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Abstract 
 
This paper describes a successful adaptation of the 
Particle Swarm Optimization algorithm to discrete 
optimization problems. In the proposed algorithm, 
particles cycle through multiple phases with differing 
goals. We also exploit hill climbing.  On benchmark 
problems, this algorithm outperforms a genetic 
algorithm and a previous discrete PSO formulation. 
 
1. Introduction 
 
The Particle Swarm Optimization (PSO) algorithm has 
been successful in solving a number of continuous 
optimization problems [1].  Unlike genetic algorithms 
and evolutionary programming, each individual 
(particle) in PSO traces a trajectory in the search space, 
constantly updating a velocity vector based on the best 
solutions found so far by that particle as well as others 
in the population (swarm) [2, 3].  
 
The PSO algorithm was originally proposed for 
continuous problems, and attempts have been made 
recently to extend it to discrete optimization problems. 
Kennedy and Eberhart [4] proposed the first discrete 
version (referred to as Quantum DiPSO in [5]) and 
Clerc [6] has shown promising results on variants of the 
PSO specialized for some constrained optimization 
problems such as TSP. Our preliminary experiments 
with various Discrete PSO variants are reported in [5]. 
 
This paper formulates the Multi-phase Discrete PSO 
(M-DiPSO) algorithm, which incorporates hill climbing 
using random-sized steps in the search space. The 
particles in the swarm are divided into groups that 
follow different search strategies.  
 
In section 2, we explain the original PSO algorithm and 
the Quantum DiPSO algorithm [1]. Section 3 describes 
the M-DiPSO algorithm. Section 4 contains details of 
the experiments, and Section 5 describes the results we 
obtained on benchmark problems. 
 
 

2. Particle Swarm Optimization  
 
Each swarm contains M particles with randomly 
initialized positions and velocities in an n-dimensional 
search space. Each particle stores its current position 
(x), current velocity (v), and the best position it has 
visited so far (l), and (in the most frequently used 
version) is also presumed to know the best (g) among 
all positions visited so far by all particles in the swarm. 
The particle moves according to the dynamics 
described below. 

1- The velocity is incremented by a weighted 
sum of (l-x) and (g-x); the magnitude of each 
velocity component is often limited (to 5 in the 
experiments reported in this paper). 

2- The position is incremented by the velocity. 
Particles move until termination criteria are met, such 
as a user-defined maximum number of iterations 
(discrete time steps) or a satisfactory solution is found 
[1].  
 
For binary discrete search spaces, Kennedy and 
Eberhart [4] use the above velocity update equation but 
compute the actual new position component to be 1 
with a probability obtained by applying a sigmoid 
transformation (1/(1+exp(-v)) to the velocity 
component. We refer to this as the Quantum DiPSO or 
Q-DiPSO algorithm [5]. 
 
3. Multiphase DiPSO (M-DiPSO) 
 
The M-DiPSO algorithm adopts the following equation 
for updating the ith component of the velocity of 
particle m: 
 

,* *m,i v m,i x m i g i(t + 1) = C (t)* +C (t)+ C (t)v * v x g    
 
where the signs of the coefficients determine the 
direction of the particle movement.  At any given time, 
each particle is in one of the possible phases, 
determined by its preceding phase and the number of 
iterations executed so far.  Within each phase, particles 
fall into different groups with different coefficient 
values for each group.  
 



The M-DiPSO algorithm is fairly robust and gives 
similar results for many different parameter values; the 
results shown here are with the smallest non-trivial 
number of groups and phases, two for each.  
 
In our experiments, the respective coefficients were 
chosen to be as follows. In phase 1, each particle in the 
first group uses coefficients (1, -1, 1), moving toward g, 
the global best position found so far by all the particles, 
whereas velocities of particles in the second group are 
changed in the opposite direction, using coefficients (1, 
1, -1). In phase 2, the coefficients for the two groups are 
switched, i.e., (1, 1, -1) for the first group and (1, -1, 1) 
for the second group. 
 
These coefficients have been successful in solving the 
benchmark problems on which experiments have been 
carried out, although other coefficient values are also 
possible. Variants of the algorithm may invoke more 
groups and phases.  
 
Switching from phase to phase can be done using one 
of two methods. The first method is controlled by a 
parameter p, so that N/p of the iterations are in each 
phase. The second method, used for the results reported 
in this paper, is adaptive and performs better: phase 
change occurs if no global best fitness improvement is 
observed in S recent steps of the current phase. In 
experiments reported here, parameter S was chosen to 
be 5. 
  
Periodically, the velocity vectors are randomly 
reinitialized at a user-determined frequency. For fair 
comparison, experiments with the GA as well as Q-
DiPSO invoked periodic random re-initialization, but 
this had little effect on the results reported below. 
 
Unlike previous PSO variants, M-DiPSO incorporates 
hill-climbing by permitting particle position to change 
only if such a change improves fitness. Each particle's 
current position is better than its previous positions, 
hence the update equations do not contain a separate 
term corresponding to the local best (l), thus differing 
from the original PSO update equations. Hill climbing 
tests one dimension at a time which requires a large 
number of fitness evaluations. Instead the M-DiPSO 
algorithm successively updates a randomly chosen 
fraction of consecutive velocity vector components, and 
then updates the corresponding position vector 
components after testing that such an update improves 
fitness (or quality measure being optimized). The first s 
components are first updated, then the next s, and so on. 
In our experiments, s was chosen randomly from the 
interval [1,10]. If the current position cannot be 
improved by flipping any subset of s consecutive bits, 
the particle can remain stuck in its current position, 
failing to find a global optimum; to overcome this 

potential problem arising from high epistasis, the range 
of values from which s is chosen may be steadily 
increased with the number of iterations 
 
4. Experiments 
 
A traditional GA (using one-point crossover with 
crossover probability 0.9 and mutation rate the 
reciprocal of string-length), the Q-DiPSO algorithm [1], 
and MDiPSO were tested on three different benchmark 
problems, described below (see [7] for more detailed 
descriptions).  These are all deceptive problems with a 
large number of local optima. In the following, x  
denotes the sum of the bits in a substring x. 
 
