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Abstract

Background: Brain-computer interfaces (BCIs) based on Steady State Visual Evoked
Potential (SSVEP) have attracted more and more attentions for their short time
response and high information transfer rate (ITR). The use of a high stimulation
frequency (from 30 Hz to 40 Hz) is more comfortable for users and can avoid the
amplitude-frequency problem, but the number of available phases for stimulation
source is limited. To circumvent this deficiency, a novel protocol named Multi-Phase
Cycle Coding (MPCC) for SSVEP-based BCIs was proposed in the present study.

Methods: In MPCC, each target is coded by a block word that includes a series of
cyclic codewords, and each block word is corresponding to a certain flickering visual
stimulus, which is a combination of multiple phases from an available phase set and
flickers at single frequency. The methods of generating block code and extracting
phase were presented and experiments were performed to investigate the feasibility
of MPCC.

Results: The optimal stimulation frequency was subject-specific, and the optimal
duration was longer than 0.5 s. The BCI system with MPCC could achieve average
discrimination accuracy 93.51 ± 5.62% and information transfer rate 33.77 ± 8.67%.

Conclusions: The MPCC has the error correction ability, can effectively increase the
encoded targets and improve the performance of the system. Therefore, the MPCC
is promising for practical BCIs.
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Background
Brain-computer interface (BCI) is the collaboration between brain and devices that

enables signals from brain to direct some external activities. The interface builds a direct

communication pathway between brain and the objects to be controlled. This article

presents a BCI system using Steady State Visual Evoked Potential (SSVEP) as neural

source. SSVEP refers to the response of cerebral cortex to a repetitive visual stimulus

(RVS) oscillating at a constant frequency, and can be characterized by peaks at the

fundamental frequency and its harmonics in the power spectral density (PSD) of

recorded EEG signals [1]. It is an effective neural source compared to those in other BCI

systems (e.g. motor imagery [2,3], P300 [4,5], and slow cortical potentials [6]), since it can

achieve higher information transfer rate (ITR) with shorter time response [7,8].

Till now, three methods to implement SSVEP-based BCIs have been proposed. The

first method, and also the most popular one, is to encode the targets with frequencies,
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where the targets are encoded with single frequency [9-12] or the combination of dual

or multi frequencies [13-16]. The second one is to encode the targets with phases,

where each target oscillates at one fixed frequency but different phases [17-20]. The

third one is to encode the targets with both phases and frequencies [21]. The first and

third methods need at least two frequencies, which will induce amplitude-frequency

problem [22], i.e. the SSVEP signal will decrease due to the competition in the

corresponding cerebral cortex when the subject focuses on several stimuli flickering

at two or more frequencies [23]. Instead the second method only needs one frequency,

which can effectively avoid the selection and identification of multiple frequencies.

However, the number of available phases is limited, e.g., no more than eight phases

can be used at a single frequency [18,21]. Another important issue to be considered is that

which frequency should be selected. The repetitive visual stimulus at high frequency

(larger than 30 Hz) is safer and more comfortable for users and causes less visual fatigue.

However,only few frequencies can elicit sufficiently strong SSVEPs for BCI purposes in

the high frequency range (30 Hz ~ 40 Hz) [24].

To overcome these issues, this article proposed a novel protocol termed as Multiple

Phases Cycle Coding (MPCC) for SSVEP-based BCIs. In MPCC, the stimulation source

flickers at high frequency and each target is coded by a block code that includes a series

of cyclic codes. Each codeword is corresponding to a certain flickering visual stimulus

mode, which is a combination of several phases from an available phase set. This

method can encode more targets and improve the system performance with the ability

of error correction. Besides, it also increases the user’s comfort and safety.

The paper is organized as follows. Method provides a detailed description about

MPCC, the stimulator, the experiment protocol, and also the signal processing

methods. Results presents the results. Discussion is a general discussion of the results.
Method
Multiple Phases Cycle Coding (MPCC)

The basic principle of MPCC

In SSVEP-based BCIs, the stimulus source flickers at a certain pattern and users pay

their attentions on the stimulus to produce SSVEP signal, which will further be used to

generate the commands. It is generally believed the latency of individual’s SSVEP is

relatively stable, which means the SSVEP is phased-locked to the visual stimulus

[25-27]. In addition, the moment of focusing on a stimulus is dependent upon user, thus

the set of all cyclic shifts of a sequence was used as a block word other than associating a

sequence with a single stimulus.

