used the Inductive Miner infrequent with the standard noise filtering parameter, i. e., 0.2.
85We simulated the standard Heuristic Miner using the iDHM without considering the conditional

dependencies and set θobs = 0.
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Figure 15.8: Petri net discovered by the Inductive Miner for the hospital billing log. Note
that many activities can be skipped and it is possible to loop back. This makes the model
very imprecise.

filtering parameter of the Inductive Miner and excluding infrequent activities did
not improve the process model.

Figure 15.9: C-Net discovered by the standard Heuristic Miner for the hospital billing log.

When using the Heuristics Miner without filtering infrequent behavior (i. e., the
standard algorithm as presented in [WR11](, the C-Net in Figure 15.9 is returned.
This model shows that including all infrequent behavior leads to an overly complex
process model, which is very difficult to understand and, thus, impossible to use in
the communication with stakeholders. Conversely, when applying noise filtering
(e. g., θobs = 0.1) then only the main path of the process is shown. The main path
of the process is also included in the model returned by the DHM (cf., Figure 15.6).
However, some of the conditional behavior revealed by the DHM could not reveal
using the standard Heuristics Miner without introducing many more dependen-
cies that we consider as noise. For example, the dependency from RELEASE to
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BILLED and the dependency from REOPEN to CHANGE DIAGN (cf., Â and Æ in
Figure 15.6). Moreover, the standard Heuristics Miner does not give insights into
the conditions under which dependencies are observed.

15.5 Conclusion

We applied three of our proposed methods to the hospital billing process in the con-
text of a case study conducted with a regional Dutch hospital. In this chapter, we
described the application of the methods to a random sample of 100,000 cases that
were taken from an event log extracted from the ERP system of the hospital.

• In Section 15.2, we discovered several overlapping decision rules that govern
the billing process. We validated the discovered rules with stakeholders
from the financial department of the hospital. By analyzing the rules, we
found that the system manages several types of medical services and that
the process differs depending on the type of service. For some types, the
billing packages were delete without process or the declaration code was
not obtained.

• In Section 15.3, we computed the multi-perspective precision and fitness
score of both the model with decision rules and the model without decision
rules. The scores show that the decision rules considerably increased the
precision of the process model whilst retaining almost the same the fitness
score.

• In Section 15.4, in the attempt of improving the results reported in Section 15.2,
we discovered a DC-Net that includes both the main behavior of the process
as well as five conditional dependencies with our DHM method. We also
validated those conditions with stakeholders from the hospital and show
that state-of-the-art process discovery techniques have difficulties filtering
the noise.

The process stakeholders were primarily interested in projecting the cases onto
the normative process model. We found that the system is also used for case types,
which do not require handling. However, the underlying reasons for rework and
delays could not be explained based on conditions in the data. Overall, three of the
proposed methods could be successfully applied and provided valuable insights
into the process.
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16 Conclusion

In this thesis, we proposed five multi-perspective process mining methods that all
deal with the interaction of multiple process perspectives. In particular, we looked
at the interaction between the following five process perspectives that are often con-
sidered in literature [Aal+12; Aal16; BMS16; CKO92; JB96; LA13a; RAH16; Ram17;
Ros+11; Sch00]: the control-flow perspective, the resource perspective, the data
perspective, the time perspective, and the function perspective. All five proposed
methods were implemented and systematically evaluated with synthetic data sets
and applied in real-life situations in the context of four case studies.

This last chapter is structured as follows. In Section 16.1, we revisit the contribu-
tions of each of the proposed methods and reflect on how they relate to the research
goals stated in Section 1.3.1. Several challenges in the field of multi-perspective
process mining remain open. We acknowledge these limitations to our work in
Section 16.2. We suggest directions for future work in Section 16.3 and conclude
this thesis by reflecting on the broader context in Section 16.4.

16.1 Contributions

In Part I of this thesis, we introduced the field of process mining and our view
on multi-perspective process mining. As detailed in Section 1.3.1, the goal of our
research was threefold: (G1) to develop novel process mining methods that deal
with interacting perspectives for all three categories of process mining; (G2) to
implement the proposed techniques in efficient and effective tools that can deal
with realistic event logs; and (G3) to apply the proposed techniques and tools in
real-world scenarios. Next, we revisit the contributions made in the three main
parts of this thesis, reflect on how our contributions relate to the goals set, and
illustrate what kind of questions can be answered with the proposed methods.

16.1.1 Multi-perspective Conformance (Part II)

Part II of this thesis is concerned with multi-perspective conformance checking,
i. e., the diagnosis and quantification of discrepancies between the real execution as
recorded by information systems and the desired execution as specified by process
models. Our multi-perspective conformance checking technique is grounded in
the belief that even though data, resource, and time are separate concerns from a
business or modeling perspective, they can be encoded into the data perspective (cf.,
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Section 4.2). We assume multi-perspective process models to encode constraints
over the data, resource, and time perspective of a process by introducing variables
and attaching rules to activities that limit their enablement (i. e., guard expressions).
We use the DPN notation (e. g., in Figure 3.4) to model process behavior. All process
perspectives are specified in a single integrated model and, thus, we can look at
the interaction between multiple perspectives (research goal G1). We proposed two
conformance checking methods both of which approach the conformance checking
problem from different angles.

Multi-perspective Alignment. In Chapter 5, we presented a method that computes
an optimal, multi-perspective, balanced alignment. The alignment relates the be-
havior modeled in a multi-perspective process model with the behavior observed
in an event log. It can be used to calculate the fitness score, i. e., how much of the
observed behavior is actually allowed according to the model. We denoted the
method as balanced, since it balances deviations on the different process perspec-
tives and provides an optimal explanation for the observed behavior in terms of
an execution trace of the multi-perspective process model. Deviations that occur
on the control-flow perspective (i. e., a misplaced activity) may be explained by
wrongly recorded data values. Vice versa, data values that violate constraints may
be explained by wrong or missing activity executions. The technique enables to
specify statements such as “Skipping activity Check is more severe than executing
activity Check too late” and “Executing activity Decide by a different doctor than
activity Visit is less severe than sending patients with the triage color Red to their
home”. Moreover, as shown in the road traffic fine management case study (Sec-
tion 12.2), it allows to answer questions such as “Was the fine amount recorded for
a case too high” or “Was the activity Send for Credit Collection missing in a specific
case of the process?”.

Multi-perspective Precision. In Chapter 6, we described a method to measure the
precision of a multi-perspective process models with regard to to an event log. The
precision of a process model can be seen as the fraction of the possible behavior
allowed by the model in relation to what has actually been observed, as recorded
in the event log. Thus, the precision score is complementary to the fitness score
introduced in Chapter 5. Our method is the first proposal to measure precision for
multi-perspective process models. We generalized existing precision measures [Adr+15;
MC12] by taking the rules and data values of the multi-perspective process into
account. Compared to the state-of-the-art our method is able to answer questions
such as “What is the difference in precision between process model A with data
rules (i. e., guard expressions) and process model B without data rules?” and “How
much more precise is process model C with mutually-exclusive decision rules (i. e.,
only one of the following activities is activated regardless of the data values) com-
pared to process model D in which some of the decision rule overlap (i. e., multiple
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activities are activated for some data values)?”. We showed that our measure is
intuitive by providing several real-life examples. We also used the measure in all
the case studies. For example, it is used to evaluate the difference between mutually-
exclusive and overlapping rules in the road fines case study (Section 12.3) and in
the sepsis case study (Section 13.3).

16.1.2 Multi-perspective Discovery and Enhancement (Part III)

Part III of this thesis is concerned with multi-perspective process discovery and
enhancement. The proposed methods leverage the additional information recorded
in data attributes (also denoted as event payload) of the event log or use domain
knowledge on all process perspectives to discover better process models and en-
hance existing models. Many existing methods are based on a staged approach,
i. e., several process perspectives are discovered separately from each other. Fol-
lowing our first research goal (G1), we proposed two process discovery methods
that discover integrated models in which multiple perspectives on the process are
intertwined with the control-flow.

Data-aware Heuristic Process Discovery. In Chapter 8, we presented a method for
data-aware heuristic process discovery that aims to reveal infrequent conditional
behavior by using recorded data attributes. Data- and control-flow are learned
together. The proposed method employs classification techniques to discover con-
ditional dependencies based on the attribute values recorded in the event log. It
adds infrequent behavior to the process model such as, e. g., characterized by the
following statements “In a few cases patients are assigned a white triage color and
leave the hospital” and “Sometimes as a specific nurse reverses the order of the Di-
agnostics and Visit activity”. We implemented the method as Data-aware Heuristic
Miner (DHM), which returns the process models as C-Nets. We systematically eval-
uated the DHM by using a synthetic data set. The experiments showed that it can
efficiently handle large event logs with several attributes and distinguish between
typical levels of random noise and conditional infrequent behavior. Furthermore,
we extended the C-Net notation, which is still focused on the control-flow perspec-
tive, to the data-aware DC-Net (cf., Section 8.4) notation. By using the DC-Net
notation, we can leverage existing methods for decision mining and conformance
checking. The mapping between DC-Nets and DPNs is implemented as part of our
iDHM tool. Finally, we applied the DHM in three case studies and show that it
does reveal interesting infrequent conditional behavior from real-life event logs.

Guided Multi-perspective Process Discovery. In Chapter 9, we proposed a process
discovery method that uses domain knowledge on the functional perspective of
the process. The Guided Process Discovery (GPD) method discovers a mapping
between low-level events and high-level activities of the process in order to improve
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the quality of existing process discovery methods. The method uses multi-perspective
activity patterns to specify domain knowledge on the function perspective of the
process. Activity patterns encode the assumptions on how high-level activities of
the process manifest themselves in terms of recorded low-level events. The method
employs our multi-perspective alignment method (Chapter 5) to find an optimal
mapping between all activity patterns and the low-level event log. Again, we inte-
grate multiple process perspectives in one model. Here, we compute the alignment
not for diagnostic purposes but to create an abstracted event log. Based on this
abstracted event log, we discover a high-level process model that we validate on
the low-level log using an model expansion step. We showed in the evaluation with
synthetic data that, despite the computationally expensive search for an optimal
alignment, the method can be applied to examples of moderate size and complexity.
These examples are often encountered in practice. Finally, we applied the GPD
method to each of the four case studies and showed that it can lead to a considerable
improvements in the model quality as perceived by stakeholders.

