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Abstract A new multi-phase-field method is developed
for modeling the fracture of polycrystals at the mi-

crostructural level. Inter and transgranular cracking, as
well as anisotropic effects of both elasticity and pref-
erential cleavage directions within each randomly ori-

ented crystal are taken into account. For this purpose,

the proposed phase field formulation includes: (a) a

smeared description of grain boundaries as cohesive zones

avoiding defining an additional phase for grains; (b) an

anisotropic phase field model; (c) a multi-phase field
formulation where each preferential cleavage direction
is associated with a damage (phase field) variable. The

obtained framework allows modeling interactions and

competition between grains and grain boundary cracks,

as well as their effects on the effective response of the

material. The proposed model is illustrated through

several numerical examples involving a full description

of complex crack initiation and propagation within 2D

and 3D models of polycrystals.
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1 Introduction

Prediction of the strength and failure of materials by

simulating damage and microcracking at the microscopic
level is a major task to study more accurately the dura-
bility of structures. Many engineering materials such as

ceramics, alloys, rocks or metals are heterogeneous, con-

taining an assembly of many irregularly-shaped phases

or crystallites arranged in a random fashion. Microstruc-

tural features in polycrystalline materials such as topol-

ogy, orientation or grain boundary characteristics, strongly
influence the failure mechanisms as well as the macro-
scopic mechanical response in these class of materials.

Intergranular and transgranular are the two main

types of cracks observed in the failure of polycrystalline
materials. The intergranular fracture is a fracture that
follows the grains of the material, where cracks take

place along the grain boundary. We refer to transgran-
ular fracture, when the crack occurs through the grains.
In the transgranular fracture the fracture often changes
direction from grain to grain following the different lat-

tice orientation, i.e the crack propagates following some

preferential cleavage planes. In other words, the frac-

ture in polycrystalline material is strongly anisotropic

and dependent on the microstructure. The competition
between intergranular and transgranular cracking de-
pends on the loading conditions, bulk and grain bound-
ary behavior,...(see: [2]). We can observe either only

intergranular [50,17] or only transgranular crack prop-

agation [31], or both of them [1]. The studies in the

literature have shown that the crack path strongly de-

pends on local differences in toughness (grain interior

versus grain boundaries), which significantly influences

the macroscopic response of the structure. Hence, un-

derstanding microstructural effects in polycrystals is

crucial to predict the damage mechanisms, but requires
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numerical developments to take into account the com-

plexity of local phenomena.

Many numerical methods have been developed to

investigate the fracture of polycrystalline solids. The

eXtended Finite Element Method (XFEM) [29,33] has

been used in the work of Sukumar et al [45] to study

the transition from intergranular to transgranular frac-

ture by changing the proportion of toughness between

grain boundary and grain interior. The results qualita-

tively agree with the observation in [53]. However, sim-

ulating crack nucleation in XFEM is a difficult task.

Moreover, this technique requires the construction of

level-set functions to describe the crack, which can be

cumbersome for multiple cracks interaction and/or 3D

implementation.

Cohesive zone models (CZM) is another technique

widely used in this field. The main idea of CZM is based

on the concept introduced in the work of Dugdale[13]

and Barenblatt et al [6] to address the stress singular-

ity at the crack tip. In these models, all nonlinearities

take place in a cohesive zone or fracture process zone

of the material. Therein, the damage in this zone is de-

scribed by cohesive laws (traction displacement-jump
relation). The application of CZM to polycrystalline
brittle materials can be found in [15,14], where the ini-
tiation and evolution of failure under quasi-static and

dynamic loading was investigated. In the study of Wei

et al [51], CZM was used to simulate the grain bound-

ary sliding and separation in nanocrystalline metals.

The cohesive laws have also been used to model inter-
granular and transgranular crack propagation in [32] by
inserting finite elements in the grain boundary areas for
Zircaloy tubes; or in [41] by using multiscale cohesive

zone models. Other studies using CZM for polycrystals

failure can be found e.g in [51,49,25,47]. However, one

shortcoming of CZM is that cohesive surfaces can only

lie along element edges, which makes crack paths mesh-
dependent.

There are several alternative numerical methods to

study failure of polycrystalline material, such as the
generalized finite element method (GFEM) [44]. How-
ever, in this method the polycrystalline aggregate topol-

ogy is used to define discontinuous functions. Thus,

GFEM only allows the crack to stop at the element

edges. Finally, the Boundary Element Method (BEM)

has been used to investigate the intergranular microfrac-
ture in [43].

More recently, the Phase Field Method (or Phase

Field Model) has been proposed, based on the pioneer-
ing works of Marigo and Francfort [18]. In this method,
the brittle fracture is described by using a diffuse ap-

proximation of discontinuities through an additional

phase field variable [30,3,4]. It has been shown that

the solution of the associated variational problem con-

verges to the solution of the sharp crack description im-
plying discontinuities, in the Γ− convergence sense [26,

9,10]. Such a method is able to simulate brittle crack

initiation and propagation without any prescription of

the crack geometry. Moreover, the phase field method

has a low dependence to the mesh in a classical FEM

framework and can handle very complex, multiple crack

fronts, branching in both 2D and 3D without adhoc

numerical treatment [28,8,20]. It has been shown that

the method accurately predict experimental results in

quasi-britle materials, even for complex crack paths [38,

37,35]. The phase field method has been used to study

failure in polycrystalline materials in [24,11,12]. How-

ever, in the mentioned studies, the model only allows

to investigate the fracture along one preferential plane

and a new phase for grain boundary was defined. In

[40], we have demonstrated the potential of the method

to simulate interactions between bulk brittle fracture
and interfacial damage (described by cohesive laws).

This work is concerned with the development of a
new phase field formulation for polycrystalline brittle
materials1, taking into account both anisotropic brittle

fracture within grains and interfacial damage at grain
boundaries. First, the previous model [40] is adapted
with the new unilateral contact formulation proposed
in [11,5]. This formulation is suitable for introducing

elastic anisotropy. Second, anisotropic surface energy
with many damage systems (see [36]) is used. Third,
CZM in the regularized frame-work is introduced to de-

scribe the decohesion of grain boundaries. In this new

formulation, the phase field describes the bulk crack

surface density (depending on anisotropic effect of ma-

terial), as well as the interface crack density at grain

boundaries. The technique allows to simulate the com-

petition between intergranular and transgranular crack

propagation without definition of a new phase for grain

boundary.

The overview of the paper is as follows. In section 2

the diffuse approximation of discontinuities for anisotropic

systems related to cracks and grain boundary decohe-

sion using phase field is introduced. In section 3, a new

formulation of phase field framework able to model both
intergranular and transgranular failure is proposed. The
finite element implementation of the model is then de-
tailed in section 4. Finally, the potential of the proposed

model is illustrated by several numerical examples in

section 5.

1 Some materials, for example, Ceramics, MgO or Zn at
low-temperature conditions exhibit a brittle behavior even at
micro scale. Moreover, stress corrosion cracking can modify
the mechanical characteristics of the metal and provide brittle
failure behavior.
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2 Regularized representation of free

discontinuities

2.1 Smeared approximation of cracks and grain

boundary in polycrystalline material

Let Ω ⊂ R
D an open domain describing a cracked solid,

with D the space dimension and ∂Ω its boundary. Let
Γ be a curve of dimension D− 1 within Ω (see Fig. 1).

In a regularized framework, the crack geometry is ap-

proximated by a smeared representation defined by a

scalar parameter d(x), x ∈ Ω, taking a unit value on Γ

and vanishing away from it. It can be shown (see e.g.

