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ABSTRACT

A multi-phase CFD method has been developed and is 
applied here to model the flow about submerged bodies subject to 
natural and ventilated cavitation. The method employs an 
implicit, dual-time, pre-conditioned, multi-phase Navier-Stokes 
algorithm and is three-dimensional, multi-block and parallel. It 
incorporates mixture volume and constituent volume fraction 
transport/generation for liquid, condensable vapor and non-con-
densable gas fields. Mixture momentum and turbulence scalar 
equations are also solved. Mass transfer modeling provides 
exchange between liquid and vapor phases. The model accounts 
for buoyancy effects and the presence/interaction of condensable 
and non-condensable fields. 

In this paper, the theoretical formulation of the method is 
summarized. Results are presented for steady-state and transient 
axisymmetric flows with natural and ventilated cavitation about 
several bodies. Comparisons are made with available measure-
ments of surface pressure distribution, cavitation bubble geome-
try and drag coefficient. Three-dimensional results are presented 
for a submerged body running at several angles of attack. The 
underlying three-species formulation and the specific models 
employed for mass transfer and momentum diffusion are demon-
strated to provide good correspondence with measurements; 
however, several weaknesses in the current modeling are identi-
fied and discussed.

INTRODUCTION

Cavitation can occur in a wide range of liquid flows, 
including those through rotating machinery and nozzles and 
about underwater bodies. In these applications, the proximity of 
local pressure to the vapor pressure of the liquid can give rise to 
cavitation. The physics of the resulting two-phase flow are highly 
complex and remain only partially understood. Cavitation is usu-
ally associated with negative design implications, including 
structural damage, noise and lost loading. Alternatively, drag 

reduction can be realized if bodies are partially or fully envel-
oped in a large natural or ventilated gas cavity. This latter appli-
cation motivates the present effort.

Natural and ventilated cavities about submerged bodies 
and turbomachinery blades are characteristically unsteady but 
may define a “fixed” cavitation bubble or sheet in a time-average 
sense. Such sheet cavitation has been studied for decades and 
recently has become the target of CFD practitioners.

 Early efforts to model sheet cavities relied on potential 
flow methods for the fluid flow outside the bubble, while the 
shape and size of the bubble itself were determined from 
dynamic equilibrium assumptions across the bubble-liquid inter-
face and generally ad-hoc specification of bubble shape family 
and/or closure conditions. These “interface tracking” methods 
have been deployed for years but retain the limitations of a poten-
tial flow model applied to a flow with inherently vortical struc-
tures such as reentrant jets and trailing vortices. 

A hierarchy of more modern viscous CFD methods have 
recently been brought to bear in modeling sheet cavitation. In one 
class of methods, a single continuity equation is considered with 
the density varying abruptly between vapor and liquid densities. 
An equation of state provides the local density, which is a strong 
function of proximity of the local pressure to vapor pressure 
(Song and He [1998], Chen and Heister [1994], for example). 
Though these methods can directly model viscous effects, they 
are inherently unable to distinguish between condensable vapor 
and non-condensable gas, a requirement of our current applica-
tion.

By solving separate continuity equations for liquid and 
gas phase fields, one can account for and model the separate 
dynamics and thermodynamics of the liquid, condensable vapor, 
and non-condensable gas fields. Merkle et. al. [1998] have 
deployed such a two-species formulation in the analysis of natu-
ral sheet cavitation. This is the level of modeling employed here, 
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though a three-species formulation is employed to account for 
two gaseous fields. 

Full-two-fluid modeling, wherein separate momentum 
(and in principle energy) equations are employed for the liquid 
and vapor constituents have also been utilized for natural cavita-
tion (Grogger and Alajbegovic [1998]) in a venturi analysis. The 
gas-liquid interface in sheet cavity flows are known to be close to 
dynamic equilibrium, so for our present interests, we choose not 
to pursue the full-two-fluid level of modeling.