Enhancing Models with Overlapping Decision Rules. In Chapter 10, we described
an enhancement method that enriches process models with overlapping decision
rules from an event log. Existing techniques only return rules that assume com-
pletely deterministic decisions. We observed that this assumption often does not
hold. Business rules may be non-deterministic and this ambiguity “cannot be solved
until the business rule is instantiated in a particular situation” [RW02]. The method
builds upon standard classification techniques (we used C4.5 decision trees) and
makes an effort to introduce overlap by reclassifying instances that were previously
misclassified. To evaluate our technique we used several real-life data sets. We
measured the fitness and precision of the process models with discovered rules
(cf., the conformance checking technique in Part II). The evaluation showed that
our technique is able to produce models with overlapping rules. The discovered
models fit the observed behavior better without loosing too much precision. For
some decision points, with more than 2 alternative activities, our technique returns
rules that are both more fitting and more precise than previous work. Finally, we
could discover interpretable overlapping rules in some of the case studies.

16.1.3 Applications (Part IV)

To address our second research goal (G2), we developed two interactive tools: the
Multi-perspective Explorer (Section 11.2) and the Interactive Data-aware Heuristic
Miner (Section 11.1). Both tools have reached a high level of maturity and have
been applied to several case studies in real-world scenarios in three different organi-
zations. Moreover, we tested both tools with large event logs containing more than
5,000,000 events and up to 38 attributes (cf., Chapter 15). To support large event
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logs on commodity hardware, we developed the XESLite libary86, which efficiently
stores typical event logs. Next to the two interactive tools, we implemented all
proposed methods as plug-ins of the process mining framework ProM.

In Chapters 12 to 15, we presented the results of four of the case studies. The
case study presented in Chapter 12 was conducted on an event log provided by
a local police force in Italy. We analyzed their process of managing road traffic
fines and found that, often, the Send for Credit Collection activity was missing for
unpaid or underpaid fines. The two case studies presented in Chapters 13 and 14
were conducted in the context of a collaboration with a regional hospital in The
Netherlands. We analyzed the trajectories of patients with a sepsis condition and
the billing process of the hospital. For the case study presented in Chapter 14 we
collaborated with a Norwegian hospital. Here, we analyzed a digital whiteboard
system that is used by nurses for their daily work. For each case study, we obtained
an event log from the information systems supporting the process under investiga-
tion. We applied our proposed methods to the cases and showed that they can be
applied in real-life situations and yield valuable insights.

We published anonymized versions of three employed real-life event logs [LM15;
Man16a; Man17] in the event log repository of the IEEE Task Force on Process
Mining87 to enable other researchers to validate our results and use them to test
their own methods.

16.2 Limitations

In this section, we acknowledge that there are some limitations to our work. We
summarize the most important challenges identified for each of the proposed
methods. A more detailed list of limitations for the individual methods is presented
in the respective chapters.

Multi-perspective Alignment.
• Comparing modeled and observed behavior is non-trivial and adding mul-

tiple integrated process perspectives does increase the complexity of the
alignment problem considerably. Our method comes at a increased computa-
tional complexity compared to alignment considering only the control-flow
since the variable assignment is part of the search space. Therefore, com-
puting an optimal alignment for long traces and complex process models is
infeasible. Nevertheless, we could compute the alignment for many processes
as encountered in practice. Moreover, it is always possible to filter the event
log on the set of activities most relevant.

86More information on XESLite can be found in a technical report [Man16b] since we considered the
technical challenge to be out of scope for this thesis.

87All events logs can be obtained at the repository http://data.4tu.nl/repository/collection:event_
logs, which is hosted at the 4TU.centre for research data.

http://data.4tu.nl/repository/collection:event_logs
http://data.4tu.nl/repository/collection:event_logs
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• Our alignment method returns one of several possible optimal alignments.
Sometimes, there are multiple possible explanations with the same cost. In
some situations it might be desirable to find all optimal alignments. Even
though all optimal alignments are associated with the same cost, one of them
might provide a better explanation from a domain viewpoint than another
one.

Multi-perspective Precision.

• We use alignments to repair the event log to be fully fitting the process model
before measuring precision. In extreme cases this can lead to an inherently
unreliable precision measurements. For example, in the extreme situation in
which the event log is not fitting at all our method still returns a precision
value. Therefore, the fitness score should be taken into account together with
the precision score.

• Our precision measurement method does not consider the entire behavior of
the process model for the measurement of precision. This limitation cannot
be avoided when confronted with process models that allow for an infinite
amount of behavior.

Data-aware Heuristic Process Discovery.

• Our data-aware heuristic process discovery technique, only considers condi-
tional directly-follows dependencies. More complex patterns of conditional
infrequent behavior, e. g., longer sequences or sub-processes, cannot be dis-
covered.

• There is a risk that the C-Nets returned by our method are unsound since it
is based on the Heuristics Miner. Unsound models are difficult to interpret.
However, it is often possible to look at the subset of process traces that finish
properly.

Guided Multi-perspective Process Discovery.

• The proposed GPD method relies on alignments to determine the optimal
mapping between low-level events and activities. As mentioned, computing
alignments is a computationally expensive operation and may be infeasible
for event logs with very long traces and complex abstraction method.

• If a sequence of events fits two activity patterns perfectly when applying
the GPD method, one of them will be chosen arbitrarily. This is due to the
particularities of the underlying alignment method employed. The cost-based
alignment techniques that we use to determine the optimal mapping chooses
an arbitrary pattern in case there are multiple mappings with the same cost.
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Enhancing Models with Overlapping Decision Rules.

• An inherent limitation of our approach is that it only uses the majority vote to
introduce overlapping guards for a decision point with two output transitions.
This might cause the guard of one transition to be turned into the rule true,
e. g., when the initial guards were based on a single condition. It might also
affect the place fitness negatively in case no initial condition was found for
the transition.

• Our approach tends to discover guard expressions that are more complex
than existing methods. Complex guard expressions may be difficult to inter-
pret by stakeholders.

16.3 FutureWork

We summarize the most promising future work related to each of the methods that
we have identified while conducting this research. Earlier, we listed more detailed
list of future work in Chapters 5, 6 and 8 to 10.

Multi-perspective Alignment.

• Decomposition methods based on the concept of valid decompositions [Aal13]
can be used to improve the performance of our multi-perspective confor-
mance checking approach. An initial proposal for a valid decomposition of
DPNs was made by de Leoni et al. in [Leo+14a]. However, more efficient
decomposition could be developed.

• Sometimes an optimal alignment is not required. An initial good enough ex-
planation of the deviations between the observed events and the process
model is sufficient to guide the search for conformance problems. Methods
to quickly obtain an approximate alignment with quality guarantees are
urgently needed. Some initial work on obtaining approximate control-flow
alignments has been done in [Don+17; TC16], which might be extendable to-
wards multi-perspective alignments. However, it is difficult to overcome the
inherent complexity of the reachability problem, which needs to be solved
in order to guarantee that the process projection of the alignment is a valid
process trace in the model.

• Capturing the time perspective in constraint requires to encode the execu-
tion time of activities in extra variables and define guard expressions with
complex calculations (cf., the constraint regarding the Check transition in
Figure 3.3). Since time is monotonically increasing within a process instance,
it would be possible to pre-compute some of the values in event attributes
and simplify the guard expressions. An initial step towards this has been
done in [Bal16].
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Multi-perspective Precision. It is not straightforward to apply the generic multi-
perspective precision measure to variables defined over an infinite domain, e. g.,
timestamps that are used in constraints on the time perspective or the amount of a
loan application. To use such variables together with the introduced measure, the
set of possible values would need to be discretized and made finite first. Values
could be discretized and made finite by using the values that were actually observed
in the event log as guidelines for the values that can be expected.

Data-aware Heuristic Process Discovery.
• The underlying idea of our method, including conditional behavior even if

it is infrequent, could be extended from directly-follows relations to more
complex patterns of conditional behavior: e. g., conditional long-term depen-
dencies and conditional loops.

• Our method supports the time perspective when it is encoded as data at-
tribute, e. g., conditional relations that appear for cases with a high through-
put time. However, the time perspective has particular characteristics that
warrant further investigation, e. g., time is monotonically increasing within a
process instance and the duration of process activities is usually determined
by several correlated events recording life-cycle transitions.

Guided Multi-perspective Process Discovery.
• Work on decomposing or approximating the alignment computation for ab-

straction models could help to alleviate the performance problems of the
method. Since an abstraction model imposes a specific structure on the com-
position of activity patterns, we believe that a tailor-made decomposition
method could be created. This is related to the future work proposed for the
balanced alignment method.

• As mentioned, a limitation to our method is that if there are multiple optimal
alignments for a sequence of events, i.e., multiple different instantiations of
activity patterns could explain the observed behavior, then, one of them will
be chosen arbitrarily. A prioritization of activity patterns used during the
alignment computation could be introduced. Moreover, it would be possible
to introduce a simple heuristic that minimizes the number of pattern instanti-
ations by introducing a small cost for instantiating a pattern to the alignment
technique.

Enhancing Models with Overlapping Decision Rules.
• It would be beneficial to investigate the application of other machine-learning

techniques to decision mining and decision mining of overlapping rules. It
would be useful to have a parameter that influences the expected degree of
overlap of the rules to be found. This would enable to steer the discovery of
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data-aware process models in the spectrum between fully fitting and fully
precision models. A possible realization could be based on rule induction
approaches, e. g., based on association rules [AIS93] or rough sets [Ste98].
Rule mining approaches based on rough sets can yield overlapping rules
that can be steered in the spectrum from mutually-exclusive (crisp part of
the set) towards overlapping (rough part of the set). However, the challenge
on how to select appropriate rules from a large set of candidates needs to be
met.

