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Abstract 

The assessment of protein–ligand interactions is critical at early stage of drug discovery. Computational approaches 
for efficiently predicting such interactions facilitate drug development. Recently, methods based on deep learn-
ing, including structure- and sequence-based models, have achieved impressive performance on several different 
datasets. However, their application still suffers from a generalizability issue because of insufficient data, especially 
for structure based models, as well as a heterogeneity problem because of different label measurements and varying 
proteins across datasets. Here, we present an interpretable multi-task model to evaluate protein–ligand interaction 
(Multi-PLI). The model can run classification (binding or not) and regression (binding affinity) tasks concurrently by 
unifying different datasets. The model outperforms traditional docking and machine learning on both binary clas-
sification and regression tasks and achieves competitive results compared with some structure-based deep learning 
methods, even with the same training set size. Furthermore, combined with the proposed occlusion algorithm, the 
model can predict the important amino acids of proteins that are crucial for binding, thus providing a biological 
interpretation.
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Introduction
�e development and approval of a new drug takes more 
than 10 years and costs almost 2  billion dollars. Identi-
fication of the interactions between proteins and ligands 
are critical at early stage of the drug discovery process. 
Computational methods for identifying possible ligands 
to target proteins at the initial phase of drug discovery 
indeed reduce the cost and improve the success rates of 
new drug development [1, 2]. However, traditional meth-
ods have limitations, for example, the dependence on 
expert knowledge may lead to low efficiency in screening 
and the limited results. Specifically, these conventional 

structure-based methods need to first simulate the 
binding poses of proteins and ligands and then calcu-
late their binding energies, which tends to be restrict-
ing the computational efficiency and accuracy. In recent 
years, researchers in this field have paid more attention 
on machine learning based methods [3, 4]. However, the 
fundamental limitation of models such as support vector 
machine is that they still rely on expert knowledge-based 
manual feature engineering.

Recently, deep learning, which refers to an algorithm 
for numerous layers of nonlinear transformations, has 
achieved great success in many fields [5–7]. One main 
advantage of is that deep learning algorithm learns and 
extracts information from raw data without manual 
feature extraction. Inspired by the remarkable success, 
many researchers have applied deep learning into the 
field of drug discovery [8–14]. Wallach et  al. proposed 
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a method which based on convolutional neural network 
(CNN), an algorithm of deep learning, to divide active 
and inactive compounds for a given protein [9]. In their 
study, their model outperformed other traditional meth-
ods on the Directory of Useful Decoys Enhanced (DUD-
E) benchmark. In another study, Ragoza et al. described 
a CNN-based scoring function using a comprehensive 
3-dimensional (3D) representation of a protein-ligand 
complex as input. �ey showed a better performance 
on virtual screening and pose prediction than the clas-
sical docking method AutoDock Vina [10]. Similarly, 
Stepniewska-Dziubinska et al. introduced a model taking 
a 3D grid representation structure as input and process-
ing it by CNN. Rather than simply identifying whether 
the ligand can bind to the target, their model can accu-
rately predict the binding affinity of the protein–ligand 
complex [11]. It should be noted that methods taking the 
3D structure of a protein-compound complex as input, 
which is similar to traditional docking, may also be dis-
advantaged by the lack of data, especially for targets 
without structural information. �erefore, several stud-
ies have introduced methods that use only 1D sequences 
as input. Wan et al. applied the “word embedding” algo-
rithm, which is widely used in natural language process-
ing, to process raw protein and compound data into two 
separate compressed vectors [15]. �en, the two embed-
ding vectors were fed into a deep neural network to 
predict the binding possibility. Similarly, to predict the 
binding value, Öztürk et al. proposed a model known as 
DeepDTA that applies convolution operations to protein 
and drug sequences separately, and their model obtained 
better results than other methods on kinase datasets 
[12]. Considering the model interpretability, Lee et  al. 
performed convolution on various lengths of amino acid 
subsequences to capture local residue patterns [14]. �ey 
pooled the maximum convolution results from each filter 
to highlight important regions for prediction, and thus 
provided a partial explanation of their model. However, 
the robustness and applicability of a model are limited 
if the model is restricted to only one identical dataset or 
single task, namely, either classification or regression.

  Inspired by previous studies, here we present an inter-
pretable multi-task model to evaluate protein-ligand 
interactions. Using sequence data, the model can run 
classification task (binding or not) and regression task 
(binding affinity) concurrently, based on correspond-
ing labels. As shown in Fig. 1, the CNN blocks consist of 
VGG, Inception and Maxpool modules, which are used 
to extract latent features from raw sequence/SMILES of 
proteins/compounds, and then fully connected layers 
are employed to process the combined vectors. �e key 
idea is to perform multiple convolutions operations with 
multiple kernels (i.e., 1 × 1, 3 × 3 and 5 × 5 convolutional 

layers) and pooling layers (i.e., 3 × 3 max pooling layer) 
simultaneously in parallel within the same layer. To avoid 
overfitting, a multi-dropout layer is added after each 
dense layer, where each multi-dropout layer consists of 
five units that generate random dropout values, and then 
the final dropout is calculated by the weighted mean of 
these values to achieve better performance. Similarly, 
the ensemble result refers to the final output composed 
of the five different values generated by the last dense 
layer. In general, this parallel algorithm decreases the 
variance/bias and thus leads to a more efficient model 
performance. A total of 261,270 interactions from six 
main datasets, including two regression sets (PDBbind 
and Davis) and four classification sets (DUD-E, Human, 
C. elegans and KIBA), are used in this study, as well as 
10,546 interactions from three independent sets: CASF-
2013, Astex Diverse, MUV and BindingDB.

