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Multiphoton multimode polarization entanglement in parametric down-conversion
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We study the quantum properties of the polarization of the light produced in type-II spontaneous parametric
down-conversion in the framework of a multimode model valid in any gain regime. We show that the micro-
scopic polarization entanglement of photon pairs survives in the high gain regime~multiphoton regime!, in the
form of nonclassical correlation ofall the Stokes operators describing polarization degrees of freedom.
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I. INTRODUCTION

The quantum properties of light polarization have be
widely studied in the regime of single-photon counts.
comparison, only recently there has been a rise in inte
towards the quantum properties of the polarization of m
roscopic light beams@1–4#, mainly due to their potentia
applications to the field of quantum information with co
tinuous variables and to the possibility of mapping the qu
tum state from light to atomic media@5#. A well-known
source of polarization-entangled photons is parame
down-conversion in a type-II crystal. Here, a pump field
high frequency is partially converted into two fields at low
frequency, distinguished by their polarizations. Due to spa
walk-off in the crystal, the two emission cones are sligh
displaced one with respect to the other, and the far-field
tensity distribution has the shape of two rings, whose cen
are displaced along the walk-off direction, as, e.g., shown
Fig. 1. The two regions where the far-field rings inters
have a very special role. In the regime where single pair
atoms are detected, the polarization of a photon detecte
one of these regions is completely undetermined. Howe
once the polarization of one photon has been measured
polarization of the other photon, which propagates at
symmetric position, is exactly determined. In other wor
when considering photodetection from these regions,
two-photon state can be described as the ideal polariza
entangled state@6#. Photons produced by this process ha
become an essential ingredient in many implementation
quantum information schemes~see, e.g., Refs.@7,8#!.

The question that we address in this paper is whether
microscopic photon polarization entanglement leaves
trace in the regime of high parametric down-conversion
ficiency, where the number of down-converted photons
be rather large@9#, and in which form.

To this end parametric down-conversion is described
the framework of a multimode model, valid for any ga
regime, which includes typical effects present in a realis
crystal, as diffraction and spatiotemporal walk-off. Quantu
optical polarization properties of the down-converted lig
are described within the formalism of Stokes operato
These operators obey angular momentumlike commuta
rules, and the associated observables are in general non
patible. We define a local version of Stokes operators
study the quantum correlation between Stokes opera
1050-2947/2003/68~5!/053807~17!/$20.00 68 0538
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measured from symmetric portions of the beam cross sec
in the far-field zone. In the regions where the two dow
conversion cones intersect we find that all the Stokes op
tors are correlated at the quantum level. Although the ligh
completely unpolarized and Stokes operators are very no
a measurement of a Stokes parameter in one of these reg
in any polarization basis determines the value of the Sto
parameter in the symmetric region within an uncertain
much below the standard quantum limit.

A continuous variable polarization entanglement, in t
form of quantum correlation between Stokes operators
two light beams, has been recently demonstrated@3#. In this
work the entanglement is of macroscopic nature, and spa
degrees of freedom do not play any role since the beams
single mode. Continuous variable polarization entanglem
which takes into account spatial degrees of freedom of li
beams is described in Ref.@10#, where we study the proper
ties of the light emitted by a type-II optical parametric osc
lator below threshold.

The analysis of this paper is rather focused on providin
bridge between the microscopic and the macroscopic
main, since our model is able to describe the polarizat
entanglement in parametric down-conversion with a conti
ous passage from the regime of production of single pairs
photons to the regime of high down-conversion efficiency

Besides its fundamental interest, we believe that the fo
of entanglement described in this work can be quite prom
ing for new quantum information schemes, due to the
creased number of degrees of freedom in play~photon num-

PUMP

χ(2)
ordinary - extraordinary

emission cones

0 lc

z

FIG. 1. Parametric down-conversion from a type-II crys
showing the two down-conversion cones at degeneracy.
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ber, polarization, frequency, and spatial degrees of freedo!,
and is well inserted in the recent trend toward entangled s
of increasing complexity~see, e.g., Ref.@11#, where a four-
photon polarization-entangled state is characterized!

The paper is organized as follows. Section II describes
model for spontaneous parametric down-conversion, in te
of propagation equations for field operators. Similar mod
are known in literature~see, e.g., Ref.@12# and references
quoted therein!, but besides presenting it in a systematic w
we include all the relevant features of propagation throug
nonlinear crystal and provide a precise link with the emp
cal parameters of real crystals. Section III is devoted to
description of the quantum polarization properties of
down-converted light. Stokes operators’ definition and pr
erties are briefly reviewed in Sec. III A. In Sec. III B w
generalize this definition to a local measurement in the be
far-field plane and introduce the spatial correlation functio
of interest. Analytical and numerical results for the degree
correlation of the various Stokes parameters detected f
symmetric portions of the beam cross section are prese
in Secs. III C and III D, both in the case when a narro
frequency filter is employed~Sec. III D 1! and when the filter
is broadband~Sec. III D 2!. Section IV provides an alterna
tive description of the system and of its polarization corre
tions in the framework of the quantum-state formalism. S
tion V finally concludes.

II. A MULTIMODE MODEL FOR TYPE-II PARAMETRIC
DOWN-CONVERSION

A. Field propagation

The starting point of our analysis is an equation desc
ing the propagation of the three waves~signal, idler, and
pump! inside a nonlinearx (2) crystal. We consider a crysta
slab of lengthl c , ideally infinite in the transverse direction
cut for type-II quasicollinear phase matching. In the fram
work of the slowly varying envelope approximation th
electric-field operator associated with the three waves is
scribed by means of three quasimonochromatic wave p
ets. We take thez axis as the laser pump mean propagat
direction ~Fig. 1!, and indicate withxW5(x,y) the position
coordinates in a generic transverse plane.Êi

(1)(z,xW ,t), i
5o,e,p designate the positive frequency part of the fie
operator~with dimensions of a photon annihilation operato!
associated with the ordinary (i 5o, the ‘‘signal’’! and ex-
traordinary (i 5e, the ‘‘idler’’ ! polarization components o
the down-converted beam, and (i 5p the ‘‘pump’’! the high-
frequency laser beam activating the down-conversion p
cess. Next we introduce their Fourier transform in time a
in the transverse domain:

Âi~z,qW ,V!5E dxW

2pE dt

A2p
e2 iqW •xWei (v i1V)tÊi

(1)~z,xW ,t !,

i 5o,e,p. ~1!

HereqW is the transverse component of the wave vector
V represents the frequency offset from the carriersvo1ve
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5vp . In the following, we shall assume degenerate ph
matching, so thatvo5ve5vp/2. It is convenient to subtrac
from the field operators the fast variation alongz arising
from linear propagation inside the birefringent crystal. W
write

Âi~z,qW ,V!5exp@ ik iz~qW ,V!z#âi~z,qW ,V!, ~2!

where kiz(qW ,V)5Aki
2(qW ,v i1V)2q2 is the projection of

the wave vector along thez direction, withki(qW ,v i1V) be-
ing the wave number of thei th wave. In the absence of an
nonlinear interaction, we would have

d

dz
âi~z,qW ,V!50, ~3!

Eq. ~2! with âi(z,qW ,V)5âi(z50,qW ,V) being the forward
solution of Maxwell wave equation in linear dispersive m
dia. For the pump wave, we assume that the intense l
pulse is undepleted by the down-conversion process, so
âp(z,qW ,V)5âp(z50,qW ,V). Moreover, we assume that th
pump is an intense coherent beam and the operator ca
replaced by its classical mean valueap(qW ,V).

For the signal and idler beams, the variation ofâi opera-
tors alongz is only due to the nonlinear term, proportional
the x (2) material second-order susceptibility. This is usua
very small, so thatâi are slowly varying alongz. This allows
us to neglect the second-order derivative with respect toz in
the wave equation. Hence the resulting propagation equa
takes the form~see also Ref.@13# for more details, and Ref
@14# for an alternative derivation!

d

dz
âi~z,qW ,V!5xE dqW 8E dV8ap~qW 1qW 8,V1V8!

3â j
†~z,qW 8,V8!e2 iD i j (q

W ,qW 8;V,V8)z/ l c,

iÞ j 5o,e, ~4!

wherex is a parameter proportional to the second-order s
ceptibilit of the medium, and

D i j ~qW ,qW 8;V,V8!5 l c@kiz~qW ,V!1kjz~qW 8,V8!

2kpz~qW 1qW 8,V1V8!# ~5!

is the phase-mismatch function@15#. Equation~4! describes
all the possible microscopic processes through which a pu
photon of frequencyvp1V1V8, propagating in the direc-
tion qW 1qW 8, is annihilated at positionz inside the crystal, and
gives rise to a signal and an idler photon, with frequenc
vp/21V, vp/21V8, and transverse wave vectorsqW ,qW 8,
with an overall conservation of energy and transverse m
mentum. The effectiveness of each process is weighted
the phase-mismatch function~5!, which accounts for conser
vation of the longitudinal momentum. In the limit of an in
finitely long crystal, where longitudinal radiation momentu
has to be conserved, only those processes for whichD i j 50
7-2



se

d
th
d

n
rd
e

o
th
p

rd
av

m

st

e
ez

e

sily

use

t

per.
e-

on,
BO
-
an

for

e
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are allowed. For a finite crystal, however, the pha
matching function has finite bandwidths, sayq0 in the trans-
verse domain andV0 in the frequency domain.