• Another important line of future work is to address limitations of decision
mining techniques for data sets with imbalanced distributions of classes.
Imbalanced distributions are a phenomenon often found in business process
(e. g., decisions regarding exceptions or infrequently visited paths of the
model). Although we note that our technique is able to reveal rules when one
transition is only observed for a small fraction of the cases, a more thorough
investigation of this phenomenon is needed.

16.4 Reflection on the Broader Context

We conclude this thesis by reflecting on our contributions in a broader context. The
impact of fields such as data mining, machine learning, artificial intelligence, data
science, and big data on our society is growing. Due to the growing computing
power and storage capacity of today’s IT systems, organizations have the opportu-
nity to store information about all their activities. Leveraging knowledge from such
recorded data is widely acknowledged to be an important challenge. For example,
consider deep learning methods that have been very successful in learning specific
complex tasks based on large amounts of data. Process mining is part of this trend
towards organizations that are driven by data. Process mining methods operate
on event logs that contain traces recorded from the execution of a process. These
methods, such as our contributions, can already be useful when applied to smaller
amounts of data that is provided in the form of event logs. Often, huge amounts of
data are not available in the context of a specific business process. However, process
mining requires the input data to be structured in (or convertible to) the form of
an event log.

There are many potential benefits by making decisions about the design and
optimization of organizational processes more evidence-based, i. e., based on the
actual execution of processes as recorded in event logs rather than based on as-
sumptions and feelings of stakeholders. In the light of this, our contributions can
be used to get more reliable diagnostics about the process from data (cf., Chapters 5
and 6) and to discover more understandable, complete (i. e., including potentially
interesting infrequent process behavior) and balanced (i. e., between a fitting and
precise model) process models from data (cf., Chapters 8 to 10).

However, as with any method that leverages recorded data, the results rely on
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the quality of the recorded data. Any data-based methods can only be denoted
as being “evidence-based” if the recorded data actually represents factual infor-
mation. For example, in context of our case study on sepsis cases in Section 13.2,
we realized that the recorded time stamps of the antibiotics injections were not
always representing what happened in reality. Thus, any conclusion drawn upon
the results of our methods on unreliable data should be treated with care. However,
it does not always need to be the source data that was wrongly recorded. Error may
be inadvertently introduced due to mistakes during data preparation or due to
errors in the employed software.88 Traceability on how the underlying raw data are
processed and transparency on how these data are used by the analysis method is
required. Moreover, ethical considerations should also be considered when dealing
with data that could, possibly, affect the employees and customers of an organiza-
tion.89 To conclude, the responsible usage of data in the context process mining is
an important topic. The result of a data-based analysis should always be seen in
the context of the real process execution, which might not be 100% reflected in the
data that is available.

88It is impossible to prove any non-trivial software to be error free. Thus, we can also not be sure that
the data transformation during data preparation or the actual analysis was error free.

89See, e. g., the Responsible Data Science project http://www.responsibledatascience.org for an initial
effort into this subject matter.

http://www.responsibledatascience.org
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Summary

Multi-perspective Process Mining
The efficient and effective handling of its processes is essential for the success of
an organization. This thesis is about process mining, i. e., analyzing the processes
of an organization by using recorded execution data. During the handling of a
case (i. e., an instance of a process), data about the execution of activities that are
supported by information systems is recorded in databases. We use such process
execution data to gain insights about the real execution of processes. Processes can
be looked upon from different perspectives. One possible perspective, which has
been dominant in research on process mining, is the control-flow perspective. The
control-flow perspective is concerned with the possible ordering of activities in the
process execution.

In this thesis, we address research challenges in the field of process mining in
which a multi-perspective view on processes is needed. We consider problems
which require to look beyond the control-flow perspective. In particular, we con-
sider problems in which multiple interacting process perspectives are considered
together. We focus on the interaction between the following five perspectives on a
process: the control-flow perspective, the resource perspective, which is concerned
with the resources (human and non-human) executing the activities; the time per-
spective, which is concerned with deadlines, bottlenecks and processing time; the
data perspective, which is concerned with the manipulation of data objects and
their usage to drive decisions; and the function perspective, which is concerned
with the description of work of activities and their composition to higher level
activities.

We developed and evaluated several novel process mining methods in the area
of multi-perspective process mining. The main contributions made are:

• A multi-perspective conformance checking method that balances the impor-
tance of multiple perspectives to provide an alignment between recorded
event data and a process model. The method provides reliable diagnostics
and quality measures with respect to all perspectives of a process model and
an event log.

• A multi-perspective process discovery method that uses domain knowledge
expressed as multi-perspective activity patterns to abstract sets of low-level
activities instances to high-level activity instances (i. e., considers the func-
tion perspective). Grouping multiple low-level events to recognizable activity



instances on a higher abstraction level, helps to discover a process model
defined over high-level activities, which can be understood better by stake-
holders.

• A multi-perspective process discovery method that uses the data perspective
(i. e., data attributes recorded in the event log) to distinguish infrequent paths
from random noise. The method uses classification techniques to predict
under which conditions certain dependencies in the process occur. Data-
and control-flow are learned together, i. e., recorded data values are used to
improve the discovered control-flow.

All proposed methods have been extensively evaluated in real-life settings by
applying them within four case studies that were conducted in the context of
processes at three locations: an Italian local police force, a regional hospital in The
Netherlands, and a university hospital in Norway. We show that process mining
results can be considerably improved upon the state-of-the-art by considering the
influence of and the interplay between multiple process perspectives.



CurriculumVitae
Felix Mannhardt was born on 12/11/1984 in Neuss, Germany. He received a Bach-
elor in Business Information Systems and a Master in Computer Science from
Bonn-Rhein-Sieg University of Applied Sciences in Sankt Augustin, Germany. His
Master’s thesis was about integrating a workflow management system (YAWL)
with a process model repository (Apromore). From 2013 on he started a PhD project
at Eindhoven University of Technology in Eindhoven, The Netherlands of which
the results are presented in this dissertation. Since August 2017 he is working at
the research institute SINTEF in Trondheim, Norway continuing his research on
process mining and its application in real-world settings in a new environment.

Felix Mannhardt has received the following awards:

• The Best Student Paper Award at the 14th Business Process Management confer-
ence in 2016 for the paper From Low- Level Events to Activities - A Pattern-Based
Approach. Chapter 9 of this thesis is based on this paper.

• The Best Demo Award at the 13th Business Process Management conference
in 2015 for the Multi-perspective Process Explorer, which is presented in Sec-
tion 11.2.

Felix Mannhardt has the following publications:

Journals

• F. Mannhardt et al. “Guided Process Discovery - A Pattern-based Approach”.
In: Inf Syst (2017). submitted.

• F. Mannhardt et al. “Balanced multi-perspective checking of process confor-
mance”. In: Computing 98.4 (2016), pp. 407–437. doi: 10.1007/s00607-015-
0441-1.

Proceedings andWorkshop Contributions

• F. Mannhardt and D. Blinde. “Analyzing the Trajectories of Patients with
Sepsis using Process Mining”. In: RADAR+EMISA 2017. Vol. 1859. CEUR
Workshop Proceedings. CEUR-WS.org, 2017, pp. 72–80. url: http://ceur-
ws.org/Vol-1859/bpmds-08-paper.pdf.

https://doi.org/10.1007/s00607-015-0441-1
https://doi.org/10.1007/s00607-015-0441-1
http://ceur-ws.org/Vol-1859/bpmds-08-paper.pdf
http://ceur-ws.org/Vol-1859/bpmds-08-paper.pdf


• F. Mannhardt, M. de Leoni, and H. A. Reijers. “Heuristic Mining Revamped:
An Interactive Data-aware and Conformance-aware Miner”. In: BPM 2017
Demos. Vol. 1920. CEUR Workshop Proceedings. CEUR-WS.org, 2017. url:
http://ceur-ws.org/Vol-1920/BPM_2017_paper_167.pdf.

• F. Mannhardt and N. Tax. “Unsupervised Event Abstraction using Pattern
Abstraction and Local Process Models”. In: RADAR+EMISA 2017. Vol. 1859.
CEUR Workshop Proceedings. CEUR-WS.org, 2017, pp. 55–63. url: http:
//ceur-ws.org/Vol-1859/bpmds-06-paper.pdf.

• F. Mannhardt et al. “Data-driven Process Discovery - Revealing Conditional
Infrequent Behavior from Event Logs”. In: CAiSE 2017. Vol. 10253. LNCS.
2017, pp. 545–560. doi: 10.1007/978-3-319-59536-8_34.

• F. Mannhardt et al. “Decision Mining Revisited - Discovering Overlapping
Rules”. In: CAiSE 2016. Vol. 9694. Lecture Notes in Computer Science. Springer,
2016, pp. 377–392. doi: 10.1007/978-3-319-39696-5_23.

• F. Mannhardt et al. “From Low-Level Events to Activities - A Pattern-Based
Approach”. In: BPM 2016. Vol. 9850. Lecture Notes in Computer Science.
Springer, 2016, pp. 125–141. doi: 10.1007/978-3-319-45348-4_8.

• H. van der Aa et al. “On the Fragmentation of Process Information: Chal-
lenges, Solutions, and Outlook”. In: BPMDS 2015. Vol. 214. LNBIP. Springer,
2015, pp. 3–18. doi: 10.1007/978-3-319-19237-6_1.

• F. Mannhardt, M. de Leoni, and H. A. Reijers. “The Multi-perspective Process
Explorer”. In: BPM 2015 Demos. Vol. 1418. CEUR Workshop Proceedings.
CEUR-WS.org, 2015, pp. 130–134. url: http://ceur-ws.org/Vol-1418/
paper27.pdf.