1. Goldberg’s order-3 deceptive problem: The fitness 
of a bit-string is the sum of the result of separately 
applying the following function to consecutive groups 
of three components each: 
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2. Bipolar order-3 problem: The fitness is the sum of 
the result of applying the following function to 
consecutive groups of six components each:  
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3. Mühlenbein’s order-5 problem: The fitness is the 
sum of the results of applying the following function to 
consecutive groups of five components each:  
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5. Results 
 
Figure 1 and Figure 2 show how M-DiPSO scales up 
with problem size, using 1000 iterations, 30 particles 
and increasing the number of dimensions from 30 to 
300 for Goldberg’s order-3 deceptive problem. In the 



table, we list problem dimensionality (n), best fitness 
reached and the fitness count (number of fitness 
evaluations, averaged over 10 trials) needed to reach 
the best fitness. In each case, M-DiPSO reaches the best 
fitness in each trial using a small number of fitness 
evaluations that appears to increase sub-quadratically. 
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Figure 1: Evolution of best fitness plotted against the 
number of fitness evaluations for M-DiPSO 
algorithm applied to Goldberg's order-3 deceptive 
problems of different dimensionality. 
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Figure 2: Performance of M-DiPSO for Goldberg’s 
order-3 problems ranging in dimensionality from 30 
to 300; results averaged over 10 trials       
 

Tables 1, 2 and 3 show the results for the three different 
problems, respectively. In each table, we list the 
algorithm used, problem dimension (n), and the number 
of fitness evaluations required to reach the best fitness 
listed. All results were averages over 10 trials. In every 
problem, M-DiPSO reached the best fitness requiring 
the fewest fitness evaluations. The GA and Q-DiPSO 
were executed for 100,000 fitness evaluations in each 

experiment, and terminated without reaching the 
optimal fitness value. The numbers of fitness 
evaluations required by M-DiPSO to find the optimal 
solutions are shown in parentheses. 

 
Figures 3, 4 and 5 compare the performance of the three 
algorithms. M-DiPSO uses population size of 30 and 
the rest of algorithms use population size of 100. All 
the algorithms were terminated after 100,000 fitness 
evaluations. These results were averages over 10 trials. 
As clearly apparent from the figure, M-DiPSO reached 
the best fitness requiring far fewer fitness evaluations 
than the other algorithms for all the problems, using a 
smaller population size.    
 
On a 60-bit non-deceptive variant of Goldberg's order-3 
problem, with 3f (001)= 3f  (010)= 3f  (100)=0.3 and 

3f  (011)= 3f  (101)= 3f  (110)=0.6, M-DiPSO, GA 
and Q-DiPSO required 5978, 43326 and 52800 fitness 
evaluations, respectively, to reach the global optimum, 
showing that deception is not necessary for M-DiPSO 
to outperform the GA.  
 
 
Problem 
Dimensionality 

30 60 90 150 

GA 9.42 
 

24.05 
 

24.05 
 

36.74 
 

Q-DiPSO 9.44 
 

16.8 
 

24.02 
 

37.13 
 

M-DiPSO 
(evals) 

10 
(5417) 

20 
(26368) 

30 
(39885) 

50 
(75150) 

Table 1: Best fitness found using GA, Q-DiPSO and 
M-DiPSO for Goldberg’s order-3 deceptive problem 
instances of different dimensionality, averaged over 
10 trials.  
 Problem 
Dimensionality 30 60 90 
GA 4.68 8.48 11.92 
Q-DiPSO 4.66 8.36 11.72 
M-DiPSO 
(evals) 

5 
(15690) 

10 
(45902) 

15 
(83348) 

Table 2: Best fitness found using GA, Q-DiPSO and 
M-DiPSO for Bipolar problem instances of different 
dimensionality, averaged over 10 trials.  
Problem 
Dimensionality 

30 60 90 150 

GA 23.05 36.3 47.9 62.25 
Q-DiPSO 21.65 34.8 44.5 64.2 
M-DiPSO 
(evals) 

24 
(5354) 

48 
(15344) 

72 
(42358) 

120 
(88488) 

Table 3: Best fitness found using GA, Q-DiPSO and 
M-DiPSO for Mühlenbein’s problem instances of 
different dimensionality, averaged over 10 trials.  
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Figure 3: Comparison of GA, Q-DiPSO and M-
DiPSO for Goldberg’s 30-bit problem 
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Figure 4: Comparison of GA, Q-DiPSO and M-
DiPSO for BiPolar 90-bit problem 
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Figure 5: Comparison of GA, Q-DiPSO and M-
DiPSO for Mühlenbein’s 90-bit problem 

6. Concluding Remarks 
The results presented in the previous section show that 
M-DiPSO is a powerful algorithm that succeeds in 
solving the benchmark binary optimization problems 
using a small number of fitness evaluations to reach the 
best fitness. It also requires only a small number of 
particles. Although not shown in the tables, the actual 
computation times required were also small compared 
to other algorithms. 
 
Current work involves more exhaustive testing of M-
DiPSO for other benchmark problems.  We are also 
exploring its application to continuous space problems.  
Benchmark continuous space problems can also be 
solved using the discrete version of the algorithm, 
encoding real numbers using bit strings. Preliminary 
results have shown that M-DiPSO can succeed in 
solving such problems 
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