[28]) that such a function can be determined by solving

the following boundary value problem on Ω:







d− ℓ2∆d = 0 in Ω,

d(x) = 1 on Γ,

∇d(x) · n = 0 on ∂Ω,

(1)

where ∆(.) is the Laplacian operator, ℓ is a regulariza-

tion parameter describing the actual thickness of the

smeared crack, and n the outward normal to ∂Ω. A

two-dimensional illustration of this concept is depicted

in Fig. 1(b). It can be shown that (1) is the Euler-

Lagrange equation associated with the variational prob-

lem:

d(x) = Arg

{

inf
d∈Sd

Γℓ(d)

}

, (2)

with Sd = {d|d(x) = 1 on Γ ∀x ∈ Γ} and where

Γℓ(d) =

∫

Ω

γ(d,∇d) dΩ (3)

represents the total crack length. In (3), γ(d,∇d) de-

notes the crack density function per unit volume, de-

fined herein by:

γ(d,∇d) = 1

2ℓ
d2 +

ℓ

2
∇d · ∇d. (4)

The grain boundaries are here described in the same

manner, introducing a field β(x). The field β(x) satis-

fies:






β(x)− ℓ2β(x)△β(x) = 0 in Ω,

β(x) = 1 on ΓB ,

∇β(x) · n = 0 on ∂Ω,

(5)

where ℓβ is the regularization parameter describing the

width of the regularized grain boundaries. Similarly, (5)

is the Euler-Lagrange equation associated with the vari-

ational problem:

β(x) = Arg

{

inf
β∈Sβ

Γβ(β,∇β)
}

, (6)

where Sβ = {β|β(x) = 1 ∀x ∈ ΓB} and

Γβ(β) =

∫

Ω

γβ(β,∇β) dΩ, (7)

where Γβ represents the total grain boundaries length
and γβ is defined by

γβ(β,∇β) =
1

2ℓβ
β(x)2 +

ℓβ
2
∇β(x) · ∇β(x). (8)

For ℓβ → 0 the above variational principle leads to

the exact description of the sharp grain boundaries ΓB .

2.2 Smeared approximation of cracks for anisotropic

material

In the anisotropic case, the formulation (4) is extended

to anisotropic materials. An anisotropic crack surface

density function is written by the following expression:

γ(d,∇d,ω) =
1

2ℓ
d2 +

ℓ

2
ω : (∇d⊗∇d), (9)

where ω is a second-order structural tensor, being in-
variant with respect to rotations (characterizing the

material anisotropy).

As considered in [11], to make the energy release

rate orientation-dependent, the tensor ω can be defined

by:

ω = 1+ α(1−M⊗M), (10)

where M denotes the unit vector normal to the pref-

erential cleavage plane (with respect to the material

coordinates), and α ≫ 1 is used to prevent damage

to develop on planes not normal to M. In the case of

isotropic material α = 0.
In the case of cleavage planes with multiple discrete

orientations, we introduce the multiple phase field d to

quantify the damage accumulation on each such plane.

Thus the total crack length is here rewritten as:

Γℓ(d,ωi) =
∑

i

Γ i
ℓ (di,ωi)

=
∑

i

∫

Ω

γi(di,∇di,ωi) dΩ (11)

The variational derivative of the crack density func-
tion for each damage system is now defined as:

δγi (di,∇di,ωi) =
di
ℓ
− ℓ

[

∇2di + αi

(

∇2di

−Mi ⊗Mi : ∇∇di
)

] (12)

where ωi belongs to the set
{

ω1,ω2, ...ωn

}

is calculated

from Equation (10) corresponding to each preferential
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Crack

Cohesive law

Preferential cleavage 

direction

ck

eavage 

Smeared grain boundaries

Smeared crack

(a) (b)

Fig. 1: Regularized representation of a crack: (a) sharp crack model of a polycrystalline body containing a crack;

(b) smeared representation of the crack and joint grains.

cleavage plane (depending on the unit vector normal

Mi and coefficient αi). Note that the regularization pa-

rameter ℓ can be different for each plane. However, in

this work we assume that ℓ is the same for all planes.

In order to estimate the anisotropy introduced in
the surface energy, we compute the distribution of sur-

face energy gcΓℓ(di, ωi) for a phase field di(x), which

is determined numerically by the following variational

problem:

di(x) = Arg

{

inf
di∈Sd

∫

Ω

γ(di,∇di,ωi) dΩ

}

, (13)

A Benchmark problem as described in Fig. 2 is con-

sidered. The phase field variable di is assigned a unit

value within a disc of radius r = 0.05B at the center
of a square domain of size B. Once the computation of

multi-phase-field is performed, the corresponding sur-

face energy distribution is calculated at the integration

points. For the case of material containing two preferen-

tial directions M = [1 0], and M = [0 1], gc = 1 J/m2

and α ranges between 0 and 10, polar plots of element
average value of surface energy and reciprocal surface

energy at a distance r = 0.05B + 2ℓ from the domain

center are depicted in Fig. 3. For α = 0, the surface en-

ergy does not depend on the orientation and isotropy

is recovered. When α is increased from 0 to 10, there is

a strong modification of the surface energy distribution

as illustrated in Fig. 3(a). This provides the anisotropic

behavior of fracture evolution. The sensitivity of the re-

ciprocal surface energy with respect to α is analyzed in

Fig. 3(b). It is clearly shown that for α ≤ 1 the recipro-

cal surface energy distribution is convex but it becomes

non-convex for α > 1. A smooth transition from weak
to strong anisotropy can thus be modeled within the

proposed framework (see [24] for more details on this

aspect).

B

B

0.1B

0.5B

Fig. 2: Benchmark problem for the analysis of surface

energy distribution. The phase field variable di is pre-

scribed to a unit value within the disc of radius 0.05B

at the center of the domain.
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Fig. 3: Polar plots of the surface energy and reciprocal

surface energy for the case of a material containing two
preferential directions M = [1 0], M = [0 1] and α

varying from 0 to 10.

2.3 Smeared displacement jump approximation (JA1)

The displacement jump [[u(x)]] created by grain bound-

ary decohesion is approximated as a smooth transition.
It can be defined by using a Taylor expansion at first
order of the assumed smoothed regularized displace-

ment field as in our previous work [40], see Appendix

A. The advantage of this approximation is that it does

not require additional variables to describe the jump at

the interface, and thus can drastically reduce computa-

tional times compared to what is propose in [46].

Another approximation, denoted here as (JA1), based

on the addition of a new field to described displace-

ment jump following the work [46], is also tested in this

work. The additional field approach is computationally

more expensive, but seems to improve the convergence

when applied to polycrystalline materials with multi-

ple junctions between grains. The details of the com-

parison between the two approximations is discussed in
Section 5.1.2.

Let ΓB be a grain boundary. In the context of the

approximation (JA1), the discrete displacement jump
at ΓB is approximated by the auxiliary jump field v(x):

[[u]]ΓB
=

∫

Ω

v(x)γβ(β,∇β) dΩ = v(x)Γβ . (14)

It has been shown in [46] that in this context, the

auxiliary field is required to be constant in the normal
direction of the grain boundary:

∂v

∂nΓB
= 0. (15)

The description of this approximation is provided in

Fig. 4, wherein the displacement jump across the grain
boundary is described. A one-dimensional illustration
of smeared grain boundary is plotted by the dashed
line. The displacement jump v(x)Γβ only exists in the

smeared grain boundary where Γβ > 0. However, the

auxiliary field is here not only defined on the interface
but over the entire domain. In order to reduce the com-

putation costs, we can define the distributed internal
discontinuity region only in a subdomain such that:

Γβ = x ∈ Ω | β(x) > 10−3. (16)

The normal vector nΓB to ΓB can be also approxi-

mated as:

nΓβ (x) = nΓB (x) =
∇β(x)
‖ ∇β(x) ‖ . (17)

The second approximation scheme (JA2) is described

in the Appendix A.

3 Phase field model

3.1 Energy functional

Let us consider a polycrystalline solid as described in
section 2.1. The solid contains both cracks and grain
boundaries, implying strong displacement discontinu-

ities. In a standard framework of sharp discontinuity

description, the total energy is given by:

E =

∫

Ω

Wu (ε(u)) dΩ+

∫

Γ

gcdΓ+

∫

ΓB

ΨB([[u]] , κ)dΓ.(18)
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1.0

0.5

0

Normal direction

Smeared grain boundary

Fig. 4: Approximation of the displacement jump across the grain boundary.

