
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science College of Engineering and Computer Science

2000

Multi-phase discrete particle swarm optimization Multi-phase discrete particle swarm optimization

Buthainah Sabeeh No'man Al-kazemi
Syracuse University, balkazem@syr.edu

Chilukuri K. Mohan
Syracuse University, ckmohan@syr.edu

Follow this and additional works at: https://surface.syr.edu/eecs

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Al-kazemi, Buthainah Sabeeh No'man and Mohan, Chilukuri K., "Multi-phase discrete particle swarm
optimization" (2000). Electrical Engineering and Computer Science. 54.
https://surface.syr.edu/eecs/54

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs/54?utm_source=surface.syr.edu%2Feecs%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Multi-phase Discrete Particle Swarm
Optimization

Buthainah Al-kazemi and Chilukuri K. Mohan
2-177 CST, Dept. of Electrical Engineering and Computer Science

Syracuse University, Syracuse, NY 13244-4100
balkazem/ckmohan@syr.edu

Abstract

This paper describes a successful adaptation of the
Particle Swarm Optimization algorithm to discrete
optimization problems. In the proposed algorithm,
particles cycle through multiple phases with differing
goals. We also exploit hill climbing. On benchmark
problems, this algorithm outperforms a genetic
algorithm and a previous discrete PSO formulation.

1. Introduction

The Particle Swarm Optimization (PSO) algorithm has
been successful in solving a number of continuous
optimization problems [1]. Unlike genetic algorithms
and evolutionary programming, each individual
(particle) in PSO traces a trajectory in the search space,
constantly updating a velocity vector based on the best
solutions found so far by that particle as well as others
in the population (swarm) [2, 3].

The PSO algorithm was originally proposed for
continuous problems, and attempts have been made
recently to extend it to discrete optimization problems.
Kennedy and Eberhart [4] proposed the first discrete
version (referred to as Quantum DiPSO in [5]) and
Clerc [6] has shown promising results on variants of the
PSO specialized for some constrained optimization
problems such as TSP. Our preliminary experiments
with various Discrete PSO variants are reported in [5].

This paper formulates the Multi-phase Discrete PSO
(M-DiPSO) algorithm, which incorporates hill climbing
using random-sized steps in the search space. The
particles in the swarm are divided into groups that
follow different search strategies.

In section 2, we explain the original PSO algorithm and
the Quantum DiPSO algorithm [1]. Section 3 describes
the M-DiPSO algorithm. Section 4 contains details of
the experiments, and Section 5 describes the results we
obtained on benchmark problems.

2. Particle Swarm Optimization

Each swarm contains M particles with randomly
initialized positions and velocities in an n-dimensional
search space. Each particle stores its current position
(x), current velocity (v), and the best position it has
visited so far (l), and (in the most frequently used
version) is also presumed to know the best (g) among
all positions visited so far by all particles in the swarm.
The particle moves according to the dynamics
described below.

1- The velocity is incremented by a weighted
sum of (l-x) and (g-x); the magnitude of each
velocity component is often limited (to 5 in the
experiments reported in this paper).

2- The position is incremented by the velocity.
Particles move until termination criteria are met, such
as a user-defined maximum number of iterations
(discrete time steps) or a satisfactory solution is found
[1].

For binary discrete search spaces, Kennedy and
Eberhart [4] use the above velocity update equation but
compute the actual new position component to be 1
with a probability obtained by applying a sigmoid
transformation (1/(1+exp(-v)) to the velocity
component. We refer to this as the Quantum DiPSO or
Q-DiPSO algorithm [5].

3. Multiphase DiPSO (M-DiPSO)

The M-DiPSO algorithm adopts the following equation
for updating the ith component of the velocity of
particle m:

,* *m,i v m,i x m i g i(t + 1) = C (t)* +C (t)+ C (t)v * v x g

where the signs of the coefficients determine the
direction of the particle movement. At any given time,
each particle is in one of the possible phases,
determined by its preceding phase and the number of
iterations executed so far. Within each phase, particles
fall into different groups with different coefficient
values for each group.

The M-DiPSO algorithm is fairly robust and gives
similar results for many different parameter values; the
results shown here are with the smallest non-trivial
number of groups and phases, two for each.

In our experiments, the respective coefficients were
chosen to be as follows. In phase 1, each particle in the
first group uses coefficients (1, -1, 1), moving toward g,
the global best position found so far by all the particles,
whereas velocities of particles in the second group are
changed in the opposite direction, using coefficients (1,
1, -1). In phase 2, the coefficients for the two groups are
switched, i.e., (1, 1, -1) for the first group and (1, -1, 1)
for the second group.

These coefficients have been successful in solving the
benchmark problems on which experiments have been
carried out, although other coefficient values are also
possible. Variants of the algorithm may invoke more
groups and phases.