Our principal interest is in analyzing flows about vehicles 
with running cavitation. In cavity running bodies, much of the 
configuration is enveloped in a gas cavity. In general, this gas 
cavity is composed of a mixture of water vapor and ventilated 
gases. Sharp fore-body or cavitator curvatures, as well as injec-
tion of large quantities of gases, can stabilize sheet cavities. The 
former tends to “anchor” cavitation inception, while the latter can 
reduce or eliminate the characteristic unsteadiness (“re-entrant 
jet”) in the bubble closure region. Still, many relevant applica-
tions exhibit large scale unsteadiness associated with re-entrant 
jets, periodic ejection of non-condensable gas and cavity “pulsa-
tions”. Accordingly, we retain here a time-accurate formulation. 

The success of this approach is, of course, dependent on 
the ability to obtain converged steady or time accurate solutions 
for configurations of interest and to demonstrate validation of the 
method against available experimental data. In this spirit, what 
follows demonstrates the effectiveness and shortcomings of this 
method applied to natural and vented cavities about a variety of 
two-dimensional and three-dimensional configurations.

The paper is organized as follows: The theoretical formu-
lation of the method is summarized, including baseline differen-
tial model, specific physical models and numerical methods. This 
is followed by three sets of results. First, naturally cavitating 
flows about three axisymmetric configurations are analyzed 
across a range of cavitation numbers, and these results are com-
pared to experimental measurements. Next, an axisymmetric 
ventilated configuration is analyzed and compared to correspond-
ing natural cavities at a range of cavitation numbers. Lastly, the 
three-dimensional capability of the method is demonstrated by 
analyzing natural cavitation about a cylindrical after-body with a 
hemispherical fore-body at several angles of attack. The capabili-
ties and shortcomings of the method are assessed from these 
results.

NOMENCLATURE

Symbols

C1, C2 turbulence model constants

Cdest, Cprod mass transfer model constants

CP pressure coefficient

CD drag coefficient

d body diameter

dm bubble diameter

gi gravity vector

k turbulent kinetic energy

L bubble length

, mass transfer rates

P turbulent kinetic energy production

Prtk,Prtε turbulent Prandtl numbers for k and ε
p pressure

Re Reynolds number

s arc length along configuration

time, mean flow time scale ( )

U velocity magnitude

ui Cartesian velocity components

xi Cartesian coordinates

α volume fraction, angle of attack

β preconditioning parameter

ε turbulence dissipation rate

µ molecular viscosity

ρ density

σ cavitation number ( )

Subscripts, Superscripts

l liquid

m mixture

ng non-condensable gas

t turbulent

v condensable vapor

free stream value

THEORETICAL FORMULATION

Governing Equations and Physical Modeling

A three species differential formulation is adopted where 
individual equations are provided for the transport/generation of 
volume fraction of liquid (which can exchange mass with con-
densable vapor), volume fraction of non-condensable gas and the 
mixture volume. A mixture momentum equation is also provided. 
The governing differential equations cast in Cartesian tensor 
form are given as:

(1)

where mixture density and turbulent viscosity are defined from:
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(2)

In the present work, the density of each constituent is 
taken as constant. Equations 1 represent transport/generation of 
mixture volume, mixture momentum, liquid phase volume frac-
tion and non-condensable gas volume fraction, respectively. 
Physical time derivatives are included for transient computations. 
The formulation incorporates pre-conditioned pseudo-time-
derivatives (  terms), defined by parameter β, which provide 
favorable convergence characteristics for steady state and tran-
sient computations, as discussed further below.

The formation and collapse of a cavity is modeled as a 
phase transformation. Detailed modeling of this process requires 
knowledge of the thermodynamic behavior of the fluid near a 
phase transition point and the formation of interfaces. One 
approach is the use of the Ginzburg-Landau potential (Hohenberg 
and Halperin [1977], for example). Such an approach is being 
pursued (last author) but is not yet complete. Related behavior 
can also be described by van der Waals’ equation of state. Simpli-
fied models based on the more detailed approach are presented 
here. Simplifications result from the use of empirical factors. 
Two separate models are used to describe the transformation of 
liquid to vapor and the transformation of vapor back to liquid. 
For transformation of liquid to vapor,  is modeled as being 
proportional to the liquid volume fraction and the amount by 
which the pressure is below the vapor pressure. This model is 
similar to that used by Merkle et. al. [1998] for both evaporation 
and condensation. For transformation of vapor to liquid, a simpli-
fied form of the Ginzburg-Landau potential is used for the mass 
transfer rate .