In (18) gc is the fracture energy, Ψ
B is a grain bound-

ary energy function depending on the displacement jump

across the grain boundary ΓB and κ is a history pa-

rameter to distinguish between loading and unloading.

Once, the cohesive fracture is ΨB , the cohesive trac-

tions are derived through its differentiation (see more

details in Appendix C):

t([[u]] , κ) =
∂ΨB([[u]] , κ)

∂ [[u]]
(19)

If a regularized description for strong discontinuities

related to both cracks and grain boundaries is adopted
(substituting [[u]] by v(x)), then the infinitesimal strain

tensor can be decomposed into a part related to the
bulk and a part induced by the smoothed jump at the
grain boundaries, denoted by ε

e and ε̃, respectively:

ε = ε
e + ε̃. (20)

This decomposition is proposed here such that ε̃→
0 away from the grain boundary, i.e. when β(x) → 0.
The fracture energy is also regularized by the crack
density function γi(di,∇di,ωi) for each damage vari-

able di, the energy of grain boundary is regularized by

γβ(β,∇β) and the strain energy is replaced by energy of

a damageable material W e
u(ε

e(u),d). The above func-
tional (18) is rewritten as:

E =

∫

Ω

W e
u (εe(u, β),d) dΩ

+gc
∑

i

∫

Ω

γi(di,∇di,ωi) dΩ+

∫

Ω

ΨB(v, κ)γβ(β) dΩ,(21)

where γi and γβ have been defined in section (2.1).

This definition implies that for β(x) → 0 (away
from the interface) then γβ → 0 and ε

e → ε. As a

consequence of these definitions, we recover the reg-
ularized energy functional for brittle fracture without
grain boundaries [18,28,36]:

E =

∫

Ω

Wu(ε(u),d) dΩ+gc
∑

i

∫

Ω

γi(di,∇di,ωi) dΩ.(22)

In (21), we identify

W = W e
u (εe(u, β),d)

+ gc
∑

i

γi(di,∇di,ωi) + ΨB(v, κ)γβ(β) (23)

as the total energy density.

3.2 Phase field problem

In this subsection we formulate a crack phase field evo-

lution law that can guarantee the irreversibility of the

process. Assuming isothermal process and without ex-

ternal mircoforces, a reduced form of the Clausius-Duhem

inequality can be written as:
∑

i

−δW

δdi
ḋi ≥ 0, (24)

where
δW

δdi
is the variational derivative of W with re-

spect to the phase field di. The total dissipation due to
damage is defined by:

φ =
∑

i

φi =
∑

i

(

−
∫

Ω

δW

δdi
ḋi

)

≥ 0, (25)

where each dissipation φi corresponds to one damage

variable di. Assuming that the damage systems are in-
dependent, then the condition (25) becomes:














φ1 ≥ 0,

φ2 ≥ 0,

...

φn ≥ 0.

(26)
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The damage parameter di is an increasing function,

i.e ḋi ≥ 0. Thus for each damage variable, we have:

Fi = −
δW

δdi
= −∂W e

u

∂di
− gcδγi (di,∇di,ωi) ≤ 0, (27)

where δγi (di,∇di,ωi) being defined in Equation (12)

and Fi is the thermodynamic force associated with di.

Invoking the principle of maximum dissipation, the

dissipation φi must be maximum under the constraint (27).

It yields that for ḋi > 0, Fi = 0 for each damage system,

which gives (see more details in [39], [36]):

Fi = −
∂W e

u (u, di)

∂di
− gcδγi (di,∇di,ωi) = 0. (28)

In order to prevent the issue of cracks interpene-
tration in compression mode, a unilateral contact for-

mulations is used. There are two common kinds of for-

mulations often chosen for phase field method. (a) it

can be based on the decomposition of the strain ten-

sor into positive and negative strain components (see

[28,39]), (b) or based on the decomposition of strain

tensor into spherical and deviatoric strain components

(see [5]). The first one shows a good agreement with

experimental observation in brittle material [34]. How-

ever it is difficult to apply it for anisotropic materials,

because of the lack of general formulation for the elastic

tensor. In this work, the second approach is adopted.

The elastic strain is decomposed into deviatoric ε
e
dev

and spherical εesph parts. Then, it is assumed that the
damage is created by expansion only (positive spherical

part) and shear:

W e
u =































1

2
g(di)

[

ε
e : C0 : εe

]

if tr εe ≥ 0,

1

2

[

ε
e
sph : C0 : εesph

]

+
1

2
g(di)

[

ε
e
dev : C0 : εedev

]

if tr εe < 0,

(29)

where tr εe is the trace operator for a second-order ten-
sor ε

e and C
0 denotes the initial elastic tensor of the

material, possibly anisotropic. The degradation func-

tion g(di) in (29) is assumed to have the simple form:

g(di) =
∏

i

(1− di)
2 + k. (30)

The function g(di) has been chosen such that g′(di =
1) = 0 to guarantee that the strain energy density

function takes a finite value as the domain is locally

cracked (see e.g. [9]) and g(0) = 1 to guarantee that

the material is initially undamaged. g(di = 1) = 0 is

the limit for a fully damaged material. The quadratic

function chosen here (1−di)2 is the simplest case to en-

sure the existence of a regular solution in the sense of

Carfagni. Alternatively quartic function or cubic func-

tions have been introduced in [22], [7]. The small pa-

rameter k << 1 is used to maintain the well-posedness

of the problem for partially broken parts of the domain.

By introducing the bulk modulus k0 for the undam-

aged material (relating the spherical part of the strain

to the spherical part of the stress), the elastic tensor is

now written as:

C(d) = g(d)C0 + k01⊗ 1
[

1− g(d)
]

sign−(tr εe), (31)

where the sign function sign−(x) = 1 if x < 0 and

sign−(x) = 0 if x ≥ 0. The strain energy is now rewrit-
ten as:

Wu(ε
e(u),d) =

1

2

[

ε
e : C(d) : εe

]

. (32)

From (28), the thermodynamic force Fi associated

to ḋi satisfies:

Fi = (1− di)
∏

j 6=i

(1− dj)
2

(

ε
e : Ch : εe

)

−gcδγi (di,∇di,ωi) = 0, (33)

where Ch = C
0 (x)− k0 (x)1⊗ 1 sign−(tr εe (x, τ)).

As (1 − di)
∏

j 6=i(1 − dj)
2
(

ε
e : Ch : εe

)

≥ 0, and

gc > 0 then

δγi (di,∇di,ωi) ≥ 0. (34)

Expressing the variation of the crack length:

d

dt
Γ i
ℓ =

∫

Ω

δγi (di,∇di,ωi) ḋi dΩ, (35)

we can check that due to (34)

Γ̇ i
ℓ ≥ 0, (36)

verifying the non-reversible evolution of cracks. In ad-
dition, to handle loading and unloading histories, [28]
introduced the strain history functional, which is ex-
pressed in the present context by:

Hi(x, t) = max
τ∈[0,t]

{

∏

j 6=i

(1− dj)
2
ε
e : Ch : εe

}

. (37)

Hi(x, t) is substituted to
∏

j 6=i(1 − dj)
2
ε
e : Ch : εe

in (33) and using (1), it yields the following phase field

problem to be solved to evaluate the field di(x, t) at
time t:






(1− di)Hi − gcδγi (di,∇di,ωi) = 0 in Ω,

di(x) = 1 on Γ,

∇di(x) · n = 0 on ∂Ω.

(38)
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The associated weak form for each damage system

is obtained as:
∫

Ω

{

(

Hi +
gc
ℓ

)

diδd+ gcℓ∇di
[

1+ α
(

1

−Mi ⊗Mi

)

]

(δdi)

}

dΩ =

∫

Ω

Hiδd dΩ. (39)

Remark: the choice of ℓ has been discussed e.g in [5,

38]. In the mentioned works, a relationship has been
established between ℓ and material parameters. For

example, assuming uniaxial traction of a bar, the
relationship:

σ+
c =

3

16

√

3

2

√

Egc
ℓ

, (40)

where σ+
c is the critical value of stress in traction.

