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MULTI-PHYSICS OPTIMAL TRANSPORTATION AND IMAGE

INTERPOLATION

Romain Hug1, Emmanuel Maitre1 and Nicolas Papadakis2

Abstract. Optimal transportation theory is a powerful tool to deal with image interpolation. This
was first investigated by [Benamou and Brenier, Numer. Math. 84 (2000) 375–393.] where an algorithm
based on the minimization of a kinetic energy under a conservation of mass constraint was devised.
By structure, this algorithm does not preserve image regions along the optimal interpolation path, and
it is actually not very difficult to exhibit test cases where the algorithm produces a path of images
where high density regions split at the beginning before merging back at its end. However, in some
applications to image interpolation this behaviour is not physically realistic. Hence, this paper aims
at studying how some physics can be added to the optimal transportation theory, how to construct
algorithms to compute solutions to the corresponding optimization problems and how to apply the
proposed methods to image interpolation.
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1. Introduction

While optimal transportation theory has been widely studied in the last years [34], the numerical resolution
of the problem is still a challenge. In the seminal work of Benamou and Brenier [3], instead of computing directly
the transport, the output of their algorithm was the geodesic path between the two densities according to the
Wasserstein metric. This is of main interest for image interpolation purposes and it has been widely used in the
image processing community for registration [23], optical flow estimation [16], deblurring of image sequences in
microscopy [12], etc. In the original approach, the authors of [3] demonstrates that the optimal transportation
problem can be obtained through the minimization of the kinetic energy using flows which preserve the mass.
Using a convex reformulation of the problem, they introduced an algorithm that computes the geodesic path
between given images, by using a Augmented Lagrangian method [21]. As the mass transfer associated to a L2

ground cost follows straight lines [11], such property has been considered in order to speed-up computations [26].
Approximation with Knothe transport [7, 13] or linearization of the problem for close densities [10] have also
been considered to propose faster algorithms.
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Structurally, optimal transportation does not preserve image regions along the optimal interpolation path.
Consequently it is actually not difficult to exhibit test cases where these algorithms produce a path of images
where high density regions split at the beginning before re-merging (see [3] for an example). However, for
image interpolation applications, this behavior is not desirable. Suppose for instance that the images represent
the evolution in time of a droplet of oil in water. The droplet can obviously split during time; however, this
phenomenon has a physical cost which is not taken into account in the interpolation given by the genuine
optimal transportation model. For an elastic membrane we would expect no splitting at all!

Hence, this article aims at studying of how physics can be accounted for in the optimal transportation
theory. We study the anisotropic optimal transportation in order to model domains that could contain obstacles,
polarization, field of force, etc. We consider physical priors on the velocities that transport the mass, in order
to prevent the mass transfer to follow straight lines and avoid mass splitting. To that end, we introduce several
extended models of optimal transportation which will, on one hand, add other energy terms to the classical
kinetic energy, or, on the other hand, add constraints on the admissible space for minimizers. We will namely
focus on the convex transport on Riemannian manifolds and the non convex transports induced by physical
priors. We also describe how to construct first-order algorithms to compute critical points to the corresponding
optimization problems and how to apply the proposed methods to image interpolation. Notice that due to
this generalized form, the associated Euler−Lagrange equations are not of Monge−Ampère type and second-
order algorithms based on this formulation [29], and recently [4–6, 18], can not be used in our context. The
dynamical optimal transportation formulation is also the only one that can handle vanishing densities (without
any assumption on the support of the densities), which is also of interest for image processing applications.

In a previous work [9], we already considered physical priors but the optimization tools were not satisfying
in practice. Following [30], we here propose to use proximal splitting methods to optimize properly the defined
problems. With respect to these two papers, our contributions are the following. We study the well-posedness of
anisotropic optimal transportation and generalized optimal transportations that contain regularizations of the
velocity. We provide adequate numerical schemes to solve the defined problems. We apply our model in order
to interpolate high-resolution oceanographic images.

This paper is organized as follows. We first review in Section 2 the numerical scheme introduced in [30] in
order to solve the convexified optimal problem of [3]. Next, we detail how such framework can be extended to
deal with anisotropic optimal transportation in Section 3. Hence, we introduce in Section 4 some non-convex
functionals that involve physical priors on the velocity that transfer the mass. Numerical validations of Section 5
demonstrate the interest of our algorithms on image interpolation examples.

2. Dynamical optimal transportation formulation

2.1. Optimal transportation

In the following, we restrict our exposition to maps T : Ω ⊂ R
d �→ Ω where d > 0 is the dimension of the

problem and Ω is a convex and bounded domain of R
d. Let ρ0, ρ1 be two nonnegative L1 functions on Ω, of

equal mass: we will assume without loss of generality that
∫

Ω

ρ0(x) dx =

∫

Ω

ρ1(x) dx = 1. (2.1)

A valid transport map T is a map that pushes forward the measure ρ0(x) dx onto ρ1(x) dx. In term of
densities, when T is smooth and one-to-one this corresponds to the constraint

ρ0(x) = ρ1(T (x)) |det(∇T (x))|
where ∇T (x) ∈ R

d×d is the differential of T at x. This is known as the Jacobian’s equation. We call T (ρ0, ρ1)
the set of transport maps that satisfy this constraint. An optimal transport T solves

min
T∈T (ρ0,ρ1)

∫

C(x, T (x)) dx (2.2)
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where C(x0,x1) ≥ 0 is the cost of assigning x0 ∈ Ω to x1 ∈ Ω. In the case C(x0,x1) = ||x0 − x1||2, the optimal
value of (2.2), the so-called optimal transport distance, is often called the L2-Wasserstein distance between the
densities ρ0 and ρ1.

2.2. Fluid mechanics formulation

The geodesic path between the measures with densities ρ0 and ρ1 can be shown to have density t �→ ρ(t,x)
where t ∈ [0, 1] parameterizes the path and

ρ0(x) = ρ(t, Tt(x)) |det(∇Tt(x))| where Tt = (1 − t) Idd +tT.

Benamou and Brenier showed in [3] that this geodesic solves the following non-convex problem over the densities
ρ(t,x) ∈ R+ and a velocity field v(t,x) ∈ R

d

min
(ρ,v)∈C0

1

2

∫ 1

0

∫

Ω

ρ(t,x)||v(t,x)||2 dxdt, (2.3)

under the set of non-linear constraints

C0 = {(ρ, v), ∂tρ + divx(ρv) = 0, 〈v, n〉 = 0, ρ(0, ·) = ρ0, ρ(1, ·) = ρ1}, (2.4)

where the first relation in C0 is the continuity equation. We impose homogeneous Neumann conditions on the
velocity field v, through n which is the normal of the domain Ω.

Following [3] and introducing the change of variable (ρ, v) �→ (ρ, m), where m is the momentum m = ρv, we
obtain a convex optimization problem over the couple (ρ, m):

min
(ρ,m)∈C

J (ρ, m) :=

∫ 1

0

∫

Ω

J(ρ, m) dxdt

with

J(ρ, m) =

⎧

⎨

⎩

||m||2

2ρ if ρ > 0

0 if (ρ, m) = (0, 0)
+∞ otherwise.

