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A numerical model to simulate microstructure evolution and macroscopic mechanical behavior during hot working was developed. In this
model, we employed a multi-phase-field model to simulate the growth of dynamically recrystallized grains with high accuracy and the Kocks-
Meching model to calculate the evolution of dislocation density due to plastic deformation and dynamic recovery. Furthermore, an efficient
computational algorithm was introduced to perform the multi-phase-field simulation efficiently. The accuracy of the developed model was
confirmed by comparing the migration rate of grain boundaries with the theoretical value. Also, the numerical results for a polycrystalline
material are compared with those obtained from a cellular automaton simulation. Furthermore, the effects of the initial grain size, grain boundary
mobility and nucleation rate on the dynamic recrystallization behavior were investigated using the developed model.
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1. Introduction

During the hot working of metallic materials, hardening
caused by the accumulation of dislocations and softening due
to dynamic recovery (DRV) and dynamic recrystallization
(DRX) occur simultaneously.1) In particular, for metals with
low to medium stacking fault energy, DRX is marked and the
characteristic stress–strain curves are observed to depend on
the temperature, strain rate and initial grain size.2,3) Single–
peak curves occur at a low temperature and high strain rate
and multiple–peak curves occur at a high temperature and
low strain rate. It is well–known that such characteristic
mechanical behavior is strongly related to the microstructure
evolution, or the nucleation and growth of DRX grains.
Therefore, for the optimum design of the working process
and the accurate prediction of material microstructures
formed during hot working, it is essential to develop a
numerical model that can be used to investigate the macro-
scopic mechanical behavior resulting from the microstructure
evolution. However, since the modeling of DRX requires a
simulation that couples the mechanical behaviors and the
microstructure evolution, the number of reported numerical
studies on DRX is much fewer than that for static
recrystallization (SRX) occurring during post–deformation
annealing.4–11)

The cellular automaton (CA) method12–18) and Monte
Carlo (MC) method19,20) have been employed to simulate
microstructure evolution during the DRX process. Because of
its methodological flexibility, the CA method is used more
frequently than the MCmethod. Ding and Guo13) developed a
model that simulates the microstructural evolution and
plastic flow behavior during DRX by coupling the evolution
equation of dislocation density, or the Kocks-Meching (KM)
model,21) with the CA method.7) Althought the DRX model
is relatively simple and intuitive, it is possible to simulate

the macroscopic mechanical behavior based on the micro-
structure. Therefore, the model is very useful as a multiscale
method. However, it has been pointed out that the CA and
MC methods lead to problems when modeling the absolute
timescale and the curvature–driven growth of the grain
boundary.4)

In this study, we develop a phase-field (PF) model to
simulate microstructure evolution during DRX. Since the
PF model can simulate the grain boundary migration by
curvature driving with a real timescale, the grain growth
is accurately reproduced.22–29) Here, the multi-phase-field
(MPF) model proposed by Steinbach and Pezzolla26) is
employed to represent polycrystalline material, because the
MPF model has merits compared with other MPF models27,28)

in that the phase field parameters can be perfectly related to
the material parameters and the chemical driving force can
be treated. Furthermore, the introduction of an algorithm
developed by Kim et al.29) enables efficient MPF computa-
tion during DRX. Here, we call the developed model the
multi-phase-field dynamic recrystallization (MPF-DRX)
model. Subsequently, by performing a single–grain growth
simulation, the accuracy of the MPF-DRX model is con-
firmed by comparison with theoretical results. Then, the
results of polycrystalline grain growth are compared with
those obtained by the CA method and we discuss the
interrelationship between the microstructure and the me-
chanical behavior. Finally, the effects of the grain boundary
mobility and nucleation rate on the DRX performance are
investigated.

2. DRX Model

We develop the MPF-DRX model in which the grain
growth driven by stored energy is simulated by the MPF
method26) using an efficient computational algorithm29) and
the dislocation density evolution due to plastic deformation
and DRV is expressed by the KM model.21) A macroscopic*Graduate Student, Kobe University
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stress–strain curve is obtained from the Bailey–Hirsch
relation30) using the average dislocation density.