As mentioned in [5], the shape of the damaged zone

(and hence the approximate crack path) can signifi-

cantly change with the length ℓ if ℓ is not sufficiently

small with respect to the size L of the domain Ω.
The authors then define two cases: (a) ℓ is consid-

ered as a pure numerical parameter of the regular-
ized model of brittle fracture; (b) ℓ is seen as a mate-

rial parameter for a gradient damage model. In the
first case, it is recommended to take ℓ as small as

possible to better approximate brittle fracture, with
regards to the size of the mesh. In the second case,
ℓ should be identified by experimental data through

relationships like Eq. (40). Such analysis has been
conducted with experimental validations in [38,37].

3.3 Displacement problem

Considering the quasi-static equilibrium equations with-
out body forces, the corresponding equations describing

the problem are written as:














∇ · σ = 0 ∀x ∈ Ω,

nΓβ · σ = t([[u]] , κ) ∀x ∈ Γβ ,

u = u ∀x ∈ ∂Ωu,

nt · σ = t ∀x ∈ ∂Ωt,

(41)

where σ is the Cauchy stress in the bulk material;

t([[u]] , κ) are the tractions at grain boundaries intro-

duced in (19), with outward normal nΓB
; t, u are the

prescribed tractions and the prescribed displacements

on ∂Ωt, ∂Ωu, respectively.

In the regularized framework, this boundary value prob-

lem is rewritten as:






































∇ · σ(u,v,d) = 0 ∀x ∈ Ω,

γβ
[

t(v, κ)− nΓβ · σ(u,v,d)
]

= ζ
∂2v

∂(xn)2
∀x ∈ Γβ ,

∂v

∂xn

= 0 ∀x ∈ ∂Γβ ,

u = u ∀x ∈ ∂Ωu,
nt · σ = t ∀x ∈ ∂Ωt,

(42)

where xn = (x−xΓB
)·nΓB and xΓB

= argmin
y∈Γ

(‖ y − x ‖),
the positive constant ζ is introduced to ensure that the

auxiliary displacement jump field is constant in the nor-
mal direction. The Cauchy stress is here defined by:

σ(u,v,d) =
∂W e

u

∂εe
= C(d) : εe (43)

where the expression of the elastic strain εe is given by

(see [40]):

ε
e = ∇su− nΓβ ⊗s vγβ , (44)

where (∇su)ij = 1
2 (ui,j + uj,i) and

(

nΓβ ⊗s v
)

ij
=

1
2 (nivj + vinj). From (20) we identify ε̃ as:

ε̃ = nΓβ ⊗s vγβ . (45)

Using the variation in the displacement for (42)1,
the variation in the displacement jump for (42)2, we

obtain the corresponding weak form:






















































∫

Ω

σ : εe(δu) dΩ −
∫

∂Ωt

t · δu dS = 0

∫

Ω

{

γβ

[

t(v, κ)δv − σ : ε̃ (δv)
]

− ζ
∂v

∂xn

∂δv

∂xn

}

dΩ −
∫

∂Γβ

∂v

∂xn

δv dSβ = 0

(46)

4 Discretization and numerical implementation

4.1 FEM discretization of the displacement problem

We introduce the following classical FEM discretiza-

tion:

u = Nuu
e, δu = Nuδu

e, ∆u = Nu∆ue,

v = Nvv
e, δv = Nvδv

e, ∆v = Nv∆ve,
(47)

where ue, δue and∆ue denote nodal displacement com-
ponents, nodal trial function components and nodal in-

cremental displacement components, respectively. ve,

δve and ∆ve denote nodal displacement jump compo-

nents in one element, nodal trial function jump compo-

nents and nodal incremental displacement jump compo-

nents, respectively. Furthermore, using usual notations,

strains are obtained from:

[εe] (u) = Buu
e, [εe] (δu) = Buδu

e,
[εe] (∆u) = Bu∆ue, [ε̃] (v) = Bvv

e,

[ε̃] (δv) = Bvδv
e, [ε̃] (∆v) = Bv∆ve,

(48)

with

∂v

xn

= Gvv
e. (49)
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A standard Newton−Raphson method can be used

to solve the non-linear problem (46). Introducing the
above discretization yields the following linear system
is solved at each iteration:

Ktan

[

∆ũ

∆ṽ

]

= −R, (50)

where:

Ktan =

[

Kuu Kuv

Kvu Kvv

]

, R =

[

Fu

Fv

]

, (51)

with:

Kuu =

∫

Ω

BT
uCBu dΩ,

Kuv =

∫

Ω

− γβB
T
uCBv dΩ,

Kvu =

∫

Ω

− γβB
T
v CBu dΩ,

Kvv =

∫

Ω

[

γ2
βB

T
v CBv + γβN

T
v

∂t(v, κ)

∂v
Nv

+ζGT
v Gv

]

dΩ,

and

Fu =

∫

Ω

BT
uCBuu

edΩ −
∫

Ω

γβB
T
uCBvv

edΩ,

Fv =

∫

Ω

[

− γβB
T
v CBuu

e + γ2
βB

T
v CBvv

e

+γβN
T
v t(v, κ)v

e + ζGT
v Gvv

e
]

dΩ,

whereC is the matrix form corresponding to the fourth-

order elastic tensor C in Eq. (31). In these equations,
{∆ũ, ∆ṽ}T is a column vector containing the nodal val-

ues of {∆u, ∆v}, respectively.

4.2 FEM discretization of the phase field problem

In the present work, a staggered procedure is employed,
i.e. we solve alternatively the phase field problem and
the mechanical problem. Using the history functions,

given displacements from the mechanical problem, the

phase field problem is linear. The phase field and phase

field gradient for each preferential system are approxi-

mated in one element by

di(x) = Nd(x)d
e
i and ∇di(x) = Bd(x)d

e
i , (52)

where Nd(x) and Bd(x) are vectors and matrices of

shape functions and of shape functions derivatives, re-

spectively, and d
e
i are the nodal values of di.

The same discretization is employed for the test

function:

δd(x) = Nd(x)δd
e and ∇δd(x) = Bd(x)δd

e. (53)

Introducing this FEM discretization in (39) results
into a linear system of equations:

Kdi
d̃i = Fdi

, (54)

where d̃i is a column vector containing the nodal values

of di and

Kdi
=

∫

Ω

{(gc
ℓ
+Hi

)

NT
d Nd + gcℓB

T
d ωBd

}

dΩ (55)

and

Fdi
=

∫

Ω

NT
dHi(un) dΩ. (56)

4.3 Overall algorithm

The overall algorithm is described in the following.

– Initialization

1.1 Initialize the displacement field u0(x), the phase

field d0
i (x) for each preferential plane, and the

strain-history functional H0
i = 0.

1.3 Compute the smeared grain boundary β(x) by
solving (5).

– FOR all loading increments (pseudo time tn+1):
Given un, dn

i and Hn
i (x):

2.1 Compute the strain history functional for each

damage system Hn+1
i (x) by (37).

2.2 Compute d
n+1
i (x) by solving the linear phase

field problem (54).

2.3 Compute un+1(x) and vn+1(x):
Initialize uk = un, vk = vn (displacement and

displacement jump of time tn)

WHILE ‖ [∆uk+1 ∆vk+1]
T ‖> ǫ, ǫ << 1:

2.3.1 Compute

[

∆ũk+1

∆ṽk+1

]

from (50).

2.3.2 Update

[

uk+1

vk+1

]

=

[

uk

vk

]

+

[

∆ũk+1

∆ṽk+1

]

.

2.3.3 (.)k ← (.)k+1 and go to 2.3.1.

END

END

The present code is parallelized and has been imple-

mented in Matlab ®. The simulations have been run
using 12 cores.
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5 Numerical examples

5.1 Model assessments

In this first example, the proposed model will be as-

sessed. We consider a benchmark problem consisting in
a square domain which contains two grains and an ini-
tial crack, as depicted in Fig. 5. The size of the square

domain is L×B = 1× 1 mm2.