Equation~4! couples all the signal and idler spatial an
temporal frequencies within the angular bandwidth of
pumpdq'1/wp , with wp being the pump beam waist, an
within the pump temporal spectrumdV'1/tp , wheretp is
the pump pulse duration. In general, no analytical solutio
available and one has to resort to numerical methods in o
to calculate the quantities of interest, as described in R
@13#.

A limit where analytical results can be obtained is that
a pump waist and a pump duration large enough, so
dq!q0 , dV!V0. In this case the pump beam can be a
proximated by a plane wave

ap~qW 1qW 8,V1V8!→apd~qW 1qW 8!d~V1V8!. ~6!

Equation~4! reduces to

l c

d

dz
ao~z,qW ,V!5sae

†~z,2qW ,2V!e2 iD(qW ,V)z/ l c,

l c

d

dz
ae~z,2qW ,2V!5sao

†~z,qW ,V!e2 iD(qW ,V)z/ l c, ~7!

wheres5 l cxap is a linear gain parameter, and

D~qW ,V!5 l c@koz~qW ,V!1kez~2qW ,2V!2kp# ~8!

is the phase mismatch of a couple of ordinary and extrao
nary waves propagating with symmetric transverse w
vectors qW and 2qW , and with frequenciesvp/21V, vp/2
2V.

Solution of the propagation equation~7! is found in terms
of the field distributions at the input face of the crystal. Co
ing back to the field operators defined by Eq.~1!, we define
the field operators at the input and output faces of the cry
slab as

Âi
in~qW ,V!5âi~z50,qW ,V!, ~9!

Âi
out~qW ,V!5âi~z5 l c ,qW ,V!exp@ ik iz~qW ,V!l c#. ~10!

By solving Eq.~7! the transformation from the input to th
output operators is found in the form of a two-mode sque
ing transformation:

Âo
out~qW ,V!5Uo~qW ,V!Âo

in~qW ,V!1Vo~qW ,V!Âe
†in~2qW ,2V!,

Âe
out~qW ,V!5Ue~qW ,V!Âe

in~qW ,V!1Ve~qW ,V!Âo
†in~2qW ,2V!,

~11!

linking only symmetric modesqW ,V and2qW ,2V in the sig-
nal and idler beams~see, e.g., Ref.@12# for a similar trans-
formation in the type-I case!. If we require that free spac
commutation relations
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in~qW ,V!,Âj

in~qW 8,V8!#5d i , jd~qW 2qW 8!d~V2V8!,

i , j 5o,e ~12!

are preserved from the input to the output, it can be ea
shown that the complex coefficients of transformation~11!
need to satisfy the following conditions:

uUi~qW ,V!u22uVi~qW ,V!u251 ~ i 5o,e!, ~13!

Uo~qW ,V!Ve~2qW ,2V!5Vo~qW ,V!Ue~2qW ,2V!. ~14!

By taking the modulus of the second relation and making
of the first two ones, the complex equation~14! can be writ-
ten as two equivalent real equations:

uVo~qW ,V!u25uVe~2qW ,2V!u2, ~15!

arg@Uo~qW ,V!Ve~2qW ,2V!#5arg@Vo~qW ,V!Ue~2qW ,2V!#

ª2c~qW ,V!. ~16!

With this in mind, the coefficients of transformation~11! can
be recasted in the form

Uo~qW ,V!5U~qW ,V!eiw(qW ,V), Vo~qW ,V!5V~qW ,V!eiw(qW ,V),

Ue~qW ,V!5U~2qW ,2V!e2 iw(2qW ,2V),

Ve~qW ,V!5V~2qW ,2V!e2 iw(2qW ,2V), ~17!

with

U~qW ,V!5coshr ~qW ,V!eic(qW ,V)eiu(qW ,V),

V~qW ,V!5sinhr ~qW ,V!eic(qW ,V)e2 iu(qW ,V), ~18!

where r (qW ,V),w(qW ,V),c(qW ,V),u(qW ,V), are independen
real functions ofqW ,V.

We outline that the form of transformation~11!, together
with the unitarity requirements~13! and ~14!, is enough to
derive the general form of the results presented in this pa
In the following, we shall present results for a specific d
vice, namely traveling-wave parametric down-conversi
and we shall take as an example the case of a B
(beta-barium-borate! crystal. However, a similar investiga
tion can be carried out for any device characterized by
input/ouput transformation of form~11!. The case of type-II
parametric down-conversion inside an optical resonator is
example investigated in Ref.@10#.

More insight into the problem is gained by looking at th
explicit solution of the propagation equation~7!. We obtain

U~qW ,V!5ei (kpl c/2)H cosh@G~qW ,V!#

1 i
D~qW ,V!

2G~qW ,V!
sinh@G~qW ,V!#J , ~19!
7-3
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V~qW ,V!5ei (kpl c/2)
s

G~qW ,V!
sinh@G~qW ,V!#, ~20!

w~qW ,V!5
l c

2
@koz~qW ,V!2kez~2qW ,2V!#, ~21!

with

G~qW ,V!5As22
D2~qW ,V!

4
, ~22!

andD(qW ,V) is the phase-mismatch function defined by E
~8!.

B. Phase-matching curves

The gain functions~19! and ~20! reach their maximum
value for phase-matched modes, that is, the modes for w
D(qW ,V)50. By assuming the validity of the paraxial an
slowly varying envelope approximations, the longitudin
wave-vector componentskiz(qW ,V) can be expanded in
power series ofqW ,V. By keeping only the leading terms w
obtain

kiz~qW ,V!'ki1
1

vg
i
V1

1

2

d2ki

dV2
V21

dki

dqy
qy2

q2

2ki
, i 5o,e.

~23!

The first term at on the right-hand side~rhs! is ki5ni(v i ,qW
50)v i /c, with ni being the index of refraction at the carrie
frequency of an ordinary~extraordinary! wave propagating
along z direction. The second term (1/vg

i )V5(dki /dV)V
accounts for the fact that the three wave packets move
different group velocitiesvg

i . The third term describes th
effects of temporal dispersion. In writing the fourth term, w
assumed that the crystal is uniaxial and the crystal opt
axis lies in thez-y plane. This term is present only for th
extraordinary waves, anddki /dqy52r i where r i is the
walk-off angle of the wave. Finally, the last term describ
the effects of diffraction for a paraxial wave.

With this in mind, the phase-matching function can
written in the form

D~qW ,V!5D01rel cqy2
q2

q0
2

1Vtcoh1
1

2
e~Vtcoh!

2,

~24!

where

D05~ko1ke2kp!l c ~25!

is the collinear phase-mismatch~i.e., the phase mismatch o
the three waves at the carrier frequencies when propaga
along the longitudinal direction!;

q05A1

l c

ke1ko

2keko
5A2p

l l c

ne1no

2neno
~26!
05380
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with l54pc/vp being the wavelength in vacuum at th
carrier frequencyvp/2, andne ,no the ordinary and extraor
dinary refraction indices inside the crystal at the carrier f
quency. This parameter defines the typical bandwidth
phase matching in the transverseq-space domain. Its invers
l coh51/q0 will be referred to as thecoherence length;

tcoh5
l c

vg
o

2
l c

vg
e

, ~27!

with vg
i being the group velocities of the two waves, is t

difference between the time taken by the signal and id
wave packets to cross the crystal. This defines the typ
scale of variation of gain functions in the temporal doma
for type-II phase matching, and it will be referred to as t
amplifier coherence time; finally

e5S d2ko

dV2
1

d2ke

dV2D l c

tcoh
2

~28!

is a dimensionless parameter that depends on the temp
dispersion properties of the signal and idler pulses~typically
e!1).

The equationD(qW ,V)50 defines in the (qx ,qy) plane a
circumference, centered at the position

qx50, qy5qC5 1
2 q0

2rel c ~29!

and with radius given by

qR5q0AD01
qC

2

q0
2

1Vtcoh1
1

2
e~Vtcoh!

2. ~30!

This corresponds to the phase-matched modes for the s
~ordinary! wave. Phase-matched modes for the idler wa
emitted at the frequency2V, lie on the symmetric circum-
ference.

Figure 2 plots an example of these phase-match
circles, in the form of polar plot, withu being the polar angle
from the pump direction (z axis! outside the crystal andf
the azimuthal angle aroundz. Parameters are those of
2-mm-long BBO crystal, cut for degenerate phase match
at 49.6°, for a pump wavelength of 351 nm. They have be
calculated with the help of empirical Sellmeier formulas f
refraction indices in Ref.@16#. In the degenerate case, for
signal and idler wavelength of 702 nm, the relevant para
eters are as follows: idler~extraordinary wave! walk-off
angle re54.06°; D0516.137; q050.0853mm21, with a
transverse coherence lengthl coh'11.7mm; tcoh'0.44 ps;
e51.731023. With the exception ofD0, which varies rather
rapidly even for small variations of refraction indices, all th
other parameters vary rather slowly with the pump angle
signal-idler wavelengths, so that the above numbers give
typical order of magnitude of the parameters of a BBO cr
tal of this length.