• F. Mannhardt et al. “Measuring the Precision of Multi-perspective Process
Models”. In: BPM 2015 Workshops. Vol. 256. LNBIP. Springer, 2015, pp. 113–
125. doi: 10.1007/978-3-319-42887-1_10.

• F. Mannhardt, M. de Leoni, and H. A. Reijers. “Extending Process Logs with
Events from Supplementary Sources”. In: BPM 2014 Workshops. Vol. 202.
LNBIP. Springer, 2014, pp. 235–247. doi: 10.1007/978-3-319-15895-2_21.

• F. Mannhardt. “Web-based Editor for YAWL”. In: YAWL Symposium 2013.
Vol. 982. CEUR Workshop Proceedings. CEUR-WS.org, 2013, pp. 62–68. url:
http://ceur-ws.org/Vol-982/YAWL2013-Paper09.pdf.

• C. C. Ekanayake et al. “Detecting Approximate Clones in Process Model
Repositories with Apromore”. In: BPM 2012 Demos. Vol. 940. CEUR Work-
shop Proceedings. CEUR-WS.org, 2012, pp. 29–33. url: http://ceur-ws.org/
Vol-940/paper6.pdf.

http://ceur-ws.org/Vol-1920/BPM_2017_paper_167.pdf
http://ceur-ws.org/Vol-1859/bpmds-06-paper.pdf
http://ceur-ws.org/Vol-1859/bpmds-06-paper.pdf
https://doi.org/10.1007/978-3-319-59536-8_34
https://doi.org/10.1007/978-3-319-39696-5_23
https://doi.org/10.1007/978-3-319-45348-4_8
https://doi.org/10.1007/978-3-319-19237-6_1
http://ceur-ws.org/Vol-1418/paper27.pdf
http://ceur-ws.org/Vol-1418/paper27.pdf
https://doi.org/10.1007/978-3-319-42887-1_10
https://doi.org/10.1007/978-3-319-15895-2_21
http://ceur-ws.org/Vol-982/YAWL2013-Paper09.pdf
http://ceur-ws.org/Vol-940/paper6.pdf
http://ceur-ws.org/Vol-940/paper6.pdf


Technical Reports (Non-Refereed)

• F. Mannhardt. XESLite - Managing Large XES Event Logs in ProM. BPM Center
Report BPM-16-04. BPMCenter.org, 2016. url: http://bpmcenter.org/wp-
content/uploads/reports/2016/BPM-16-04.pdf.

• F. Mannhardt et al. Decision Mining Revisited - Discovering Overlapping Rules.
BPM Center Report BPM-16-01. BPMcenter.org, 2016. url: http://bpmcenter.
org/wp-content/uploads/reports/2016/BPM-16-01.pdf.

• F. Mannhardt et al. From Low-Level Events to Activities - A Pattern-based Ap-
proach. BPM Center Report BPM-16-02. BPMCenter.org, 2016. url: http://
bpmcenter.org/wp-content/uploads/reports/2016/BPM-16-02.pdf.

• H. Verbeek and F. Mannhardt. The DrFurby Classifier submission to the Process
Discovery Contest @ BPM 2016. BPM Center Report BPM-16-08. BPMCen-
ter.org, 2016. url: http://bpmcenter.org/wp-content/uploads/reports/
2016/BPM-16-08.pdf.

• F. Mannhardt et al. Balanced Multi-Perspective Checking of Process Conformance.
BPM Center Report BPM-14-07. BPMcenter.org, 2014. url: http://bpmcenter.
org/wp-content/uploads/reports/2014/BPM-14-07.pdf.

Data sets

• F. Mannhardt. Hospital Billing - Event Log. Eindhoven University of Technology.
Dataset. 2017. doi: 10.4121/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741.

• F. Mannhardt. Data-driven Process Discovery - Artificial Event Log. Dataset. 2016.
doi: 10.4121/uuid:32cad43f-8bb9-46af-8333-48aae2bea037.

• F. Mannhardt. Sepsis Cases - Event Log. Dataset. 2016. doi: 10.4121/uuid:
915d2bfb-7e84-49ad-a286-dc35f063a460.

• M. de Leoni and F. Mannhardt. Road Traffic Fine Management Process. Dataset.
2015. doi: 10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5.

http://bpmcenter.org/wp-content/uploads/reports/2016/BPM-16-04.pdf
http://bpmcenter.org/wp-content/uploads/reports/2016/BPM-16-04.pdf
http://bpmcenter.org/wp-content/uploads/reports/2016/BPM-16-01.pdf
http://bpmcenter.org/wp-content/uploads/reports/2016/BPM-16-01.pdf
http://bpmcenter.org/wp-content/uploads/reports/2016/BPM-16-02.pdf
http://bpmcenter.org/wp-content/uploads/reports/2016/BPM-16-02.pdf
http://bpmcenter.org/wp-content/uploads/reports/2016/BPM-16-08.pdf
http://bpmcenter.org/wp-content/uploads/reports/2016/BPM-16-08.pdf
http://bpmcenter.org/wp-content/uploads/reports/2014/BPM-14-07.pdf
http://bpmcenter.org/wp-content/uploads/reports/2014/BPM-14-07.pdf
https://doi.org/10.4121/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741
https://doi.org/10.4121/uuid:32cad43f-8bb9-46af-8333-48aae2bea037
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5




Acknowledgments
Looking back on the last years, I was first exposed to the idea of pursuing a PhD
in sunny Brisbane, Australia. I wrote my Master’s thesis during a visit at the BPM
research group of the QUT. I owe a lot of gratitude to my thesis adviser Andreas
Hense and to my supervisors at QUT, Marcello and Arthur, who encouraged me to
start PhD studies. Whereas, I truly enjoyed my time at QUT, my PhD journey took
me elsewhere. Brisbane is just located too far away from home. I was lucky to meet
Hajo during one of our regular lunch walks in the Brisbane city center. Entirely
unaware of how my future would unfold, I cannot think of a better way of having
met him. Fast forwarding a little bit more than half a year in the future (April 2013),
I was starting my PhD studies with Hajo and Wil in Eindhoven.

First, I want to thank Hajo for the opportunity to do my PhD studies with him
and for the excellent guidance in the last years. It was a pleasure to work with (under
would be the wrong word) Hajo both personally and professionally. I think you
cannot wish for a better PhD adviser. Due to several external factors the journey
was not always smooth. We both started as being funded by Perceptive Software,
but already after half of the time the funding was cut. An experience I would rather
not like to repeat. I had luck in the misfortune and was given the funds to finish
my PhD (many thanks to the ones responsible for this). Hajo started his research
group in Amsterdam. Thanks for his continued full support for my PhD project in
Eindhoven.

Wil, I also met the first time in Brisbane. I was very glad to have him attending
my Master’s thesis defense. Of course, he asked the one difficult question. In the
last four years he was always a source of inspiration and asked plenty of more
questions that challenged me to grow a lot. Having both Hajo and Wil as PhD
advisers was definitely a lucky draw. Their feedback often complemented each
other’s very nicely, which is a luxury not all PhD students get to experience.

My advisory team would not have been complete without the daily help of
Massimiliano. Not only offered he guidance and support with an always open office
door but also friendship beyond the PhD work. I enjoyed all the shared conference
visits, lunch breaks, BBQs, etc. Often, he would spend extra time to help shaping
my research. I hope the fact that I often needed more than one discussion to be
convinced of something did not cost you too much patience.

Special thanks to Ine and Riet for helping with any administrative problems that
can be encountered. Further thanks to Ine for reducing the number of spelling
mistakes and for help with the practicalities of this dissertation. I would like to
also thank all my external PhD committee members Jan Vanthienen, Pieter Toussaint,



Remco Dijkman, and Josep Carmona. Thank you for your time reading the many pages
(sorry!) of my dissertation and the helpful comments. Special thanks to Pieter for
initiating the contact to SINTEF in Trondheim to help with the continuation of my
journey. I would also like to thank all the people that helped with the case studies
presented in this thesis. Thanks Daan, Janet, Erick, Patrick, and Ivar for helping
me to get and understand the data.

What would PhD studies be without colleagues, visitors, and fellow PhD students,
who share the joy and (maybe that divides) the pain of doing a PhD. One joy of
doing a PhD (at least in a large group as in Eindhoven) is that you meet many
people. I would like to thank all of them for the great time we spent together and I
hope to see many of you again at some stage in my life. In pseudo-random order:
Joos, Jorge, Dennis, Sander (definitely the office with the best music), Rafael, Elham,
Arya, Boudewijn, Eric, Dirk, Natalia, Mykola, George, Paul, Christian, Michael,
Xixi, Yulia, Han, Maikel van E., Murat, Marcus, Bas, Eduardo, Alfredo, Alok, Niek,
Guangming, Shiva, Rémi, Bart, Maikel L., Cong, Mohammadreza, Nour, Alifah,
Farideh, Renata, Marwan, and all the people I met at conference or visits abroad.

The last people to acknowledge are surely the most important. Many thanks to
my family for supporting me with all my goals and my (almost) endless study
(something my grandfather would probably never have understood). I owe the
biggest thank of them all (even that superlative does not suffice) to my love and wife:
Danni. Without your love, unconditional support, and understanding, I could not
have finished this thesis. Thanks for the time you sacrificed for this. I promise, there
won’t be a next PhD thesis and that there is more time for the youngest contributor
to this thesis: Joris.

Felix Mannhardt
Trondheim, December 2017



SIKS Dissertations
2011
01 Botond Cseke (RUN), Variational Algorithms for Bayesian

Inference in Latent Gaussian Models.
02 Nick Tinnemeier(UU), Organizing Agent Organizations.