Grain 2

Grain boundary

y

xGrain 1

Crack

L

B

P
referential direction

U

0.2L

0
.3

B 0
.5

B

0
.4

B

Fig. 5: Benchmark problem for testing the approxi-
mation of displacement jump: geometry and boundary

conditions

The structure is meshed with 32016 triangular ele-

ments whose maximum and minimum sizes are hmax
e =

0.05 mm and hmin
e = 0.003 mm. The elastic moduli

are chosen as: C11 = 280 GPa, C12 = 120 GPa and

C44 = 80 GPa. The grain boundary cohesive energy is
taken following the work of Xu et al [52]:

ΨB
(

[[u]]
)

= gBc

[

1−
(

1 +
[[u]]

vn

)

exp

(

− [[u]]

vn

)

]

. (57)

The normal traction law is obtained as:

t
(

[[u]]
)

= gBc
[[u]]

v2n
exp

(

− [[u]]

vn

)

, (58)

where vn = gBc /(tuexp(1)). The fracture strength is

tu = 0.1 GPa, and can be dependent on the angu-

lar mismatch between grains as described in the Ap-

pendix C. However, for the sake of simplicity and due

to the lack of experimental data, tu is considered here

as independent for misorientation between two grains.

The fracture energy within the grain boundary and

in the bulk material are gBc = 1.45 × 10−3 kN/mm,

gc = 1.5 × 10−3 kN/mm. The preferential cleavage

plane is oriented at -45◦ with respect to the horizon-

tal axis within the entire domain. The computation is

performed with monotonic displacement increments of

∆U = 10−4 mm for 150 load increments. The displace-
ments are prescribed along the y−direction for upper

edge (y = B) while the displacement along x are here

free. Along the lower edge (y = 0), the displacements

along y are fixed to zero, while the displacements along

x are free. Plane strain condition is assumed.

5.1.1 Influences of length scale

The proposed framework uses two internal length pa-

rameters, ℓ for smeared cracks and ℓβ for smeared grain

boundaries. As mentioned in Section 3.1, these length

scales are related to the material parameters and strongly

influence the predicted results of the phase field solu-

tion. In this section, its effects on the fracture behavior

will be investigated in more details.

Firstly, to analyze the influences of ℓ, the regular-

ized parameter for grain boundary is fixed, ℓβ = 0.012

mm, while three values of ℓ are taken: ℓ = 0.01, 0.012

and 0.015 mm. The comparison of the crack paths is
depicted in Fig. 6. Increasing of length scale results in

larger cracks, but the crack path is the same. Moreover,

the length scale influences the time of the crack onset,

a large value of ℓ leads to a crack appearing earlier.

That will change the global behavior of the structure

as depicted on the stress - displacement curve in Fig. 7

Secondly, to analyze the influences of ℓβ , the crack
internal length is fixed, ℓ = 0.012 mm, while three val-

ues of ℓβ are taken: ℓβ = 0.01, 0.012 and 0.015 mm.
The comparison of obtained crack paths is depicted in

Fig. 8. The crack path is the same for different ℓβ . How-

ever, the decreasing of regularized parameter for grain

boundary increases the cohesive tractions, i.e increas-

ing its stiffness and the material becomes more brittle.
Hence, at the same prescribed displacement, reducing

ℓβ will provide an increasing of the crack length. The

details of this effect is depicted on the stress - displace-

ment curve in Fig. 9
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(a) ℓ = 0.01 mm

(b) ℓ = 0.012 mm

(c) ℓ = 0.015 mm

Fig. 6: Influences of internal length ℓ, crack path com-

parison corresponding to prescribed displacement U =

0.115 mm.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

Displacement [mm]

0
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]

ℓ = 0.015 mm, ℓβ = 0.012 mm
ℓ = 0.012 mm, ℓβ = 0.012 mm
ℓ = 0.010 mm, ℓβ = 0.012 mm

Fig. 7: Analysis of internal length ℓ effects on the global

behavior of material

(a) ℓβ = 0.01 mm

(b) ℓβ = 0.012 mm

(c) ℓβ = 0.015 mm

Fig. 8: Influences of internal length ℓβ , crack path
comparison corresponding to prescribed displacement

U = 0.105 mm.
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0.8
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1.2
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]

ℓβ = 0.010 mm, ℓ = 0.012 mm
ℓβ = 0.012 mm, ℓ = 0.012 mm
ℓβ = 0.015 mm, ℓ = 0.012 mm

Fig. 9: Analysis of internal length ℓβ effects on the

global behavior of material
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5.1.2 Assessment of displacement jump approximation

In this example, the regularization parameter is chosen

as ℓβ = ℓ = 0.012 mm. Two approximations for the

displacement jump will be compared: (JA1) is based

on the additional auxiliary field, (JA2) is based on the

approach described in the Appendix A.

We study the behavior of the structure at a chosen

loading for the two approximations (JA1) and (JA2).

The displacement field in the y− direction and the cor-

responding damage states are plotted at loading step

U = 0.008 mm in Fig. 10. We also plot the displacement

field along a line of investigation (x = 0.5L). The results

from both algorithms match very well. In both cases,

we observe the development of damage at the crack tip.

We also capture the displacement jump across the grain

boundary. This phenomenon shows a good agreement

with the observation in the literature. By adding the

smeared cohesive law for grain boundaries in the phase

field method, we can model in this framework both in-

tergranular and intragranular fracture, and interactions

between both without defining a new phase.

The application of the second jump approximation

(JA2) for polycrystalline materials induces some con-

vergence problem when solving the displacement prob-

lem. That may be due to the effects of orientation, or

oscillation of displacement jump at the vertex of grains,

where the approximation do not work very well. How-

ever, we note that this method is still robust for many

cases of heterogeneous materials, and that about 3− 4

times of the computational time can be saved as com-

pared to the (JA1) method. Then, defining a method

without an additional field (as in the (JA2) method)

but maintaining the robustness of nonlinear computa-

tions (as in the (JA1) method) is still an open question
and requires more investigations.

5.1.3 Orientation effects

In order to investigate the influences of preferential ori-

entation on the fracture behavior, the preferential di-

rection of Grain 1, denoted here as ϕ, is chosen within a

range from 0◦ to 90◦, while the preferential direction of
Grain 2 is fixed (see Fig. 12). The material parameters

are set the same as Section 5.1.2.

The obtained crack paths are depicted in Fig. 13. We
observe here an interesting phenomenon: transgranular

fracture is obtained for ϕ ≤ 60 while when increas-

ing the orientation ϕ > 60, a transition to intergranu-

lar fracture is obtained. The crack propagation direc-

tion does not follow the preferential direction anymore,

which may be due to the unfavorable orientation for

fracture growing. This illustrates that even if the grain

boundary fracture energy does not depend on the mis-

orientation between grains, its influence on the stress
distribution around the grain boundary, which lead to
can promote a transition to intergranular fracture.

5.2 Crack propagation in a bi-material containing a

grain boundary

5.2.1 Influence of grain boundaries

In this next example, we analyze the propagation of
a crack when it passes across a grain boundary. Two

cases are considered: (1) the grain boundary is unfa-
vorable for crack propagation due to different angles
between the preferential cleavage plane and the grain

boundary; (2) the grain boundary is favorable for crack

propagation. For this purpose, the structure described

in the previous example (Section 5.1) is used for the first

case. The details of the second structure are depicted
in Fig. 14(b).

The structure is meshed with triangular elements

with hmax
e = 0.05 mm and hmin

e = 0.003 mm. The ma-

terial parameters are chosen the same as in the previ-

ous test. The computation is performed with monotonic

displacement increments ∆U = 10−4 mm for 150 load

increments.
Figs. 15 show the damage evolution (phase field

d(x)) for the structure ST1. When the direction of grain

boundary and preferential plane are strongly different,

only a small influence of grain boundary on crack tra-

jectory is observed. After it crosses the grain boundary,

then the crack keeps its preferential direction related to

the grain’s orientation.
On the contrary, when the grain boundary and pref-

erential plane have similar orientations. The crack prop-

agation has a tendency to follow the grain boundary.