(3)

Cdest and Cprod are empirical constants (here Cdest = 0.2, 
Cprod = 0.2). Both mass transfer rates are non-dimensionalized 
with respect to a mean flow time scale.

In this work a high Reynolds number form k-ε model with 
standard wall functions is implemented to provide turbulence 
closure:

(4)

As with velocity, the turbulence scalars are interpreted as being 
mixture quantities.

In the present work, the effect of surface tension is not 
incorporated, since interface curvatures are very small for the 
configurations considered.

Numerical Method

The baseline numerical method is evolved from the work 
of Taylor and his coworkers at Mississippi State University (Tay-
lor et. al. [1995], for example). The UNCLE code which served 
as the baseline platform for the present work, is based on a single 
phase, pseudocompressibility formulation. Third-order Roe-
based flux difference splitting is utilized for convection term dis-
cretization. An implicit procedure is adopted with inviscid and 
viscous flux Jacobians approximated numerically. A block-sym-
metric Gauss-Siedel iteration is employed to solve the approxi-
mate Newton system at each timestep.

 The multi-phase extension of the code retains these 
underlying numerics but incorporates two additional volume 
fraction constituent transport equations. A non-diagonal pseudo-
time-derivative preconditioning matrix is also employed which 
ameliorates the stiffness associated with the vanishing time deriv-
ative term in the mixture continuity equation as the limit of 
incompressible constituent phases is approached. This precondi-
tioner gives rise to a system with well-conditioned eigenvalues 
which are independent of density ratio and local volume fraction. 
This system is well suited to high density ratio, phase-separated 
two-phase flows, such as the cavitating systems of interest here. 

A temporally second-order accurate dual-time scheme 
was implemented for physical transients. The turbulence trans-
port equations are solved subsequent to the mean flow equations 
at each time step. The multiblock code is instrumented with MPI 
for parallel execution based on domain decomposition. Further 
details on the numerical method and code are available in Kunz 
et. al. [1999].

RESULTS

Three sets of results are presented in this section. First, 
results are presented for axisymmetric flows over several cylin-
drical bodies with different cavitator shapes. Hemispherical, 
blunt cylindrical and conical nose shapes were studied across a 
range of cavitation numbers. The second set of results are for 
ventilated cavitating flow over a blunt cylindrical body with gas 
injection near the leading edge. The third set of results are three-
dimensional simulations of natural cavitation about a cylindrical 
after-body with a hemispherical fore-body.

Natural Cavitation on Axisymmetric Bodies

Rouse and McNown [1948] carried out a series of experi-
ments on natural cavitation about axisymmetric configurations. 
These each had cylindrical afterbodies with a flow-aligned axis 
and either conical, ogival or blunt fore-body or cavitator shapes. 
At low cavitation numbers, these flows exhibit natural cavitation 
initiating near or just aft of the intersection between the fore-
body and the cylindrical body. For each configuration, measure-
ments were made across a range of cavitation numbers, including 
a single phase case (large σ). Surface static pressure measure-
ments were taken along the cavitator and after-body. Photographs 
were also taken from which approximate bubble size and shape 
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were deduced.

 Several of the Rouse-McNown configurations were com-
puted here. These included hemispherical (0.5 caliber ogive), 
blunt (0.0 caliber ogive) and conical (22.5o cone half-angle) cav-
itator shapes. The experiments were performed at Reynolds num-
bers greater than 100,000 based on maximum cavitator (i.e., 
after-body) diameter. A value of Re = 136000 was used for the 
simulations. A range of grid sizes was used. For the hemispheri-
cal and conical configurations, grid sizes of 65x17, 129x33 and 
257x65 were run. Figure 1 demonstrates that differences between 
predicted surface pressures for the medium and fine meshes are 
small. The fine meshes were used for all subsequent calculations 
presented here. For the blunt fore-body, a two-block grid topol-
ogy had to be used, and a mesh consistent with the resolution and 
clustering of the other head-forms was utilized (65x49, 257x65 
for blocks 1 and 2; see Figure 3c).