(2.5)

The set of constraint C becomes linear and reads:

C(ρ, m) = {(ρ, m), ∂tρ + divx m = 0, 〈m, n〉 = 0, ρ(0, ·) = ρ0, ρ(1, ·) = ρ1}. (2.6)

Denoting as ιC(x) = 0 if x ∈ C, +∞ otherwise, the convex model of Benamou−Brenier [3] becomes:

(ρ∗, m∗) = argmin
ρ,m

J (ρ, m) + ιC(ρ, m). (2.7)

The existence of minimizers of such problem in the space of measures has been studied in [34]. The case of L2

minimizers is the subject of an ongoing work [25].

2.3. Discretization

We here recall the discretization proposed in [30]. For simplicity of exposure, we describe the discretization
for the 1-D case and Ω = [0; 1]. It extends verbatim to higher dimensional discretization d > 1.



1674 R. HUG ET AL.

2.3.1. Centered grid

We denote P + 1 the number of discretization points in time, and N + 1 the number of discretization points
in space. We introduce the centered grid discretizing the space-time square [0, 1]2 in (P +1)× (N +1) points as

G = {(tk = k/P, xi = i/N) ∈ [0, 1]2, 0 ≤ k ≤ P, 0 ≤ i ≤ N}.

We denote

x = (ρ̄, m̄) ∈ Ec = (ρ̄k,i, m̄k,i)
0≤k≤P
0≤i≤N

the variables discretized on the centered grid, where Ec = (Rd+1)G = (R2)G is the finite dimensional space of
centered variables.

2.3.2. Staggered grid

The use of a staggered grid is very natural in the context of the discretization of a divergence operator
associated to a vector field y = (yi)d

i=1 on R
d (we here focus on the case d = 2, the first dimension being

temporal and the second one spatial). The basic idea is to perform an accurate evaluation of every partial
derivative ∂xi

yi at prescribed nodes of a cartesian grid using standard centered finite differences. One way to
perform this computation is to impose to the grid on which the yi scalar field is defined to be centered on
Ni + 1 points along the xi direction, while a center grid would have Ni points on this dimension. This simple
requirement forces the yi scalar fields to be defined on different grids for each dimension i. The resulting discrete
vector field gives us the possibility to evaluate the divergence operator by a uniform standard centered scheme
which is not possible using a single grid of discretization for every component yi. As a consequence, similarly
to the discretization of PDE’s in incompressible fluid dynamics (see for instance [24]), we consider a staggered
grid discretization which is more relevant to deal with the continuity equation, and is defined as

Gt =

{

(tk = (k + 1/2, xi = i/N)/P ) ∈ [−1, 2P + 1]

2P
× [0, 1], −1 ≤ k ≤ P, 0 ≤ i ≤ N

}

,

Gx =

{

(tk = k/P, xi = (i + 1/2)/N) ∈ [0, 1]× [−1, 2N + 1]

2N
, 0 ≤ k ≤ P, −1 ≤ i ≤ N

}

.

From these definitions, we see that Gt contains (P+2)×(N+1) points and Gx corresponds to a (P +1)×(N+2)
discretization. We finally denote

y = (ρ, m) ∈ Es = ((ρk,i)
−1≤k≤P
0≤i≤N , (mk,i)

0≤k≤P
−1≤i≤N )

the variables discretized on the staggered grid, where Es = R
Gt ×R

Gx

is the finite dimensional space of staggered
variables.

2.3.3. Interpolation and divergence operators

We introduce a midpoint interpolation operator I : Es → Ec, where, for y = (ρ, m) ∈ Es, we define I(y) =
x = (ρ̄, m̄) ∈ Ec as

∀ 0 ≤ k ≤ P, ∀ 0 ≤ i ≤ N,

{

ρ̄k,i = (ρk−1,i + ρk,i)/2,
m̄k,i = (mk,i−1 + mk,i)/2.

(2.8)

The space-time divergence operator divt,x : Es → R
G is defined, for y = (ρ, m) ∈ Es as

∀ 0 ≤ k ≤ P, ∀ 0 ≤ i ≤ N, divt,x(y)k,i = (ρk,i − ρk−1,i) + (mk,i − mk,i−1).
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2.3.4. Final convex problem

With the previously introduced grids, the discrete problem 2.7 can be reformulated as:

(ρ∗, m∗) = argmin
(ρ,m)∈Es

J (I(ρ, m)) + ιC(ρ, m),

= argmin
(ρ,m)∈Es

1
∑

t=0

∑

x∈Ω

J(I(ρ(t,x), m(t,x))) + ιC(ρ, m). (2.9)

The problem (2.9) consists in minimizing the sum of two non smooth convex functionals. As in [30], we can
make use of proximal splitting methods to solve the problem.

2.4. Optimization with proximal splitting

In [30], the convex problem 2.9 is optimized using the primal dual algorithm of [15]. Such algorithm is
dedicated to the optimization of problems of the form G1(Ku)+G2(u), where the Gi’s functions are convex and
K is a linear operator (K = I for the formulation of optimal transportation with staggered and regular grids).
In this paper, as we will consider more general problems, we instead rely on the Generalized Forward−Backward
(GFB) algorithm proposed in [31]. This algorithm is dedicated to problems of the form:

argmin
u

n
∑

i=1

Gi(u) + F (u), (2.10)

where the additional term F is a differentiable convex function with a L-Lipschitz-continuous gradient ∇F and
Gi’s are assumed proper, convex and simple. By simple, we mean that the proximal operator of the functions
Gi, defined as

ProxτG(u) = argmin
z

||z − u||2
2τ

+ G(z)

can be written in closed form. The GFB algorithm reads:

Algorithm 1. Generalized Forward-Backward.

Set N ∈ N
+, ǫ > 0, τ ∈]0; 1/L[, λ ∈]0; 1] and

∑n
i=1

ωi = 1, ωi ≥ 0 and initialize z0
i = u0, i = 1 · · ·n

for k = 0 · · ·N do

while ||uk − uk−1|| > ǫ do

zk+1

i = zk
i + λ

(

Proxτ/ωiGi

(

2uk − zk
i − τ∇F (uk)

)

− uk
)

, i = 1 · · ·n,

uk+1 =
∑n

i=1
ωiz

k+1

i

end while

end for

If F is uniformly convex, then the GFB strongly converges to a minimizer of (2.10), otherwise, the convergence
is weak. This is a generalization of the Forward−Backward (FB) algorithm that deals with problems of the form:

argmin
u

G(u) + F (u),

where G is a convex proper and simple function and F is convex, differentiable with a L-Lipschitz-continuous.
gradient The FB algorithm is presented in Algorithm 2.

Notice that primal dual methods have been recently extended [8, 14, 17] to deal with the problem (2.10).
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Algorithm 2. Forward-Backward.