2.1 Multi-phase-field model
Let us consider a polycrystalline system including N

grains. The �th grain is indicated by the phase field ��, where
�� takes a value of 1 inside the �th grain, 0 inside the other
grains and 0 < �� < 1 at the grain boundary. The �� are
not independent and must satisfy

XN
�¼1

�� ¼ 1: ð1Þ

Here, we use the free energy functional

F ¼
Z
V

�XN
�¼1

XN
�¼�þ1

�
�

a2��

2
r�� � r��

þW������

�
þ fe

�
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where a�� is the gradient coefficient, W�� is the height of the
energy barrier and fe is the free energy density in the grains.
Here, the number of grains, N, in eqs. (1) and (2) can be
replaced with n ¼

PN
�¼1 ��, where �� ¼ 1 when 0 < �� � 1

and 0 otherwise.
The evolution equation of the phase field �i is derived

as26)
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Since the coefficients in eq. (5), aij, Wij and M
�
ij , are

respectively related to the grain boundary thickness �, grain
boundary energy �ij and grain boundary mobility Mij by

aij ¼
2

�

ffiffiffiffiffiffiffiffiffi
2��ij

p
; Wij ¼

4�ij

�
; M

�
ij ¼

�2

8�
Mij; ð6Þ

where the diagonal components are zero, the grain growth
process can be reproduced quantitatively. For simplicity, it
is assumed that all grain boundaries are high–angle grain
boundaries with �ij ¼ � and Mij ¼ M. Furthermore, the
dislocation density is assumed to be constant in a grain. To
calculate the driving force �Eij, we introduce an additional
variable �i, defined in Fig. 1. Here, the variable �i takes a
constant dislocation density when 0 < �i � 1 and is zero
when �i ¼ 0. The evolution of �i follows the KM model

expressed in the next section and �i is updated after
calculating phase field �i by eq. (5).

From a numerical point of view, the MPF model has a
high computational cost, because usually N phase fields
must be saved and N evolution equations must be solved
at all grid points.27,28) However, Steinbach and Pezzolla’s
MPF model has some computational merits. We do not
have to solve eq. (5) at the grid points with n ¼ 1 and it is
sufficient to save not N but n phase fields at a grid point. To
further improve the computational efficiency, we introduce
the algorithm proposed by Kim et al.29) and modify it to
achieve more accurate computation. The procedure is as
follows:
(1) Solve eq. (5) for n phase fields.
(2) During (1), if �i at the previous time step is zero and

the calculated increment ��i has a negative value,
phase field �i is removed from the phase field group that
must be solved at the grid point and we set n to n� 1.

(3) Steps (1) and (2) are repeated until all phase fields
satisfying the above condition are removed.

(4) The n phase fields are rearranged in order of decreasing
size. Phase fields from the largest to n�th largest are
recorded. Here, n� is a predefined maximum number of
the recorded phase field.

(5) The phase fields are replaced by ��
i ¼ �i=

Pn�
j¼1 �j.

so as to satisfy
Pn�

i¼1 �
�
i ¼ 1.

(6) If a phase field is not saved at grid point ðl;mÞ and its
value at grid points ðl� 1;m� 1Þ, or the nearest four
neighbors, is not zero, the phase field is added to the
phase field group at the grid point ðl;mÞ. Therefore, the
number of phase fields solved in step (1) sometimes
becomes more than n�.

Steps (1) to (6) are repeated in each time step.

2.2 Dislocation evolution model
The accumulation of dislocations due to plastic defor-

mation and DRV is expressed by the KM model21) as a
relationship between dislocation density and true strain,

d�

d"
¼ k1

ffiffiffi
�

p
� k2�: ð7Þ

Here, the first term of the right–hand side expresses the work
hardening, where k1 is a constant that represents hardening.
The second term is the DRV term, where k2 is a function of

φi = 0 

φi = 1 φj = 1

φj = 0 

ρj = ρjρi = ρi

ρj = 0 ρi = 0

grain i grain j 
grain 

boundary

Fig. 1 Schematic illustration of profiles of phase fields and dislocation

densities around grain boundary.
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temperature T and strain rate _"".13) The macroscopic stress is
related to the average dislocation density ��� as follows:

� ¼ �	b
ffiffiffi
���

p
; ð8Þ

where � is a dislocation interaction coefficient of approx-
imately 0.5, 	 is the shear modulus and b is the magnitude
of the Burgers vector. From eqs. (7) and (8), a macroscopic
stress–strain curve can be determined.

2.3 Computational procedure
The computational procedure of the developed MPF-DRX

model is as follows:
(1) The initial polycrystalline structure is created by a

conventional grain growth simulation.
(2) The dislocation density at all grid points is set to the

initial value �ini.
(3) The dislocation density and macroscopic stress–strain

curve up to the DRX nucleation point are calculated
under a constant strain increment �" ¼ _""�t by eqs. (7)
and (8), where �t is the time increment.