Figures 2a-c show comparisons between predicted and 
measured surface pressure distributions for the three configura-
tions at a range of cavitation numbers. For all cases, as the cavita-
tion number is decreased from near a critical “inception” value, a 
cavitation bubble forms and grows. The presence of the bubble 
manifests itself as a decrease in magnitude, flattening and length-
ening of the pressure minimum along the surface. Also, bubble 
closure gives rise to an overshoot in pressure recovery due to the 
local stagnation associated with free-stream liquid flowing over 
the convex curvature at the aft end of the bubble. In Figure 2a, it 
is observed that for the hemispherical head-form, the method 
accurately captures the pressure distribution on the configuration 
across the range of cavitation numbers for which measurements 
were made. In Figure 3a, surface pressure contours, field liquid 
volume fraction contours, selected streamlines and the grid are 
illustrated for the σ = 0.3 case. A discrete bubble shape is 
observed. The aft end of the predicted bubble does not exhibit a 
smooth “ellipsoidal” closure. Indeed, due to local flow reversal 
(reentrant jet), liquid is swept back underneath the vapor pocket. 
The pressure in this region retains the nearly constant freestream 
liquid flow value impressed through the bubble. Similar closure 
region observations have been made by Chen and Heister [1994].

Figures 2b and 3b provide corresponding results for a 
conical fore-body shape with a 22.5o half-angle. Here, the simu-
lation underpredicts the length of the bubble at all cavitation 
numbers, but qualitative trends remain correctly predicted. 

Results for a blunt fore-body are presented in Figures 2c 
and 3c. Though good quantitative agreement is obtained at low 
cavitation numbers, two shortcomings of the present modeling 
are evident. First, even the single phase pressure distribution 
shows significant discrepancy from the data. In particular, the 
characteristic flattening of the measured pressure distribution due 
to a large recirculation zone aft of the corner is significantly 
underpredicted. Such a “forward facing step” flow is well known 
to provide significant challenges to single phase turbulence mod-
els. The conventional model employed here (high Reynolds num-
ber k-ε) has well-documented difficulties with stagnated, high 
strain and recirculating flows. All of these characteristics are 
embodied in the blunt head-form flow. Our efforts to “remedy” 
these single phase turbulence modeling shortcomings by deploy-
ing several approaches which have appeared in the literature 
remain incomplete and are beyond the scope of the present paper.

The second modeling shortcoming evident in the blunt 
head-form results is associated with the slight underprediction of 
cavity pressure at intermediate cavitation numbers. Indeed, the 
analysis predicts a large cavity at nearly constant pressure (vapor 
pressure) which initiates very close to the leading edge. The data 
exhibits a higher surface pressure near the leading edge, which 
approaches the vapor pressure with increased distance from the 
leading edge. This phenomenon arises due to the presence of a 
pressure minimum away from the body at the core of the strong 
vorticity associated with the leading edge separation. Physically, 
this is where cavitation initiates in this flow. The growth, interac-
tion and transport of the small cavitation nuclei then give rise to a 
larger cavitation bubble emanating from this off-body location. 
The current modeling is unable to capture these relevant physics, 
though local pressure minimums are predicted to occur off-body 
aft of the leading edge. Attempts to adjust the time constant in 
Equation 3 ( ) have proved unsuccessful, so this remains 
an ongoing modeling challenge.

Several parameters of relevance in the characterization of 
cavitation bubbles include body diameter, d, bubble length, L, 
bubble diameter, dm, and form drag coefficient associated with 
the cavitator, CD. Some ambiguity is inherent in both the experi-
mental and computational definition of the latter three of these 
parameters. Bubble closure location is difficult to define due to 
unsteadiness and its dependence on after-body diameter (which 
can range from 0 [isolated cavitator] to the cavitator diameter). 
Accordingly, bubble length is often, and here, taken as twice the 
distance from cavity leading edge to the location of maximum 
bubble diameter (see Figure 4). The form drag coefficient is 
taken as the pressure drag on an isolated cavitator shape. For cav-
itators with afterbodies, such as here, the pressure contribution to 
CD associated with the back of the cavitator is assumed equal to 
the cavity pressure (≅  pv). For the simulations, dm is determined 
by examining the αl = 0.5 contour and determining its maximum 
radial location.