Syntax and Operational Semantics of an Organization-Oriented

Programming Language.
03 Jan Martijn van der Werf (TUE), Compositional Design

and Verification of Component-Based Information Systems.
04 Hado van Hasselt (UU), Insights in Reinforcement Learn-

ing; Formal analysis and empirical evaluation of temporal-difference.
05 Base van der Raadt (VU), Enterprise Architecture Coming

of Age - Increasing the Performance of an Emerging Discipline..
06 Yiwen Wang (TUE), Semantically-Enhanced Recommen-

dations in Cultural Heritage.
07 Yujia Cao (UT), Multimodal Information Presentation for

High Load Human Computer Interaction.
08 Nieske Vergunst (UU), BDI-based Generation of Robust

Task-Oriented Dialogues.
09 Tim de Jong (OU), Contextualised Mobile Media for Learn-

ing.
10 Bart Bogaert (UvT), Cloud Content Contention.
11 Dhaval Vyas (UT), Designing for Awareness: An Experience-

focused HCI Perspective.
12 Carmen Bratosin (TUE), Grid Architecture for Distrib-

uted Process Mining.
13 Xiaoyu Mao (UvT), Airport under Control. Multiagent

Scheduling for Airport Ground Handling.
14 Milan Lovric (EUR), Behavioral Finance and Agent-Based

Artificial Markets.
15 Marijn Koolen (UvA), The Meaning of Structure: the

Value of Link Evidence for Information Retrieval.
16 Maarten Schadd (UM), Selective Search in Games of Dif-

ferent Complexity.
17 Jiyin He (UVA), Exploring Topic Structure: Coherence, Di-

versity and Relatedness.
18 Mark Ponsen (UM), Strategic Decision-Making in com-

plex games.
19 Ellen Rusman (OU), The Mind ’ s Eye on Personal Pro-

files.
20 Qing Gu (VU), Guiding service-oriented software engineer-

ing - A view-based approach.
21 Linda Terlouw (TUD), Modularization and Specification

of Service-Oriented Systems.
22 Junte Zhang (UVA), System Evaluation of Archival De-

scription and Access.
23 Wouter Weerkamp (UVA), Finding People and their Ut-

terances in Social Media.
24 Herwin van Welbergen (UT), Behavior Generation for In-

terpersonal Coordination with Virtual Humans On Specifying,

Scheduling and Realizing Multimodal Virtual Human Behav-

ior.
25 Syed Waqar ul Qounain Jaffry (VU)), Analysis and Vali-

dation of Models for Trust Dynamics.
26 Matthijs Aart Pontier (VU), Virtual Agents for Human

Communication - Emotion Regulation and Involvement-Distance

Trade-Offs in Embodied Conversational Agents and Robots.
27 Aniel Bhulai (VU), Dynamic website optimization through

autonomous management of design patterns.
28 Rianne Kaptein(UVA), Effective Focused Retrieval by Ex-

ploiting Query Context and Document Structure.
29 Faisal Kamiran (TUE), Discrimination-aware Classifica-

tion.
30 Egon van den Broek (UT), Affective Signal Processing

(ASP): Unraveling the mystery of emotions.
31 Ludo Waltman (EUR), Computational and Game-Theoretic

Approaches for Modeling Bounded Rationality.
32 Nees-Jan van Eck (EUR), Methodological Advances in

Bibliometric Mapping of Science.
33 Tom van der Weide (UU), Arguing to Motivate Decisions.
34 Paolo Turrini (UU), Strategic Reasoning in Interdepen-

dence: Logical and Game-theoretical Investigations.
35 Maaike Harbers (UU), Explaining Agent Behavior in Vir-



tual Training.
36 Erik van der Spek (UU), Experiments in serious game

design: a cognitive approach.
37 Adriana Burlutiu (RUN), Machine Learning for Pairwise

Data, Applications for Preference Learning and Supervised Net-

work Inference.
38 Nyree Lemmens (UM), Bee-inspired Distributed Opti-

mization.
39 Joost Westra (UU), Organizing Adaptation using Agents

in Serious Games.
40 Viktor Clerc (VU), Architectural Knowledge Management

in Global Software Development.
41 Luan Ibraimi (UT), Cryptographically Enforced Distrib-

uted Data Access Control.
42 Michal Sindlar (UU), Explaining Behavior through Men-

tal State Attribution.
43 Henk van der Schuur (UU), Process Improvement through

Software Operation Knowledge.
44 Boris Reuderink (UT), Robust Brain-Computer Interfaces.
45 Herman Stehouwer (UvT), Statistical Language Models

for Alternative Sequence Selection.
46 Beibei Hu (TUD), Towards Contextualized Information

Delivery: A Rule-based Architecture for the Domain of Mobile

Police Work.
47 Azizi Bin Ab Aziz(VU), Exploring Computational Mod-

els for Intelligent Support of Persons with Depression.
48 Mark Ter Maat (UT), Response Selection and Turn-taking

for a Sensitive Artificial Listening Agent.
49 Andreea Niculescu (UT), Conversational interfaces for

task-oriented spoken dialogues: design aspects influencing in-

teraction quality.

2012
01 Terry Kakeeto (UvT), Relationship Marketing for SMEs

in Uganda.
02 Muhammad Umair(VU), Adaptivity, emotion, and Ratio-

nality in Human and Ambient Agent Models.
03 Adam Vanya (VU), Supporting Architecture Evolution by

Mining Software Repositories.
04 Jurriaan Souer (UU), Development of Content Manage-

ment System-based Web Applications.
05 Marijn Plomp (UU), Maturing Interorganisational Infor-

mation Systems.
06 Wolfgang Reinhardt (OU), Awareness Support for Knowl-

edge Workers in Research Networks.
07 Rianne van Lambalgen (VU), When the Going Gets Tough:

Exploring Agent-based Models of Human Performance under

Demanding Conditions.
08 Gerben de Vries (UVA), Kernel Methods for Vessel Trajec-

tories.
09 Ricardo Neisse (UT), Trust and Privacy Management Sup-

port for Context-Aware Service Platforms.
10 David Smits (TUE), Towards a Generic Distributed Adap-

tive Hypermedia Environment.
11 J.C.B. Rantham Prabhakara (TUE), Process Mining in

the Large: Preprocessing, Discovery, and Diagnostics.
12 Kees van der Sluijs (TUE), Model Driven Design and

Data Integration in Semantic Web Information Systems.
13 Suleman Shahid (UvT), Fun and Face: Exploring non-

verbal expressions of emotion during playful interactions.
14 Evgeny Knutov(TUE), Generic Adaptation Framework for

Unifying Adaptive Web-based Systems.
15 Natalie van der Wal (VU), Social Agents. Agent-Based

Modelling of Integrated Internal and Social Dynamics of Cog-

nitive and Affective Processes..
16 Fiemke Both (VU), Helping people by understanding them -

Ambient Agents supporting task execution and depression treat-

ment.
17 Amal Elgammal (UvT), Towards a Comprehensive Frame-

work for Business Process Compliance.
18 Eltjo Poort (VU), Improving Solution Architecting Prac-

tices.
19 Helen Schonenberg (TUE), What’s Next? Operational

Support for Business Process Execution.
20 Ali Bahramisharif (RUN), Covert Visual Spatial Atten-

tion, a Robust Paradigm for Brain-Computer Interfacing.
21 Roberto Cornacchia (TUD), Querying Sparse Matrices

for Information Retrieval.
22 Thijs Vis (UvT), Intelligence, politie en veiligheidsdienst:

verenigbare grootheden?.
23 Christian Muehl (UT), Toward Affective Brain-Computer

Interfaces: Exploring the Neurophysiology of Affect during Hu-

man Media Interaction.
24 Laurens van der Werff (UT), Evaluation of Noisy Tran-

scripts for Spoken Document Retrieval.



25 Silja Eckartz (UT), Managing the Business Case Develop-

ment in Inter-Organizational IT Projects: A Methodology and

its Application.
26 Emile de Maat (UVA), Making Sense of Legal Text.
27 Hayrettin Gurkok (UT), Mind the Sheep! User Experience

Evaluation & Brain-Computer Interface Games.
28 Nancy Pascall (UvT), Engendering Technology Empower-

ing Women.
29 Almer Tigelaar (UT), Peer-to-Peer Information Retrieval.
30 Alina Pommeranz (TUD), Designing Human-Centered

Systems for Reflective Decision Making.
31 Emily Bagarukayo (RUN), A Learning by Construction

Approach for Higher Order Cognitive Skills Improvement, Build-

ing Capacity and Infrastructure.
32 Wietske Visser (TUD), Qualitative multi-criteria prefer-

ence representation and reasoning.
33 Rory Sie (OUN), Coalitions in Cooperation Networks (CO-

COON).
34 Pavol Jancura (RUN), Evolutionary analysis in PPI net-

works and applications.
35 Evert Haasdijk (VU), Never Too Old To Learn – On-line

Evolution of Controllers in Swarm- and Modular Robotics.
36 Denis Ssebugwawo (RUN), Analysis and Evaluation of

Collaborative Modeling Processes.
37 Agnes Nakakawa (RUN), A Collaboration Process for En-

terprise Architecture Creation.
38 Selmar Smit (VU), Parameter Tuning and Scientific Test-

ing in Evolutionary Algorithms.
39 Hassan Fatemi (UT), Risk-aware design of value and coor-

dination networks.
40 Agus Gunawan (UvT), Information Access for SMEs in

Indonesia.
41 Sebastian Kelle (OU), Game Design Patterns for Learn-

ing.
42 Dominique Verpoorten (OU), Reflection Amplifiers in

self-regulated Learning.
43 Withdrawn, .
44 Anna Tordai (VU), On Combining Alignment Techniques.
45 Benedikt Kratz (UvT), A Model and Language for Business-

aware Transactions.
46 Simon Carter (UVA), Exploration and Exploitation of Mul-

tilingual Data for Statistical Machine Translation.
47 Manos Tsagkias (UVA), Mining Social Media: Tracking

Content and Predicting Behavior.
48 Jorn Bakker (TUE), Handling Abrupt Changes in Evolv-

ing Time-series Data.
49 Michael Kaisers (UM), Learning against Learning - Evo-

lutionary dynamics of reinforcement learning algorithms in

strategic interactions.
50 Steven van Kervel (TUD), Ontologogy driven Enterprise

Information Systems Engineering.
51 Jeroen de Jong (TUD), Heuristics in Dynamic Sceduling;

a practical framework with a case study in elevator dispatching.