�e proposed model outperforms traditional docking 
and machine learning on both binary classification and 
regression tasks and achieves competitive results com-
pared with some structure-based deep learning methods, 
even with the same training set size. Additionally, the 
model can be used to identify the important sites of the 
input data in combination with the designed occlusion 
algorithm, thus providing a biological interpretation.

Results and discussion
Performance of single-task model

We first train and evaluate the model with a single task 
on the PDBbind dataset. A single task means that model 
is trained and evaluated on each individual dataset for 
either regression or classification. PDBbind v.2016 is 
split the same as Pafnucy [11], with the whole core set 
(core2016) as the external test set. Figure 2 displays the 
predicted values against the real binding values of the 
protein-ligand complex on PDBbind. RMSE and Pear-
son’s correlation coefficient R are used to calculate 
the differences and the linear correlation, respectively, 
between the predicted and real values. As shown, our 
model achieves the lowest error on the training set with 
RMSE = 0.75, R = 0.92 and performs well on the valida-
tion set with RMSE = 1.34, R = 0.76 and on the test set 
(core2016) with RMSE = 1.437, R = 0.75. �ese results 
show that our model performs well on both the valida-
tion and the test sets.

We use 3-fold cross-validation to evaluate the model 
performance on three classification datasets, namely, 
DUD-E, Human and C. elegans, as shown in Fig. 3. �e 
data from Human and C. elegans are randomly split as 
in previous studies [13, 16]. In contrast, several recent 
studies reported that the bias inherent in DUD-E may 
lead to perfect AUC results for any machine learning 
method if using randomly split intra-targets [17, 18]. 
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�us, the DUD-E data are split according to 102 protein 
clusters using global sequence alignment [19] to ensure 
that targets with greater than 80% sequence identity 
are included in the same fold during cross-validation, 
so that no ligand-protein information for a target in 
the test set is included in the training set. �e negative-
to-positive ratios of are set to 3:1 for all three datasets. 
�e AUC results show that our model performs well on 
the Human and C. elegans datasets with mean AUCs 
of 0.948 and 0.960, respectively, and on DUD-E with a 
mean AUC = 0.959 even when target clustering is applied 
(Fig. 3).

Recent studies showed that SMILES-based methods 
can model different biological activity and physico-
chemical properties [20]. �erefore, we have performed 
an ablation study on these datasets to explore the 
importance of each protein/ligand part in our model. 
For DUD-E, ligand only model has achieved simi-
lar result to complete model whereas protein only 

model does not work at all, which suggests the ligand 
part plays the decisive role on DUD-E dataset (Addi-
tional file 1: Table S1). But for Human and C. elegans, 
the complete model (i.e., with both protein and ligand 
parts) achieves the best performance. �is result has 
also been observed on PDBbind (Additional file  1: 
Table S2). Next, we count the numbers of unique pro-
tein and ligand (after removing duplicates by sequence/
smiles) on each dataset. DUD-E has the extremely 
imbalanced ratio of unique ligands to proteins (88,092 
ligands and 102 proteins) whereas other datasets have 
more balanced ligand to protein ratios. Taken together, 
these results suggest that ligand only model could 
achieve competitive result to protein/ligand model on 
dataset where ligand dominates. Whereas the protein/
ligand model would achieve better performance than 
protein or ligand only models on relative balanced 
dataset.

Fig. 1   Schematic overview of our method. The proposed model consists of two parts: protein/ligand feature extraction from sequence/SMILES 
and interaction prediction by shared and task-specific layers. The tasks are defined as: binary classification (protein-ligand binding or not) and 
regression (protein-ligand binding affinity). The main datasets consist of two regression sets and four classification sets, in which PDBbind and 
DUD-E have structural data. Four independent sets are used to test the generalizability of the model
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Uni�cation of di�erent datasets

One limitation of deep learning-based drug discovery is 
the lack of data, which may partially be attributed to the 
heterogeneity of different datasets. For example, some 
datasets have accurate protein-ligand binding values, 
while other datasets provide positive and negative ligands 
for targets, as exhibited in the last section. In addition, 
different datasets may have their own protein-ligand 
interaction space, and models trained on a single data-
set do not generalize well to other datasets. For exam-
ple, DeepDTA optimized on kinase datasets achieved 
poorer performance on an independent set than did 

DeepConv-DTI, which was trained on diverse data [14]. 
Moreover, this limitation creates obstacles when compar-
ing different models. Although the loss function could 
be redefined for different task comparisons, the model 
parameters will not work well on feature extraction and 
prediction tasks, and thus, the model actually needs to 
be retrained. Given these facts, we propose a multi-task 
framework to unify datasets with different labels.