(4) If the dislocation density on a grain boundary exceeds
the critical value �c required to create a nucleus, a
circular nucleus with dislocation density �ini is placed
on the grain boundary with nucleation rate _nn.

(5) The DRX grain growth is simulated by solving eq. (5).
(6) The dislocation density variables at all grid points and

the macroscopic stress are calculated by eqs. (7) and
(8).

Steps (4) to (6) are repeated until a predefined strain value
is reached.

3. Numerical Conditions

By performing numerical simulations using the MPF-DRX
model, first, we confirm the accuracy of the developed model,
second, we compare the results of the MPF-DRX simulation
with those of the CA simulation by Kugler and Turk16) and,
finally, we evaluate the effects of the grain boundary mobility
and nucleation rate on the DRX process. A series of
simulations are performed for copper at temparature T ¼
800K and strain rate _"" ¼ 0:002 s�1.

The material and numerical parameters used in the
following simulations are as follows: For eqs. (5) and (6),
grid space �x ¼ 0:5 mm, grain boundary energy � ¼ 0:208
J/m2, grain boundary thickness � ¼ 7�x and grain boundary
mobility M ¼ M0=T exp ð�Qb=RTÞ, where M0 ¼ 0:139m4

K/Js, the activation energy Qb ¼ 110KJ/mol and R is
the gas constant. For eqs. (7) and (8), k1 ¼ 4:00� 108/m
and k2 ¼ �	bk1=�st, where � ¼ 0:5, shear modulus 	 ¼
42:1GPa, the magnitude of the Burgers vector b ¼
2:56� 10�10 m and the steady-state stress �st ¼
fA1 _"" expðQa=RTÞg1=A2 , where A1 ¼ 2:0� 1044, A2 ¼ 7:6 and
activation energy Qa ¼ 275KJ/mol. For DRX nucleation,
we set the critical stress �c to 40MPa, which corresponds
to the critical dislocation density �c ¼ ð�c=�	bÞ2 ¼ 5:51�
1013/m2, and we employ the nucleation rate per unit area of
the grain boundary expressed by _nn ¼ c _""d exp ð�Qa=RTÞ,13)
where c ¼ 5:0� 1025 and d ¼ 1. Here, one nucleus is created
every ð _nn�tngb�x2=�Þ�1 steps, where ngb is the number of
grid points located in the grain boundary or satisfying

0 < �i < 1. The initial dislocation density is set to �ini ¼
109/m2, the time increment �t ¼ 0:013 s and the predefined
maximum number of the recorded phase field n� ¼ 5.

For comparison with the CA simulation, we mostly
employed the parameters used in Ref. 16) as shown above.
However, some points are different. The first difference is
that we use a grain boundary energy that is one–third of the
value given in Ref. 16), 0.625 J/m2. If we use � ¼ 0:625
J/m2, the nucleus diameter sufficiently overcomes the
curvature energy and becomes over 15 mm, which is too
large. In Refs. 13) and 16), the cell size is set to 2 mm and one
cell is used as one nucleus. Since the PF method can model
the curvature effect accurately, such a small nucleus shrinks
and disappears. Therefore, to reduce the nucleus diameter,
we set � ¼ 0:208 J/m2. This is a fitting parameter determined
so as to include the effects of real nucleation mechanism. It
has been reported that actual DRX nucleation occurs through
processes such as grain boundary migration, grain boundary
serration, grain boundary sliding and twin nucleation31–34)

and, to simulate the nucleation process with high accuracy,
homogeneous plastic deformation and DRX grain growth
must be simulated simultaneously and further study is
necessary. The second difference is the nucleation condition.
Since the critical dislocation density �c and nucleation rate
_nn are not given explicitly in Ref. 16), we employed the
nucleation rate model proposed by Ding and Guo13) and the
coefficients c and d are determined so as to obtain almost
the same steady-state grain size Ds as that shown in Fig. 4
in Ref. 16). Final difference is the value of k1 in eq. (7).
We selected its value so that the stress–strain curve
calculated from eqs. (7) and (8) can be fit to the curve
shown in Fig. 4(a) of Ref. 16).