For comparison, superimposed to the curves calculated
means of Eq.~24!, the figure shows the ‘‘exact’’ phase
matching curves, calculated with the method described
7-4
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Ref. @17#, by means of a public domain numerical routin
available in Ref.@18#. The plots show a rather good agre
ment, in any case within the error implicit in the use
empirical Sellmeier formulas.

III. POLARIZATION CORRELATION: QUANTUM-FIELD
FORMALISM

A. Stokes operators: definition and properties

Quantum-optical polarization properties of light are co
veniently described within the formalism of Stokes ope
tors, which represent the quantum counterparts of the Sto
vectors of classical optics. The polarization state of a cla
cal beam can be described by means of a Stokes vector
of its associated Poincare´ sphere. Stokes vectors pointing o
the equator of the sphere represent linearly polarized ligh
the vector points in the positive~negative! direction ofS1 the
light is horizontally~vertically! polarized, while theS2 direc-
tion identifies light polarized at 45° (245°). TheS3 direc-
tion corresponds to circularly~right and left! polarized light.
A fourth parameterS0 is the total beam intensity, and give
the radius of the Poincare´ sphere. For a polarized beamS1

2

1S2
21S3

25S0
2, so that the polarization state is represented

a point on the sphere surface.
In the quantum-mechanical description of light polariz

tion, Stokes parameters are replaced by a set of four St
operators. For a single mode of an electromagnetic field, t
are defined in terms of the photon annihilation operators
a vertical and a horizontal linear polarization modeâH ,âV ,
as

Ŝ05âH
† âH1âV

† âV , ~31!

Ŝ15âH
† âH2âV

† âV , ~32!
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FIG. 2. Polar plot of phase-matching curves in a BBO crys
Comparison of the approximated formula~24! with the ‘‘exact’’
phase-matching formula, calculated with the method in Ref.@17#
~NIST!. u is the polar angle from the pump direction of propag
tion, f is the azimuthal angle.lsignal5l idler5702 nm. (lpump

5351 nm), and the pump propagates at an angle of 49.6° from
crystal optical axis. Signal~ordinary! curves are in the upper half o
the plot, idler~extraordinary! in the lower half.
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Ŝ25âH
† âV1âV

† âH5â45
† â452â245

† â245, ~33!

Ŝ352 i ~ âH
† âV2âV

† âH!5âR
† âR2âL

†âL , ~34!

whereâ45,â245 denote annihilation operators on the obliq
polarization basis, andaR ,aL are annihilation operators o
the circular right and circular left polarization basis. The fi
two operators represent, respectively, the sum and dif
ences of photon numbers in the vertical/horizontal polari
tion basis. OperatorsŜ2 andŜ3 are the differences of photo
numbers in the oblique and circular polarization basis,
spectively. All these observables can be measured by m
of a polarizing beam splitter and quarter- and half-wa
plates, as, e.g., described in Ref.@19#. However, while op-
eratorŜ0 commutes with all the others, the remaining thr
do not:

@Ŝ1 ,Ŝ2#52iŜ3 , @Ŝ2 ,Ŝ3#52iŜ1 , @Ŝ3 ,Ŝ1#52iŜ2 .

~35!

The set of Stokes operators has angular-momentum-
commutation relation, and the associated observables a
general noncompatible. The quantum state of a light be
cannot be anymore visualized as a point on the Poinc´
sphere, since quantum noise introduces a minimum un
tainty in the values of the Stokes parameter. Polarizat
squeezed states, whose uncertainty can be represented
ellipsoid ~see, e.g., Ref.@2#!, have been recently realized@1#.

B. Stokes operator correlation in the far field of parametric
down-conversion

The main idea of this paper is to study the quantum c
relation between Stokes operators measured from symm
portions of the far-field beam cross section. To this end,
consider a measurement of the Stokes operators over a s
region D(xW ) centered around a positionxW in the far-field
plane of the down-converted field, and over a detection ti
T ~typically T is much larger than the crystal coheren
time!:

Ŝi~xW !5E
T
dt8E

D(xW )
dxW8ŝ i~xW8,t8!, ~36!

where

ŝ0~xW ,t !5Âo
†~xW ,t !Âo~xW ,t !1Âe

†~xW ,t !Âe~xW ,t !, ~37!

ŝ1~xW ,t !5Âo
†~xW ,t !Âo~xW ,t !2Âe

†~xW ,t !Âe~xW ,t !, ~38!

ŝ2~xW ,t !5Âo
†~xW ,t !Âe~xW ,t !1Âe

†~xW ,t !Âo~xW ,t !, ~39!

ŝ3~xW ,t !52 i @Âo
†~xW ,t !Âe~xW ,t !2Âo

†~xW ,t !Âe~xW ,t !#. ~40!

Âo/e denotes the field operator for the ordinary/extraordin
polarized beam in the far-field plane, which can be obser
in the focal plane of a lens, placed as shown in Fig. 3.

l.

-

he
7-5



in
l.

y

GATTI et al. PHYSICAL REVIEW A 68, 053807 ~2003!
χ(2)

lc

  BBO 1

PUMP

χ(2)

lc

  BBO 2λ/2 @45

f f

FAR
FIELD

z

L

FIG. 3. Schematic setup for a measurement
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By using the free field commutation relations~12!, it can
be easily shown that

@Ŝ1~xW !,Ŝ2~xW !#52iŜ3~xW !, @Ŝ2~xW !,Ŝ3~xW !#52iŜ1~xW !,

@Ŝ3~xW !,Ŝ1~xW !#52iŜ2~xW !, ~41!

while operators measured from different~and not connectedy
detection pixels commute.

In the following, we shall consider Stokes operator cor
lation functions of the form

^dŜi~xW !dŜj~xW8!&5^Ŝi~xW !Ŝj~xW8!&2^Ŝi~xW !&^Ŝj~xW8!&

~ i , j 50, . . . ,3!. ~42!

A useful tool for calculation is the correlation functions
the Stokes operator densities~37!–~40!:

Gi j ~xW ,xW8;t!5^ŝ i~xW ,t1t!ŝ j~xW8,t !&2^ŝ i~xW ,t1t!&

3^ŝ j~xW8,t !&. ~43!

In the continous-wave pump regime the system is station
in time and the correlation functions~43! depend only on the
time delayt. Spectral densities of these functions can
introduced as

G̃i j ~xW ,xW8;V!5E dteiVtGi j ~xW ,xW8;t!. ~44!

Their relation with the correlation functions of the measur
Stokes operator~42! is given by

^dŜi~xW !dŜj~xW8!&5E
D(xW )

dxW1E
D(xW8)

dxW18E dV
T2

2p
sinc2S V

T

2D
3G̃i j ~xW1 ,xW18 ;V!. ~45!

We notice that

lim
T→`

T

2p
sinc2S V

T

2D5d~V!, ~46!

and that this function acts under the integral as a freque
filter with bandwidthDV52p/T. We shall assume in the
05380
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following that the detection time is much larger than t
crystal coherence time. Under this assumption

^dŜi~xW !dŜj~xW8!& ——→
T@tcoh

TE
D(xW )

dxW1E
D(xW8)

dxW18

3G̃i j ~xW1 ,xW18 ;V50!. ~47!

When a lens of focal lengthf is placed at a focal distanc
both from the crystal output plane and the observation pl
~see Fig. 3!, the field operators in the far-field plane are co
nected to those at the crystal output by the usual mapp
@20#

Âi~xW ,V!5
2p

il i f
Âi

outS qW 5
2pxW

l i f
,V D , ~48!

where f is the focal length of the lens used to image t
far-field plane andl i is the wavelength~in vacuum! at the
frequencyvp/21V.

Since the light statistics is Gaussian~the output operators
are obtained by a linear transformation acting on inp
vacuum field operators! all expectation values and correla
tion functions of interest can be calculated by making use
the second-order moments of field operators. These ca
easily calculated in the far-field plane by assuming that
down-converted field operators at the input crystal face ar
the vacuum state and by using the input/output relations~11!,
together with Eq.~48!, thus obtaining

^Âi
†~xW ,V!Âj~xW8,V8!&5d i , jd~xW2xW8!d~V2V8!uVi~xW ,V!u2,

~49!

^Âi~xW ,V!Âj~xW8,V8!&52
l j

l i
~12d i , j !dS xW

l j

l i
1xW8D

3d~V1V8!Ui~xW ,V!

3Vj S 2xW
l j

l i
,2V D ~ i , j 5o,e!.

~50!

In this formula
7-6
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Ui~xW ,V!5Ui S qW 5xW
2p

l i f
,V D , Vi~xW ,V!5Vi S qW 5xW

2p

l i f
,V D ,

~51!

whereUi ,Vi are are the gain functions defined by Eqs.~17!–
~22!. Notice the presence of the nonzero ‘‘anomalou
propagator described by Eq.~50!, a term which is character
istic of processes where particles are created in pairs. In
der to simplify the notation, in the following we shall con
sider the caseV!vp/2, and takelo5le5l52lp . In a
real experimental implementation, however, the validity
such an approximation should be carefully checked when
using narrow frequency filters; twin photons produced at d
ferent wavelengthsle ,lo , and traveling with symmetricqW ,
2qW transverse wave vectors are actually propagating at
ferent angles from the pump and will be intercepted in the
field at two slightly different radial positions.