An analysis of the used protein–ligand datasets, 
including the independent sets, is given here. One thou-
sand samples per dataset are selected randomly, and 
one hot protein and ligand encodings are concatenated 

Fig. 2   Model performance on PDBbind (regression). a Training set, RMSE = 0.75, R = 0.92; b validation set, RMSE = 1.34, R = 0.76; c test set 
(core2016), RMSE = 1.437, R = 0.75. Coordinates of x and y: pK(i,d) (−logKi or −logKd). Histogram: affinity distributions of real (x) and predicted (y) 
samples (pK(i,d))
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for each sample. �en, these selected protein-ligand 
pairs are compared across the datasets after applying 
a dimensionality reduction method, principal compo-
nent analysis (PCA). �e distributions of the nine data-
sets in both the 2D and 3D PC spaces are visualized in 
Fig. 4a, b. Although these datasets are distributed close 
together in space, slight differences can be seen. DUDE 
(red) is distributed similar to PDBbind (blue), note 
that both DUD-E and PDBbind are structure-based 
datasets. KIBA (purple) and Davis (yellow) are distrib-
uted closer than other pairs of datasets, as are Human 

(green) and C. elegans (cyan). It makes sense because 
KIBA and Davis are both kinase sets while Human and 
C. elegans were built by the same pipeline [16]. �ese 
results indicate that the six main datasets differ in char-
acterization, and it is possible that a broader distribu-
tion space adequately covered by more samples could 
make the model more robust and practical. Regard-
ing the independent sets, CASF and Astex Diverse are 
close to the main datasets in the space, whereas MUV 
is quite far from the other sets. �ese distributions may 

Fig. 3   Model performance on DUD-E, Human and C. elegans (classification). Three-fold cross-validation and random-guess ROC curves plotted in 
different colors. a DUD-E, mean AUC = 0.959; b Human, mean AUC = 0.948; c C. elegans, mean AUC = 0.960

Fig. 4   PCA analysis of all datasets used in this study. a PC1 and PC2; b PC1, PC2 and PC3. Randomly samples from each dataset are compared after 
PCA reduction. Main datasets: DUD-E (red), PDBbind (blue), Human (green), C. elegans (cyan), KIBA (purple) and Davis (yellow). Independent test 
sets: MUV (peachpuff ), CASF2013 (gray), Astex Diverse (peru)
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lead to good prediction results on CASF and Astex 
Diverse but a relatively poor performance on MUV.

Performance comparison with other methods

�e multi-task model is trained once on the main data-
sets. During training, the loss changes are monitored. 
�e model is saved on one epoch as final model if the 
loss of validation set starts to increase while the loss of 
training set still reducing. For the multi-task model, the 
final epoch for classification and regression is 9 and 20, 
respectively, which suggests that the regression task is a 
bit harder to cover than the classification task. �en, we 
compare our single- and multi-task models with other 
methods on the five main datasets and four independ-
ent sets. To facilitate fair comparisons, the test sets are 
similar for all methods on the given datasets. It should 
be noted that the sequences of proteins with structural 
information are extracted from their structural data 
(e.g., proteins from PDBbind and DUD-E), whereas the 
sequences of proteins from sequence-only datasets are 
obtained from the original data sources (e.g., Human and 
C. elegans).

On PDBbind, a benchmark dataset for structure-based 
methods, we use exactly the same training/validation/
test sets of Pafnucy [11], a structure-based deep learn-
ing model that performs excellently on PDBbind. Paf-
nucy achieves RMSE = 1.44, R = 0.72 and RMSE = 1.42, 
R = 0.78 on the validation and test (core2016) sets, 
respectively, while our single-task model exhib-
its RMSE = 1.34, R = 0.76 on the validation set and 
RMSE = 1.44, R = 0.75 on the test (core2016) set (Fig. 2b, 
c), and the multi-task model achieves RMSE = 1.18, 
R = 0.63 (a combination of the PDBbind and Davis 
validation sets) and RMSE = 1.49, R = 0.74 on the test 

(core2016) set, respectively (Table 1). �ese results sug-
gest that the single- and multi-task models both perform 
slightly better on the validation set but slightly worse on 
the test (core2016) set compared to Pafnucy.

We compare the performance of several approaches on 
the Davis dataset. As mentioned, Davis is a kinase dataset 
without structural information for protein-ligand inter-
actions. To avoid an imbalanced data distribution for 
our multi-task model, the samples with  pKd = 5, which 
account for the majority of the dataset, are excluded. 
As shown, our single-task model outperforms SVM 
and DeepDTA on the modified Davis dataset, while the 
multi-task model achieves similar results. It should be 
noted that our proposed model has a similar structure 
to DeepDTA, but we use several inception blocks dur-
ing protein/ligand feature extraction to capture different 
sizes of features and combine them together. Addition-
ally, a multi-dropout layer is added between each pair 
of dense layers to reduce overfitting of the model, while 
the ensemble results decrease variance/bias and lead to 
a more efficient model performance. Not surprisingly, 
the single-task trained on the Davis set achieves terrible 
results on PDBbind with RMSE = 2.51, R = 0.32, and the 
single-task model trained on PDBbind performs poorly 
on Davis with RMSE = 1.26, R = 0.03. �ese results sug-
gest that although the multi-task model may result in a 
small performance loss on individual datasets, the model 
applicability is increased effectively by unifying multiple 
datasets.