2013
01 Viorel Milea (EUR), News Analytics for Financial Deci-

sion Support.
02 Erietta Liarou (CWI), MonetDB/DataCell: Leveraging the

Column-store Database Technology for Efficient and Scalable

Stream Processing.
03 Szymon Klarman (VU), Reasoning with Contexts in De-

scription Logics.
04 Chetan Yadati(TUD), Coordinating autonomous planning

and scheduling.
05 Dulce Pumareja (UT), Groupware Requirements Evolu-

tions Patterns.
06 Romulo Goncalves(CWI), The Data Cyclotron: Juggling

Data and Queries for a Data Warehouse Audience.
07 Giel van Lankveld (UvT), Quantifying Individual Player

Differences.
08 Robbert-Jan Merk(VU), Making enemies: cognitive mod-

eling for opponent agents in fighter pilot simulators.
09 Fabio Gori (RUN), Metagenomic Data Analysis: Compu-

tational Methods and Applications.
10 Jeewanie Jayasinghe Arachchige(UvT), A Unified Mod-

eling Framework for Service Design..
11 Evangelos Pournaras(TUD), Multi-level Reconfigurable

Self-organization in Overlay Services.
12 Marian Razavian(VU), Knowledge-driven Migration to

Services.
13 Mohammad Safiri(UT), Service Tailoring: User-centric

creation of integrated IT-based homecare services to support in-

dependent living of elderly.
14 Jafar Tanha (UVA), Ensemble Approaches to Semi-Supervised

Learning Learning.



15 Daniel Hennes (UM), Multiagent Learning - Dynamic

Games and Applications.
16 Eric Kok (UU), Exploring the practical benefits of argumen-

tation in multi-agent deliberation.
17 Koen Kok (VU), The PowerMatcher: Smart Coordination

for the Smart Electricity Grid.
18 Jeroen Janssens (UvT), Outlier Selection and One-Class

Classification.
19 Renze Steenhuizen (TUD), Coordinated Multi-Agent Plan-

ning and Scheduling.
20 Katja Hofmann (UvA), Fast and Reliable Online Learn-

ing to Rank for Information Retrieval.
21 Sander Wubben (UvT), Text-to-text generation by mono-

lingual machine translation.
22 Tom Claassen (RUN), Causal Discovery and Logic.
23 Patricio de Alencar Silva(UvT), Value Activity Monitor-

ing.
24 Haitham Bou Ammar (UM), Automated Transfer in Re-

inforcement Learning.
25 Agnieszka Anna Latoszek-Berendsen (UM), Intention-

based Decision Support. A new way of representing and imple-

menting clinical guidelines in a Decision Support System.
26 Alireza Zarghami (UT), Architectural Support for Dy-

namic Homecare Service Provisioning.
27 Mohammad Huq (UT), Inference-based Framework Man-

aging Data Provenance.
28 Frans van der Sluis (UT), When Complexity becomes In-

teresting: An Inquiry into the Information eXperience.
29 Iwan de Kok (UT), Listening Heads.
30 Joyce Nakatumba (TUE), Resource-Aware Business Process

Management: Analysis and Support.
31 Dinh Khoa Nguyen (UvT), Blueprint Model and Lan-

guage for Engineering Cloud Applications.
32 Kamakshi Rajagopal (OUN), Networking For Learning;

The role of Networking in a Lifelong Learner’s Professional De-

velopment.
33 Qi Gao (TUD), User Modeling and Personalization in the

Microblogging Sphere.
34 Kien Tjin-Kam-Jet (UT), Distributed Deep Web Search.
35 Abdallah El Ali (UvA), Minimal Mobile Human Com-

puter Interaction.
36 Than Lam Hoang (TUe), Pattern Mining in Data Streams.
37 Dirk Börner (OUN), Ambient Learning Displays.

38 Eelco den Heijer (VU), Autonomous Evolutionary Art.
39 Joop de Jong (TUD), A Method for Enterprise Ontology

based Design of Enterprise Information Systems.
40 Pim Nijssen (UM), Monte-Carlo Tree Search for Multi-

Player Games.
41 Jochem Liem (UVA), Supporting the Conceptual Model-

ling of Dynamic Systems: A Knowledge Engineering Perspec-

tive on Qualitative Reasoning.
42 Léon Planken (TUD), Algorithms for Simple Temporal

Reasoning.
43 Marc Bron (UVA), Exploration and Contextualization through

Interaction and Concepts.

2014
01 Nicola Barile (UU), Studies in Learning Monotone Models

from Data.
02 Fiona Tuliyano (RUN), Combining System Dynamics with

a Domain Modeling Method.
03 Sergio Raul Duarte Torres (UT), Information Retrieval

for Children: Search Behavior and Solutions.
04 Hanna Jochmann-Mannak (UT), Websites for children:

search strategies and interface design - Three studies on chil-

dren’s search performance and evaluation.
05 Jurriaan van Reijsen (UU), Knowledge Perspectives on

Advancing Dynamic Capability.
06 Damian Tamburri (VU), Supporting Networked Software

Development.
07 Arya Adriansyah (TUE), Aligning Observed and Mod-

eled Behavior.
08 Samur Araujo (TUD), Data Integration over Distributed

and Heterogeneous Data Endpoints.
09 Philip Jackson (UvT), Toward Human-Level Artificial In-

telligence: Representation and Computation of Meaning in Nat-

ural Language.
10 Ivan Salvador Razo Zapata (VU), Service Value Net-

works.
11 Janneke van der Zwaan (TUD), An Empathic Virtual

Buddy for Social Support.
12 Willem van Willigen (VU), Look Ma, No Hands: Aspects

of Autonomous Vehicle Control.
13 Arlette van Wissen (VU), Agent-Based Support for Be-

havior Change: Models and Applications in Health and Safety



Domains.
14 Yangyang Shi (TUD), Language Models With Meta-information.
15 Natalya Mogles (VU), Agent-Based Analysis and Support

of Human Functioning in Complex Socio-Technical Systems:

Applications in Safety and Healthcare.
16 Krystyna Milian (VU), Supporting trial recruitment and

design by automatically interpreting eligibility criteria.
17 Kathrin Dentler (VU), Computing healthcare quality in-

dicators automatically: Secondary Use of Patient Data and Se-

mantic Interoperability.
18 Mattijs Ghijsen (UVA), Methods and Models for the De-

sign and Study of Dynamic Agent Organizations.
19 Vinicius Ramos (TUE), Adaptive Hypermedia Courses:

Qualitative and Quantitative Evaluation and Tool Support.
20 Mena Habib (UT), Named Entity Extraction and Disam-

biguation for Informal Text: The Missing Link.
21 Kassidy Clark (TUD), Negotiation and Monitoring in

Open Environments.
22 Marieke Peeters (UU), Personalized Educational Games -

Developing agent-supported scenario-based training.
23 Eleftherios Sidirourgos (UvA/CWI), Space Efficient In-

dexes for the Big Data Era.
24 Davide Ceolin (VU), Trusting Semi-structured Web Data.
25 Martijn Lappenschaar (RUN), New network models for

the analysis of disease interaction.
26 Tim Baarslag (TUD), What to Bid and When to Stop.
27 Rui Jorge Almeida (EUR), Conditional Density Models

Integrating Fuzzy and Probabilistic Representations of Uncer-

tainty.
28 Anna Chmielowiec (VU), Decentralized k-Clique Match-

ing.
29 Jaap Kabbedijk (UU), Variability in Multi-Tenant Enter-

prise Software.
30 Peter de Cock (UvT), Anticipating Criminal Behaviour.
31 Leo van Moergestel (UU), Agent Technology in Agile Mul-

tiparallel Manufacturing and Product Support.
32 Naser Ayat (UvA), On Entity Resolution in Probabilistic

Data.
33 Tesfa Tegegne (RUN), Service Discovery in eHealth.
34 Christina Manteli(VU), The Effect of Governance in Global

Software Development: Analyzing Transactive Memory Sys-

tems..
35 Joost van Ooijen (UU), Cognitive Agents in Virtual Worlds:

A Middleware Design Approach.
36 Joos Buijs (TUE), Flexible Evolutionary Algorithms for

Mining Structured Process Models.
37 Maral Dadvar (UT), Experts and Machines United Against

Cyberbullying.
38 Danny Plass-Oude Bos (UT), Making brain-computer in-

terfaces better: improving usability through post-processing..
39 Jasmina Maric (UvT), Web Communities, Immigration,

and Social Capital.
40 Walter Omona (RUN), A Framework for Knowledge Man-

agement Using ICT in Higher Education.
41 Frederic Hogenboom (EUR), Automated Detection of Fi-

nancial Events in News Text.
42 Carsten Eijckhof (CWI/TUD), Contextual Multidimen-

sional Relevance Models.
43 Kevin Vlaanderen (UU), Supporting Process Improve-

ment using Method Increments.
44 Paulien Meesters (UvT), Intelligent Blauw. Met als on-

dertitel: Intelligence-gestuurde politiezorg in gebiedsgebonden

eenheden..
45 Birgit Schmitz (OUN), Mobile Games for Learning: A

Pattern-Based Approach.
46 Ke Tao (TUD), Social Web Data Analytics: Relevance, Re-

dundancy, Diversity.
47 Shangsong Liang (UVA), Fusion and Diversification in

Information Retrieval.