The fact that the field spatial correlations are perfec
localized in the far field~the Dirac-d form of the correlation
peak! is a consequence of the translational symmetry of
model in the transverse plane~plane-wave pump and a crys
tal slab infinite in the transverse direction!. A trivial formal
fault is that the far-field mean intensity of the dow
converted beams diverges as a consequence of the in
energy of a plane-wave pump. This artificial divergence c
be formally eliminated with the trick used in Refs.@21,22#,
where a finite-size pupil was inserted at the output face of
crystal. The spatial Dirac-d functions in Eqs.~49! and ~50!
are substituted by a finite version, and a typical resolut
area, proportional to the diffraction spot of the pupil in t
far-field plane, is introduced in the scheme. For a pupil
transverse areaSP , this is given byDR5(l f )2/SP . The
typical scale of variation of the gain functions~51! in the
far-field plane is

X05q0

l f

2p
. ~52!

WhenX0 is much larger than the resolution area~or, equiva-
lently, when the pupil size is much larger than the amplifi
coherence length!, the mean photon number distribution
the far-field plane is given by

^N̂i~xW !&5E
D(xW )

dxW8E
T
dt^Âi

†~xW8,t !Âi~xW8,t !&

'
T

DR
E

D(xW )
dxW8E dV

2p
uVi~xW8,V!u2. ~53!

When the finite size of the pump is taken into account in
numerical model@13#, it is easily seen that the resolutio
area is rather given in terms of the spot size of the pump
it is imaged in the far-field plane. For a Gaussian pump
waist wp , DR'(l f )2/(pwp

2).
In this limit of small resolution area, the mean value

Stokes operators is given by
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^Ŝ0~xW !&5
T

DR
E

D(xW )
dxW8E dV

2p
@ uVo~xW8,V!u21uVe~xW8,V!u2#,

~54!

^Ŝ1~xW !&5
T

DR
E

D(xW )
dxW8E dV

2p
@ uVo~xW8,V!u22uVe~xW8,V!u2#,

~55!

^Ŝ2~xW !&5^Ŝ3~xW !&50. ~56!

C. Correlation in Stokes operatorsS1 ,S0

The first and second Stokes operators represent the
and the difference, respectively, between the number of
dinary and extraordinary photons~say horizontally and ver-
tically polarized photons! measured from a detection pixel i
the far-field plane:

Ŝ0~xW !5N̂o~xW !1N̂e~xW !, ~57!

Ŝ1~xW !5N̂o~xW !2N̂e~xW !. ~58!

The plane-wave pump model predicts that the number
ordinary and extraordinary photons collected from any t
symmetric portions of the far-field plane are perfectly cor
lated observables@13,21#. This result is a direct consequenc
of pairwise emission of photons with horizontal~ordinary!
and vertical ~extraordinary! polarizations, propagating in
symmetric directions, as required by transverse light mom
tum conservation. Hence, this model predicts an ideally p
fect correlation, both betweenŜ0(xW ),Ŝ0(2xW ), and between
Ŝ1(xW ),2Ŝ1(2xW ) for any choice of the positionxW in the far
field @notice thatŜ0(xW ) commutes withŜ1(xW8)].

In a more sophisticated numerical model@13#, it is readily
seen that the finite width of the pump profile introduces
uncertainty in the directions of propagation of the dow
converted photons. As described by the propagation equa
~4!, when ano photon is emitted in directionqW , its twin e

photon is emitted in the direction2qW within an uncertainty
dq}2/wp , which is the bandwidth of the pump spatial Fo
rier transform. A photon number correlation well beyond t
shot-noise level is recovered when photons are collec
from regions larger than a resolution area

DR'pS dq
l f

2p D 2

5~l f !2/~pwp
2!.

In the limit of a small resolution area, long but straigh
forward calculations@23# show that

G̃00~xW ,xW8;V!5
1

DR
@d~xW2xW8!F1~xW ,V!

1d~xW1xW8!F2~xW ,V!#, ~59!

G̃11~xW ,xW8;V!5
1

DR
@d~xW2xW8!F1~xW ,V!2d~xW1xW8!F2~xW ,V!#

~60!
7-7
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with

F1~xW ,V!5E dv

2p
$uVo~xW ,v!Uo~xW ,v1V!u2

1uVe~xW ,v!Ue~xW ,v1V!u2%, ~61!

F2~xW ,V!5E dv

2p
$Uo~xW ,v!Uo* ~xW ,v2V!Ve~2xW ,2v!

3Ve* ~2xW ,2v1V!1Ue~xW ,v!Ue* ~xW ,v2V!

3Vo~2xW ,2v!V0* ~2xW ,2v1V!%. ~62!

The correlation functions have two peaks; the first one,
cated atxW85xW , accounts for the noise in the measuremen
Stokes parameter from a single pixel. The second on
located atxW852xW and accounts for correlation~anticorrela-
tion! between measurements performed over symmetric
els. By taking into account the unitarity relations~13! and
~15!, it can be immediately noticed that whenV50 ~corre-
sponding to long detection times! F1(xW ,0)5F2(xW ,0), and the
two correlation function peaks have the same size. This
resents the maximum amount of correlation allowed
Schwarz inequality, which requires that

u^dŜi~xW !dŜi~2xW !&u<@^dŜi~xW !dŜi~xW !&^dŜi~2xW !

3dŜi~2xW !&#1/2. ~63!

In our case, assuming two s!mmetric detection pixelsD(xW )
andD(2xW ), we have, e.g.,

^dŜ1~xW !dŜ1~xW !&5^dŜ1~2xW !dŜ1~2xW !&

5
T

DR
E

D(xW )
dxW8F1~xW8,0!, ~64!

^dŜ1~xW !dŜ1~2xW !&52
T

DR
E

D(xW )
dxW8F2~xW8,0!

52^dŜ1~xW !dŜ1~xW !&. ~65!

Finally, the existence of such a perfect correlation impl
that bothŜ1(xW )1Ŝ1(2xW ) and Ŝ0(xW )2Ŝ0(2xW ) are noiseless
observables. For example,

^@dŜ1~xW !1dŜ1~2x!#2&

52@^dŜ1~xW !dŜ1~xW !&1^dŜ1~xW !dŜ1~2xW !&#50.

~66!

We remark that the ‘‘twin beam’’ character of the dow
converted light is recovered only for measurement time lo
compared with the coherence time and for detection a
broader than the resolution areaDR . This is natural becaus
coherence time and resolution area represent the typica
certainty in the arrival time and arrival position of the seco
photon after its twin one has been detected at some far-
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position. For what concerns time, typical detection times
much longer than the coherence time, since in a few m
meter type-II crystaltcoh'1 ps. In space, we can assum
that for a given down-conversion frequency the typical wid
X0 of the down-conversion rings in the far-field is propo
tional to the emission bandwidth inq space,X0'q0l f . The
plane-wave pump results described above hold in the li
where the resolution area is much smaller thanX0

2. We have
that X0

2/DR'q0
2wp

25(wp / l coh)
2, and since l coh'10 mm,

this limit can be easily achieved with a realistic pump s
~see Ref.@13# for more details!.

D. Correlation in Stokes operatorsS2 ,S3

Quite different is the situation for the other two Stok
operatorsS2 ,S3, which involve measurements of the photo
number in a polarization basis different from the ordina
and extraordinary ones of the crystal, namely in the obliq
and circular polarization basis.

Calculations along the same lines of those performed
the first two Stokes operators show that also in this case
correlation functions display two peaks, one representing
noise associated with the measurement over a single p
the other the correlation between symmetric pixels:

G̃22~xW ,xW8;V!5G̃33~xW ,xW8;V! ~67!

5
1

DR
@d~xW2xW8!H1~xW ,V!1d~xW1xW8!H2~xW ,V!#

~68!

with

H1~xW ,V!5E dv

2p
$uVo~xW ,v!Ue~xW ,v1V!u2

1uVe~xW ,v!Uo~xW ,v1V!u2%, ~69!

H2~xW ,V!5E dv

2p
$Uo* ~xW ,v!Ue~xW ,v1V!Ve* ~2xW ,2v!

3Vo~2xW ,2v2V!1Ue* ~xW ,v!Uo~xW ,v1V!

3Vo* ~2xW ,2v!Ve~2xW ,2v2V!%. ~70!

However, unlike the previous case, the two peaks in gen
do not have the same size, even for a long measurem
time. LettingV50 in Eqs.~69! and~70! and using definition
~17!, which is a consequence of unitarity, we have

H1~xW ,0!5E dv

2p
$uV~xW ,v!U~2xW ,2v!u2

1uV~2xW ,2v!U~xW ,v!u2%, ~71!

H2~xW ,0!5E dv

2p
2 Re$U* ~xW ,v!U~2xW ,2v!V* ~xW ,v!

3V~2xW ,2v!%, ~72!
7-8
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H1~xW ,0!2H2~xW ,0!5E dv

2p
uV* ~xW ,v!U~2xW ,2v!