A cyclic code was divided into several block codes, where the circular shifts of each

codeword gave another word that belongs to the code. Thus, the block code is also

named as cyclic class.

In this article, to achieve the MPCC, the cyclic code introduced in [28] was used,

where the targets were coded by the predefined phases cycle by cycle, and each cycle

was divided into several coding epochs that were corresponding to a flickering visual

stimulus with certain phase.

It is noted that two phases can code six targets with the code length of 4 after cycle

coding, compared to 16 (=24) targets with the same conditions in the traditional coding
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method. With the cycle coding method, though the available targets decrease, a user

only needs focusing his attention on the stimulus without concerning the time

synchronous and time breaks between cycles, and any decoded code words in one

sequence can be the target, as shown in Figure 1. Another advantage is that they are

error-correction codes, which have algebraic properties that are convenient for efficient

error detection and correction, and consequently enhance the discrimination accuracy.

The generation of cyclic class and the detection of code word

Several ways to generate the cycle error-correction code have been proposed, in the

present study, considering that the code length is usually short in the SSVEP-based

BCI, the Gilbert exhaustive search algorithm, which is based on the Hamming distance,

is used [29,30].

Class leader The class leader represents a cyclic class. It also can decrease the word

candidates and consequently increase the speed of searching for a good code.

In a cyclic shift set m, the class leader is defined as the unique sequence that is the

smallest one in a lexicographical ordering. For example, given

m ¼ 11010; 10101; 01011; 10110; 01101f g

In lexicographical order, we can achieve 01011 < 01101 < 10101 < 10110 < 11010, so

the class leader is 01011. An algorithm to create cyclic classes through finding class

leaders is described as follows. Considering all sequence xN in lexicographical order,

i. Starting with the smallest sequence xN = 0N;

ii. xN must be a class leader, since all lexicographically smaller sequences have already

been considered;

iii. Removing all cyclic shifts of xN from the ordered list;

iv. If the list is empty then stop, else let xN be the smallest sequence in the ordered list

and continue with the step ii.

The example of class leaders obtained by the algorithm with A as {0, 1, 2} and the

word length as 5 is listed as follows. There are 51 cyclic classes and each of them can
Figure 1 The paradigm of Multiple Phases Cycle Coding (MPCC), where the gray bar denotes the
coding stimulus phase Φ1, while the white bar denotes the coding stimulus phase Φ0.
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be associated to a stimulus source. But in order to obtain a good performance of classi-

fying each other, a good error-correcting code is needed.

{000003, 000013, 000023, 000113, 000123, 000213, 000223, 001013, 001023, 001113,

001123, 001213, 001223, 002013, 002023, 002113, 002123, 002213, 002223, 010113, 010123,

010213, 010223, 011023, 011113, 011123, 011213, 011223, 012023, 012113, 012123, 012213,

012223, 020213, 020223, 021113, 021123, 021213, 021223, 022113, 022123, 022213, 022223,

111113, 111123, 111223, 112123, 112223, 121223, 122223, 222223}.
The construction of an error-correction code In general, constructing a good

error-correction code is challenging. In case of SSVEP-based BCIs, however, the

code length is short and thus an exhaustive search method for good codes can be

used. The search method is based on the Cyclic Hamming Distance (CHD) between

classes. In information theory, the Hamming distance between two strings of equal length

is the number of positions at which the corresponding symbols are different. Here the

Cyclic Hamming Distance (CHD) is defined as the minimum Hamming distance between

the cyclic shifted versions of two class leaders.

Given a minimum Cyclic Hamming Distance (CHD), a word length N and a symbol

set A, a list of all cyclic classes can be found with Gilbert construction from the class

leaders. L is the class list in which the distance between each other is equal to or bigger

than d. W is a class list in which the classes have a minimum cyclic distance of d. After

that, the search of the cyclic code can be performed using the recursive algorithm as

shown below, where the function ‘cyclicdistance’ calculates the Cyclic Hamming

Distance (CHD) between two class leaders.
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Detection of word The Minimum Distance Detection (MDD) is used to detect the

code word. It compares the Hamming distance between the detected code word and all

block codes, and the code word that has the minimum distance is considered as the

target code word.

Cyclic codes have the ability to correct errors. From the concept of Hamming

distance a cyclic code with a minimum Hamming distance 2 t + 1 can correct any t errors.

Implementation of MPCC in SSVEP-based BCIs

As described above when MPCC is used to encode targets, each symbol is corresponding to

a feature such as a frequency or a phase of SSVEP. Considering the SSVEP characteristics

of frequency-dependence, we apply several phases at one frequency. Then each target of

our system is encoded with the combination of these phases.