2015
01 Niels Netten (UvA), Machine Learning for Relevance of

Information in Crisis Response.
02 Faiza Bukhsh (UvT), Smart auditing: Innovative Compli-

ance Checking in Customs Controls.
03 Twan van Laarhoven (RUN), Machine learning for net-

work data.
04 Howard Spoelstra (OUN), Collaborations in Open Learn-

ing Environments.
05 Christoph Bösch(UT), Cryptographically Enforced Search

Pattern Hiding.
06 Farideh Heidari (TUD), Business Process Quality Compu-

tation - Computing Non-Functional Requirements to Improve

Business Processes.
07 Maria-Hendrike Peetz(UvA), Time-Aware Online Repu-



tation Analysis.
08 Jie Jiang (TUD), Organizational Compliance: An agent-

based model for designing and evaluating organizational inter-

actions.
09 Randy Klaassen(UT), HCI Perspectives on Behavior Change

Support Systems.
10 Henry Hermans (OUN), OpenU: design of an integrated

system to support lifelong learning.
11 Yongming Luo(TUE), Designing algorithms for big graph

datasets: A study of computing bisimulation and joins.
12 Julie M. Birkholz (VU), Modi Operandi of Social Network

Dynamics: The Effect of Context on Scientific Collaboration

Networks.
13 Giuseppe Procaccianti(VU), Energy-Efficient Software.
14 Bart van Straalen (UT), A cognitive approach to modeling

bad news conversations.
15 Klaas Andries de Graaf (VU), Ontology-based Software

Architecture Documentation.
16 Changyun Wei (UT), Cognitive Coordination for Coopera-

tive Multi-Robot Teamwork.
17 André van Cleeff (UT), Physical and Digital Security

Mechanisms: Properties, Combinations and Trade-offs.
18 Holger Pirk (CWI), Waste Not, Want Not! - Managing

Relational Data in Asymmetric Memories.
19 Bernardo Tabuenca (OUN), Ubiquitous Technology for

Lifelong Learners.
20 Loïs Vanhée(UU), Using Culture and Values to Support

Flexible Coordination.
21 Sibren Fetter (OUN), Using Peer-Support to Expand and

Stabilize Online Learning.
23 Luit Gazendam (VU), Cataloguer Support in Cultural

Heritage.
24 Richard Berendsen (UVA), Finding People, Papers, and

Posts: Vertical Search Algorithms and Evaluation.
25 Steven Woudenberg (UU), Bayesian Tools for Early Dis-

ease Detection.
26 Alexander Hogenboom (EUR), Sentiment Analysis of

Text Guided by Semantics and Structure.
27 Sándor Héman (CWI), Updating compressed colomn stores.
28 Janet Bagorogoza(TiU), KNOWLEDGE MANAGEMENT

AND HIGH PERFORMANCE; The Uganda Financial Insti-

tutions Model for HPO.
29 Hendrik Baier (UM), Monte-Carlo Tree Search Enhance-

ments for One-Player and Two-Player Domains.
30 Kiavash Bahreini(OU), Real-time Multimodal Emotion

Recognition in E-Learning.
31 Yakup Koç (TUD), On the robustness of Power Grids.
32 Jerome Gard(UL), Corporate Venture Management in SMEs.
33 Frederik Schadd (TUD), Ontology Mapping with Auxil-

iary Resources.
34 Victor de Graaf(UT), Gesocial Recommender Systems.
35 Jungxao Xu (TUD), Affective Body Language of Humanoid

Robots: Perception and Effects in Human Robot Interaction.

2016
01 Syed Saiden Abbas (RUN), Recognition of Shapes by Hu-

mans and Machines.
02 Michiel Christiaan Meulendijk (UU), Optimizing med-

ication reviews through decision support: prescribing a better

pill to swallow.
03 Maya Sappelli (RUN), Knowledge Work in Context: User

Centered Knowledge Worker Support.
04 Laurens Rietveld (VU), Publishing and Consuming Linked

Data.
05 Evgeny Sherkhonov (UVA), Expanded Acyclic Queries:

Containment and an Application in Explaining Missing An-

swers.
06 Michel Wilson (TUD), Robust scheduling in an uncertain

environment.
07 Jeroen de Man (VU), Measuring and modeling negative

emotions for virtual training.
08 Matje van de Camp (TiU), A Link to the Past: Construct-

ing Historical Social Networks from Unstructured Data.
09 Archana Nottamkandath (VU), Trusting Crowdsourced

Information on Cultural Artefacts.
10 George Karafotias (VUA), Parameter Control for Evolu-

tionary Algorithms.
11 Anne Schuth (UVA), Search Engines that Learn from

Their Users.
12 Max Knobbout (UU), Logics for Modelling and Verifying

Normative Multi-Agent Systems.
13 Nana Baah Gyan (VU), The Web, Speech Technologies and

Rural Development in West Africa - An ICT4D Approach.
14 Ravi Khadka (UU), Revisiting Legacy Software System

Modernization.



15 Steffen Michels (RUN), Hybrid Probabilistic Logics - The-

oretical Aspects, Algorithms and Experiments.
16 Guangliang Li (UVA), Socially Intelligent Autonomous

Agents that Learn from Human Reward.
17 Berend Weel (VU), Towards Embodied Evolution of Robot

Organisms.
18 Albert Meroño Peñuela (VU), Refining Statistical Data

on the Web.
19 Julia Efremova (Tu/e), Mining Social Structures from

Genealogical Data.
20 Daan Odijk (UVA), Context & Semantics in News & Web

Search.
21 Alejandro Moreno Célleri (UT), From Traditional to In-

teractive Playspaces: Automatic Analysis of Player Behavior in

the Interactive Tag Playground.
22 Grace Lewis (VU), Software Architecture Strategies for

Cyber-Foraging Systems.
23 Fei Cai (UVA), Query Auto Completion in Information

Retrieval.
24 Brend Wanders (UT), Repurposing and Probabilistic In-

tegration of Data; An Iterative and data model independent

approach.
25 Julia Kiseleva (TU/e), Using Contextual Information to

Understand Searching and Browsing Behavior.
26 Dilhan Thilakarathne (VU), In or Out of Control: Ex-

ploring Computational Models to Study the Role of Human

Awareness and Control in Behavioural Choices, with Applica-

tions in Aviation and Energy Management Domains.
27 Wen Li (TUD), Understanding Geo-spatial Information on

Social Media.
28 Mingxin Zhang (TUD), Large-scale Agent-based Social

Simulation - A study on epidemic prediction and control.
29 Nicolas Höning (TUD), Peak reduction in decentralised

electricity systems -Markets and prices for flexible planning.
30 Ruud Mattheij (UvT), The Eyes Have It.
31 Mohammad Khelghati (UT), Deep web content monitor-

ing.
32 Eelco Vriezekolk (UT), Assessing Telecommunication Ser-

vice Availability Risks for Crisis Organisations.
33 Peter Bloem (UVA), Single Sample Statistics, exercises in

learning from just one example.
34 Dennis Schunselaar (TUE), Configurable Process Trees:

Elicitation, Analysis, and Enactment.

35 Zhaochun Ren (UVA), Monitoring Social Media: Summa-

rization, Classification and Recommendation.
36 Daphne Karreman (UT), Beyond R2D2: The design of

nonverbal interaction behavior optimized for robot-specific mor-

phologies.
37 Giovanni Sileno (UvA), Aligning Law and Action - a con-

ceptual and computational inquiry.
38 Andrea Minuto (UT), MATERIALS THAT MATTER -

Smart Materials meet Art & Interaction Design.
39 Merijn Bruijnes (UT), Believable Suspect Agents; Response

and Interpersonal Style Selection for an Artificial Suspect.
40 Christian Detweiler (TUD), Accounting for Values in De-

sign.
41 Thomas King (TUD), Governing Governance: A Formal

Framework for Analysing Institutional Design and Enactment

Governance.
42 Spyros Martzoukos (UVA), Combinatorial and Composi-

tional Aspects of Bilingual Aligned Corpora.
43 Saskia Koldijk (RUN), Context-Aware Support for Stress

Self-Management: From Theory to Practice.
44 Thibault Sellam (UVA), Automatic Assistants for Data-

base Exploration.
45 Bram van de Laar (UT), Experiencing Brain-Computer

Interface Control.
46 Jorge Gallego Perez (UT), Robots to Make you Happy.
47 Christina Weber (UL), Real-time foresight - Preparedness

for dynamic innovation networks.
48 Tanja Buttler (TUD), Collecting Lessons Learned.
49 Gleb Polevoy (TUD), Participation and Interaction in Pro-

jects. A Game-Theoretic Analysis.
50 Yan Wang (UVT), The Bridge of Dreams: Towards a Method

for Operational Performance Alignment in IT-enabled Service

Supply Chains.