Set N ∈ N
+, ǫ > 0, τ ∈]0; 1/L[ and initialize u0

for k = 0 · · ·N do

while ||uk − uk−1|| > ǫ do

uk+1 = ProxτG(uk − τ∇F (uk))
end while

end for

2.5. Application to problem (2.9)

In order to deal with the different numerical grids, we need to define a variable x = (ρ̄, m̄) on the regular grid
and a variable y = (ρ, m) on the staggered one. The linear set of constraint S(x, y) = {I(y) = x} is therefore
required to couple these two variables. Hence, the problem (2.9) can be reformulated as:

(x∗, y∗) = argmin
x,y

J (x) + ιC(y) + ιS(x, y).

The GFB algorithm 1 can finally be applied by taking F = 0, G1(x, y) = J (x) + ιC(y) and G2(x, y) = ιS(x, y).
We now detail how computing the proximal operators of the different terms involved in this problem.

2.5.1. Computing ProxτJ

Since the functional J is separable, the proximal operator can be computed independently as the proximal
operator of J for each point (ρ̃, m̃)(t,x) ∈ R × R

d with (t,x) ∈ [0; 1] × Ω. Notice that J is a 1-homegeneous
functional since J(kρ, km) = kJ(ρ, m). As a consequence, its Legendre−Fenchel transform is the indicator of a
convex set. This corresponds to the projection q∗ = PK(q̃) on the convex set K {q = (q1, q2, q3) s.t q1 + (q2

2 +
q2
3)/2 ≤ 0} in the step B of the algorithm of [3]. One can show [30] that this projection can be equivalently

obtained by the pointwise computation of the proximal operator of J at point (ρ̃, m̃). Denoting as ιK the
indicator of the convex set K (ιK(q) = 0 if q ∈ K and +∞ otherwise), the proximal operator of ιK just
computes the projection onto the convex set K so that

q∗ = ProxγιK
(q̃) = PK(q̃).

From Moreau’s identity, we have that:

ProxγF ⋆(x) = x − γProxF/γ(x/γ).

Denoting q̃ = (ρ̃, m̃) is then possible to show that

Proxι⋆
K

(ρ̃, m̃) = (ρ̃, m̃) − PK(ρ̃, m̃) = ProxJ(ρ̃, m̃),

so that:
PK(ρ̃, m̃) = (ρ̃, m̃) − ProxJ(ρ̃, m̃),

which shows that the projection onto K can be computed through the computation of the proximal operator.
The following proposition presented in [30] shows that the functional J defined in (2.5) is simple, in the sense

that its proximal operator can be computed in closed form.

Proposition 2.1. One has for all (ρ̃, m̃) ∈ R × R
d,

ProxτJ(ρ̃, m̃) =

{

(ρ⋆, µ(ρ⋆)) if ρ⋆ > 0,
(0, 0) otherwise.

where

∀ ρ ≥ 0, µ(ρ) =
ρm̃

ρ + τ
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and ρ⋆ is the largest real root of the third order polynomial equation in ρ

P (ρ) = (ρ − ρ̃)(ρ + τ)2 − τ

2
||m̃||2 = 0.

2.5.2. Computing ProxτιC

The proximal mapping of ιC is ProjC the orthogonal projector on the convex set C.
We first extract the boundary values on the staggered grid using the linear operator b, defined, for ỹ = (ρ̃, m̃).

For d = 2 and m = (m1, m2), if we consider Ω = [0; 1]2 and t ∈ [0; 1], this operator reads:

b(ỹ) = (ρ̃(0, ·, ·), ρ̃(1, ·, ·), m̃1(·, 0, ·), m̃1(·, 1, ·), m̃2(·, ·, 0), m̃2(·, ·, 1)) .

Denoting the boundary conditions as
b0 = (ρ0, ρ1, 0, 0, 0, 0).

The affine set C that can be rewritten as

C = {y = (ρ, m), Ay = z}

where
Ay = (b(y), divt,x(y)), and z = (b0, 0).

This projection can be computed by solving a linear system as

ProjC(ỹ) = (Id−A∗∆−1A)ỹ + A∗∆−1z

where applying ∆−1 = (AA∗)−1 requires solving a Poisson equation on the centered grid with the prescribed
boundary conditions. This can be achieved with Fast Fourier Transform in O(NP log(NP )) operations where
N and P are number of spatial and temporal points, see [32].

2.5.3. Computing ProxτιS

The proximal mapping of ιS is ProjS the orthogonal projector on the convex set S(x, y) = {I(y) = x}. It is
obtained as (x, y) = ProjS(x̃, ỹ) = (I(z), z) where

z = (Id +I∗I)−1(ỹ + I∗(x̃)), (2.11)

and I∗ is the adjoint of the linear interpolation operator. Note that computing ProjS requires solving a linear
system, but this system is separable along each dimension of the discretization grid, so it only requires solving
a series of small linear systems. Furthermore, since the corresponding inverse matrix is the same along each
dimension, we pre-compute explicitly the inverse of these d + 1 matrices.

2.6. Limitations and motivations

When solving the optimal transportation problem between two densities, we know that the mass transfer
will follow straight lines. The structures contained in the original data can thus disappear along the optimal
path. Such behavior is illustrated in Figure 1 that presents the optimal path between images containing two
Gaussians. This result has been obtained by taking τ = 0.1 and ω1 = ω2 = 1

2 with the GFB algorithm.
In this work, we aim at incorporating some physical priors in order to preserve the structure contained

in the data along the optimal path. This will be of main interest for geoscience imaging applications. Ocean
and atmosphere, that are observed with satellites, are indeed driven by complex physical laws. The temporal
interpolation of such satellite images is an important problem in this community and it should correspond to
the underlying dynamics. As interpolation with classic optimal transportation involves constant mass transport
along straight lines, this is not a satisfactory solution. Some generalizations are now proposed to tackle such
issues.
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ρ(0) = ρ0 ρ(1/4) ρ(1/2) ρ(3/4) ρ(1) = ρ1

Figure 1. Two gaussians experiments: the gaussians split along the optimal path between ρ0

and ρ1.

3. Anisotropic optimal transportation

We now propose to study the optimal transportation problem within an anisotropic environment that could
contain obstacles, polarization, field of force, etc. To that end, we search for a continuous transport of mass
(ρ, v) which minimizes an energy defined as

∫ 1

0

∫

Ω

ρ(t,x) v(t,x)T A(t,x)v(t,x) dx dt, (3.1)

with A(t,x) a symmetric positive definite matrix that represents the anisotropic penalization of the displacement
energy. Such modelling is of interest in many applications such as meteorology or oceanography. For instance,
if we want to interpolate or measure the distance (in the Wasserstein sense) between two meteorologic images,
we should take into account the atmospheric constraints: air mass displacements, rotating motion (cyclones and
anticyclones), etc. We will show in this section that the same formulations as before can naturally deal with
such anisotropic problem.

3.1. Existence

When anisotropy just varies in space (i.e. A(t,x) = A(x)), one can get back to a classic Monge−Kantorovitch
problem on Riemannian manifold. In the case of a real time dependence, even if the numerical algorithms are
still providing a seemingly sound solution, there are no equivalence with any optimal transportation problem
and the existence and uniqueness of a solution remain an open subject. As a consequence, we here focus on the
case A(t,x) = A(x). Denoting as M a Riemannian manifold and d the associate geodesic distance, let us first
remind McCann’s theorem [27].