4. Numerical Results

4.1 Single–grain growth simulation
To confirm the validity of the developed MPF-DRX

model, a single–grain growth simulation is performed and the
variations in the migration rate of the grain boundary are
compared to theoretical results. Here, we use a square
computational domain of 50� 50 mm (100� 100 lattice)
with a zero Neumann boundary condition on all sides. A
circular nucleus of radius 2.74 mm is placed at the grid point
ðl;mÞ ¼ ð1; 1Þ. The initial dislocation densities in the nucleus
�r and the deformed material �m are set to �r ¼ �ini and
�r ¼ �c, respectively.

Figure 2(a) shows the variations in the grain boundary
migration rate V obtained from the PF simulation and the
theoretical equation, Vth ¼ Mð�E � �=rÞ, where r is the
radius of the DRX grain. From Fig. 2(a), the result of the
PF simulation agrees well with the theoretical results and,
therefore, it is verified that the developed PF model can
simulate the DRX growth process accurately. For compar-
ison, the result of SRX with constant driving force �E ¼
0:09MPa is also shown in Fig. 2(a). In the case of SRX, since
the driving force is constant, the migration rate of the grain
boundary increases monotonically with increasing SRX
grain size. On the other hand, in the case of DRX, the
dislocation densities inside both the DRX grain �r and the
deformed grain �m change with strain. Furthermore, the rate
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of increase of dislocation density is greater in the DRX grain
than in the deformed grain, as shown in Fig. 2(b). As a result,
depending on the driving force balance between the stored
energy and the curvature, the grain boundary migration rate
exhibits the characteristic change shown in Fig. 2(a).

4.2 DRX microstructure evolution
Macroscopic stress–strain curves and the microstructural

evolution during the DRX process for the polycrystalline
material are simulated by the MPF–DRX model by changing
the initial grain size D0 and are compared with those obtained
by the CA simulation reported by Kugler and Turk.16) Initial
polycrystalline structures with grain size D0 ¼ 20, 30, 80 and
250 mm are prepared using conventional grain growth
simulations. The initial grain shape is set to be a regular
hexagon. Computational domain sizes of 532:5� 527:0 mm
(1065� 1054 lattice), 513:5� 543:0 mm (1027� 1086

lattice), 532:5� 527:0 mm (1065� 1054 lattice) and 476:5�
412:5 mm (953� 825 lattice) are employed and the numbers
of initial grains are 896, 396, 56 and 4 for D0 ¼ 20, 30, 80
and 250 mm, respectively.

Figures 3 and 4 show the macroscopic stress–strain curves
and variations in average grain size, respectively. The dashed
line in Fig. 3 is the stress–strain curve calculated by eqs. (7)
and (8), i.e., without DRX. Figures 3(b) and 4(b) show the
results shown in Fig. 4 in Ref. 16). Comparing Figs. 4(a)
with 4(b), the strain at which the decrease in average grain
size starts and the steady–state grain size Ds are observed to
be almost identical, because the critical stress �c necessary
to create the DRX nucleus and the nucleation rate _nn are
determined so that these values become equal. However, we

can see some differences in the rate of variation of average
grain size during DRX. The differences between the present
results and those obtained by the CA simulation can be
observed more clearly in Fig. 3. Although similar changes in
the stress–strain curve are observed in Figs. 3(a) and 3(b), we
can see remarkable differences in the peak stress. Because, as
shown in the previous section, our MPF model can simulate
the DRX growth process accurately, it is thought that the
differences originate from the time scaling method used in
the CA model.

Next, we discuss the effects of the initial grain size D0 on
the DRX process. Figure 5 shows the microstructural
evolution for D0 ¼ 30, 80 and 250 mm. The gray grains
indicate the initial grains and the white grains are the DRX
grains. The strain values in Fig. 5 correspond to the open
circles in Fig. 3(a). For D0 ¼ 30 mm, perfectly random
nucleation and growth are observed and for D0 ¼ 250 mm,
typical necklace structures are formed.1) However, the
steady–state microstructures at " ¼ 0:500 exhibit an equi-
axed grain structure without initial grain size dependence.
Although the nucleation rate per unit area of the grain
boundary is constant, the grain boundary area increases with
decreasing initial grain size D0. As a result, the peak stresses
of the stress–strain curves shown in Fig. 3 decrease as D0