To evaluate the generalizability of the model, we 
also compare the methods on two independent sets. 
As shown in Table  2, the single- and multi-task mod-
els both achieve better results on the Astex Diverse set 
with RMSE = 1.38, R = 0.64 and RMSE = 1.43, R = 0.61, 
respectively, whereas Pafnucy obtains RMSE = 1.43, 
R = 0.57. On CASF-2013, the single-task model achieves 
good performance with RMSE = 1.64, R = 0.68 compared 

Table 1 Performance comparisons on PDBbind and the 
modified Davis sets

The result of Pafnucy on PDBbind is derived from [11]

Best values are higlhlighted in bold

Dataset Method RMSE R SD

PDBbind (core2016) SVM 1.77 0.48 1.68

DeepDTA 1.51 0.61 1.50

Pafnucy 1.42 0.78 1.37

Single-task on PDBbind 1.44 0.75 1.44

Single-task on Davis 2.51 0.32 2.06

Multi-task 1.49 0.74 1.46

Davis SVM 0.98 0.36 0.96

DeepDTA 0.95 0.43 0.94

Single-task on Davis 0.92 0.46 0.92

Single-task on PDBbind 1.26 0.03 1.06

Multi-task 0.99 0.38 0.97

Table 2 Performance comparisons on the independent CASF-
2013 and Astex Diverse sets

The results of X-Score and Pafnucy are derived from [11, 21]

Best values are higlhlighted in bold

Independent set Method RMSE R SD

CASF-2013 X-Score – 0.61 1.78

Pafnucy 1.62 0.70 1.61

Single-task on PDBbind 1.64 0.68 1.65

Multi-task 1.80 0.62 1.79

Astex Diverse X-Score 1.55 0.52 1.48

Pafnucy 1.43 0.57 1.43

Single-task on PDBbind 1.38 0.64 1.33

Multi-task 1.43 0.61 1.37
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to Pafnucy with RMSE = 1.62, R = 0.70. In contrast, the 
multi-task model performs worse with RMSE = 1.80, 
R = 0.62. It should be emphasized that our model uses 
only 1D sequences/SMILES of proteins/ligands to 
achieve competitive results compared to structure-based 
deep learning models. �e applicability of structure-
based models is often restricted by the lack of structural 
data. For example, Davis dataset do not have structural 
information. �erefore, Pafnucy cannot be employed or 
compared on this dataset. In contrast, our multi-task 
model can be used and compared on multiple datasets 
regardless of the types of data or labels in the dataset.

For another structural benchmark dataset, DUD-E, 
we compare our models with AutoDock Vina (a dock-
ing scoring function) [22], AtomNet [9], 3D-CNN (a 
structure-based deep learning model) [10] and CNN/
Graph [13]. Here, the DUD-E dataset is split into a train-
ing set (61 targets), a validation set (21 targets), and a 
test set (20 targets) by target clustering, which is similar 
to AtomNet and CNN/Graph (both of which split into 
72 training targets and 30 testing targets). Our single-
task and multi-task models achieve AUC values of 0.973 
and 0.971, respectively, on the test set (Table 3), thereby 
outperforming the other methods, including Vina with 
AUC = 0.716, 3D-CNN with AUC = 0.868, AtomNet with 

AUC = 0.895 and CNN/Graph with AUC = 0.950, when 
similar target clustering is used.

We also compare methods on another independent 
set, MUV. As shown in Table 4, MUV is a very challeng-
ing set in which all methods achieve low AUCs, which is 
consistent with previous findings [17, 23]. Among these 
results, the deep learning-based methods, including our 
single- and multi-task models, perform poorer than Vina 
with an average AUC = 0.549 for all targets. �e results 
for each target are listed in Additional file 1: Table S4. It is 
probably difficult for a complex deep learning method to 
predict samples that are greatly different from the train-
ing set from which it has learned features. As depicted in 
Fig.  4, MUV is far from the other datasets in the inter-
action space. �is may further support that divergence 
between the distributions of the training and test sets 
would lead to biased predictions.

For the Human and C. elegans datasets, a graph-based 
method [13] provided state-of-the-art results with 
AUC = 0.950 on the Human set and AUC = 0.971 on the 
C. elegans set with a negative-to-positive ratio = 3. For 
comparison, with a negative-to-positive ratio = 3, our 
single- and multi-task models achieve better results with 
AUC = 0.958 and 0.961, respectively, on Human, and 
competitive results with AUC = 0.963 and 0.970 on C. 

elegans (Table  5). Moreover, a more detailed evaluation 
about model is listed in the Additional file  1: Table  S3, 
the results show that multi-task model achieves better 
performance than single-task model on most evaluation 
metrics including balanced accuracy, recall, F1 score and 
MCC.