Theorem 3.1 (McCann). Let µ be a probability measure absolutely continuous with respect to the volume
measure on M . We assume that µ is also absolutely continuous with respect to all probability measures ν on
M which are linked to µ with a transference plan of finite cost. Then there exists a unique optimal transference
plan T (x) = exp

x
(−∇ψ(x)) (defined for µ-a.e. x, with ψ : M �→ R a d2-concave function) for the Monge

transportation problem:
∫

d(x, T (x))2dµ(x) = inf
S,S♯µ=ν

∫

d(x, S(x))2dµ(x)

T is uniquely determined µ-almost everywhere. Moreover, for µ almost all x ∈ M , the path γ(t) =
expx(−t∇ψ(x)), t ∈ [0, 1] is the unique minimizing geodesic who joins x to T (x).

In the following, we will take M = Ω ⊂ R
2. We endow Ω with the Riemannian metric gA which associates to

x ∈ Ω the scalar product on R
2 : (Y, Z) �→ Y T A(x)Z. Next, we can define the distance on Ω as:

∀(x,y) ∈ Ω, dA(x,y) = inf
γ

{
∫ 1

0

√

gA(
.
γ(t),

.
γ(t)) dt =

∫ 1

0

(
.
γ(t)T A(γ(t))

.
γ(t))

1
2 dt; γ(0) = x, γ(1) = y

}

.
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The Monge’s problem on the Riemannian manifold (Ω, gA) for the cost c = d2
A consists in looking for a transport

map T that satisfies:

∫

Ω

dA(x, T (x))2ρ0(x) dx = inf
S♯ρ0=ρ1

∫

Ω

dA(x, S(x))2ρ0(x) dx .

The following proposition shows that this Monge’s problem can be solved by finding (ρ∗, v∗) ∈ C0, the set of
mass preserving constraints defined in relation (2.4), that minimizes the transport cost (3.1) with A(t,x) = A(x).
MacCann’s theorem gives us the existence of an optimal transport map T for the distance dA, which corresponds
to a constant speed displacement along a geodesic path. We can show formally, as in the isotropic case of [3]
that there is a link between the speed v∗ and the geodesic path from x to T (x).

Proposition 3.2. The estimation of the optimal transportation on the Riemannian manifold (Ω, gA) (i.e. the
Wasserstein distance associate to dA) amounts to the minimization of the geodesic displacement energy, that is
to say:

∫ 1

0

∫

Ω

v∗ T Av∗ρ∗ = inf
(ρ,v)∈C0

∫ 1

0

∫

Ω

vT Avρ = inf
S♯ρ0=ρ1

∫

Ω

dA(x, S(x))2ρ0(x) dx,

Proof. We provide a formal proof, in the spirit of [3], which could be justified under some smoothness assumption
on the data [25]. Let (ρ, v) ∈ C0, and X the solution of the problem

{

∂ty(t,x) = v(t, y(t,x)), ∀(t,x) ∈ (0, 1) × Ω,

y(0,x) = x, ∀x ∈ Ω.

We classically have the relation ρ(t, X(t,x)) det(∇X(t,x)) = ρ0(x), i.e. X(t, ·)♯ρ0 = ρ(t, ·). Using the Jensen’s
inequality, it follows that

∫ 1

0

∫

Ω

ρ(t,x)v(t,x)T A(x)v(t,x) dx dt

=

∫ 1

0

∫

Ω

v(t, X(t,x))T A(X(t,x))v(t, X(t,x))ρ(t, X(t,x)) det(∇X(t,x)) dx dt,

=

∫ 1

0

∫

Ω

∂tX(t,x)T A(X(t,x))∂tX(t,x) dt ρ0(x) dx,

≥
∫

Ω

(
∫ 1

0

(

∂tX(t,x)T A(X(t,x))∂tX(t,x)
)

1
2 dt

)2

ρ0(x) dx,

≥
∫

Ω

dA(x, X(1,x))2ρ0(x) dx,

≥
∫

Ω

dA(x, T (x))2ρ0(x) dx,

where the last inequality stems from the fact that X(1, ·) belongs to T (ρ0, ρ1).

Conversely, assume that T is an optimal transport map for the gA metric. Let, for almost every x ∈ Ω, the
application X(·,x) ∈ C1([0, 1], Ω) be the unique geodesic joining x to T (x) (X(·,x) is smooth in time for a.e.
x ∈ Ω). We define v as

{

v(t, X(t,x)) = ∂tX(t,x) ∀(t,x) ∈ (0, 1) × Ω,

v(t, y) = 0 elsewhere,
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and ρ(t, ·) = X(t, ·)♯ρ0. As a consequence, for all φ ∈ C∞
c ((0, 1) × Ω), we obtain:

∫ 1

0

∫

Ω

(∂tφ + v.∇φ)ρ =

∫ 1

0

∫

Ω

(∂tφ(t, X(t,x)) + v(t, X(t,x)).∇φ(t, X(t,x)))ρ0(x) dx dt

=

∫

Ω

∫ 1

0

(∂tφ(t, X(t,x)) + ∂tX(t,x).∇φ(t, X(t,x)))ρ0(x) dt dx

=

∫

Ω

∫ 1

0

d

dt
(φ(t, X(t,x))) dt ρ0(x) dx = 0

i.e. ∂tρ + divx(ρv) = 0 in D′((0, 1) × Ω), therefore (ρ, v) ∈ C0. By definition we have:

∫

Ω

dA(x, T (x))2ρ0(x) dx =

∫

Ω

(
∫ 1

0

(

∂tX(t,x)T A(X(t,x))∂tX(t,x)
)

1
2 dt

)2

ρ0(x) dx .

As t �→ X(t, x) is a geodesic path and A is independent of time, d
dt

(

∂tX(t,x)T A(X(t,x))∂tX(t,x)
)

= 0, so that

(
∫ 1

0

(

∂tX(t,x)T A(X(t,x))∂tX(t,x)
)

1
2 dt

)2

=

∫ 1

0

∂tX(t,x)T A(X(t,x))∂tX(t,x) dt.

We finally obtain, since (ρ, v) ∈ C0,

∫

Ω

dA(x, T (x))2ρ0(x) dx =

∫ 1

0

∫

Ω

∂tX(t,x)T A(X(t,x))∂tX(t,x)ρ0(x) dt dx,

=

∫ 1

0

∫

Ω

v(t, X(t,x))T A(X(t,x))v(t, X(t,x))ρ0(x) dx dt,

=

∫ 1

0

∫

Ω

v(t,x)T A(x)v(t,x)ρ(t,x) dx dt,

≥ inf
(ρ̃,ṽ)∈C0

∫ 1

0

∫

Ω

ṽ(t,x)T A(x)ṽ(t,x)ρ̃(t,x) dx dt. �

3.2. Discretization, convexification and optimization

We now consider the discrete domain parameterized with x ∈ Ω ⊂ R
d (d = 2 in the following) and t ∈ [0, 1].