2V* ~2xW ,2v!U~xW ,v!u2, ~73!

where U,V appearing in these equations are the functio
defined by Eqs.~19! and ~20!, calculated atqW 5xW2p/(l f ).
Moreover,

^@Ŝ2~xW !2Ŝ2~2xW !#2&5^@Ŝ3~xW !2Ŝ3~2xW !#2& ~74!

5
2T

DR
E

D(xW )
dxW8@H1~xW8,0!2H2~xW8,0!#.

~75!

The noise in the difference between Stokes operators m
sured from symmetric pixels in general does not vanish,
to the lack of symmetryxW ,V→2xW ,2V in the gain func-
tions. In turn, this reflects the effect of spatial walk-off b
tween the ordinary/extraordinary beams@described by the
term proportional toqy in the phase-mismatch function~24!#
and the group-velocity mismatch between the two wa
@described by the term proportional toV in Eq. ~24!#.

In the following two sections we will compare the nois
in the difference between Stokes operators from two sy
metric detection pixels~74! and ~75!, with the shot-noise
level, that is, the level of noise that would be shown by
coherent beam of the same intensity. This is defined by
equation

^@Ŝ2,3~xW !2Ŝ2,3~2xW !#2&

5^@Ŝ0~xW !1S0~2xW !#&1^:@Ŝ2,3~xW !2Ŝ2,3~2xW !#2:&,

~76!

where the first term on the rhs is the shot noise,^: :& is the
normally ordered expectation value that vanishes for a co
ent beam, and relation~76! is easily obtained by using th
field commutation relations~12!. It is not difficult to show
that the shot noise represents the level of noise that wo
affect the difference between the Stokes operators of
light modes obtained by dividing a beam by means o
symmetric beam splitter. In general, the shot noise wo
affect the noise in the difference between Stokes operato
two modes whose correlations are created by splitting a l
beam with such a classical device, and defines the stan
quantum limit.

In the following we will show that for proper modes o
the down-converted light, a level of correlation well beyo
the standard quantum limit can be reached forall the Stokes
operators at the same time. We will refer to this situation
‘‘polarization entanglement’’ because it represents the nat
generalization of the concept of polarization entangleme
commonly used in the coincidence count regime, to the
gime of multiple pair production. However, it is important
remark that for spontaneous parametric down-convers
there is no way, to our knowledge, to derive a sufficie
criterion for inseparability based on the degree of correlat
of the Stokes operators, as that derived in Ref.@24# and gen-
eralized in Ref.@3#. This depends on the fact that the avera
values of commutators~and anticommutators! of Stokes op-
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erators are in this system intrinsically state dependent
difference to what happens in the experiment performed
Ref. @3#, where bright entangled beams were used.

1. Narrow-band frequency filtering results

Part~b! of Fig. 4 shows a typical result for the noise in th
difference between Stokes operators measured from s
~but larger thanDR) symmetric portions of the far field. Pre
cisely, the figure shows^@Ŝ2(xW )2S2(2xW )#2&5^@Ŝ3(xW )
2S3(2xW )#2&, scaled to the shot-noise level̂@Ŝ0(xW )
1S0(2xW )#&, as a function of the transverse coordinatexW
5(x,y) scaled toX0. Parameters in this plot are those of
2-mm-long BBO crystal, cut at 49.6° for degenerate type
phase matching at 702 nm. For comparison, part~a! of the
figure shows the mean photon number distribution in the
field. The numbers associated with the scale in~a! represent
the number of photons detected over a resolution areaDR
and over a crystal coherence time, which is the meanphoton
number per mode. Both plots have been obtained by filterin
the emitted frequencies in a bandwidthDl58 nm wide

a)

b)
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 22.40  --  25.20
 19.60  --  22.40
 16.80  --  19.60
 14.00  --  16.80
 11.20  --  14.00
 8.400  --  11.20
 5.600  --  8.400
 2.800  --  5.600
 0  --  2.800

-5 0 5
-15

-10

-5

0

5

10

15
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 1.440  --  1.600
 1.280  --  1.440
 1.120  --  1.280
 0.9600  --  1.120
 0.8000  --  0.9600
 0.6400  --  0.8000
 0.4800  --  0.6400
 0.3200  --  0.4800
 0.1600  --  0.3200
 0  --  0.1600

FIG. 4. ~a! Far-field photon number distribution of the down
converted field.~b! Distribution of the noise in the difference be

tween Ŝ2 measured from symmetric portions of the beam cro

section, scaled to the shot-noise level. The distribution forŜ3 is
identical. A step-function frequency filterDl58 nm wide, centered
around the degenerate frequency is used in both plots.s52.
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around the degenerate frequency, by means of a s
function filter. Precisely, we let

Âi~xW ,V!→Af ~V!Âi~xW ,V!1A12 f ~V!v̂ i~xW ,V!, i 5o,e,

~77!

wherev̂ i(xW ,V) are vacuum field operators uncorrelated fro
the signal and idler fieldsÂi(xW ,V), and the filter function
f (V) in this case is the step functionf (V)51 for
Ve@2DV/2,DV/2#, f (V)50 elsewhere.

In plot ~b! we see clearly two large dark zones, in corr
spondence of the intersections of the emission cones, w
the Stokes operator correlation is almost perfect. Out of th
regions, basically no spatial correlation at the quantum le
exists for Stokes operatorsS2 andS3.

Remarkably, at the intersection of the two degener
emission cones, the light is completely unpolarized. Figur
shows the distribution of̂Ŝ1(xW )&/^Ŝ0(xW )& in the transverse
far-field plane, showing that it vanishes at the emission r
intersection; recalling that the mean value ofŜ2 and Ŝ3 is
zero everywhere, this means a vanishing degree of pola
tion in these regions. Moreover, in these regions a meas
ment of Stokes parameters over a single detection pixe
very noisy, as shown in Fig. 6, which plots the distribution

^@dŜ2(xW )#2&5^@dŜ3(xW )#2&, scaled to the shot-noise leve

^Ŝ0(xW )&. In this plot the uniform dark background corre
sponds to the shot-noise level, while the bright spots co
spond to a noise level 10–12 times larger than the shot no

Similar results are obtained in any gain regime. In t
small gain limit, the noise statistics associated with a m
surement over a single pixel becomes essentially Poisson
but the correlation between Stokes parameters meas
from symmetric pixels is basically the same as in the h
gain regime. Figure 7 compares the noise in the differe
between Stokes parameters measured from symmetric p
in the small and high gain regimes, plotted as a function
the vertical coordinatey of the signal pixel position.x coor-
dinate is chosen by following the circle of maximum gain f
the degenerate frequency~the black curve in the upper ha
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Y
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0
 0.9450  --  1.050
 0.8400  --  0.9450
 0.7350  --  0.8400
 0.6300  --  0.7350
 0.5250  --  0.6300
 0.4200  --  0.5250
 0.3150  --  0.4200
 0.2100  --  0.3150
 0.1050  --  0.2100
 0  --  0.1050

FIG. 5. Degree of polarization of the light down-converted by

BBO crystal. Far-field distribution of̂Ŝ1(xW )&/^Ŝ0(xW )&. Same pa-
rameters as in Fig. 4.
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of Fig. 2!, so thaty50 corresponds to the intersection of th
two down-conversion rings. The dashed lines were obtai
with s50.01, corresponding to a mean photon number
mode'1024, the solid lines withs52, corresponding to a
mean photon number per mode'15 @see Fig. 4~a!#. In this
plot, the two dark lines are, as usual, obtained by filtering
frequencies with a step function (Dl55 nm). For compari-
son, the two light lines show the results obtained by me
of a more realistic frequency filter, with a Gaussian profi
Precisely, we take the filter function in Eq.~77! as f (V)
5exp@2(V24 ln 2)/(DV2)#, where DV is the full width at
half maximum~FWHM! and corresponds to an interval i
wavelengths of 5 nm. In this case, losses introduced by
Gaussian shape of the filter slightly deteriorate the corre
tion.
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FIG. 6. Noise in the measurement of Stokes parameters of
down-converted light by a BBO crystal. Far-field distribution
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Fig. 4.
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The results described above were obtained by exploitin
trick commonly used in the experiments performed in
coincidence count regime~for example in the experiment o
Ref. @6#!, in order to partially compensate for the tempo
and spatial walk-off of the down-converted beams. In
regime of single pair production, the ordinary and extraor
nary photons can be in principle distinguished because
their different group velocities inside the crystal, and beca
of their offsets in propagation directions due to walk-off e
fects inside the crystal. The mere existence of this possib
is detrimental for the entanglement of the state. As it is d
cussed in detail in Appendix A, in the general case~arbitrary
number of down-converted photons!, the group-velocity mis-
match and the spatial walk-off are responsible for the app
ance of a propagation phase factor that lowers the valu
the correlation function between Stokes operators meas
from symmetric regions. In principle, this problem can
solved by using a very narrow frequency filter, and by p
forming the measurement over narrow regions cente
around the ring intersections. However, this lowers the e
ciency of the setup. Another possibility is to insert a seco
crystal, after the pump beam has been removed, and afte
field polarization has been rotated by 90°~see Fig. 3!. In this
way, the slow and fast waves in the first crystal become
fast and slow waves, respectively, in the second crystal,
the direction of walk-off is reversed. Unlike the low ga
regime, the correlation is optimized when the length of t
second crystal is chosen as

l c85 l c

tanhs

2s
, ~78!

where s is the linear gain parameter, proportional to t
pump amplitude and to the first-crystal length~see Appendix
A!. The fact that the optimal length of the compensat
crystal decreases with increasing gain can be understoo
following @25,26#: in the low gain regime~limit s→0), the
photon pair can be produced at any point along the cry
length with uniform probability, so that the average tempo
delays of the two photons due to the group-velocity m
match are those corresponding to half of the crystal len
and best compensation is achieved forl c85 l c/2. In the large
gain regime, more and more photon pairs are produced
wards the end of the crystal~the number of down-converte
photons increases exponentially with the crystal length!, so
that walk-off effects are best compensated by a shorter c
tal, whose length is given by formula~78!.