To further verify the applicability of our multi-task 
model, we have compared the performance of single-
task models and multi-task model on an independent 
classification test set derived from BindindDB [24]. For 

Table 3 Performance comparison on the DUD-E dataset

The AUC scores of Vina, 3D-CNN, AtomNet and CNN/Graph are derived from [9, 10, 13]

Best values are higlhlighted in bold

Metric Vina AtomNet 3D-CNN CNN/Graph Single-task on DUD-E Multi-task

AUC 0.716 0.895 0.868 0.950 0.973 0.971

Table 4 Performance comparison on the independent MUV 
dataset

The AUC scores of Vina and 3D-CNN are derived from [10]

Best values are higlhlighted in bold

Metric Vina 3D-CNN on 
DUD-E

3D-CNN on 
DUD-E/CASR

Single-task 
on DUD-E

Multi-task

AUC 0.549 0.522 0.499 0.453 0.443

Table 5 Performance comparison on the Human and C. elegans sets

The AUC scores of k-NN, SVM, CNN/Graph are derived from [13]

Best values are higlhlighted in bold

Dataset Metric k-NN SVM CNN/Graph Single-task Multi-task

Human AUC 0.904 0.942 0.950 0.958 0.961

 C. elegans AUC 0.892 0.901 0.971 0.963 0.970
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the single-task on regression sets (Davis and PDBbind), 
we use the pK(i,d) value of 6  (IC50 = 1µM) as threshold to 
divide positive and negative. For example, if the predicted 
value of a sample is 6.5 then it is regarded as positive. It 
should be noted that the single-tasks for regression out-
put a binding affinity ranging from 0 to 15, rather than a 
probability value of 0 to 1. �erefore, the corresponding 
AUC cannot be calculated. As shown in Table 6, the sin-
gle-task models trained on each single classification data-
set achieve worse results on this independent set than the 
multi-task model which probably has benefited from the 
regression task, as suggested by the good result achieved 
by the single-task on PDBbind. �is result suggests a bet-
ter applicability of the multi-task model by leveraging 
various data with different labels. 

Combining the above results, the multi-task model 
seems to perform better than the single-task model on 
classification tasks but slightly worse on regression tasks. 
�is can be ascribed to some possible explanations. First, 
the two regression datasets used in this study have dif-
ferent distributions of binding values. �e PDBbind set 
fits well to a normal distribution whereas Davis obeys a 
skewed distribution distributed mostly at 6 (Additional 
file  1: Figure S1). �e two merged regression datasets 
fit the multi-task model to a new additive distribution 
of binding values that is different from the distributions 
of the original sets (factor1: new binding value distribu-
tion). In addition, the model is usually more sensitive to 
the labeled values in the regression task than to those in 
the classification task (factor2: data type sensitivity). Fur-
thermore, the number of classification interactions used 
herein (238,949) is more than ten times that of regression 
interactions (22,321) (factor3: more samples). �ese fac-
tors partially explain why the multi-task model achieves 
better performance on the classification task than on the 
regression task.

Second, as shown in Fig.  4, the datasets used in our 
study have different sparse distributions in the interac-
tion space and thus lead to “negative transfer” on a spe-
cific dataset. Negative transfer refers to information 
learned from a source domain that has a detrimental 
effect on a target learner and results in performance deg-
radation [25]. In addition, the six main datasets employed 
for the multi-task model may not be able to cover 

adequate portion of the protein–ligand interaction data 
space to improve model performance markedly. Instead, 
heterogeneity between datasets may introduce noise for 
specific tasks and challenge the generalizability of model 
applications. �erefore, we hypothesize that the fusion of 
data from similar datasets may lead to a positive transfer 
effect and improve the accuracy of the model, while the 
fusion of data from different datasets disadvantages the 
model. To prove this assumption, we use another inde-
pendent set, a list of purchasable compounds by target. 
�is dataset is closer to PDBbind in the interaction space 
after applying a dimensionality reduction than the other 
datasets used in this study (Additional file 1: Figure S2). 
As shown in the Additional file, the single-task model 
trained only on PDBbind achieves RMSE = 1.476 for this 
test set, whereas the multi-task model trained on all the 
main datasets obtains RMSE = 1.648 (Additional file  1: 
Figure S3).

Biological interpretation

Although deep learning is fast and accurate, it is difficult 
to know why it performs well on some tasks. Hence, we 
introduce a method, namely occlusion, to explore how 
our model discerns biological data. As defined in the 
“Occlusion” section of the Methods, the range of  Kij is (0, 
+∞).  Kij value greater than 1 indicates the masked subse-
quences are important for binding prediction because the 
gap between the masked predicted value and real value 
increases. �e higher  Kij value means the greater impor-
tance of the corresponding masked region.  Kij value equal 
to 1 indicates the masked region will not affect the pre-
diction. In addition,  Kij value less than 1 indicates the 
masked subsequences maybe a noise that do not involve 
in the binding, because of the reduction of the prediction 
error.

Heat maps of two examples are illustrated in Fig. 5a, b. 
�e yellow regions within the actual binding sites (bot-
tom) indicate the binding pocket for ligands. For the 
predicted binding sites (upper), the color of the regions 
are more close to yellow means more important to the 
binding prediction by our model. Clearly, the predicted 
binding sites, especially high-K regions, are very close 
to the ground truth, suggesting that our deep learn-
ing model indeed processes the data correctly. It should 

Table 6 Performance comparison of our models on the independent BindingDB set

Best values are higlhlighted in bold

Metric Single-task on 
DUD-E

Single-task on 
Human

Single-task on 
C.elegans

Single-task on 
KIBA

Single-task on 
Davis

Single-task on 
PDBbind

Multi-task

Accuracy 0.521 0.534 0.532 0.480 0.532 0.587 0.580

AUC 0.501 0.512 0.547 0.432 – – 0.613
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be noted that the local translation invariance caused by 
CNN pooling may result in a slight shift in the alignment. 
Besides, the center point selection of the masked region 
may also affect the shift. Understanding these phenom-
ena is meaningful because we pay more attention on a 
specific region or domain, rather than single amino acid.