The anisotropic optimal transportation problem reads:

min
(ρ,v)∈C0

1

2

1
∑

t=0

∑

x∈Ω

ρ(t,x)v(t,x)T A(x)v(t,x),

where ρ(t,x) ∈ R, v(t,x) = (v1(t,x), v2(t,x)) ∈ R
2, and the 2 × 2 symmetric positive definite matrix A(x)

represents the anisotropy of the domain Ω. With the very same change of variable as before (m = ρv), one can
convexify the anisotropic transport cost as:

JA(ρ, m) =

1
∑

t=0

∑

x∈Ω

JA(ρ(t,x), m(t,x)),

with

JA(ρ(t,x), m(t,x)) =

⎧

⎨

⎩

m(t,x)T A(x)m(t,x)
ρ(t,x) if ρ(t,x) > 0

0 if (ρ(t,x), m(t,x)) = (0, 0)
+∞ otherwise
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where m(t,x) = (m1(t,x), m2(t,x)) ∈ R
2. By taking A(x) = w(x) Id2, with w(x) ∈ R, we can recover the

transport model on a Riemannian manifold characterized by w proposed in [30]. The anisotropic optimal trans-
portation can therefore be estimated by minimizing the convex functional JA(ρ, m) + ιC(ρ, m).

In order to apply proximal splitting algorithms to this new problem, we need to compute the proximal
operator of the new cost transport term. This can be done by canceling the derivative of the optimization
problem defining the proximal map ProxγJA

(ρ̃, m̃). The following proposition shows that the functional JA can
still be computed in a closed form.

Proposition 3.3. For all (ρ̃, m̃) ∈ R × R
d,

ProxτJA
(ρ̃, m̃) =

{

(ρ⋆, µA(ρ⋆)) if ρ⋆ > 0,
(0, 0) otherwise.

where
∀ ρ ≥ 0, µA(ρ) = (ρ Id2 +γ(A + AT ))−1ρm̃

and ρ⋆ is the largest real root of the five order polynomial equation in ρ

P (ρ) = (ρ − ρ̃) − γm̃(ρ Id2 +γ(A + AT ))−1A(ρ Id2 +γ(A + AT ))−1m̃ = 0.

The proof is a simple extension of the one in [30]. In practice, ρ∗ is obtained with the Newton’s method.

3.3. Illustration

In this section, we still consider the space-time discretization of size 323 and the GFB algorithm. As a first
example, we present the transport of a 2D bump in an anisotropic domain, where A is defined for x = (x, y) ∈
[0, 1]2 as:

Aλ(x) =

⎧

⎨

⎩

[

1 0
0 λ

]

ifx ≤ 0.5,

Id2 otherwise.
(3.2)

The left part of the image domain (x ≤ 0.5) then involves an anisotropic transport as soon as λ = 1. In fact,
by setting λ > 1, this penalizes the vertical direction for the mass transfer, so that the transport will move
the mass in the right part of the image for decreasing the transport cost. The results, for increasing values of
λ ∈ {1, 3, 20} are presented in Figure 2. When λ = 1, it corresponds to the classic optimal transport and we
recover a translation of the bump. When the value of λ increases, we can observe that the optimal path send
more and more mass to the right side of the image domain. However, note that there is presumably no splitting
of mass, as we might believe looking at Figure 2, the splitting effect being induced by the fixed number of level
sets which are plotted.

For the same example, we next define A as

Aλ,µ(x) =

{[

1 0
0 λ

]

ifx ≤ 0.5, and

[

1 0
0 µ

]

otherwise. (3.3)

In this case, the vertical direction is favored in the right part of the image domain. The results, for λ = 20
and decreasing values of µ ∈ {0.01, 0} are presented in Figure 3. With µ = 0, one can observe that a vertical
teleportation of the mass arises in the right part of the domain, since the corresponding transport cost is null.

It is therefore possible to define a polarization of the space through the anisotropic matrix for modelling
domain priors. This is also illustrated in Figure 4, which presents the optimal path between an horizontal and
a vertical line on a square image. For these experiments, we defined different complex anisotropies, that are
represented with the arrows of the first image of each line. If prior knowledge is available on the data, one
can build a specific Riemannian manifold and the anisotropic model will therefore be able to simulate rigid or
divergence free transports. This is nevertheless not sufficient for more general purposes and we now propose to
directly include physical prior into the model and not into the domain.
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λ

=
1

λ
=

3
λ

=
2
0

ρ0 ρ∗(1/8) ρ∗(1/4) ρ∗(3/8) ρ∗(1/2) ρ∗(5/8) ρ∗(3/4) ρ∗(7/8) ρ1

Figure 2. Illustration of the mass ρ∗(t) estimated between ρ0 and ρ1, through the computation
of the generalized transport costs defined by the anisotropic matrices Aλ introduced in (3.2).
The arrows represent the direction favored by the anisotropy. The color intensity denotes the
strength of the anisotropy.

µ
=

0.
01

µ
=

0

ρ0 ρ∗(1/8) ρ∗(1/4) ρ∗(3/8) ρ∗(1/2) ρ∗(5/8) ρ∗(3/4) ρ∗(7/8) ρ1

Figure 3. Illustration of the mass ρ∗(t) estimated between ρ0 and ρ1, through the computation
of the generalized transport costs defined by the anisotropic matrices Aλ,µ introduced in (3.3),
with λ = 20. The arrows represent the direction favored by the anisotropy. The color intensity
denotes the strength of the anisotropy.

4. Optimal transportation with physical priors

In this work, we are interested in incorporating physic priors into the optimal transportation model. More
precisely, for image processing applications, we would like to consider incompressible or rigid transports. Such
transports can indeed prevent the object contained in the data from splitting along the computed paths. They
can be characterized using the velocity, that is not a variable of the problem (2.7) anymore and should be
reintroduced.

4.1. Non convex coupling

In order to have a coupling between the variables (ρ, m) and v, a natural idea is to consider the term
ιD(ρ, m, v) = 0, with the set D = {m = ρv}. As D is not convex and ιD non-smooth, we rather consider a
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B1

B2

B3

ρ0 ρ∗(1/8) ρ∗(1/4) ρ∗(3/8) ρ∗(1/2) ρ∗(5/8) ρ∗(3/4) ρ∗(7/8) ρ1

Figure 4. Illustration of the mass ρ∗(t) estimated between ρ0 and ρ1, through the computation
of the transport costs defined by the three different anisotropic domains, illustrated by the blue
directions in the first column. The first line is the classic isotropic transport.

differentiable coupling:

K(ρ, m, v) =
1

2

∫

Ω

∫ 1

0

||m − ρv||2 dx dt.

In this paper, we are interested in specific kind of transports regarding velocity priors that would depend on
the targeted application. This will involve a new functional term R(v) that can be defined as:

• Divergence-free constraint: R(v) = ιCv (v), where Cv = {divx v(t, ·) = 0, 〈v(t, ·), n〉 = 0, ∀ t ∈ [0; 1]}.
• Incompressible penalization: R(v) = 1

2

∫ 1

0
|| divx(v(t, ·))||2L2(Ω) dt.

• Rigid penalization: R(v) = 1
2

∫ 1

0 ||(∇xv(t, ·) + (∇xv(t, ·))T )/2||2L2(Ω) dt.