SSVEP feature extraction

To obtain the SSVEP phases effectively, a signal processing method based on multi-

channel EEG fusion is proposed, where pattern recognition methods are used to iden-

tify the subject's intension. Figure 2 illustrates this procedure. In this section, the

methods of spatial filtering and phase synchrony analysis based on the Hilbert trans-

form are described [24,31].

The SSVEP enhancement using spatial filtering An EEG epoch X can be written as

a T × N matrix with the columns as the signals of N recorded electrodes and the rows

as the T time samples in the epoch xi, i = 1,…,N. The spatially filtered signal xw can be

written as a linear combination of the {xi}.

xw ¼
X
i

wi • xi ¼ X •w

where

w ¼ w1;…wn½ �0 : ð1Þ

The spatial filter coefficients are estimated so that the ratio between the SSVEP and
background activity is maximized [32]. The maximal contrast combination method in

[32] is used to estimate w at an EEG epoch basis as follows:

w ¼ arg max
~w 0X0X~w

~w 0 X‐QXð Þ0 X‐QXð Þ~w ð2Þ

Where Q = S(S ' S)− 1S ', S' is a matrix with the columns as the signals in the set
Figure 2 The procedure of target recognition.
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Φ ¼ sin 2πf tð Þ; cos 2πf tð Þf jh ¼ 1;…;Hg with t ¼ 0;…T ‐1½ �0 ð3Þ

These are sinusoidal signals at the stimulation frequency f and its harmonics H. In this
study, only the stimulation frequency, i.e., H = 1, is considered, since the high stimulation

frequencies (>30 Hz) is used and the EEG spectral content is restricted to 60 Hz.

In equation (2), the per-epoch covariance matrices X'X and (X ‐QX) ' (X ‐QX) are

used to estimate the SSVEP activities and the background activities, respectively. A bet-

ter and more stable estimation of the covariance matrix can be obtained if the covari-

ance matrices of several EEG epochs are averaged. Thus we propose to estimate the

optimum spatial filter as follows:

w ¼ arg max

~w 0XK
k¼1

Xk
0Xk ~w

~w 0
XK
k¼1

Xk ‐QXkð Þ0 Xk ‐QXkð Þ~w
ð4Þ

Where Xk is the k-th EEG epoch and K is the total number of epochs that are
considered.

Phase synchrony analysis The phase is estimated through phase synchrony analysis. It

first calculates the instantaneous phase difference δf (t) between zf (t) and the stimula-

tion signal filtered with the peak filter centered at f. This signal is denoted as lf (t).

The analytical signals associated with f (t) and lf (t), A{zf}(t) and A{lf}(t) respectively

can be written as:

A zf
� �

tð Þ ¼ zf tð Þ þ jH zf
� �

tð Þ ¼ R zf
� �

tð ÞejΘ zff g tð Þ ð5Þ

A lf
� �

tð Þ ¼ lf tð Þ þ jH lf
� �

tð Þ ¼ R lf
� �

tð ÞejΘ lff g tð Þ

where H{zf}(t) and H{lf}(t) are the Hilbert transform of zf (t) and lf (t), R{•} and Θ{•} are

the instantaneous amplitude and phase, respectively. Thus, the instantaneous phase dif-

ference δf (t) is equal to Θ{zf}(t) −Θ{lf}(t). The phase is estimated as the median of δf (t)

in a given time window, e.g. the epoch duration.

Feature vector classification A probabilistic neural network (PNN) is used to identify

the user's focus of attention from the feature vector. A PNN is a radial basis network

that estimates the probability density function of each class from labeled training data

[33] using the Parzen window technique.

Considering the individual differences involved and the trained classifier for each sub-

ject, 27 segments of EEG were used as training and testing dataset, and leave-one-out

cross validation was used.

Selection of optimal stimulus frequency

The stimulation frequency eliciting the strongest SSVEP response (optimal stimulation

frequency) is user dependent [34], and higher frequencies cause less visual fatigue.

Therefore, we implemented a procedure aiming at selecting the optimal stimulation

frequency in the range from 32 to 40 Hz [35].
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Optimization of phase duration

Considering that the duration of one command cannot be too long, it is necessary to

select an optimal duration of a phase. In MPCC, the stimulation frequency is kept un-

changed, while the phase is determined by the symbol in the code word. The phase is

expressed as follows:

mϕ tð Þ ¼ ϕj; tj < t < tj þ Δt ð6Þ

where ϕj is an arbitrary one of a phase set, tj is the onset of the stimulus, Δt is the dur-
ation of the stimulus with this phase. The duration Δt is very important, since its too

short will make SSVEP phase transition occur before achieving stability, and its too

long will make the single code word lasting too long and the ITR decrease.