When this kind of optimization is not possible, our calc
lations show that similar results can be obtained by a narr
band temporal and spatial filtering, and/or by using crys
that exhibit a smaller amount of walk-off. Figure 8 deta
the role of the compensation crystal. It plots the noise in
difference between Stokes parameters measured from
metric pixels as a function of the vertical coordinatey along
the circle corresponding to the maximum gain at the deg
erate frequency.
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2. Broadband frequency filtering results

The results described in Sec. III D 1 were obtained
using relatively narrow frequency filters~5–8 nm!. Remark-
ably, when a broader frequency filter is employed, the
gions where Stokes parameters are correlated stretch to
a ring-shaped region around the pump direction~see Fig. 9!.
This kind of shape can be understood by considering
geometry of the down-conversion cones emitted at the v
ous frequencies by a BBO crystal. Figure 10 is a polar plo
the phase-matching curves~geometrical loci of the phase
matched modes!, with u being the polar angle from the pum
direction of propagation (z axis! andf the azimuthal angle
aroundz. In this plot the same color identifies the same em
sion wavelength; dark/light thick curves correspond to t
conjugate wavelengths, while the thin black curves are
two emission cones at the degenerate wavelength. The s
~ordinary! wave emission curves are those in the upper h
of the plot. When considering the intersection points o
dark circle with a light circle, which correspond to two co
jugate wavelengths, we cannot expect any kind of entan
ment, since photons arriving in these positions are clea
distinguishable by their different frequencies. Let us co
sider, instead, one of the intersections of the two light cur
~e.g., the one pointed by the arrow in the plot!. Here ordinary
and extraordinary photons arrive with identical probabili
and have the same wavelength. As a consequence, the ph
polarization is undetermined, and the light is completely u
polarized. However, each time an ordinary~extraordinary!
photon arrives at this position, an extraordinary~ordinary!
photon, at the conjugate wavelength, will be found at
symmetric position. This corresponds to the intersection
the two dark curves, indicated in the plot by the second
row. Hence, when considering photodetection from the t
regions indicated by the arrows in the plot we can expec
high degree of polarization entanglement. The same rea
ing can be made for any intersection of circles correspond
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FIG. 8. Effect of the compensation crystal. Noise in the diffe

ence betweenŜ2 measured from symmetric pixels, scaled to t
shot-noise level.y is the far-field vertical position along the max
mum gain circle. Gray lines: without compensation crystal, das
gray lineDl51 nm, solid gray lineDl50.5 nm. Black lines: with
optimal compensation crystal, solid black lineDl51 nm, dashed
black lineDl58 nm.
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GATTI et al. PHYSICAL REVIEW A 68, 053807 ~2003!
to the same wavelength~light with light, dark with dark, and
thin black with thin black!. By connecting all these point
together, we can for example recognize the geometr
shape of the dark regions in Fig. 9~a!, where a high degree o
correlation in all the Stokes parameters exists. By includ
more frequencies, the ring-shaped region of Fig. 9~b! shows
up.

From the mathematical point of view, the form of th
region where Stokes parameters are quantum correlate
given by the solution of the equation

D~qW ,V!5D~2qW ,2V!50 ~79!

with xW52pqW /(l f ). By introducing the explicit form of the
phase-mismatch function~24!, Eq. ~79! is the equation of an
ellipse~with a small eccentricity! centered around the origin
that is, the best correlated modes form a slightly asymme
cone around the pump direction.

IV. POLARIZATION CORRELATION: QUANTUM-STATE
FORMALISM

This section is devoted to the discussion of the problem
terms of an equivalent quantum state formalism. Our aim

a)

b)
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 0.9800  --  1.120
 0.8400  --  0.9800
 0.7000  --  0.8400
 0.5600  --  0.7000
 0.4200  --  0.5600
 0.2800  --  0.4200
 0.1400  --  0.2800
 0  --  0.1400
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 0.1400  --  0.2800
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FIG. 9. Broadband frequency filtering. Distribution of the noi

in the difference betweenŜ2 (Ŝ3) measured from symmetric por
tions of the beam cross section, scaled to the shot-noise leve
part ~a! a frequency filterDl520 nm wide centered around th
degenerate frequency is used; in~b! Dl560 nm.
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on the one side, to give an alternative and instructive poin
view on the problem, which can be compared with alrea
existing quantum-state description of the problem~see, e.g.,
Ref. @11#!. On the other side, we think that this section w
show how the quantum-field formalism developed in the fi
part of this paper is more powerful and straightforward,
terms of calculation efforts, than the commonly us
quantum-state formalism, at least for this kind of multimo
problems.

Equation ~11! defines a linear transformation acting o
field operators, which maps field operators at the entra
face of the crystal into those at the output face. An equival
transformation, acting on the quantum state of the sign
idler fields at the crystal input and mapping it into the state
the crystal output, is derived in detail in Appendix B. A
described in this appendix, in order to avoid formal difficu
ties coming from a continuum of modes, we have introduc
a quantization box both in the transverse spatial domain
in the temporal domain, so that the continuum of spatiote
poral modesqW ,V is replaced by a discrete set of modes.

When at the input of the parametric crystal there is
vacuum state for both signal and idler fields,

uc& in5uvac&5)
qW ,V

u0;2qW ,2V&ou0;qW ,V&e , ~80!

we find that the output state takes the form

uc&out5)
qW ,V

H (
n50

`

cn~qW ,V!un;qW ,V&oun;2qW ,2V&eJ ,

~81!

cn~qW ,V!5
1

coshr ~qW ,V!
@ tanhr ~qW ,V!#ne2inc(qW ,V)

5
@Uo~qW ,V!Ve~2qW ,2V!#n

uUo~qW ,V!u2n11
, ~82!
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FIG. 10. Polar plot of phase-matching curves in a 2-mm BB
crystal cut at 49.6°.u is the polar angle from the pump direction o
propagation;f is the azimuthal angle around the pump. Black th
curves: lsignal5l idler5702 nm. Dark thick curves:lsignal

5l idler5692 nm. Light thick curves:lsignal5l idler5712.29 nm.
Signal ~ordinary! curves are in the upper half of the plot, idle
~extraordinary! in the lower half.
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where the notationun;qW ,V&o/e indicates the Fock state withn
photons in mode (qW ,V) of the ordinary/extraordinary polar
ized beam. Here the functionsUo ,Ve are the coefficients o
the operator transformation~11!, and functionsr and c are
defined by Eqs.~17! and ~18! together with Eqs.~19! and
~20!.

State~82! is clearly entangled~nonfactorizable! with re-
spect to the ordinary and extraordinary polarized beam c
ponents.

Let us focus on two conjugate modesqW ,V and2qW ,2V
for both the ordinary and extraordinary field componen
These can be for example observed by using a narrow fi
around the degenerate frequencyV50 and collecting light
from two diaphragms placed around two symmetric regio
in the far-field zone. For brevity of notation, let us label the
modes with the three-dimensional vectorsjW5(qx ,qy ,V),
2jW5(2qx ,2qy ,2V). When restricted to these modes, t
state takes the form

uc&out
jW 5H(

n
cn~jW !un;jW &oun;2jW &eJ

3H(
n8

cn8~2jW !un8;2jW &oun8;jW &eJ ~83!

5 (
N50

`

uf&N
jW , ~84!

uf&N
jW 5 (

m50

N

gN,m~jW !um;jW &ouN2m;jW &euN2m;2jW &o

3um;2jW &e , ~85!

where the last two lines have been obtained by changing
dummy summation variablesn,n8 into m5n, N5n1n8.
The state can be represented as a superposition of states
a fixed total number of photonsN. In eachN-photon state
described by Eq.~85!,

gN,m~jW !5cm~jW !cN2m~2jW !

5
@ tanhr ~jW !#m@ tanhr ~2jW !#N2m

coshr ~jW !coshr ~2jW !

3e2iNc(2jW )e2im[c(jW )2c(2jW )] ~86!

represents the probabilityamplitudeof finding m ordinary
photons,N2m extraordinary photons in modejW , and N
2m ordinary photons,m extraordinary photons in the con
jugate mode2jW . The description of the state given by Eq
~83!–~85! is a generalization of that derived in, e.g., Re
@11#. The main improvement is that our description includ
the effects of the spatial and the temporal walk-off, and
lows the quantitative evaluation of all the quantities of int
est by using the parameters of a real crystal. Remarka
when the spatial and the temporal walk-off are not taken i
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account, the symmetry (qW ,V)→(2qW ,2V) holds. In this
case, in Eq.~86! we would haver (2jW )5r (jW ) and c(2jW )
5c(jW ), and all the coefficientsgN,m(jW ) would be identical
for a givenN, so that all the terms in expansion~85! would
have the same weight, thus leading to a ‘‘maximally en-
tangled state for polarization’’ @11#.