Switching from phase to phase can be done using one
of two methods. The first method is controlled by a
parameter p, so that N/p of the iterations are in each
phase. The second method, used for the results reported
in this paper, is adaptive and performs better: phase
change occurs if no global best fitness improvement is
observed in S recent steps of the current phase. In
experiments reported here, parameter S was chosen to
be 5.

Periodically, the velocity vectors are randomly
reinitialized at a user-determined frequency. For fair
comparison, experiments with the GA as well as Q-
DiPSO invoked periodic random re-initialization, but
this had little effect on the results reported below.

Unlike previous PSO variants, M-DiPSO incorporates
hill-climbing by permitting particle position to change
only if such a change improves fitness. Each particle's
current position is better than its previous positions,
hence the update equations do not contain a separate
term corresponding to the local best (l), thus differing
from the original PSO update equations. Hill climbing
tests one dimension at a time which requires a large
number of fitness evaluations. Instead the M-DiPSO
algorithm successively updates a randomly chosen
fraction of consecutive velocity vector components, and
then updates the corresponding position vector
components after testing that such an update improves
fitness (or quality measure being optimized). The first s
components are first updated, then the next s, and so on.
In our experiments, s was chosen randomly from the
interval [1,10]. If the current position cannot be
improved by flipping any subset of s consecutive bits,
the particle can remain stuck in its current position,
failing to find a global optimum; to overcome this

potential problem arising from high epistasis, the range
of values from which s is chosen may be steadily
increased with the number of iterations

4. Experiments

A traditional GA (using one-point crossover with
crossover probability 0.9 and mutation rate the
reciprocal of string-length), the Q-DiPSO algorithm [1],
and MDiPSO were tested on three different benchmark
problems, described below (see [7] for more detailed
descriptions). These are all deceptive problems with a
large number of local optima. In the following, x
denotes the sum of the bits in a substring x.

1. Goldberg’s order-3 deceptive problem: The fitness
of a bit-string is the sum of the result of separately
applying the following function to consecutive groups
of three components each:

3

0.9 0

0.6 1
()

0.3 2

1.0 3

=

=
=

=

=

if x

if x
x

if x

if x

f

2. Bipolar order-3 problem: The fitness is the sum of
the result of applying the following function to
consecutive groups of six components each:

6

1.0 0 6

0.0 1 5

0.4 2 4

0.8 3

() =

=

=

=

=

if x or

if x or

if x or

if x

xf

3. Mühlenbein’s order-5 problem: The fitness is the
sum of the results of applying the following function to
consecutive groups of five components each:

5

4.0 00000

3.0 00001

2.0 00011
()

1.0 00111

3.5 11111

0

=

=

=
=

=

=

if x

if x

if x
x

if x

if x

otherwise

f

5. Results

Figure 1 and Figure 2 show how M-DiPSO scales up
with problem size, using 1000 iterations, 30 particles
and increasing the number of dimensions from 30 to
300 for Goldberg’s order-3 deceptive problem. In the

table, we list problem dimensionality (n), best fitness
reached and the fitness count (number of fitness
evaluations, averaged over 10 trials) needed to reach
the best fitness. In each case, M-DiPSO reaches the best
fitness in each trial using a small number of fitness
evaluations that appears to increase sub-quadratically.

0

20

40

60

80

100

0 50000 100000 150000 200000 250000
Fitness Evaluations

B
es

t F
itn

es
s

M-DiPSO 30 M-DiPSO 60
M-DiPSO 90 M-DiPSO 120
M-DiPSO 150 M-DiPSO 180
M-DiPSO 210 M-DiPSO 240
M-DiPSO 270 M-DiPSO 300

Figure 1: Evolution of best fitness plotted against the
number of fitness evaluations for M-DiPSO
algorithm applied to Goldberg's order-3 deceptive
problems of different dimensionality.

0

50000

100000

150000

200000

250000

0 100 200 300 400

Problem Dimensionality

Fi
tn

es
s

Ev
al

ua
tio

ns

Figure 2: Performance of M-DiPSO for Goldberg’s
order-3 problems ranging in dimensionality from 30
to 300; results averaged over 10 trials

Tables 1, 2 and 3 show the results for the three different
problems, respectively. In each table, we list the
algorithm used, problem dimension (n), and the number
of fitness evaluations required to reach the best fitness
listed. All results were averages over 10 trials. In every
problem, M-DiPSO reached the best fitness requiring
the fewest fitness evaluations. The GA and Q-DiPSO
were executed for 100,000 fitness evaluations in each

experiment, and terminated without reaching the
optimal fitness value. The numbers of fitness
evaluations required by M-DiPSO to find the optimal
solutions are shown in parentheses.

Figures 3, 4 and 5 compare the performance of the three
algorithms. M-DiPSO uses population size of 30 and
the rest of algorithms use population size of 100. All
the algorithms were terminated after 100,000 fitness
evaluations. These results were averages over 10 trials.
As clearly apparent from the figure, M-DiPSO reached
the best fitness requiring far fewer fitness evaluations
than the other algorithms for all the problems, using a
smaller population size.