2017
01 Jan-Jaap Oerlemans (UL), Investigating Cybercrime.
02 Sjoerd Timmer (UU), Designing and Understanding Foren-

sic Bayesian Networks using Argumentation.
03 Daniël Harold Telgen (UU), Grid Manufacturing; A Cyber-

Physical Approach with Autonomous Products and Reconfig-

urable Manufacturing Machines.
04 Mrunal Gawade (CWI), MULTI-CORE PARALLELISM



IN A COLUMN-STORE.
05 Mahdieh Shadi (UVA), Collaboration Behavior.
06 Damir Vandic (EUR), Intelligent Information Systems for

Web Product Search.
07 Roel Bertens (UU), Insight in Information: from Abstract

to Anomaly.
08 Rob Konijn (VU), Detecting Interesting Differences:Data

Mining in Health Insurance Data using Outlier Detection and

Subgroup Discovery.
09 Dong Nguyen (UT), Text as Social and Cultural Data: A

Computational Perspective on Variation in Text.
10 Robby van Delden (UT), (Steering) Interactive Play Be-

havior.
11 Florian Kunneman (RUN), Modelling patterns of time

and emotion in Twitter #anticipointment.
12 Sander Leemans (TUE), Robust Process Mining with

Guarantees.
13 Gijs Huisman (UT), Social Touch Technology - Extending

the reach of social touch through haptic technology.
14 Shoshannah Tekofsky (UvT), You Are Who You Play You

Are: Modelling Player Traits from Video Game Behavior.
15 Peter Berck, Radboud University (RUN), Memory-Based

Text Correction.
16 Aleksandr Chuklin (UVA), Understanding and Modeling

Users of Modern Search Engines.
17 Daniel Dimov (UL), Crowdsourced Online Dispute Reso-

lution.
18 Ridho Reinanda (UVA), Entity Associations for Search.
19 Jeroen Vuurens (TUD), Proximity of Terms, Texts and

Semantic Vectors in Information Retrieval.
20 Mohammadbashir Sedighi (TUD), Fostering Engagement

in Knowledge Sharing: The Role of Perceived Benefits, Costs

and Visibility.
21 Jeroen Linssen (UT), Meta Matters in Interactive Story-

telling and Serious Gaming (A Play on Worlds).
22 Sara Magliacane (VU), Logics for causal inference under

uncertainty.
23 David Graus (UVA), Entities of Interest— Discovery in

Digital Traces.
24 Chang Wang (TUD), Use of Affordances for Efficient Ro-

bot Learning.
25 Veruska Zamborlini (VU), Knowledge Representation for

Clinical Guidelines, with applications to Multimorbidity Analy-

sis and Literature Search.
26 Merel Jung (UT), Socially intelligent robots that under-

stand and respond to human touch.
27 Michiel Joosse (UT), Investigating Positioning and Gaze

Behaviors of Social Robots: People’s Preferences, Perceptions

and Behaviors.
28 John Klein (VU), Architecture Practices for Complex Con-

texts.
29 Adel Alhuraibi (UVT), From IT-Business Strategic Align-

ment to Performance: A Moderated Mediation Model of Social

Innovation, and Enterprise Governance of IT.
30 Wilma Latuny (UVT), The Power of Facial Expressions.
31 Ben Ruijl (UL), Advances in computational methods for

QFT calculations.
32 Thaer Samar (RUN), Access to and Retrievability of Con-

tent in Web Archives.
33 Brigit van Loggem (OU), Towards a Design Rationale

for Software Documentation: A Model of Computer-Mediated

Activity.
34 Maren Scheffel (OUN), The Evaluation Framework for

Learning Analytics.
35 Martine de Vos (VU), Interpreting natural science spread-

sheets.
36 Yuanhao Guo (UL), Shape Analysis for Phenotype Char-

acterisation from High-throughput Imaging.
37 Alejandro Montes García (TUE), WiBAF: A Within Browser

Adaptation Framework that Enables Control over Privacy.
38 Alex Kayal (TUD), Normative Social Applications.
39 Sara Ahmadi (RUN), Exploiting properties of the human

auditory system and compressive sensing methods to increase

noise robustness in ASR.
40 Altaf Hussain Abro (VUA), Steer your Mind: Computa-

tional Exploration of Human Control in Relation to Emotions,

Desires and Social Support For applications in human-aware

support systems.
41 Adnan Manzoor (VUA), Minding a Healthy Lifestyle: An

Exploration of Mental Processes and a Smart Environment to

Provide Support for a Healthy Lifestyle.
42 Elena Sokolova (RUN), Causal discovery from mixed and

missing data with applications on ADHD datasets.
43 Maaike de Boer (RUN), Semantic Mapping in Video Re-

trieval.
44 Garm Lucassen (UU), Understanding User Stories - Com-



putational Linguistics in Agile Requirements Engineering.
45 Bas Testerink (UU), Decentralized Runtime Norm Enforce-

ment.
46 Jan Schneider (OU), Sensor-based Learning Support.
47 Yie Yang (TUD), Crowd Knowledge Creation Acceleration.
48 Angel Suarez (OU), Colloborative inquiry-based learning.

2018
01 Han van der Aa (VUA), Comparing and Aligning Process

Representations.
02 Felix Mannhardt (TUE), Multi-perspective Process

Mining.


	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Introduction
	Process Mining
	One Process – Multiple Perspectives
	Multi-perspective Process Models and Event Logs
	Five Considered Perspectives
	Relation to Existing Multi-perspective Frameworks

	Research Goals and Contributions
	Overall Research Goals
	Contributions

	Structure

	Preliminaries
	Basic Notations
	Variables and Guard Expressions
	Event Logs
	Decision Trees

	Process Models
	Process Behavior Expressed as a Trace Set
	Data Petri Nets
	Petri Nets
	Syntax and Semantics of DPNs

	Causal Nets
	BPMN and Extended Data Petri Nets
	BPMN
	Extended Data Petri Nets



	Multi-perspective Conformance
	Introduction to Multi-perspective Conformance Checking
	Conformance Checking
	Multi-perspective Conformance Checking
	Aligning Process Models and Event Logs
	Alignments
	Optimal Alignment and Cost Function
	Choice of a Cost Function

	Measuring Fitness Based on Alignments

	Multi-perspective Alignment
	Motivation for Balanced Alignments
	Balanced Alignment Method
	Assumptions on the Input
	A* Algorithm and Search Space
	Searching an Optimal Balanced Alignment
	Formal Guarantees
	Computing an Optimal Variable Assignment
	Computational Complexity
	Optimizations

	Evaluation
	Datasets and Experimental Setup
	Results

	Related Work
	Control-flow Conformance Checking
	Multi-perspective Conformance Checking

	Conclusion
	Contribution
	Limitations
	Future Work


	Multi-perspective Precision
	Motivation for a Multi-perspective Precision Measure
	Multi-perspective Precision Measure
	Assumptions on the Input
	Precision Measure
	Activity-precision Measure
	Resource-precision Measure

	Locating Precision Problems
	Evaluation
	Related Work
	Conclusion
	Contribution
	Limitations
	Future Work



	Multi-perspective Discovery and Enhancement
	Introduction to Multi-perspective Discovery and Enhancement
	Process Discovery and Enhancement
	Process Discovery
	Process Enhancement

	Challenges for Process Discovery Methods
	Incompleteness
	Noise
	Granularity

	Multi-perspective Process Discovery

	Data-aware Heuristic Process Discovery
	Motivation for Discovering Conditional Behavior
	Overview of the Data-aware Heuristic Process Discovery Method
	Discovering Conditional Behavior
	Dependency Conditions and Dependency Measure
	Discovering Dependency Conditions
	Discovering Causal Nets with the DHM

	Extending Causal Nets with Multiple Perspectives
	Data Causal Nets
	Discovering DC-Nets

	Evaluation
	Event Log and Methods
	Experimental Design
	Results

	Related Work
	Noise Filtering Techniques
	Multi-perspective Discovery

	Conclusion
	Contribution
	Limitations
	Future Work


	Guided Multi-perspective Process Discovery
	Motivation for Event Abstraction
	Guided Process Discovery Method
	Overview of the GPD Method
	Encoding the High-level Behavior in Activity Patterns
	Identifying the Activity Patterns
	Composing the Activity Patterns to an Abstraction Model
	Aligning the Event Log and the Abstraction Model
	Abstracting the Event Log
	Discovering a High-Level Process Model
	Expanding the High-level Activities and Validating the Model

	Implementation
	Evaluation
	Related Work
	Conclusion
	Contribution
	Limitations
	Future Work


	Enhancing Models with Overlapping Decision Rules
	Introduction to Decision Mining
	Decision Rules
	Mining Decision Rules

	Motivation for Overlapping Decision Rules
	Discovery of Overlapping Decision Rules
	Parameters and Assumptions on the Input
	Overall Decision Procedure
	Building Overlapping Guard Expressions
	Dealing With Real-life Event Logs

	Evaluation
	Evaluation Setup
	Results and Discussion

	Related Work
	Conclusion
	Contribution
	Limitations
	Future Work



	Applications
	Tool Support
	Interactive Data-aware Heuristic Miner
	Overview of the iDHM
	Walk-through of the iDHM
	Plug-in Architecture
	Conclusion of the iDHM

	Multi-perspective Process Explorer
	Overview of the MPE
	Walk-through of the MPE
	Conclusion of the MPE

	Conclusion

	Case Study: Road Traffic Fine Management
	Case Description
	Process Questions
	Event Log
	Normative Process Model

	Conformance Checking
	Configuration Settings and Cost Function
	Conformance Checking Results
	Comparison With the Non-Balanced Method

	Discovery of the Data Perspective
	Data-aware Process Discovery
	Configuration Settings
	Discovery Results
	Comparison with State-of-the-art Techniques

	Guided Process Discovery
	Activity Patterns
	Discovery Results
	Comparison with State-of-the-art Methods

	Conclusion

	Case Study: Sepsis
	Case Description
	Process Questions
	Event Log
	Normative Process Model

	Conformance Checking
	Configuration Settings and Cost Function
	Conformance Checking Results

	Discovery of the Data Perspective
	Data-aware Process Discovery
	Configuration Settings
	Discovery Results

	Guided Process Discovery
	Activity Patterns
	Discovery Results
	Comparison to State-of-the-Art Methods

	Conclusion

	Case Study: Digital Whiteboard
	Case Description
	Process Questions
	Event Log

	Abstraction and Guided Process Discovery
	Abstraction Model
	Event Abstraction
	Discovery of the Inductive Miner
	Conformance Checking of the Discovered Model
	Dotted Chart Analysis of the High-level Log

	Conclusion

	Case Study: Hospital Billing
	Case Description
	Process Questions
	Event Log
	Normative Model

	Discovery of the Data Perspective
	Conformance Checking
	Data-aware Process Discovery
	Configuration Settings
	Discovery Results
	Comparison with State-of-the-art Techniques

	Conclusion


	Closure
	Conclusion
	Contributions
	Multi-perspective Conformance (part:conformance)
	Multi-perspective Discovery and Enhancement (part:discovery)
	Applications (part:applications)

	Limitations
	Future Work
	Reflection on the Broader Context

	Bibliography
	Index
	Summary
	Curriculum vitae
	Acknowledgments
	SIKS dissertations