Coming to Stokes parameter correlation we notice the
lowing property of the state:

@Âo
†~jW !Âo~jW !2Âe

†~jW !Âe~jW !#uf&N
jW

5 (
m50

N

cm~jW !cN2m~2j!~2m2N!um;jW &ouN2m;jW &e

3uN2m;2jW &oum;2jW &e ~87!

52@Âo
†~2jW !Âo~2jW !2Âe

†~2jW !Âe~2jW !#uf&N
jW . ~88!

By recalling the definition of the Stokes operator densit
given by Eqs. ~38!–~40!, ŝ1(jW )5Âo

†(jW )Âo(jW )

2Âe
†(jW )Âe(jW ), ŝ2(jW )5Âo

†(jW )Âe(jW )1Âe
†(jW )Âo(jW ), and

ŝ3(jW )52 i @Âo
†(jW )Âe(jW )2Âe

†(jW )Âo(jW )#, we can hence con

clude that the state is an eigenstate ofŝ1(jW )1ŝ1(2jW ) with
zero eigenvalue. On the other side, we have

Âo
†~jW !Âe~jW !uf&N

jW 5 (
m50

N21

cm~jW !cN2m~2j!

3A~m11!~N2m!um11;jW &o

3uN2m21;jW &euN2m;2jW &oum;2jW &e ,

~89!

Âo
†~2jW !Âe~2jW !uf&N

jW 5 (
m51

N

cm~jW !cN2m~2j!

3Am~N2m11!um;jW &ouN2m;jW &e

3uN2m11;2jW &oum21;2jW &e

~90!

5 (
l 50

N21

cl 11~jW !cN2 l 21~2j!

3A~ l 11!~N2 l !u l 11;jW &o

3uN2 l 21;jW &euN2 l ;2jW &ou l ;

2jW &e , ~91!

where the last line has been obtained by introducing the s
mation indexl 5m21. This implies that the equation

@Âo
†~jW !Âe~jW !2Âo

†~2jW !Âe~2jW !#uc&out
jW 50 ~92!

is verified if and only if
7-13
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cm~jW !cN2m~2jW !5cm11~jW !cN2m21~2jW ! ~93!

for all N50,1` andm50,N21.
Similar considerations for the Hermitian conjugate ope

tor Âe
†(jW )Âo(jW )2Âe

†(2jW )Âo(2jW ) lead to the equivalen
condition

cm~jW !cN2m~2jW !5cm21~jW !cN2m11~2jW ! ~94!

for all N50,1` andm51,N.
Hence, the state is also an eigenstate of bothŝ2(jW )

2ŝ2(2jW ) and ŝ3(jW )2ŝ3(2jW ), with zero eigenvalue, if
and only if conditions~93! and~94! are satisfied. These con
ditions amount to requiring that all the coefficients in t
expansion of theN-photon state~85! are identical, and tha
the N-photon state is a superposition with equal probabi
amplitude of all the possible partitions inm ordinary andN

2m extraordinary photons (m50,N) in mode jW , with N
2m ordinary andm extraordinary photons in the conjuga
mode2jW . This is the mathematical equivalent of the com
monly used statement ‘‘ordinary and extraordinary photo
in modejW are not distinguishable, but each time we havem

ordinary andN2m extraordinary photon in modejW , there
are N2m ordinary andm extraordinary photons in mod
2jW . ’’ For modes having a nonvanishing parametric ga
conditions~93! and ~94! amount to requiring

tanhr ~jW !e2ic(jW )5tanhr ~2jW !e2ic(2jW ), ~95!

a condition that is satisfied only in the presence of the sy
metry D(qW ,V)5D(2qW ,2V). This in turn implies the ab-
sence of spatial walk-off between the two waves~i.e., the
two modes correspond to the intersection of the dow
conversion cones! and the absence of temporal walk-off~use
of a narrow frequency filter and/or compensation by me
of a second crystal!.

Formula~95! can be also written as

U~jW !V* ~2jW !5U~2jW !V* ~jW !. ~96!

By comparing with Eq.~73!, we notice that this is the con
dition that ensures that the correlation between Stokes
rameter measured from symmetric pixels calculated in S
III D reaches its maximum value. Hence, in the framewo
of the quantum-state formalism, we start to recover the sa
results of Sec. III B, as it obviously must be. One cou
proceed further on, and derive quantitative results for
correlation, as those shown by Figs. 4–9, but at this poin
should be rather clear~and for sure we are not the first one
to notice this! how the quantum-state formalism, althoug
instructive, is cumbersome and not transparent in comp
son with the quantum-field formalism.

V. CONCLUSIONS

In conclusion, we have shown that the polarization e
tanglement of photon pairs emitted in parametric dow
conversion survives in high gain regimes, where the num
05380
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of converted photons can be rather large. In this case, it ta
the form of nonclassical spatial correlations ofall light
Stokes operators associated with polarization degrees of
dom. We have shown that in the regions where the two ri
intersect~in a ring-shaped region around the pump directi
when a broad frequency filter is employed! all the Stokes
operators are highly correlated at a quantum level, realiz
in this way a macroscopic polarization entanglement.
though Stokes parameters are extremely noisy and the
is unpolarized, measurement of a Stokes parameterin any
polarization basis in one far-field region determines th
Stokes parameter collected from the symmetric regi
within an uncertainty much below the standard quant
limit.

We call this situation ‘‘polarization entanglement’’ be
cause, on the one side, the quantum state derived in Se
is entangled with respect to polarization degrees of freed
and, on the other, because in our description there is no
in the passage from the regime of single photon pair de
tion, where the polarization entanglement is a widely a
cepted concept, to the regime of multiple pair productio
However, we want to remark that for spontaneous parame
down-conversion there is no way, to our knowledge, to
rive a sufficient criterion for inseparability based on the d
gree of correlation of the Stokes operators, as that derive
Ref. @24# and generalized in Ref.@3#. This depends on the
fact that the average values of commutators~and anticommu-
tators! of Stokes operators are in this system intrinsica
state dependent, at difference to what happens in the ex
ment performed in Ref.@3#, where bright entangled beam
were used. Further discussion about this important poin
postponed to future investigations, which are outside
scope of this paper.

We have developed a multimode model for spontane
parametric down-conversion, both within the framework
quantum-field formalism and quantum-state formalism. Th
are valid in any gain regime, from the single-photon p
production to the high gain regime where the number
down-converted photons can be rather large. The mode
lows quantitative estimations of all the quantities of intere
by using empirical parameters of real crystals. We hope
this description can be a useful tool for experimentali
working in this field.

Quite interesting, and to our knowledge completely nov
are the results concerning the correlation of Stokes par
eters observed by using a broad frequency filter, describe
Sec. III D 2. They basically show how by increasing t
number of temporal degrees of freedom in play, the num
of spatial degrees of freedom which are simultaneously
tangled increases, so that the two isolated correlated spo
Fig. 4 become the ring-shaped region of Fig. 9, where m
symmetric spots are correlated in pairs.

We believe that this form of entanglement, with its i
creased complexity in terms of degrees of freedom~photon
number, polarization, temporal, and spatial degrees of fr
dom! can be quite promising for new quantum informatio
schemes.
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APPENDIX A

In this appendix we calculate the phase shift induced
the propagation of the down-converted fields through a co
pensation crystal and evaluate the length of this second c
tal necessary for optimal walk-off compensation. As sho
by the scheme of Fig. 3, we assume that after produc
down-conversion in a first crystal~BBO1!, the pump beam is
eliminated. The polarizations of the down-converted bea
are then rotated by 90°, and they pass through a sec
crystal ~BBO2! of length l c8 , identical to the first one.

In the region between the second crystal and the lenL
the ordinary/extraordinary field operators can be written

Âo~qW ,V,z!5Âe
out~qW ,V!exp@ ikoz~qW ,V!l c8#

3exp@ ifvac~z2 l c8!#, ~A1!

Âe~qW ,V,z!5Âo
out~qW ,V!exp@ ikez~qW ,V!l c8#

3exp@ ifvac~z2 l c8!#. ~A2!

The first phase shift accounts for propagation inside the c
pensation crystal. Herekoz(qW ,V), kez(qW ,V) are the projec-
tions alongz axis of the ordinary/extraordinary wave vecto
inside the crystal, whose explicit expressions depend on
linear properties of the crystal as described by Eq.~23!. The
second phase shift accounts for paraxial propagation
vacuumfvac(z)5(k2q2/2k)z, k52p/l.

In the far-field plane, all the results described in Se
III C and III D remain unchanged provided that one mak
the following substitutions:

Uo~xW ,V!→Ue~qW ,V!exp@ ikoz~qW ,V!l c8#uq5xW (2p/l f ) , ~A3!

Vo~xW ,V!→Ve~qW ,V!exp@ ikoz~qW ,V!l c8#uq5xW (2p/l f ) , ~A4!