• Translation penalization: R(v) = 1
2

∫ 1

0
||(∇xv(t, ·)||2L2(Ω) dt.

Note that by e.g. translation penalization, we mean a penalization of the deviation of a velocity field from
translations. These terms are convex and the three lasts ones are differentiable.

4.2. Existence of a minimizer

In this section we prove the existence of at least a minimizer to an optimal transportation problem with a
penalization on the velocity gradient (referred as translation penalization) and the corresponding coupling term.
We will assume that ρ0 and ρ1 belong to L∞(Ω), and set M = max(‖ρ0‖∞, ‖ρ1‖∞). We set Q = (0, 1)×Ω, and
denote as BL(Ω) the Beppo−Levi space on L2(Ω) [19], that is

BL(Ω) =
{

u ∈ D′(Ω), ∇u ∈ L2(Ω)
}

.
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Our set of constraints will be defined as:

CM =
{

(ρ, m, v) ∈ L∞(Q) × L2(Q)d × L2(0, 1; BL(Ω))d, ‖ρ‖L∞(Q) ≤ M,

∀ψ ∈ C∞(Q),

∫ 1

0

∫

Ω

ρ∂tψ + m · ∇ψ dxdt +

∫

Ω

ψ(0,x)ρ0(x) − ψ(1,x)ρ1(x) dx = 0

}

.

Notice that this set is non empty since ((1 − t)ρ0 + tρ1, m, 0) ∈ CM for a constant in time m such that
div m = ρ1 − ρ0 and 〈m · n〉 = 0 on ∂Ω × (0, 1) (the existence of such m is ensured since

∫

Ω ρ0 dx =
∫

Ω ρ1 dx,
see [22], p. 24).

Remark 4.1. Note that if ρ ∈ CM , then
∫

Ω
ρ(t,x) dx = 1 for almost every t ∈ (0, 1). This is readily obtained

taking ψ(t,x) = t in the definition of CM .

Proposition 4.2. The problem

inf
(ρ,m,v)∈CM

∫

Ω

∫ 1

0

J(ρ, m) +
1

2
‖m − ρv‖2 +

1

2
‖∇xv‖2 dx dt

has at least a minimizer.

Proof. Let (ρn, mn, vn) ∈ CM be a minimizing sequence. As (ρn) is uniformly bounded by M , we have

J(mn, ρn) =
m2

n

2ρn
≥ 1

2M m2
n. Thus we have the following a priori bounds: ∃C > 0 such that for all n ∈ N,

‖ρn‖L∞(Q) ≤ M, ‖mn‖L2(Q) ≤ C, ‖∇xvn‖L2(Q) ≤ C, ‖mn − ρnvn‖L2(Q) ≤ C. (4.1)

The first and third estimates imply
∃C > 0, ‖ρnvn‖L2(Q) ≤ C, (4.2)

while as (ρn, mn) verifies ∂tρn + divx mn = 0 in D′(Q), we also get

∃C > 0, ‖∂tρn‖L2(0,1;H−1(Ω)) ≤ C. (4.3)

Therefore, up to the extraction of a subsequence, we can assume that there exists (ρ, m, v) ∈ L∞(Q)×L2(Q)d×
L2(0, 1; BL(Ω))d such that

ρn
∗
⇀ ρ in L∞(Q), mn ⇀ m in L2(Q)d, ∇xvn ⇀ ∇xv in L2(Q)d×d. (4.4)

First note that CM is closed with respect to these convergences, thus the weak limit (ρ, m, v) ∈ CM .
The integral functional J is convex and lower semi-continuous for the L2(Q) × L2(Q) weak convergence

(see [2], p. 138). The regularization term in v is the semi-norm of L2(0, 1; BL(Ω)), it is also weakly semi-
continuous for the convergence of (∇xvn) in L2(Q)d×d. The coupling term is also a L2(Q) norm, therefore to
conclude, it remains to prove the weak convergence of (ρnvn) to ρv in L2(Q). We will use a form of compensated
compactness lemma, using the bound on the temporal derivative for ρn and on spatial derivatives for vn, as
in [20]. In this spirit, the following is a mere corollary of a lemma of [28]:

Lemma 4.3. Consider (an) weakly convergent to a in L2(0, 1; H1(Ω)), and (bn) weakly convergent to b in
L2(Q). If (∂tbn) is bounded in L2(0, 1; H−1(Ω)) then up to a subsequence, (anbn) converges to ab in M(Q)
(that is for test functions in C0

c (Q)).

One issue here is that we have no control on vn in the regularization term, but only on ∇xvn, hence the space
BL(Ω) instead of the required H1(Ω). Hopefully we will get this control from the coupling term, which is not
trivial since ρn is only nonnegative.
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From [19], page 312, since Q is star-shaped, the weak convergence of (vn) to v in L2(0, 1; BL(Ω)) implies the
weak convergence of (vn + cn) to v in L2(Q) for some constant in space sequence (cn(t)).

As ρn is bounded in L∞(Q), the sequence ρn(vn + cn) is in fact bounded in L2(Q), and thanks to (4.2) we
get that ρncn is bounded in L2(Q). By definition,

‖ρncn‖L2(Q) = sup
ψ∈L2(Q),‖ψ‖

L2(Q)=1

∫ 1

0

∫

Ω

ρncnψ dxdt,

which, restricted to constant in space functions ψ ∈ L2(0, 1) in the supremum, gives

‖ρncn‖L2(Q) ≥ sup
ψ∈L2(0,1),‖ψ‖2

L2(0,1)
= 1

|Ω|

∫ 1

0

∫

Ω

ρncnψ dx dt.

Moreover, as cn is constant in space too, and since
∫

Ω ρn dx = 1 (see Rem. 4.1), we get

‖ρncn‖L2(Q) ≥ sup
ψ∈L2(0,1),‖ψ‖2

L2(0,1)
= 1

|Ω|

∫ 1

0

cnψ dt =
1

√

|Ω|
‖cn‖L2(0,1).

This means that (cn) is bounded in L2(0, 1) and also in L2(Q) as a (constant in x) sequence of this space. It
now implies that vn is bounded in L2(Q), and therefore converges up to a subsequence to some function w.
Necessarily from (4.4) we have w = v since ∇ is weakly continuous. Thus using estimates (4.1) and (4.3), we
can apply the above compactness lemma to vn and ρn, to obtain

ρnvn → ρv in M(Q).

However ρnvn is bounded in L2(Q) weak, and therefore a subsequence weakly converges in this space. Extracting
another subsequence if necessary we get

ρnvn → ρv in L2(Q).

�

Remark 4.4. Concerning other penalizations, while we will see that numerical algorithms behave as expected,
the situation from the theoretical point of view seems more tricky. The case of rigid penalization, while concep-
tually very close to the above one, thanks to Korn inequality, has to be studied carefully since the simplification
obtained with a constant cn does not generalize directly to a rigid one. An easy case would be of course to add
a L2(Q) norm on v with a small positive coefficient in the functional. The case of incompressible penalization
would moreover need an extension of the compactness lemma to that case.