Performance evaluation

To evaluate the performance of BCI, consistent criteria are necessary. The most popu-

lar criterion is the information transfer rate (ITR), which measures the information

transmitted by the system in unit time and is calculated based on the popular bit rate

definition [36]. Specifically, the bit rate R and ITR for N classes and classification ac-

curacy p are defined as followes:

R bits=symbolð Þ ¼ log2 Nð Þ þ p log2 pð Þ þ 1 − pð Þ log2 1 − pð Þ= N − 1ð Þ½ � ð7Þ

ITR bits=minuteð Þ ¼ R� 60=τ ð8Þ

Where τ is the average time (in seconds) needed to identify one symbol.

Experimental protocol

In this study, two green LED (diameter = 5 cm) flickering simultaneously driven by

square wave currents, which were rendered from two Agilent Function Generators

(Model: 33220A), were used as the stimulation sources. The distance between two LED

boxes was around 30 cm.

These two LEDs flickered at the same frequency but with different phases. One LED

had the unchanged phase 0 while the other had the changed phase (0, 2π/3, 4π/3). A

photodiode was used to record the light source with the unchanged phase, which was

used to extract the phase difference between the light signal and SSVEP using phase

synchrony analysis.

Three phases (0, 2π/3, 4π/3) were used in the experiment, representing three symbols

{0, 1, 2}. And there were 27 (= 33) combinations; each one corresponded to one stimu-

lus cycle. Each subject received 27 stimuli with the different phase duration Δt. During
the two adjacent visual stimuli, the subjects had 5–6 seconds to rest. The subjects were

required to avoid movements or blinking during stimulus periods, while advised to

blink during the resting period between two consecutive stimuli.

Eight subjects were recruited in this study. They were requested to seat in front of a

lamp positioned approximately 0.5 meter away from their eyes. All subjects had no

neurological disease, especially epilepsy. They had signed an informed consent before

engaging in this study and had the right to quit at any time. The scope of Δt was ran-
domly selected from 0.2 to 1.0 with the step of 0.1.
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EEG signals were recorded using a BioSemi Active-two EEG acquisition device in a

normal office environment with curtain closed and lights on. Thirty-two electrodes

were placed according to the international 10–20 system. The impedance between scalp

and electrodes was kept below 5 kΩ. The sampling frequency was 2048 Hz.
Results
During offline analysis, all experimental data were preprocessed firstly. They were

down-sampled to 256 Hz, Cz was used as the re-referenced electrode and the elec-

trodes O1, O2, Oz, PO3, PO4, P3, P4 and Pz were used for spatial filtering, since the

occipital and parietal regions had the strongest response of SSVEP [1]. In the spatial fil-

tering and phase extraction, the time window was the duration of one phase and there

was no overlap between two windows.
Determination of stimulation duration

Figure 3 shows the discrimination accuracy and bit rate per second for different stimu-

lation durations from subject S1. As shown in Figure 3(a), the accuracy increases at first

and then becomes stable. So the optimal durations greater than 0.5 s are all available.

In contrast, Figure 3(b) shows the BPS of different durations. The BPS increases at

first and reaches a maximum of 2.61 bits/second, and then it decreases. The duration

corresponding to the maxima is the optimal one. The third column of Table 1 shows

the optimal durations of eight subjects, it also shows that the optimal duration depends

on subjects and is longer than 0.5 second. The classification accuracies and BPSs are

shown in the fourth and fifth columns, respectively. It also demonstrates that the

spatial filter and phase synchrony analysis methods presented are effective.
Figure 3 The relationship between classification accuracy, maximum amount of information transfer
per unit time and stimulation duration. (a) The classification accuracy as a function of stimulation duration.
(b) The bit rate as a function of stimulation duration.



Table 1 The optimal frequency, duration, accuracy and BPS of all subjects

Subjects Optimal frequency (Hz) Optimal duration(s) Discrimination accuracy BPS(bit/symbol)

S1 40 0.5 95.06% 2.61

S2 40 0.7 95.06% 1.88

S3 40 1.0 90.12% 1.06

S4 39 0.6 82.72% 1.40

S5 40 0.7 95.06% 1.83

S6 37 0.7 88.89% 1.47

S7 37 0.6 90.12% 1.81

S8 37 0.6 95.06% 2.13

Average(Mean ± SD) 91.51 ± 4.45% 1.77 ± 0.48
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The performance test of cyclic word

During the experiment, each phase was repeated 27 times for each subject, and each

symbol of code word was chosen randomly from the data set. Then we combined them

according to the code word in Table 2 and repeated it 20 times.