becomes small. Futhermore, for small D0, the stress–strain
curves have multiple peaks, while single–peak curves are
observed for large D0. It is known that the transition from
single to multiple peaks depends on whether or not the
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recrystallization cycles overlap.2) In Fig. 5, three micro-
structures from the first peak stress to the first valley stress
and the steady–state microstructure are illustrated. In the case
of D0 ¼ 30 mm, the DRX nuclei in secondary cycle are
created after the first DRX cycle is completed. On the other
hand, for D0 ¼ 80 and 250 mm, the secondary DRX cycle has
started already when " ¼ 0:136 and 0.172, respectively,
while initial grains are still remain. These phenomena agree
well with the experimental and numerical results reported so
far.1,2,13,16,35) From these results and the discussion, it is
confirmed that the proposed MPF–DRX model can simulate
the macroscopic mechanical behavior based on the micro-
structure evolution with high accuracy.

4.3 Effects of mobility and nucleation rate
Since the DRX model employed in this study assumes

that the dislocation density inside a grain is constant, the
nucleation criteria and the determination of some parameters,
such as k1, k2, A1, A2, c, d andM, are thought to be important.
Therefore, we discuss the effects of the grain boundary
mobility M and nucleation rate _nn on DRX.

Figures 6 and 7 show (a) macroscopic stress–strain curves,
(b) variations of the average grain size and (c) variations of
the number of grains calculated by changing M and c,
respectively. The values of grain boundary mobility M are
changed to 0.25Ms, 0.50Ms, 1.00Ms and 2.00Ms, where Ms is
the grain boundary mobility used in sections 4.1 and 4.2.
From Fig. 6(a), the peak stress increases with decreasing M
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and multiple peaks can be observed for M ¼ 2Ms. These are
similar characteristics to those in Fig. 3(a) or obtained when
changing the initial grain size D0. However, the steady–state
stresses are not the same value in Fig. 6(a). Also, the grain
size does not converge to the same value, as shown in
Fig. 6(b). The effect of the nucleation rate is evaluated by
changing c to 0.25cs, 0.50cs, 1.00cs, 2.00cs and 4.00cs, where
cs is the value used in section 4.2. As can be seen in Figs. 7(a)
and 7(b), the peak stress, steady–state stress and steady–state
grain size increase with decreasing c or nucleation rate _nn.
Furthermore, the stress–strain relationships all have single–
peak curve and never exhibit multiple peaks. As discussed
here, by changing only the grain boundary mobility or the
nucleation rate, we cannot simultaneously reproduce the
transition from single to multiple peaks in the stress–strain
curves and the constant steady-state grain size observed when
changing the initial grain size. Therefore, it can be concluded
that the balance between the grain growth rate and the

nucleation criteria of DRX is important in expressing actual
DRX phenomena. Furthermore, from Figs. 6(c) and 7(b), we
can see that many phase field variables are used during DRX
simulations, particularly for a small grain boundary mobility
and large nucleation rate, because one grain is expressed by
one phase field. Therefore, it is confirmed that efficient
computation can be achieved by introducing the algorithm
used for the MPF method.

5. Conclusions

We have developed the MPF-DRX model to accurately
simulate the microstructure evolution and macroscopic
mechanical behavior during hot working. An efficient
numerical simulation was achieved by introducing an
efficient computational algorithm for the MPF method. The
accuracy of the developed MPF method was confirmed by
comparing the grain boundary migration rate of single–grain
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Fig. 7 Effects of nucleation rate on (a) stress-strain curve, (b) average

grain size and (c) number of grains.
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growth with that predicted from the theoretical equation. By
performing DRX simulations under almost same conditions
as that used in a previously reported CA simulation, we
compared the results obtained by the MPF and CA methods.
As a result, we observed a difference in the recrystallization
kinetics. Furthermore, by investigating the effects of the
initial grain size on DRX, it was confirmed that some
phenomena observed in the experiment, such as the transition
from single to multiple peaks in the macroscopic stress–strain
curve and the independence of steady–state average grain
size on the initial grain size, can be simulated. Also, the
interrelationship between the microstructure evolution and
the macroscopic mechanical behavior was discussed. Finally,
the effects of the grain boundary mobility and DRX
nucleation rate were evaluated by changing each parameter.
It was concluded that the balance between the grain growth
rate and the nucleation criteria of DRX is important in
expressing actual DRX phenomena.

As a next step to the present study, the development of a
method for determining some of the parameters is important,
because the plastic deformation is expressed by the simple
equation of dislocation density evolution. In a future study,
we hope to develop a coupling model that enables the
simultaneous evaluation of plastic deformation and DRX
grain growth.
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