4.3. Discretization

We will consider the same discretizations as before and now detail the case d = 2. We assume that the
centered grid is of size P ×N ×N : P points for the temporal dimension and N points for each spatial one. The
velocity w = (w1, w2) on the centered grid is discretized as

w ∈ Ev
c = (w1

k,i,j , w
2
k,i,j)

0≤k≤P
0≤i,j≤N ,

where Ev
c = (Rd)G . Hence, a velocity v = (v1, v2) is defined on the staggered grid as

v ∈ Ev
s =

(

(v1
k,i,j)

0≤j≤N
−1≤i≤N , (v2

k,i,j)
−1≤j≤N
0≤i≤N

)0≤k≤P

,

where Es
s = R

Gx

is the finite dimensional space of staggered variables.
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We also introduce Iv as a midpoint interpolation operator from Ev
s to Ev

c , defined in a similar way to I. Let
us finally detail the previously introduced spatial divergence and gradient operators in the case d = 2 where
v = (v1, v2). The spatial divergence operator divx : Ev

s → R
G is defined, for v ∈ Ev

s as

∀ 0 ≤ k ≤ P, ∀ 0 ≤ i ≤ N, ∀ 0 ≤ j ≤ N, divx(v)k,i,j = (v1
k,i,j − v1

k,i−1,j) + (v2
k,i,j − v2

k,i,j−1).

Finally, the spatial gradient operator is defined, for v = (v1, v2) ∈ Ev
s as the matrix ∇xv = [∇xĩ

(vj̃)]j̃=1,2

ĩ=1,2
.

In this matrix, ∇xĩ
(vj̃) is the partial derivative of vj̃ on the dimension xĩ ∈ (x, y). We can observe that

∇x1(v
1),∇x2(v

2) ∈ R
G , whereas ∇x2(v

1) and ∇x1(v
2) are defined on double staggered grids of respective

dimensions P × (N + 1) × (N − 1) and P × (N − 1) × (N + 1).

4.4. Optimization

The generalized optimal transport model we are interested in is of the following problem:

(ρ∗, m∗, v∗) = argmin
ρ,m,v

F (ρ, m, v) (4.5)

where

F (ρ, m, v) = J (I(ρ, m)) + ιC(ρ, m) + λK(I(ρ, m), Iv(v)) + αR(v),

and λ, α ≥ 0 respectively weight the coupling between variables and the velocity regularization term.

The problem (4.5) is not convex in (ρ, m, v) but it is convex separately in (ρ, m) and in v. Notice that the
coupling is differentiable and the non-smooth terms are separable. Through these assumptions and following [33],
we can perform a block coordinate descent and minimize alternatively each convex problem to obtain a critical
point of the joint problem (4.5). The optimization algorithm reads:

⎧

⎪

⎨

⎪

⎩

(ρk+1, mk+1) = argmin
(ρ,m)

F (ρ, m, vk)

vk+1 = argmin
v

F (ρk+1, mk+1, v).
(4.6)

In order to deal with the different numerical grids, we define again a variable x = (ρ̄, m̄) on the regular grid
and a variable y on the staggered one, for the couple (ρ, m). We do the same for the velocity and denote as w
the variable on the centered grid and v the velocity on the staggered one.

We finally want to solve the problem

(x∗, y∗, v∗, w∗) = argmin
x,y,v,w

F̃ (x, y, v, w) (4.7)

where

F̃ (x, y, v, w) = J (x) + ιC(y) + ιS(x, y) + λK(x, w) + R(v) + ιSv (v, w),

and the convex set Sv is defined for the velocity variables as Sv(v, w) = {Iv(v) = w}. A critical point of (4.7)
can therefore be estimated with the following algorithm

⎧

⎪

⎨

⎪

⎩

(xk+1, yk+1) = argmin
(x,y)

F̃ (x, y, wk),

(vk+1, wk+1) = argmin
(v,w)

F̃ (xk+1, v, w),
(4.8)

that is composed of alternated optimization problems. The resolution of these two problems is now detailed.
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4.4.1. Optimization of (ρ, m)

The first step of (4.8) reads:

(x∗, y∗) = argmin
x,y

J (x) + ιC(y) + ιS(x, y) + λK(x, wk). (4.9)

We can again use the GFB algorithm 1 to solve this problem, by taking F (x, y) = K(x, wk), G1(x, y) =
J (x) + ιC(y) and G2(x, y) = ιS(x, y). The Lipschitz constant of ∇F is given by L = 2λmax(1, ||wk||2∞). As a
consequence, when the coupling between variables is enforced with a large value of λ, it decreases the value of
the time-step of the optimization algorithm τ , that is inversely proportional to L.

4.4.2. Optimization of v

Let us now detail how dealing with the different regularization models of the velocity we have in mind.

Divergence-free constraint

When the velocity v is constrained to be incompressible, the second step of (4.8) reads:

(v∗, w∗) = argmin
v,w

λK(xk+1, w) + ιCv (v) + ιSv (w, v). (4.10)

The GFB Algorithm 1 can be applied to solve this problem by taking F (v, w) = λK(xk+1, w), G1(v, w) = ιCv(v)
and G2(v, w) = ιSv (w, v). The Lipschitz constant of ∇F is then given by L = λ||ρ̄k+1||2∞.

The computation of ProxιCv (ṽ) corresponds to the projection of ṽ(t, ·, ·), on the 2D divergence free velocity
fields ∀ t ∈ [0; 1]. At each time t, we first extract the boundary values of the velocity on the staggered grid using
the linear operator bv, defined for d = 2, Ω = [0; 1]2 and ṽ = (ṽ1, ṽ2) as:

bv(ṽ(t, ·, ·)) =
(

ṽ1(t, 0, ·), ṽ1(t, 1, ·), ṽ2(t, ·, 0), ṽ2(t, ·, 1)
)

.

Denoting the homogeneous Neumann boundary conditions as bv
0 = (0, 0, 0, 0), the affine set Cv that can be

rewritten as
Cv = {v, Btv(t, ·, ·) = z, ∀ t ∈ [0; 1]}

where
Btv(t, ·, ·) = (divx(v(t, ·, ·)), bv(v(t, ·, ·))), and z = (0, bv

0).

The projection v of ṽ can again be computed by solving a linear system ∀ t ∈ [0; 1]:

v(t, ·, ·) = ProjCv(ṽ(t, ·, ·)) = (Id−B∗
t ∆−1Bt)ṽ(t, ·, ·) + B∗

t ∆−1
t z

where applying ∆−1
t = (BtB

∗
t )−1. Following the expression of ProxτιS

defined in (2.11), we obtain in a similar
way ProxτιSv by using Iv instead of I.