On a 60-bit non-deceptive variant of Goldberg's order-3
problem, with 3f (001)= 3f (010)= 3f (100)=0.3 and

3f (011)= 3f (101)= 3f (110)=0.6, M-DiPSO, GA
and Q-DiPSO required 5978, 43326 and 52800 fitness
evaluations, respectively, to reach the global optimum,
showing that deception is not necessary for M-DiPSO
to outperform the GA.

Problem
Dimensionality

30 60 90 150

GA 9.42

24.05

24.05

36.74

Q-DiPSO 9.44

16.8

24.02

37.13

M-DiPSO
(evals)

10
(5417)

20
(26368)

30
(39885)

50
(75150)

Table 1: Best fitness found using GA, Q-DiPSO and
M-DiPSO for Goldberg’s order-3 deceptive problem
instances of different dimensionality, averaged over
10 trials.
 Problem
Dimensionality 30 60 90
GA 4.68 8.48 11.92
Q-DiPSO 4.66 8.36 11.72
M-DiPSO
(evals)

5
(15690)

10
(45902)

15
(83348)

Table 2: Best fitness found using GA, Q-DiPSO and
M-DiPSO for Bipolar problem instances of different
dimensionality, averaged over 10 trials.
Problem
Dimensionality

30 60 90 150

GA 23.05 36.3 47.9 62.25
Q-DiPSO 21.65 34.8 44.5 64.2
M-DiPSO
(evals)

24
(5354)

48
(15344)

72
(42358)

120
(88488)

Table 3: Best fitness found using GA, Q-DiPSO and
M-DiPSO for Mühlenbein’s problem instances of
different dimensionality, averaged over 10 trials.

7.5

8

8.5

9

9.5

10

0 20000 40000 60000 80000 100000

Fitness Count

B
es

t F
itn

es
s

GA M-DiPSO Q-DiPSO

Figure 3: Comparison of GA, Q-DiPSO and M-
DiPSO for Goldberg’s 30-bit problem

9

10

11

12

13

14

15

0 20000 40000 60000 80000 100000

Fitness Evaluations

B
es

t F
itn

es
s

GA M-DiPSO Q-DiPSO

Figure 4: Comparison of GA, Q-DiPSO and M-
DiPSO for BiPolar 90-bit problem

20

30

40

50

60

70

80

0 20000 40000 60000 80000 100000 120000

Fitness Evaluations

B
es

t F
itn

es
s

GA M-DiPSO Q-DiPSO

Figure 5: Comparison of GA, Q-DiPSO and M-
DiPSO for Mühlenbein’s 90-bit problem

6. Concluding Remarks
The results presented in the previous section show that
M-DiPSO is a powerful algorithm that succeeds in
solving the benchmark binary optimization problems
using a small number of fitness evaluations to reach the
best fitness. It also requires only a small number of
particles. Although not shown in the tables, the actual
computation times required were also small compared
to other algorithms.

Current work involves more exhaustive testing of M-
DiPSO for other benchmark problems. We are also
exploring its application to continuous space problems.
Benchmark continuous space problems can also be
solved using the discrete version of the algorithm,
encoding real numbers using bit strings. Preliminary
results have shown that M-DiPSO can succeed in
solving such problems

References

[1] J. Kennedy and R. C. Eberhart, "Particle

Swarm Optimization," Proc. IEEE
International Conference on Neural Networks,
1995.

[2] E. Ozcan and C. K. Mohan, "Particle swarm
optimization: surfing the waves," Proc.
Congress on Evolutionary Computation,
Piscataway, NJ, 1999.

[3] Y. Shi and R. Eberhart, "A Modified Particle
Swarm Optimizer," Proc. IEEE International
conference on Evolutionary Computation,
Anchorage, Alaska, 1998.

[4] J. Kennedy and R. C. Eberhart, "A discrete
binary version of the particle swarm
algorithm," Proc. Conf. on Systems, Man, and
Cybernetics, Piscataway, NJ, 1997.

[5] C. K. Mohan and B. Al-kazemi, "Discrete
particle swarm optimization," Proc. Workshop
on Particle Swarm Optimization, Indianapolis,
IN: Purdue School of Engineering and
Technology, IUPUI, 2001.

[6] M. Clerc, "The Swarm and the Queen:
Towards a Deterministic and Adaptive Particle
Swarm Optimization," Proc. Congress on
Evolutionary Computation, Washington, DC,
1999.

[7] A. Salman, K. Mehrotra, and C. K. Mohan,
"Adaptive Linkage Crossover," Evolutionary
Computation, vol. 8, pp. 341-370, 2000.

	Multi-phase discrete particle swarm optimization
	Recommended Citation

	Microsoft Word - Final_sent_FEA_paper.doc