In other words, the crack is attracted within the grain

boundary, see Figs. 16.
Note that the intergranular fracture can be obtained

when the grain boundary fracture parameter is chosen

smaller than that one of the grains. We perform another

simulation on the structure ST1, with a fracture energy

chosen as gBc = gc/5. The comparison of crack mor-

phology for the three different situations are depicted

in Figs. 17.

The load-displacement curve for the three configu-

rations is plotted in Fig. 18. We observe a significant

change of the overall behavior when the crack propa-

gates across the interface (depicted by arrows in the

Fig. 18). The unfavorable grain boundary orientation

leads to a resistance of the structure ST2 that is higher

than for the structure ST1, while the intergranular frac-

ture exhibits the smallest resistance.
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(a)

(b)

Fig. 10: Displacement field in the y− direction uy(x) and damage d(x) corresponding to U = 0.008 mm: (a) first

displacement jump approximation (JA1), (b) second displacement jump approximation (JA2)
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Approximation (JA1)

Approximation (JA2)

Fig. 11: Comparison of displacement field uy(x) for

both displacement jump approximations along a line

of investigation (x = 0.5L).
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Grain 2

Grain boundary

y

xGrain 1

Crack

L

B

U

0.2L

0
.3

B 0
.5

B

0
.4

B

Preferential direction

Preferential direction

Fig. 12: Description of boundary condition and preferential orientation for each grain.

Intergranular fracture

0

20

40

60

Transgranular fracture

Fig. 13: Competition between trans and intergranular fracture due to the material orientation. The crack path is

compared with the different preferential direction of Grain 1 corresponding to U = 0.0105 mm. The intergranular
crack is observed when ϕ > 60◦
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xGrain 1

Crack
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referential direction
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Grain boundary
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B
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Grain boundary

y
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(a) (b)

Fig. 14: Benchmark problem for analyzing the propagation of a crack passing across a grain boundary: geometry

and boundary conditions; (a) structure ST1; (b) structure ST2.

(a) (b) (c)

Fig. 15: Crack propagation in the structure ST1, evolution of the phase field d(x) corresponding to: (a) U = 0.009

mm; (b) U = 0.01 mm and (c) U = 0.012 mm.

(a) (b) (c)

Fig. 16: Crack propagation in the structure ST2, evolution of the phase field d(x) corresponding to: (a) U = 0.009

mm; (b) U = 0.01 mm and (c) U = 0.012 mm.
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(a) (b) (c)

Fig. 17: Comparison of crack propagation when the crack passes across the grain boundary: (a) structure ST1; (b)
structure ST2 with gBc = 0.95gc; (c) structure ST2 with gBc = 0.2gc.
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Fig. 18: Comparison of stress-strain curve for the two structures. The black arrows show the instant when the

crack reaches the grain boundary.
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5.2.2 Crack deflection at grain boundary: tilt/twist

In this second example, we investigate the influence of

the orientations of the preferential slip planes in neigh-

bouring grains on the crack propagation. Difference in

the orientation between two grains can result in the

twist and/or tilt of the crack when crossing a grain

boundary [16]. To analyze this phenomena, we consider
a 2-grain structure in 2D and 3D, depicted in Fig. 19.
Tilting is investigating with a 2D configuration whereas

twisting requires a 3D computation. The length of the

domain for the 2D case is L × B = 2 × 1 mm2. For

the 3D domain, different thickness will be considered.

The two models contain an initial crack perpendicular

to the y-axis of length 0.5 mm in the x direction. The

details of the geometries are depicted in Fig. 19.

Initial crack

Preferential direction Preferential direction

Grain 2Grain 1

G
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0.25L
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Fig. 19: Configurations for the twist and tilt tests, ge-

ometry and boundary conditions: (a) 2D problem; (b)
3D problem

The numerical simulations are run using the param-

eters as defined in Table. 1. The elastic tensor is con-
sidered of cubic symmetry. In the grain natural coor-
dinates system ( 0◦ orientation), this elastic tensor is

chosen as follows:

C0
g =

















280 120 120 0 0 0

120 280 120 0 0 0

120 120 280 0 0 0

0 0 0 80 0 0

0 0 0 0 80 0

0 0 0 0 0 80

















(GPa.) (59)

The bulk modulus is obtained as k0 = (C11+2C12)/3 =
173.3 GPa. We use the same cohesive law as in the pre-

vious example. The fracture strength is tu = 0.15 GPa
and is considered independent for the angular mismatch

between grains. The fracture energy in the grain bound-

ary and in the grains are gBc = 1.25 × 10−3 kN/mm,

gc = 1.5 × 10−3 kN/mm. The ratio gBc /gc = 0.83 is
chosen here to promote the transgranular crack propa-

gation. Each grain has two preferential cleavage planes,
which are described in Table 2

The boundary conditions are as follows: on the lower

surface (y = 0), the y−displacements are fixed, while

the x−displacements (and z−displacements in 3D case)

are free. On the upper surface, the x− displacements

(and z−displacements in 3D case) are free, while the

y−displacements are prescribed to an increasing uni-

form value of ∆U during the simulation. Plane strain
is assumed for the 2D case.

The microcracking distribution (damage variables
d1(x), d2(x) ) for the 2D structure is depicted in Fig. 20

for several loading steps. To better visualize the final

crack state, we also plot an equivalent damage field

deq = d1 + d2 − d1d2 (see [36]). The results show the

propagation of a crack along one slip plane in each

grain. The final crack path shows a good agreement

with the experimental observation of tilt character of
the grain boundaries in literature [55,23].

The results of crack propagation in the 3D struc-

ture with dimension L×B ×H = 2× 0.3× 1 mm3 are

depicted in Fig. 21. The crack plane twisting is clearly
captured, reproducing very well the phenomena of fail-
ure in polycrystalline materials [16,54]. By changing the
dimension of the 3D structure to L×B×H = 2×1.5×1
mm3, in Fig. 22, the crack front finally forms a M (or
W) as often observed in experiments. The comparison
of the results for these two different thicknesses clearly

shows that there is a length scale associated with the

formation of the twisting patterns. For further compar-

isons with experiments it would also be interesting to

analyze in details the transient regime between the ini-

tial flat crack and the final rough crack surface.
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Structure hmin
e (mm) hmax

e (mm) ℓbeta (mm) ℓ (mm)
2D structure 0.008 0.02 0.016 0.012
3D structure 0.01 0.03 0.016 0.012

Table 1: Crack deflection at grain boundary tests: numerical parameters.

Structure Grain 1 Grain 2

2D structure n1 = [1 ; 0] n1 = [1/
√
2 ; 1/

√
2]

n2 = [0 ; 1] n2 = [1/
√
2 ; − 1/

√
2]

3D structure n1 = [0 ; 1 ; 0] n1 = [0 ; 1/
√
2 ; 1/

√
2]

n2 = [0 ; − 1 ; 0] n2 = [0 ; 1/
√
2 ; − 1/

√
2]

Table 2: Crack deflection at grain boundary test: description of preferential cleavage planes

(a)

(b)

(c)

Fig. 20: Crack propagation in the 2D structure with two grains, phase field corresponding to: (a) U = 0.01 mm;

(b) U = 0.0125 mm and (c) U = 0.013 mm.

The numerical results of this section show that this
new model can predict very well the crack deflection

(including crack plan twist and tilt) and path across a

grain boundary.
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Fig. 21: Crack propagation in the 3D structure with two

grains, L × B × H = 2 × 0.3 × 1 mm3: the equivalent
phase field corresponding to: (a) U = 0.011 mm; (b)

U = 0.0125 mm; (c) U = 0.0135 mm and (d) U = 0.014.
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Fig. 22: Crack propagation in the 3D structure with two

grains, L × B × H = 2 × 1.5 × 1 mm3: the equivalent

phase field deq(x) is plotted for: (a) U = 0.0012 mm; (b)

U = 0.0135 mm and (c) U = 0.014 mm (d) U = 0.0145

mm.
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5.3 Crack propagation in a 2D polycrystalline

aggregate

o x

y

 Prescribed displacement

In
it

ia
l 

cr
ac

k

B

L

(a)

(b)

Fig. 23: Geometry and boundary conditions for the

polycrystalline structure containing 50 grains: (a) angle

of the direction of anisotropy; (b) grain boundary and

loading description

The purpose of this example is to demonstrate the

potential of the present framework to simulate both

transgranular and intergranular fracture in polycrys-

talline materials. We consider a square domain L×B =

10 × 10 µm2 containing an inital crack and 50 grains.