�e 3D structures of the selected protein-ligand com-
plexes are also visualized in Fig.  5c, d. Figure  5c shows 
the complex of Bace-1 (beta-secretase) and inhibitor 
6-(thiophen-3-yl) quinolin-2-amine (PDB ID: 3rsx). 
Asp32, Tyr71, Phe108 and Asp228 are the key residues 
and form a pocket to interact with the inhibitor. �ese 
residues are detected correctly with high K values by 
our model. In the complex of thrombin and inhibitor 

-phenylalanyl-N-(3-chlorobenzyl)--prolinamide, the 
key residues Asn98, Ile174, Glu217 and Lys224, which 
located close to the C-terminus of the target, are also 
detected, unlike the pocket located in the central part 
of 3rsx. �ese results indicate that our model is more 
likely to exploit key residues involved in the actual inter-
action regardless of their positions (six more examples 
are illustrated in Additional file 1: Figures S4–S6). How-
ever, some actual binding residues are not detected, 
and some false binding sites are highlighted, indicating 
that some important residues may impact the binding 
indirectly. It is also possible that allosteric sites within 
proteins may be part of this prediction. For example, 
ITK (interleukin-2-inducible T-cell kinase) has an ATP 

Fig. 5   Alignment and visualization of the predicted and actual binding sites of protein sequences. Heat maps of the alignments between the 
predicted and actual binding sites: a 3rsx; b 2zc9 (the abscissa axis is the length of the protein sequence). Visualization: c 3rsx (the complex of 
Bace-1 (beta-secretase) and inhibitor 6-(thiophen-3-yl) quinolin-2-amine);  2zc9 (the complex of thrombin and inhibitor D-phenylalanyl-N-(3-chloro
benzyl)-L-prolinamide). The basic protein structures are present in green. The predicted important sites, which are highlighted in red, nearly overlap 
with the actual binding pockets (yellow) and cover the protein residues that interact with the ligands (light blue)
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pocket and an allosteric pocket, which are in complex 
with 4-(carbamoylamino)-1-(7-propoxynaphthalen-
1-yl)-1 H-pyrazole- 3-carboxamide (PDB ID: 4m13) and 
4-(carbamoylamino)-1-(naphthalen-1-yl)-1  H-pyra-
zole-3- carboxamide (PDB ID: 4m0y), respectively. Our 
predicted results highlight most of both pockets while 
most nonbinding sites are not highlighted (Additional 
file 1: Figure S7).

Furthermore, we analyze the predicted important sites 
across the PDBbind samples. We set the parameter Kr 
(Kr∈[0,100]) to tune  Kthreshold, and then calculate average 
precision and recall across the whole set according to Kr. 
�e PR curves presented in Additional file 1:   Figure S8 
indicate that our model performs better than the random 
guess approach in predicting binding sites. Combining 
the occlusion algorithm with our prediction is helpful for 
locating the binding pockets of known protein–ligand 
complexes and finding new and important binding 
regions of unknown complexes. It should be emphasized 
that our model uses only sequence information as input 
and that these results are achieved not only on the train-
ing dataset but also on the test dataset with unknown 
complexes.

Conclusions
In this paper, we propose an interpretable multi-task 
deep learning model to predict the protein–ligand inter-
actions. Previous studies either employed identical data-
sets or focused on a single task, hindering performance 
comparison across these models. Here, we introduce 
multiple task modules into the deep learning model, 
which can unify protein–ligand datasets with multiple 
labels. It should be noted that our model achieves com-
petitive performance with 3D structure based deep learn-
ing models with the same training set size. Although the 
3D complexes retain complete binding information, the 
amount of such data is excessively small, and an end-to-
end model cannot extract a sufficient number of common 
features. �e poor performance on unknown complexes 
may be a general problem for structure-based predic-
tive models (i.e., poor generalizability). Additionally, our 
model outperforms all 20 state-of-the-art scoring func-
tions on the CASF-2013 ‘scoring power’ benchmark.

Different databases may contain different data distri-
butions, which challenge the applicability of predictive 
models. �e proposed multi-task model unifies different 
tasks, allowing the model to use more data with various 
types of labels, thus performing fitting in a wider sample 
space. Although the multi-task model may result in small 
performance loss on individual datasets, especially dur-
ing regression tasks, the model applicability is increased 
by unifying multiple datasets effectively.

�e interpretability of deep learning model is a ques-
tion worth investigating. Although they are high perfor-
mance, deep learning models always suffer from “black 
box” issue and may yield good results because of mis-
leading reasons. Interestingly, our model, together with 
the proposed occlusion algorithm, can be employed to 
pinpoint the critical amino acids for protein-ligand bind-
ing. We again emphasize that our model finds these bind-
ing sites with a relatively high accuracy by using only 
sequence information. We are enthusiastic about the 
future applications of such sequence-based multi-task 
predictive models. More datasets and more tasks involv-
ing drug toxicity and sensitivity prediction would be ben-
eficial to improve the generalizability and applicability of 
our model.