Ue~xW ,V!→Uo~qW ,V!exp@ ikez~qW ,V!l c8#uq5xW (2p/l f ) , ~A5!

Ve~xW ,V!→Vo~qW ,V!exp@ ikez~qW ,V!l c8#uqW 5xW (2p/l f ) , ~A6!

where global phase factors have been omitted, since the
not affect the results.

This transformation leaves unchanged all the results
scribed in Sec. III C~noise and correlation for measuremen
of Stokes operators 0 and 1!. For the second and third Stoke
parameters~Sec. III D!, while the transformation does no
affect the amount of noise of the measurement, given by E
~69! and~71!, it does affect the correlation between measu
ments from symmetric pixels@Eqs.~70! and ~72!#:

H2~xW ,0!→E dv

2p
2 Re$U* ~2xW ,2v!U~xW ,v!V* ~2xW ,2v!

3V~xW ,v!eifc(xW ,V)%, ~A7!
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s
nd
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do

e-
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fc~xW ,V!5@kez~qW ,V!1koz~2qW ,2V!2koz~qW ,V!

2kez~2qW ,2V!# l c8uqW 5xW (2p/l f ) ~A8!

5@D~2qW ,2V!2D~qW ,V!#
l c8

l c
U

qW 5xW (2p/l f )

. ~A9!

On the other side, by using the explicit expression of the g
functions in Eqs.~19! and ~20!, we have

arg$U* ~2xW ,2v!U~xW ,v!V* ~2xW ,2v!V~xW ,v!%

52c~qW ,V!22c~2q,2V!uqW 5xW (2p/l f ) ~A10!

with

2c~qW ,V!5tan21H D~qW ,V!
tanhG~qW ,V!

2G~qW ,V!
J ~A11!

'D~qW ,V!
tanhs

2s
. ~A12!

The last line has been obtained by taking the limitD(qW ,V)
!1; this is meaningful since the most important contributi
to the correlation function is given by phase-matched mod
The phase factor~A10! can be partially compensated by th
phase shift induced by propagation in the second cry
~A9!. Best compensation is achieved for

l c8

l c
5

tanhs

2s
. ~A13!

In this condition the value of the correlation between me
surements from symmetric pixel~the value of the function
H2) is maximized by the presence of a compensation crys

APPENDIX B

Equation ~11! defines a linear transformation acting o
field operators, which maps field operators at the entra
face of the crystal into those at the output face. The aim
this appendix is to find an equivalent transformation act
on the quantum state of the signal/idler fields at the cry
input and mapping it into the state at the crystal output.

In order to avoid formal difficulties coming from a con
tinuum of modes, we introduce a quantization box of sideb
in the transverse plane, with periodic boundary conditions
this way the continuum of wave vectorsqW is replaced by a
set of discrete wave vectorsqlW5( l xuW x1 l yuW y)(2p/b), l x ,l y
50,61,62, . . . . In thesame way, we introduce a quant
zation box in the time domain of lengthT, with periodic
boundaries, so that we need to consider only a discrete s
temporal frequenciesVp5p(2p/T), p50,61, . . . . The
free field commutation relations~12! are thus replaced by
their discrete version @Âi(qW lW ,Vp),Âj

†(qW mW ,Vs)#
5d i , jd l x ,mx

d l y ,my
dn,s , i , j 50,e.

For brevity of notation, in the following we shall indicat
7-15
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the spatiotemporal modeqW lW ,Vp with the three-dimensiona
vectorjW , and we shall not write explicitly the modal indice

The input/output transformation~11! can be written in an
equivalent way as

Âi~jW !5R̂†Âi
in~jW !R̂, ~B1!

with

R̂5R̂0R̂1R̂2 , ~B2!

and

R̂05expH i(
jW

@c~jW !1w~jW !#Âo
†~jW !Âo~jW !

1@c~jW !2w~jW !#Âe
†~2jW !Âe~2jW !J , ~B3!

R̂15expH(
jW

r ~jW !@Âo
†~jW !Âe

†~2jW !2Âo~jW !Âe~2jW !#J ,

~B4!

R̂25expH i(
jW

u~jW !@Âo
†~jW !Âo~jW !1Âe

†~2jW !Âe~2jW !#J
~B5!

with functions c(jW ),w(jW ),r (jW ),u(jW ) defined by Eqs.~17!
and ~18!, together with Eqs.~19!–~21!.

In order to demonstrate ansatz~B1!, we first notice that
the action of operatorsR̂0 and R̂2 on field operators corre
sponds to phase rotations. For any boson operatorĉ, for
which @ ĉ,ĉ†#51, we have

e2 isĉ†ĉĉeisĉ†ĉ5eisĉ. ~B6!

As a consequence,

R̂0
†Âo~jW !R̂05Âo~jW !ei [c(jW )1w(jW )] , ~B7!

R̂0
†Âe~jW !R̂05Âe~jW !ei [c(2jW )2w(2jW )] . ~B8!

Operator R̂1 is the product of an infinity of two-mode
squeezing operators, each of them acting on the coupl
modes (jW ) in the signal beam and (2jW ) in the idler beam.
For any couple of independent boson operatorsĉ1 ,ĉ2, and
for r real, the identity

e2r [ ĉ1
†ĉ2

†
2 ĉ1ĉ2] ĉ1e1r [ ĉ1

†ĉ2
†
2 ĉ1ĉ2]5 ĉ1 coshr 1 ĉ2

† sinhr

~B9!

holds.
Hence, lettingĉ1→Âo(jW ), ĉ2→Âe(2jW ), we have

R̂1
†Âo~jW !R̂15Âo~jW !coshr ~jW !1Âe

†~2jW !sinhr ~jW !,
~B10!
05380
of

R̂1
†Âe~jW !R̂15Âe~jW !coshr ~2jW !1Âo

†~2jW !sinhr ~2jW !.

~B11!

Finally, by letting also the operatorR̂2 act as

R̂2
†R̂1

†R̂0
†Âo~jW !R̂0R̂1R̂25ei [c(jW )1w(jW )]$Âo~jW !coshr ~jW !eiu(jW )

1Âe
†~2jW !sinhr ~jW !e2 iu(jW )% ~B12!

5eiw(jW )$Âo~jW !U~jW !

1Âe
†~2jW !V~jW !%, ~B13!

where in passing from the first to the second line we u
relation ~18!, which is a consequence of the unitarity
transformation~11!. Moreover, we have

R̂2
†R̂1

†R̂0
†Âe~jW !R̂0R̂1R̂2

5ei [c(2jW )2w(2jW )]$Âe~jW !coshr ~2jW !eiu(2jW )1Âo
†~2jW !

3sinhr ~2jW !e2 iu(2jW )% ~B14!

5e2 iw(2jW )$Âe~jW !U~2jW !1Âo
†~2jW !V~2jW !%. ~B15!

Finally, taking into account relation~17!, which is again a
consequence of the unitarity of transformation~11!, we re-
cover the input/output transformation~11!.

Any quantum-mechanical expectation value of the out
operators~mean values, correlation functions, etc.! taken on
the input state is equivalent to the quantum-mechanical
pectation value of the input operators taken on the tra
formed state:

uc&out5R̂uc& in. ~B16!

In the following we shall derive the form of the output stat
when at the input of the parametric crystal there is
vacuum state for both signal and idler fields:

uc& in5uvac&5)
jW

u0;jW &ou0;2jW &e , ~B17!

where the notationun;jW &o/e indicates the Fock state withn
photons in mode (jW ) of the ordinary/extraordinary polarize
beam.

First of all we notice that the operatorR̂2 has no effect on
the vacuum state, corresponding to a phase rotation of
vacuum. For what concerns operatorR̂1, by using proper
operator ordering techniques~see, e.g., Ref.@27#! p. 75!, it
can be recasted in the following form~disentangling theo-
rem!:

R̂15)
jW

$eG(jW )Âo
†(jW )Âe

†(2jW )e2g(jW )[ Âo
†(jW )Âo(jW )1Âe

†(2jW )Âe(2jW )11]

3e2G(jW )Âo(jW )Âe(2jW )%, ~B18!
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G~jW !5tanh@r ~jW !#, ~B19!

g~jW !5 ln$cosh@r ~jW !#%. ~B20!

By letting this operator acting on the vacuum state

R̂1uvac&5)
jW

1

cosh@r ~jW !#
(
n50

`

@ tanhr ~jW !#nun;jW &oun;2jW &e ,

~B21!

where the usual expansion of the exponential oper
expM̂5(n50

` M̂n/n! has been used, together with the stand
action of boson creation operators on Fock states. Finally
adding the action of operatorR̂0,
ys

il-

e

or

e

-

n-

cu

.

A

tti,

s.

ur

05380
or
d
y

R̂0R̂1uvac&5)
jW

1

cosh@r ~jW !#
(

n
@ tanhr ~jW !#ne2inc(jW )

3un;jW &oun;2jW &e , ~B22!

the output state can be written in the form

uc&out5)
jW

H(
n

cn~jW !un;jW &oun;2jW &eJ , ~B23!

cn~jW !5
1

coshr ~jW !
@ tanhr ~jW !#ne2inc(jW )5

@Uo~jW !Ve~2jW !#n

uUo~jW !u2n11
.

~B24!
e
am-
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