The geometry and mesh of this microstructure is gen-

erated using the open source software Neper [42] (de-

veloped by Romain Quey at CNRS and MINES Saint-

Etienne, France). The average grain size is about 10/
√
50 ≈

1.4 µm. The details of the geometry and of boundary

conditions are described in Fig. 23. In each grain, both
direction of anisotropy and preferential damage direc-
tions are generated randomly.

A mesh of 59188 triangular elements with hmax
e =

0.02 µm and hmin
e = 0.015 µm is employed. The elastic

tensor of cubic symmetry is used. For 0◦ orientation, it

is written as follows in 2D:

C0
g =





320 110 0

110 320 0

0 0 120



 (MPa). (60)

The fracture energy in the bulk, gc, is set to 0.1

N/m. The regularization parameters are chosen as ℓβ =
0.03 µm for smeared grain boundaries and ℓ = 0.025 µm

for the phase field. Plane strain condition is assumed.

A bi-linear cohesive law (see Fig. 24) has been used

in this example:

t = k1 [[u]] if [[u]] < δ1,

t = k1δ1 + k2([[u]]− δ1) if [[u]] ≥ δ1,

with k2 = − k1δ1
δ1 − δ2

.

(61)

In that case, the cohesive fracture energy along a

grain boundary is defined by:

gBc =
k1δ1δ2

2
(62)

and the fracture strength is assumed independent of the

angular mismatch between grains, reads :

tu = k1δ1. (63)

[[u]]

δ
1

δ
2

Displacement jump

T
ra

ct
io

n
 f

o
rc

e 
t

Fig. 24: Definition of the linear cohesive law

The influence of the fracture energy of grain bound-

ary gBc and the anisotropic factor α is analyzed by using

three different sets of parameters:
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(C1) tu = 1 MPa, δ1 = 0.01 µm, δ2 = 0.1 µm, or equiva-

lently gBc = 0.05 N/m, α = 50;
(C2) tu = 1 MPa, δ1 = 0.01 µm, δ2 = 0.1 µm, or equiva-

lently gBc = 0.05 N/m, α = 5;

(C3) tu = 1.5 MPa, δ1 = 0.01 µm, δ2 = 0.12 µm, or

equivalently gBc = 0.09 N/m, α = 50.

In the two first cases (C1) and (C2), the fracture

energy in the grain boundary is chosen smaller than
the one of the bulk to promote intergranular fracture
or at least to mix inter and transgranular fracture. The
anisotropic factor in case (C2) is taken α = 5 to allow

smoother crack bifurcation in cases of strong misorien-
tation. In the last case (C3), we have chosen gBc /gc =

0.9 to promote transgranular fracture.

In the crystallographic orientation, the cleavage planes

are [1 0] and [0 1]. The damage variable corresponding
to these two preferential directions are denoted d1(x)
and d2(x), respectively. Monotonic tensile displacement

increments of ∆U = 4.10−3 µm have been prescribed
for di < 0.8 in all elements and ∆U = 6.10−4 µm for

di ≥ 0.8 at one integration point.

The computational time for each loading step is

about 90 seconds. Each simulation took about 7 hours.
The results of crack propagation for the case (C1) are

depicted in Fig. 25, where the different phase field vari-
ables are plotted. Both inter and transgranular fracture
occur in this situation (gBc /gc = 0.5). In addition to the

first crack derived from the initial crack, we also observe

the initiation of other crack networks at grain bound-

ary (see Fig. 25(b)(c)). Another interesting point in this

simulation is that due to the high value of α only one

cleavage plane is activated in each grain. Then depend-

ing on the misorientation of the neighbooring grains and

the orientation of the grain boundary, the crack choses

to keep the former cleavage active, to switch to the

other cleavage plane or to run within the grain bound-

ary (see Fig. 26).

A comparison of the final crack paths for the three

different cases is proposed in Fig. 27. In the second case

(C2), when the anisotropy coefficient is chosen smaller
α = 5, transgranular failure is less constrained to de-

velop along one single cleavage plane. Then, in some

grains the two systems are activated, resulting in a

crack orientation perpendicular to the applied stress

and in between the orientations of the cleavage planes.

In this simulation, after running through about half of
the analyzed volume, the crack finds a more favorable
intergranular path.

In the last case (C3), the fracture energy in grain

boundary is set to an higher value gBc /gc = 0.9. Then,

the anisotropic factor being set to its value for the case

(C1) with α = 50, transgranular fracture is promoted.

These results demonstrate the ability of the proposed

model to capture all three different scenarios of frac-

ture in polycrystalline materials, namely intergranular,
transgranular and a combined inter transgranular frac-
ture.

The load-displacement curves for the three cases are

depicted in Fig. 28. The elastic behavior for two first
case are the same, while the resistance of material in
intergranular fracture case (C1) is quite smaller than

case (C2). The case (C3) exhibits a different behavior,

because the cohesive energy is chosen bigger in this case
(kC3

1 = 150 > kC1,C2

1 = 100), i.e that also changes the

behavior of material even in elastic state.
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(a)

(b)

(c)

Fig. 25: Crack propagation in a 2D polycrystal for the case (C1), the phase field is plotted for: (a) U = 0.52 µm;

(b) U = 0.6 µm and (c) U = 0.645 µm.

Intergranular 

fracture

Transgranular 

fracture system 1

Transgranular 

fracture system 2

Fig. 26: Change of fracture mode according to the cleavage plane.
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(a) Crack path for (C1) gBc = 0.05 N/m, α = 50.

(b) Crack path for (C2) gBc = 0.05 N/m, α = 10.

(c) Crack path for (C3) gBc = 0.09 N/m, α = 50.

Fig. 27: Crack growth behavior in a 2D polycrystal:

comparison of crack paths for the three cases

5.4 Crack propagation in a 3D polycrystal

In this last example, we use a full 3D model to in-

vestigate the failure in a polycrystalline material. A

cubic structure containing 150 grains is generated us-
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Fig. 28: 2D test of crack propagation in a polycrystalline

material: comparison of stress-displacement curve for
the three cases.

ing Neper open source software [42]. Its geometry is

described in Fig. 29. The size of the cubic domain is

L×B×H = 10×10×10 µm3. The unstructured mesh

is composed of tetrahedral elements, with hmax
e = 0.01

µm, hmin
e = 0.008 µm and it contains about 12 millions

elements. We depict in Fig. 30 some details of the ana-
lyzed polycrystal and the mesh used for the simulation.

The elastic tensor is of cubic symmetry. In the crys-

talographic orientation, it is given as:

C0
g =

















280 120 120 0 0 0
120 280 120 0 0 0

120 120 280 0 0 0
0 0 0 80 0 0

0 0 0 0 80 0

0 0 0 0 0 80

















(MPa). (64)

Both elastic direction of elastic anisotropy and pref-

erential damage directions are chosen randomly in each

grain. The bulk modulus is k0 = (C11+2C12)/3 = 173.3

MPa. The fracture energy of grain boundary and of
bulk are set to gBc = 80 N/µm, gc = 100 N/µm, re-

spectively. The regularization parameters are chosen
as ℓβ = 0.18 µm for smeared grain boundaries and

ℓ = 0.12 µm for the phase field. Four cleavage planes

[1/
√
3 1/
√
3 1/
√
3], [−1/

√
3 −1/

√
3 1/
√
3], [−1/

√
3 1/
√
3 1/
√
3]

and [1/
√
3 − 1/

√
3 1/

√
3] in crystallographic orien-

tations are chosen, corresponding to four damage vari-
ables d1(x), d2(x), d3(x) and d4(x). The equivalent dam-

age variable deq(x) is here defined by:

deq =
∑

i

di −
∑

i 6=j

didj +
∑

i 6=j 6=k

didjdk −
∏

i

di, (65)

where i, j, k = 1, 2, 3, 4. The boundary conditions are as

follows: on the lower surface (z = 0), the z−displacements
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Initial crack

x

y

z

B

L

H

Fig. 29: Crack propagation in 3D polycrystal containing 150 grains: geometry and boundary conditions.