Materials and methods
Data

We use ten datasets in this study, including six main data-
sets and four independent sets (Table 7). �e main data-
sets consist of four classification sets (DUD-E, Human, C. 

elegans and KIBA) and two regression sets (PDBbind and 
Davis). �e independent sets include two regression sets, 
CASF-2013 and Astex Diverse, and two classification set, 
MUV and BindingDB.

�e Directory of Useful Decoys Enhanced (DUD-E), a 
benchmark dataset for evaluating structure based virtual 
screening methods, is used for classification [26]. �e 
target clustering method is applied to avoid redundancy 
between the training and testing sets. Similar to Ragoza 
et  al., 3-fold cross validation is used to evaluate our 
model, and proteins are clustered using global sequence 
alignment to ensure that targets with greater than 80% 
sequence identity are included in the same fold during 
cross-validation. �e negative-to-positive ratio of is set 

Table 7 An overview of relevant datasets

  Asterisk (*) indicates structure dataset

Best values are higlhlighted in bold

Dataset Type # Proteins # Interactions # Positive to
negative ratio

DUD-E* Classification 102 91,220 1: 3

Human Classification 2488 13,476 1:3

 C. elegans Classification 2496 16,000 1:3

KIBA Classification 229 118,253 4.7:1

MUV* Classification 9 4770 1:16

BindingDB Classification 466 5508 1:1

PDBbind* Regression 13,196 13,196 –

Davis Regression 442 9125 –

CASF-2013* Regression 195 195 –

Astex Diverse* Regression 73 73 –
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to 3:1 to avoid an imbalance of data. A total of 91,220 
samples from DUD-E dataset are used in this study. 
Additionally, the maximum unbiased validation (MUV) 
dataset, which consists of 17 targets, each with 30 actives 
and 15,000 decoys, is used as an independent test set. In 
this study, 9 of 17 targets with structural information are 
used to make comparisons with structure-based meth-
ods. Similarly, the Human with 3369 positive and 10,107 
negative samples, and C. elegans datasets with 4,000 pos-
itive and 12,000 negative samples are used for classifica-
tion [16]. �e kinase inhibitor bioactivity (KIBA) dataset 
is used for classification [27]. Similar to a previous study 
[28], the KIBA threshold of 3.0 becomes 12.1 after trans-
formation and protein–ligand interactions with values 
bigger than 12.1 are regarded as positive samples. All 
118,253 samples from KIBA are only used for classifica-
tion in this study due to the different bioactivity values 
within the dataset. A dataset containing 2706 positive 
and 2802 negative samples, which was carefully curated 
from BindingDB database, is used as an independent test 
set [24].

�e PDBbind v.2016 database, which provides struc-
tural complexes with the corresponding binding affinity 
data  (Kd,  Ki), is used for regression [29]. To evaluate the 
generalizability of our model, the CASF-2013 bench-
mark with 195 complexes and the Astex Diverse set 
with 73 complexes (samples without binding affinity and 
those present in PDBbind (1YVF in the general set) are 
excluded) are used as additional independent test sets 
[21, 30]. Specifically, we split the PDBbind set exactly 
the same way as Pafnucy to facilitate a fair comparison. 
Briefly, the procedure is described as follows. (i) �e 
whole core set (290 complexes) is used as an external test 
set. (ii) A total of 1000 complexes (same as Pafnucy) from 
the refined set are used for validation. (iii) �e remain-
ing complexes from the refined and general sets are used 
for training. �us, 13,196 complexes from PDBbind are 
used for regression. Similarly, the kinase dataset Davis 
consisting of a total of 30,056 interactions with the cor-
responding binding affinity  (Kd) is used for regression 
[31]. It should be noted that most samples within Davis 
have binding values of 5, which would cause an imbal-
anced distribution for our total dataset. �us these sam-
ples are removed and a total of 9,125 samples of Davis 
are used. Finally, 271,816 interactions are used in this 
study, including 22,589 for regression and 249,227 for 
classification.

Model

Single‐task model

Our model contains two main parts, extracting features 
by convolutional layers to get protein/ligand embedding 

vectors and predicting their interaction by processing the 
concatenated vectors by fully connected layers (Fig. 1).

In more detail, we use one hot encoding to represent 
protein and ligand. �e number of unique tokens of pro-
tein amino acid and ligand SMILES is 20 and 64, respec-
tively. For each protein, its sequences are encoded and 
padded at the end to produce a 20 × 1200 matrix. Pro-
teins with residues shorter than 1200 are padded to that 
length, whereas residues longer than 1200 are cut off to 
ensure that all inputs have the same size. Similarly, for 
each ligand, its SMILES identifiers are encoded and pad-
ded to produce a 64 × 200 matrix. �en, the two input 
matrices are processed by three CNN blocks. More spe-
cifically, each block consists of two convolutional layers 
and one pooling layer, Additionally, the inception block 
[32] is used instead of the VGG block [33] in the last 
two convolution blocks. �e inception block consists 
of convolutional kernels with different sizes, including 
1 × 1, 3 × 3, 5 × 5 and a 3 × 3 max pooling layer. After 
feature extraction, the protein and ligand are embed-
ded to 1024 dimensional vectors and the two vectors are 
concatenated to feed into three dense layers, the units of 
which are 512, 64 and 1. A multi-dropout layer is added 
after each dense layer to reduce overfitting. Each multi-
dropout layer consists of five units generating random 
dropout values, and then the final dropout is calculated 
by the weighted mean of these values to achieve better 
performance. We employ the rectified linear unit (ReLU), 
sigmoid function and linear function as activation func-
tion for middle layers, classification output layer and 
regression output layer, respectively. At last, the model 
generates five different values in the last dense layer and 
combines them into the final output.