In Figure 5a, the quantity  is plotted against 
cavitation number for a large number of experimental data sets 
assembled by May [1975] from a variety of sources and for six-
teen simulations made with the three cavitator shapes under con-
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Figure 1. Comparison of predicted surface pressure distribu-
tions for naturally cavitating axisymmetric flow over a conical 
cavitator-cylindrical after-body configuration, σ = 0.3. Coarse 
(65x17), medium (129x33) and fine (257x65) mesh solutions 

are plotted.
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Figure 2. Comparison of predicted and measured surface 
pressure distributions at several cavitation numbers. a) 
hemispherical fore-body, b) conical fore-body, c) blunt 

fore-body. 

Figure 3. Predicted liquid volume fraction and surface 
pressure contours, selected streamlines and computational 
grid. a) hemispherical fore-body (σ=0.3), b) conical fore-

body (σ=0.3), c) blunt fore-body (σ=0.4). 
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sideration here. That  should correlate with σ has been 
long established theoretically and experimentally (Reichardt 
[1946], Garabedian [1956], for example). Despite the significant 
uncertainties associated with experimental and computational 
evaluation of L and CD, the data and simulations do correlate 
well, close to independently of cavitator shape. The cone shaped 
cavitator exhibits some underprediction of this parameter at 
higher cavitation numbers, consistent with the bubble length 
underprediction observed in the pressure distribution compari-
sons presented above. 

The so-called fineness ratio of the cavity, L/dm, is plotted 
against cavitation number in Figure 5b for the same experimental 
and computational data sets. These parameters again correlate 
well for both experiment and simulation, though at higher cavita-
tion numbers there is a spread in both. Considering the difficul-
ties in quantifying smaller bubble sizes, we hesitate to draw any 
conclusions as to the possible sources of this spread.

In the cases considered so far, steady-state solutions were 
obtained for higher cavitation numbers. At lower cavitation num-
bers (i.e. larger bubbles), significant large scale unsteadiness 
appears in the aft region of the bubble/reentrant jet region. Vortic-
ity and condensable vapor are shed from this region. Accord-
ingly, transient simulations (dual-time stepping) were performed 

when pseudo-timestepping failed to converge. For the hemi-
spherical, conical and blunt cavitator shapes, transient computa-
tions were performed for cavitation numbers less than or equal to 
σ = 0.2, 0.2 and 0.4, respectively. Non-dimensional physical time 
steps of  were utilized here.

In Figures 5a and 5b, time accurate CFD results are repre-
sented with filled symbols, steady state results with open sym-
bols. In the transient simulations, drag and bubble geometry 
parameters are obtained as mean values from a sufficiently long 
transient record. For example, Figure 6 shows the 2000 timestep 
history of drag coefficient for the hemispherical cavitator simula-
tion at σ = 0.05 (average CD = 0.309).

Ventilated Cavitation

Ventilated cavities are also of interest to the authors 
because for large enough values of freestream pressure the only 
way to generate large cavities is to inject some mixture of con-
densable and non-condensable gases into the flow near the body 
leading edge. In general, ventilated cavities exhibit similar 
dynamics to natural cavities (May [1975]). Ventilated cavities do, 
however, tend to be more stable than natural cavities near the aft 
end of the cavitation bubble. Also, all non-condensable gas must 
mix with the freestream liquid and be transported downstream.

The axisymmetric blunt fore-body configuration pre-
sented above was run with no mass transfer but with non-con-
densable gas injection just aft of the leading edge. A range of 
injection mass flow rates were specified, yielding a range of ven-
tilated cavity sizes. The resulting cavities do not close in the 
sense that all vapor is condensed, however a distinct bubble 
shape is observed whose geometry is quantified as detailed 
above. This is illustrated in Figure 7, where the predicted liquid 
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Figure 4. Bubble length and bubble diameter definitions.
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volume fraction fields are shown for the blunt head-form natural 
and vented cavities at σ = 0.4. (The cavitation number in venti-
lated cavities is defined not from the vapor pressure but from the 
cavity pressure.)