Fig. 30: Detailed view of the polycrystal: overall view, surface mesh and zoom on several local regions

are fixed, while the x− and y− displacements are free.

On the upper surface, the x− and y− displacements are

free, while the z−displacements are prescribed to an in-

creasing uniform value of ∆U during the simulation.

The computational time for each loading step is

about 3700 seconds, the entire simulation took about
one week. Fig. 31 shows the evolution of the crack for
different loading steps, where the equivalent damage

variable deq(x) (see Eq. (65))is depicted. We observe

here the variation of the crack surface orientation ac-

cording to the cleavage planes. To see better these ef-

fects, we also plot the the crack morphology through

several planes of investigations in x− directions and

y− directions. The results are presented in Figs. 32.

The 3D simulation demonstrates the performance

of this frame work to simulate a very large problem in

3D in a robust manner, to study failure phenomena of
polycrystalline materials.
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(a) (b)

(c) (d)

Fig. 31: Crack propagation in the 3D structure with 150 grains, equivalent phase field deq(x) corresponding to:

(a) U = 0.125 µm; (b) U = 0.145 µm; (c) U = 0.16 µm; (d) U = 0.175 µm.

6 Conclusions

A new phase field framework has been introduced in
this work to simulate failure in polycrystalline mate-

rials. Both elastic anisotropy and anisotropic surface
energy are taken into account in this model. Moreover,
the failure in grain boundary is described by a cohesive

law incorporated in the regularized variational frame-

work. Only phase field variables are used to describe

both the crack density within the grains and along the

grain boundaries; it can be used as an internal variable

to model irreversible damage of cohesive laws type in

this region. The new model provides an efficient tool

to simulate crack propagation in polycrystals, includ-

ing both intergranular and transgranular mechanisms

with many preferential cleavage planes. Therefore, the

proposed method allows for the analysis of the inter-

actions and the competition between intergranular and

transgranular fracture.

The analysis of crack growth behavior when the

crack passes through the grain boundary shows a very

good agreement with observations in literature. The

proposed model can reproduce both crack twisting and

tilting. The analysis of polycrystalline aggregates in 2D

and 3D show the ability of the model to handle complex

crack shapes and the combination of intergranular and

transgranular fracture modes.

The model is also able to deal with crack initiation

whether within the grains or at the grain boundaries.

Crack merging, coalescence and bifurcation is also pos-

sible within the proposed approach. The model invokes
only a few parameters, mainly the elastic tensor and the
fracture energy of the grains, and of the grain bound-

aries. The identification of these parameters and the

validation of the model might thus be possible using

the rich data provided by modern 3D imaging tech-

niques like X-ray tomography combined with displace-

ment measurements by digital volume correlation [35,



26 Thanh-Tung Nguyen et al.

(a) Crack morphology at plane x = 3 µm.

(b) Crack morphology at plane x = 4 µm.

(c) Crack morphology at plane y = 4 µm.

Fig. 32: Crack morphology in the 3D structure with

150 grains, equivalent phase field deq(x) corresponding

to U = 0.175 µm.

48] and Diffraction Computed Tomography [19]. This

will be the purpose of future works.
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A Smeared displacement jump approximation

(JA2)

In [40] we proposed a method to approximate the displace-
ment jump [[u(x)]] created by interface decohesion as a smooth
transition without additional variable, defined as follows:

[[u(x)]] ≃ w(x) = h∇u(x)nΓB , (66)

wherew(x) denotes the smoothed displacement jump approx-
imation, h is a small scalar parameter and nΓB the normal
vector to ΓB at the point x.

The corresponding BVP can be rewritten as:















∇ · σ(u,d) = 0 ∀x ∈ Ω,
γβ

[

t(w, κ)− nΓβ · σ(u,d)
]

= 0 ∀x ∈ Γβ ,
u = u ∀x ∈ ∂Ωu,
nt · σ = t ∀x ∈ ∂Ωt.

(67)

The Cauchy stress is here defined as follows:

σ(u,d) =
∂W e

u

∂εe

=

[

g(d)C0 + k01⊗ 1
[

1− g(d)
]

sign−(tr εe)

]

: εe (68)

where the expression of elastic strain εe is given (45). Using
the variation in the displacement for (67)

1
, the variation in

the displacement jump for (67)
2
, we obtain the corresponding

weak form:


























∫

Ω

σ : εe(δu)dΩ −
∫

∂Ωt

t · δudS = 0,

∫

Ω

{

γβ
[

t(w, κ)δw − σ : ε̃ (δw)
]

}

dΩ = 0.

(69)

The details of linearization and numerical implementation
can be found in the work [40].

B Anisotropic elasticity

In a polycrystalline material, the elastic moduli mentioned
in (29) depend on the relative orientation of different grains.
Hence the rotation of the grains must be taken into account
to determine the elastic stiffness tensor for each grain. This
can be achieved by using the reference transformation tensor
and grains coordinate system. Suppose that the components
of the elastic stiffness tensor matrix C0

g (in Voigt notation)
are given in grains coordinates, then the position-dependent
elastic stiffness tensor with respect to the reference coordinate
system is given by:

C
0 = P

T
C

0
gP, (70)

where P is the transformation tensor in Voigt’s notation.
In the general 3D case, the transformation matrix P can be
defined by the expression:

P =















L2
11 L2

21 L2
31 2L21L11

L2
12 L2

22 L2
32 2L22L12

L2
13 L2

23 L2
33 2L23L13

L12L11 L21L22 L31L32 L11L22 + L21L12

L11L13 L21L23 L31L33 L13L21 + L23L11

L13L12 L23L22 L33L32 L13L22 + L23L12

2L31L11 2L21L31

2L12L32 2L32L22

2L13L33 2L32L33

L31L12 + L11L32 L31L22 + L21L32

L11L33 + L31L13 L33L21 + L23L31

L12L33 + L13L32 L33L22 + L23L32















(71)

where Lij are the components of the rotation matrix.

For most materials treated in this work we considered an
anisotropic behavior with cubic symmetry, where the elastic
stiffness tensor contains only three independent parameters,
the corresponding matrix in 2D reads:

C
0
g =





C11 C12 0
C12 C11 0
0 0 C44



 . (72)

The corresponding bulk modulus is given as k0 = (C11 +
2C12)/3 (see [21,27]). The rotation of material orientation
can be simply determined following [24]. The transformation
matrix is here written as:

P =





c2 s2 2cs
s2 c2 −2cs
−cs cs c2 − s2



 (73)

where c = cosϕ1, s = sinϕ1.

C Cohesive zone model for grain boundary

The Cohesive Zone Model (CZM) is used to model the grain
boundary decohesion. An example of traction separation law
is described in Fig. 33

Fracture strength

Fig. 33: Separation law used to simulate grain boundary

decohesion, where tu is fracture strength, t([[u]] , κ), and

ΨB are defined in (19)

In the case of polycrystalline materials, the fracture strength
tu may depend on the misorientation between neighboring
single crystals, defined by:

∆θ = θi1 − θi2, (74)

where θi1, θ
i
2, are the orientations of two crystals along the

considered grain boundary on plane i.
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Following the work [25], the fracture strength is then ex-
pressed by the following:

tu(∆θi) = tavgu +
1

3
∆tu

∑

i

cos(4∆θi), (75)

where tavgu , ∆tu are the average and the maximal fracture
strength deviation, respectively.

Fig. 34: 2D description of crystal orientation between

two grains

An illustration for the case of 2D plane stress is depicted
in Fig. 34. In that case, the grain boundary fracture strength
is written by:

tu(∆θ) = tavgu +∆tucos(4∆θ). (76)
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