Multi‐task model

Based on the architecture of the single-task model, the 
multi-task model contains two main parts: shared lay-
ers for learning general hidden features from all data 
and task-specific layers for learning specific weights for 
different tasks [34]. Here, we have two different tasks: 
binary classification and regression. �e input, feature 
extraction and concatenation parts are similar to those 
of the single-task model. �e loss functions for differ-
ent tasks are defined as: binary cross-entropy for classi-
fication (Loss1) and the MSE with L2 regularization for 
regression (Loss2).

(1)

Loss1 =
1

N

N
∑

i=1

yilog
(

f (xi;w)
)

+ (1 − yi
)

log(1 − f (xi;w)
)
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where N, M and f(), and g() correspond to the samples 
and models for the classification and regression tasks; xi 
and yi correspond to the input and labels, respectively. 
||w|| is an L2 regularization term; and λ ≥ 0 is used to 
adjust the relationship between the empirical risk and 
regularization term of the regression task.

Training

Single model

We initialize the model weights using Glorot uniform 
initializer, which corrects the variance of uniform, keep-
ing the variance of output and input from each layer 
the same [35]. We use the Adam optimizer to train our 
model, and set the initial learning rate and batch size to 
 10− 4 and 128, respectively. Besides, other default param-
eters are set similar to He et  al. [36]. �en, we monitor 
the training process by early stopping and select the final 
model with the minimum loss on the validation set.

Multi‐task model

�e input for a multi-task model is usually one sample 
with several labels corresponding to different supervised 
information. Different from the common situation, here 
we have samples with different single label (i.e., one sam-
ple one label), for classification or regression. �us we 
design an alternate training method.

At beginning, the training sets containing classification 
and regression samples are randomly split into multiple 
batches. �en, each batch of the regression task and the 
classification task are alternately trained. In other words, 
alternate training is applied during which the back prop-
agation algorithm selects different branches to update 
according to different sources of data. In each training 
batch of regression/classification task, the shared weights 
and the specific weights are updated. Similar to the train-
ing process of single-task model, we select the final mod-
els based on the minimum values on their corresponding 
validation sets.

Evaluation

We use three measures including root mean square error 
(RMSE), standard deviation (SD) and Pearson’s correla-
tion coefficient (R) to evaluate the performance of our 
model on the regression task. RMSE and Pearson’s cor-
relation coefficient R are used to calculate the differences 
and the linear correlation, respectively, between the pre-
dicted and real values:

(2)Loss2 =
1

M

M∑

i=1

(g(xi;w) − valuei)
2
+ ��w�2

where N is the size of a dataset, yi is the real value (exper-
imentally measured binding affinity) whereas ŷi is the 
predicted value. 

−

ŷ is the average of real values whereas 
−

y 
is the average of the predicted value.

Various metrics including precision, recall, F1 score, 
specificity, AUC and MCC (Matthews correlation coeffi-
cient), are used to evaluate the classification performance. 
�e formulas are listed below:

where TP is the number of true positives, TN is the num-
ber of true negatives, FP is the number of false positives, 
FN is the number of false negatives, P indicates positive, 
and N indicates negative.

Occlusion

We present a nonparametric algorithm called “occlusion”, 
which was derived from the field of computer vision [37] 
and was simply introduced at our conference presenta-
tion [38], to explore which parts of the input sequences are 
critical to the task. Compared with the real binding pockets 
in proteins, we can measure the accuracy of this method. 
Basically, for a sample consisting of a protein input matrix 
and a ligand input matrix, we mask the protein matrix 
along sequence while keeping ligand matrix unchanged. 

(3)RMSE =

√

√

√

√

1

N

N
∑

i=1

(yi − ŷi)
2

(4)
R =

∑N
i=1

(yi−
−
y)(ŷi−

−

ŷ)
√

∑N
i=1

(yi−
−
y)

2

√

1

N

∑N
i=1

(ŷi−
−

ŷ)

2

(5)SD =

√

√

√

√

1

N − 1

N
∑

i=1

[

yi − (aŷi + b)2
]

(6)Accuracy =
TP + TN

P + N

(7)Precision =
TP

TP + FP

(8)Recall =
TP

TP + FN

(9)Specificity =
TN

FP + TN

(10)

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )
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�en, different masked regions of protein will lead to dif-
ferent output values and the important of each region can 
be quantified by comparing to the original predicted value.

Specifically speaking, subsequence mask is performed 
along the protein sequence direction, generating the 
corresponding occlusion result. �e sliding windows 
size and the stride is set to 15 and 1, respectively, after 
numerous experiments. �en, the importance of the 
masked subsequence can be calculated by comparing 
the occlusion result and the original predicted value. An 
evaluation measure K is defined below to quantify the 
importance of masked regions:

where vi, pi and pij represent the real binding value, the 
predicted value of complete sample and the predicted 
value after occlusion, respectively. ε is a small positive 
real number to avoid the denominator equal to 0. After 
integrating all K values of one sample, the importance of 
each part of protein can be visualized.
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