Table 3 shows the discrimination accuracy of eight subjects for all encoded word. It

is observed that C6 has the highest accuracy except S7, since it has the greatest code

distance and code length compared with other code words, which mean it could cor-

rect more errors. Theoretically, if the code length is long enough, it is possible to ob-

tain 100% accuracy for detecting a code word. But in the practical BCI system, it is

inappropriate to adopt too long code because it needs more time to identify the target.

The code C6 is not suitable for S3, because the phase duration is 1 s and the system

needs 10s to identify one command, but it is still suitable for S1 because the phase dur-

ation is 0.5 s and the system needs 5 s to identify one command.

Table 4 shows the IRTs of eight subjects for all encoded words. The performance of

S3 and S7 is worse than others. For S3, it may because the duration of a single phase is

one second, longer than the other subjects, while as for S7, it should be the low code

word discrimination accuracy.

The results show that the discrimination performance is different among different

subjects and different coding codewords, indicating that each subject has its own opti-

mal cycle coding.
Table 2 Six code examples of different word length N, minimal word distance dmin and
a symbol set {0,1,2}

N dmin Number of code words Code word

C1 3 2 5 {000, 012, 021, 111, 222}

C2 4 2 9 {0000, 0011, 0022, 0101, 0202, 1111, 1122, 1212, 2222}

C3 5 3 6 {0000, 0011, 0022, 0101, 0202, 1111, 1122, 1212, 2222}

C4 6 3 10
000000; 000111; 001021; 002122; 012012;
020202; 022211; 111111; 121212; 222222

� �

C5 8 4 16
00000000; 00001111; 00010222; 00022021; 00110011; 00202012;
00212201; 00221122; 01010101; 01021012; 01112212; 01120221;
01222111; 02112121; 11111111; 22222222

8<
:

9=
;

C6 10 5 14
0000000000; 0000011111; 0000022222; 0001100211; 0002200122;
0101201012; 0102111222; 0112012012; 0202102021; 0210210221;
0222211112; 1111111111; 1212121212; 2222222222

8<
:

9=
;



Table 3 The discrimination accuracies of the 8 subjects with different code word

Subject C1 C2 C3 C4 C5 C6

S1 91.99% 91.99% 97.92% 97.35% 96.31% 99.25%

S2 87.52% 85.80% 97.26% 96.60% 96.15% 98.71%

S3 77.44% 72.58% 91.94% 89.45% 85.79% 94.59%

S4 69.05% 63.09% 81.95% 76.85% 71.48% 84.77%

S5 91.83% 88.67% 97.96% 97.67% 97.35% 99.45%

S6 79.24% 72.22% 90.28% 88.35% 86.80% 93.25%

S7 78.99% 74.48% 92.69% 56.08% 46.87% 61.50%

S8 92.45% 92.12% 98.04% 97.67% 97.70% 99.54%

Average
(Mean ± SD)

83.56 ± 8.63% 80.12 ± 10.90% 93.51 ± 5.62% 87.51 ± 14.60% 84.81 ± 17.75% 91.38 ± 13.08%
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Discussion
This study presents a SSVEP-based BCI using Multi-Phase Cycle Coding. The proposed

method encodes each target with a block word, which comprises of a series of cyclic

codewords, and each block word is corresponding to a certain visual stimulus source

that flickers at a single frequency and is combined by multiple phases from an available

phase set. Compared to other SSVEP-based BCI systems, the present BCI system has

significant advantages.

First of all, the system only utilizes single flickering frequency and avoids the

amplitude-frequency problem. It uses the high stimulation frequency (30 Hz < f < 40 Hz),

which is safer and more comfortable for users, causes less visual fatigue, and avoids the

interference of low frequency environmental noise and some brain rhythms. Furthermore,

considering the optimal frequency is subject dependent, it selects the optimal stimulation

frequency for each subject.