Penalization

If we want to penalize a certain norm of the velocity with a term αR(v), where R is proper, convex and
differentiable with a Lipschitz gradient, we obtain the following problem:

(v∗, w∗) = argmin
v,w

λK(xk+1, w) + αR(v) + ιSv (w, v), (4.11)

that can be solved with the FB Algorithm 2, by taking G(v, w) = ιSv (w, v) and F (v, w) = λK(xk+1, w)+αR(v).
The Lipschitz constant of ∇F is given by L = λ||ρ̄k+1||2∞ + αLR, where LR is the lipschitz constant of ∇R
For an incompressible penalization R(v) = 1

2

∑1
t=0 || divx(v(t, ·, ·))||2L2(Ω), as for a rigid penalization R(v) =

1
2

∑1
t=0 ||(∇xv(t, ·, ·) + (∇xv(t, ·, ·))T )/2||2L2(Ω) or a translation penalization R(v) = 1

2

∑1
t=0 ||∇xv(t, ·, ·)||2L2(Ω),

we have LR = 4
√

2 with our discrete gradient and divergence operators computed on regular and staggered
grids with coefficients [1,−1].
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ρ(0) = ρ0 ρ(1/8) ρ(1/4) ρ(3/8) ρ(1/2) ρ(5/8) ρ(3/4) ρ(7/8) ρ(1) = ρ1

Figure 5. Two gaussians experiments with penalization and a null initialization. Plot of the
isolevels of the density ρ(t) along the optimal path computed with the different penalization
models. The top line is realized with incompressibility penalization, the second with a transla-
tion penalization (through the minimization of the L2 norm of each component of the velocity
field) and the last one with a rigid penalization.

5. Experiments

We now illustrate the influence of the regularization and penalization of the velocity field on different exam-
ples. In all our experiments, we take λ = 103 for the coupling term and α = 2 × 103 for the regularization of
the velocities. The time-step of the GFB algorithm is therefore taken as τ = 10−4. In practice, depending of
the dimension of the problem, we realize until 1000 outer iterations of the alternated algorithm (4.8) and 10
inner iterations of both problems (4.9) and (4.11), when a penalization of the velocity is involved. Notice that
only a single step is required for the model (4.10) through a projection of v on the divergence-free set Cv. Such
parameters are sufficient to have a convergence of the transport costs and coherent computed paths.

5.1. Synthetic tests

First of all, we compare in Figure 5 the results obtained with the incompressible, translation and rigid
penalizations on the two Gaussians example. Such physical priors then prevent the mass from splitting along
the computed path. The Gaussians are deformed with the divergence-free prior, but it can be seen that the
length of the level lines of the densities are preserved along the path. It is also important to underline that both
translation and rigid penalizations keep the exact shapes of the two Gaussians along time. Furthermore, one
can see in Figure 6 representing both computed paths, that the rigid penalization really performs a rotation
and not a translation, so that the optimal path is no more composed of straight lines.

In the example of Figure 7 that presents a rotating bar, the rigid penalization (last line) recovers a quasi-
rotation, which better preserves the prior physics with respect to pure optimal transport (first line). As expected,
it can also be observed in Figure 8 that the length of the level lines of the estimated density are preserved with
the incompressible and rigid penalization approaches. We refer the reader to [9] for more synthetic examples
involving such penalizations.

On these synthetic examples, we considered a discrete spatio-temporal grid of 313 points. For these dimensions,
only 100 outer iterations of the block coordinate algorithm (4.8) are needed.
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Translation penalization Rigid penalization

Figure 6. Two gaussians experiment. Plot of the whole trajectory computed with the trans-
lation (on the left) and the rigid (on the right) penalization models. The rigidity here involves
a real rotation.

ρ(0) = ρ0 ρ(1/8) ρ(1/4) ρ(3/8) ρ(1/2) ρ(5/8) ρ(3/4) ρ(7/8) ρ(1) = ρ1

Figure 7. Bar experiment. Plot of the isolevels of the density ρ(t) along the optimal path
computed with different approaches. The first line is the optimal transport of [3], the second
is the proposed approach with an incompressible penalization and the last one with a rigid
penalization that conserves the nature of the object to transport.

5.2. Image interpolation in oceanography

In order to study the state of the oceans, snapshot images are produced by operational numerical codes
such as the Ocean Circulation Model NEMO3. The synthesis process is nevertheless time-consuming and the
oceanographers would like to create a few images and then realize a temporal interpolation between these
images. This would be of particular interest to visualize and diffuse movies of dynamic structures of the ocean.
The main issue comes from the coast that appears in a lot of interesting places, as illustrated in Figure 9.

3http://www.nemo-ocean.eu/

http://www.nemo-ocean.eu/
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Method of [3] Incompressible penalization Rigid penalization

Figure 8. Bar experiment. Evolution of the length of the upper level lines of the estimated
density along time t: |ρ(t,x) > i/10|, for i = 1 · · · 9. The left plot is the classic optimal transport
of [3], the middle one is the proposed approach with an incompressible penalization and the
right one corresponds to the proposed approach with a rigid penalization. Penalizing the norm
of the velocity makes the level lines preserved along the computed path.

ρ0 ρ(1/8) ρ(1/4)

ρ(3/8) ρ(1/2) ρ(5/8)

ρ(3/4) ρ(7/8) ρ1

Figure 9. Interpolation of Sea Surface Height images in oceanography: creation of vortexes in
Cap Point.
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It makes useless classical image registration techniques such as optical flow or diffeomorphism estimations that
can not deal with such complex domain.

With our anisotropic formulation, we can represent the image domain as a Riemannian manifold, by taking
A(t,x) = w(x) Id2. The variable w(x) then describes the manifold, it is set to 1 in the ocean and to a huge
value in the land in order to restrict the transport into the ocean.

The successive optimal paths between 10 pairs of Sea Surface Height images of size 843 × 516 produced by
the NEMO model have thus been computed with a temporal discretization of P = 9 steps4. The brightest colors
correspond to the highest sea height. The image sequence illustrates the Agulhas Current and the creation of
vortexes in Cap Point. As shown in Figure 9, that presents the computed path between two consecutive images,
by adding the proposed divergence-free penalization, we can induce some rotational prior within the transport
estimation and perfectly recover the creation of vortexes. In this experiment, we considered 1000 outer iterations
of the alternated process (4.8).

6. Conclusion

In this paper, we study generalized optimal transportation models which attach a multiphysics model to
the images to be registrated. This is of particular interest for image interpolation purposes, where the results
obtained using a simple minimization of a kinetic energy under some constraints do not preserve image charac-
teristics along the optimal interpolation path, which is not physical. We then provide adequate proximal splitting
methods to solve these new optimization problems. These generalizations are not limited by the expressions we
consider here. Indeed, others physical terms can also be considered taking into account more complex physics.

Promising results have been obtained on high-resolution oceanographic images. Future works, in collaboration
with oceanographers, will therefore be dedicated to the modelling of more accurate physical priors.

From the optimization point of view, we are also focused on the minimization of non-convex and non-smooth
functionals. Contrary to the block coordinate descent method we consider (4.6), defining an algorithm without
inner loops (on (ρ, m) and v) would be of main interest to obtain a faster computation of minima of our
non-convex problems. Recent advances of proximal splitting methods have been made for related problems [1],
but they are still limited to more simple functionals and can not deal with our generalized optimal transport
formulation.

Finally, for the anisotropic optimal transport, we plan to study the existence of minimizers when the
anisotropy varies with respect to time. This is a challenging problem as, in this case, there are no correspon-
dences with any Monge problem.
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géophysique de l’environnement, Grenoble, France) for providing us the image sequences of sea surface height that have
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