In Figures 8a and 8b,  and L/dm are plotted for 
the blunt head-form at a range of cavitation numbers. The natural 
cavity results presented above are reproduced in these plots along 

with the results of six ventilated cavity runs. (Note that the cavi-
tation number is not explicitly specified in the ventilated case; 
rather it is an outcome of specified ventilation flow rate. This is 
why the ventilated data predictions in Figures 8a and 8b are not at 
the same cavitations numbers as the natural ventilation cases.) 
The similarity between the natural and ventilated cavity results 
are generally affirmed by the simulations, in that these parame-
ters correlate well with each other and with the experimental data 
provided in Figures 5a and 5b.

Three-Dimensional Natural Cavitation

In order to demonstrate the three-dimensional capability 
of the method, a model of the hemispherical fore-body configura-
tion studied above was run at numerous angles of attack and a 
cavitation number of 0.3. A 97x33x65 mesh was utilized (corre-
sponding to the “medium” mesh size discussed in grid studies 
above). The domain was decomposed into 8 subdomains azi-
muthally and run on 8 SGI RS10K Octane machines. Parallel 
efficiencies of 85% were achieved for these problems.

Figure 9 provides sample results for angles of attack of 
0.0o, 2.5o, 5.0o and 7.5o. These plots include pressure contours on 
the plane of symmetry, sample streamlines and the cavitation 
bubble shape as identified with an isosurface of αl = 0.99. Sev-
eral interesting features are observed in the predictions. In partic-
ular, the flows are seen to be highly three-dimensional in nature 
at angle-of-attack. A recirculation zone aft of the bubble, grows 
with angle of attack. This diminishes the local pressure recovery 
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Figure 6. Predicted drag coefficient for the 2000 time step tran-
sient simulation of a cylindrical configuration with hemispherical 

fore-body at σ = 0.05.
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Figure 8a. Comparison of  vs. σ for natural and ven-
tilated cavities about a blunt fore-body.
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Figure 7. Predicted liquid volume fraction contours for axisymmetric natural and ventilated cavities about a cylindrical 
configuration with blunt fore-body (σ = 0.4).
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a)

b)

c)

d)

Figure 9. Predicted three-dimensional flow fields with natural cavitation about hemispherical fore-body at several angles 
of attack. a) α=0.0o, b) α=2.5o, c) α=5.0o, d) α=7.5o. Flow-field pressure contours, selected streamlines and liquid vol-

ume fraction = 0.99 isosurface.

associated with the bubble-induced blockage and this in turn 
leads to a local collapse of the bubble on the top of the body. 
Indeed at angle-of-attack the bubble is seen to have its greatest 
axial extent off of the symmetry plane of the geometry.

Figure 10 shows the convergence history for the α = 10o 
case.

At this cavitation number, σ = 0.3, steady state solutions 
could be obtained for an angle of attack as high as 15o. Figure 11 
illustrates the predicted bubble shape and complex streamline 
pattern for this simulation. The bubble shape is highly three-
dimensional in nature; it does not close on the pressure side of the 
body. The streamline pattern is characterized by a large recircula-

tion zone aft of the bubble and significant azimuthally oriented 
vortical structures.

CONCLUSIONS

A method for analyzing two-phase flows has been pre-
sented and applied to natural and ventilated cavitation about a 
number of external flow configurations. The following conclu-
sions apply:

1) The pressure distributions associated with natural sheet 
cavitation are well predicted for a cylindrical body with a hemi-
spherical fore-body, across the entire range of cavitation numbers 
considered. 
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igure 10. Convergence history for three-dimensional sim-
ulation of natural cavitation about a cylindrical after-body 

with hemispherical fore-body, σ = 0.3, α = 10o. Figure 11. Predicted 3-D flow field with natural cavitation 
about hemispherical fore-body, σ = 0.3, α = 15.0o. 

Selected streamlines and liquid volume fraction = 0.99 

2) Weaknesses in the current modeling were observed in 
the cone and blunt fore-body analyses, due in part to single phase 
turbulence modeling and in part to the inability to capture more 
complex off-body cavitation.

3) The method is capable of reproducing the cavitation 
number dependency of the quantities  and .

4) Ventilated cavities are observed to yield similar solu-
tions to natural cavities, as expected.

5) The three-dimensional capability of the method was 
demonstrated. Significant three-dimensionality was observed for 
natural cavitation about configurations run at angle of attack.

The authors continue to pursue the present method in the 
areas of improved physical modeling, algorithm improvement and 
application to more complex three-dimensional configurations.
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