Secondly, the proposed protocol can encode multiple targets. In MPCC, each target

is coded by a block word that comprises of a series of cyclic codewords. The number of

code words depends on the number of symbols (the phases set of SSVEP), the code

length and minimum Hamming distance. It is obvious that the available code words

have positive relationship with symbols and code length, and negative relationship with

code distance. Theoretically, the proposed method can encode countless targets

through increasing the code length and symbol set. However, the symbol number
Table 4 The ITR (bits/minute) of the 8 subjects with different code word

Subject C1 C2 C3 C4 C5 C6

S1 47.81 36.96 49.55 38.63 29.02 32.51

S2 34.18 24.40 35.13 27.53 20.84 23.22

S3 18.87 13.60 21.20 16.84 12.51 15.33

S4 20.20 14.74 26.25 20.60 14.87 20.79

S5 30.79 24.50 34.82 27.19 20.25 23.09

S6 23.21 17.42 29.20 22.89 17.09 21.12

S7 23.21 16.62 33.96 9.41 5.79 10.15

S8 35.70 28.17 40.01 30.88 23.45 26.77

Average (Mean ± SD) 29.25 ± 9.82 22.05 ± 7.99 33.77 ± 8.67 24.25 ± 8.95 17.98 ± 7.11 21.62 ± 6.78
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cannot be arbitrary large since eight phases can be used at most under one frequency.

Also the code length cannot unlimited grow since the time for users to identify one

command is limited. For example, when the code length reaches 6, the code word dur-

ation of subject S3 is 6 s, it is a bit longer for user’s attention and BCI system to pro-

duce one command.

The other effective way to get more output commands is encoding a series of single

commands to represent a final target. But it requires the user to remember the command

sequence mode and intervals between two commands, so it will decreases the ITR.

Thirdly, the proposed protocol has the error-correction ability and thus enhances the

system’s discrimination accuracy. Compared with the other studies, it has similar or

better performance in discrimination accuracy. The average discrimination accuracy is

91.38 ± 13.08% with code C6 while 83.56 ± 8.63% with code C1. In contrast, Wong

et al. achieved the discrimination accuracy of 90.69% (from channel Oz) [37], Jia et al.

reached 85% (from channels Oz-POz) [21] and Lee et al. reached 83.49 ± 10.4% (from

channel Oz) [18].

The error-correction ability depends on the minimal word distance dmin, the bigger

dmin has better error-correction ability. As shown in Table 3, the word C6, which has

the maximal dmin, has the best performance except for subject S7. But with the increase

of dmin, the available number of code words will decrease and the code length will in-

crease. However, it is harmful to coding and unacceptable for a practical BCI system.

Thus it is a tradeoff among the code length, the command numbers and ability of error

correction.

Furthermore, the system reliability should be concerned in a practical BCI system.

The wrong command will bring greater danger than the miss detection of a command

(i.e., allow the system to standby). For example, when a user controls an electric wheel-

chair, a wrong command will cause an error in the traveling direction, which could

cause great harm to the user. There are two available ways to improve the reliability of

system.

The first one is strictly limiting the distance between the sequence of symbols and

code words to zero in detecting the code word, and the system will has less possibility

to output error commands. In this article, the minimum distance detection (MDD),

which was based on the cyclic Hamming distance and the detected word was the one

that has the smallest distance with any words in a code group, was used to detect the

code word, the distance between the object code word and sequence may be bigger

than zero. Therefore, it is necessary to limit the distance to zero before it is transferred

into practical applications in the future studies.

Another method to improve the system reliability is to use the additional features before

generating the command. In recent years some researchers have combined two or more

brain activity patterns or input signal sources to create a more reliable BCI system, which

is the so called hybrid BCI system [38,39]. Notably, the error-related potentials (ErrPs)

have been used as second level information to correct system decisions, which are certain

types of ERPs observed in the EEG signals when the user is aware of erroneous behavior

[40]. ErrPs can be reliably decoded on a single trial basis, thus enabling their application

in BCI systems as a means to improve the system’s performance.

The present study mainly focuses on the design and implementation of cyclic code.

However, there are many ways of cyclic code such as Fire code, Golay code, BCH (Bose
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Chaudhuri-Hocguenghem) code, and so on. The future work will search for optimal

and proper coding method and apply them in the BCI systems.

Conclusions
In this paper, a new BCI protocol named MPCC is proposed to overcome the restric-

tion of available phase number under one frequency and encodes more targets. It also

has the ability of error correction and can enhance the decoding accuracy. The experi-

ment results indicate that each subject has its own optimal stimulation frequency and

duration, and MPCC has satisfactory discrimination accuracy and ITR compared with

the previous studies, suggesting it is a promising choice in the future BCI systems.
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