
TRANSACTIONS OF THE 
AMERICAN l\IATHEl\IATICAL SOCIETY 
\'oluuw :35G, Numb0r 11, Pages 4323-·4342 

s 0002-9947(04)03619-0 

Article elPctronically published on May 28, 2004 

MULTI-POINT TAYLOR EXPANSIONS 

OF ANALYTIC FUNCTIONS 

JOSE L. LOPEZ AND NICO M. TEMME 

ABSTRACT. Taylor expansions of analytic functions are considered with re

spect to several points, allowing confluence of any of them. Cauchy-type for

mula~ are given for coefficients and remainders in the expansions, and the 

regions of convergence are indicated. It is explained how these expansions can 

be used in deriving uniform asymptotic expansions of integrals. The method is 

also used for obtaining Laurent expansions in several points as well as Taylor

Laurent expansions. 

1. INTRODUCTION 

In deriving uniform asymptotic expansions of a certain class of integrals one 

encounters the problem of expanding a function that is analytic in some domain 

n of the complex plaue, in several points. The first mention of the use of such 

expairnions in asymptotics is given in [l], where Airy-type expansions are derived 

for integrals having two nearby (or coalescing) saddle points. This reference does 

not give further details about two-point Taylor expansions, because the coefficients 

in the Airy-type asymptotic expansion are derived in a different way. Other men

tions of the use of such expansions in asymptotics are given in [7] and [5]. In [7], 

two-point Taylor expansions are u::;ed with applications to Airy-type expansions of 

parabolic cylinder functions. In [5] we used two-point Taylor expansions to derive 

convergent expansions of Charlier, Laguerre and Jacobi polynomials in terms of 

Gamma. Hermite and Cheby8hev polynomials respectively. 

To demonstrate an application in asymptotics of multi-Taylor expansions we 

may consider contour integrals of the form 

( 1.1) /(>.;a.) = fc g(z)e->..f(z,o.) dz, 

where a is a vector of parameters, a = (a 1 , ... , n 2 ), and the phase function f ( z, a) 

has m saddle points .:: 1 , z2 , ... , Zm. The asymptotic behaviour of these integrals for 

large values of ).. is determined by the saddle-point structure of the phase function 

[9], Chapter 7, Section 6. One method for obtaining an asymptotic expansion of 
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this integral for large values of,\ is based on expanding g(z) at the saddle points 

of the phase function, 

.'.)() 

(1.2) g(z) = .L)ao + a1z + · · · + am-1Zm-l](z - zi)11 (z - z2) 11 • • • (z - Zm)" 

n=O 

and substitution of this expansion into (1.1). When interchanging summation and 

integration, the result is a formal expansion in m series in terms of functions related 

with the functions 

( 1.3) 

F 11 .d.A; a)= i zk(z-z1r(z-z2)n · · · (z-zm)"e->.f(z.a) dz, k = 1, 2, ... , m-1. 

In [7], these functions Fn.d-\ a) are the Airy func:tiom;, whereas in [5] these func

tions are the Gamma function, or the Hermite or Chebyshev polynomiah;. 

In a future paper we will use multi-point Taylor expansions in the asymptotic 

analysis of integrals arising in diffraction theory, such &'l the Bessel function integral 

(see [3] and [4]) 

(1.4) J(:r, y) = l'XJ tJo(yt)ei(t"+xt2) dt, 

which is related to the Pearcey function 

(1.5) 

The Taylor-Laurent expansions will be used to study integrals with two saddle 

points and a pole of the integrand. Other applications in asymptotics include the 

study of Hermite-Pade approximations to the exponential function; in [2] integrals 

are considered with three saddle points. 

In a recent paper [6] we have introduced the theory of two-point Taylor ex

pansions, two-point Laurent expansions and two-point Taylor-Laurent expansions. 

The purpose of the present paper is to generalize that theory from 2 to ·m. points, 

m ~ 2. We give details on the region of convergence and on representations in terms 

of Cauchy-type integrals of the coefficients and the remainders of the expansions. 

Earlier information on this type of expansions is given in [8], Chapters 3 and 8. 

The theory of several-point Taylor expansions wa."l already formulated in Chapter 

3 of Walsh's book, although in a different setting. Chapter 8 of [8] presents also a 

theory of rational approximation of analytic functions, but is diffrwnt from the the

ory of multi-point Laurent and Taylor-Laurent expansions presented here. Whereas 

the multi-point polynomial approximation of Chapter 3 may be rdornrnlated as a 

multi-point Taylor approximation, the rational approximation of Chapter 8 can not 

be written as a multi-point Laurent or Taylor-Laurent approximation. For more 

details, see Section 5. 

2. MULTI-POINT TAYLOR EXPANSIONS 

We consider the Taylor expansion of an analytic function f(z) in several points 

and give information on the coefficients and the remainder in the expansion. In 

what follows empty sums and derivatives of negative order must be understood as 

zero and empty products as one. We will deal with the following :;et of points. 
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Definition 2.1. We define the set 

(2.1) S={z1 "1 "1·"·) .,.) - ·- - - } - ',._. ' ... '.., '.....,,_, ............ , .... -2· ... ' -p· "'JI' ... ' ..:..p 

of m. points consisting of p different points z 1 • z2 , . ..• zp ( z; i Zj if 'i i j), each z.1 

repeated lllJ times: m1 + m 2 + · · · + mp = 111. 

For clarity in the exposition. we first introduce the nmlti-point Taylor expansion 
for rn different points z i, z2 • ... , Zm (m. = p. mJ = 1) in Theorem 2.:3. In Tlwon·rn 
2.5 we assume that tlw points z1 , z2 , ...• z,,, may coalesce. \Ye will !l('('d the 

following elementary lemma. 

Lemma 2.2. Given z, w E IC, take m di.ffer·ent points ::: 1 . :::2 ..... z,,, in IC and de.fine 

(2. '') H (·, .,.. ,, .,. ) = TIZ~1(w - .:::1,.) -TIZ~1(.::: - z1,) 
L. m u .. , 4 ' ""'1 , · · · , N1Ti - • 

u· - z 

Then 

(2.3) 
Ill nm ( . TI"' ( l . ' -/· .,. .,. - ~ k=l.k#j U.' - z!.-) /,·=l.kfj Z - Zk 

H111(lL, .... 1---L1···1 ..... l/2)- L....t nnl ..... _ - .... 

J=l k= u,,)-.1 -d 

Proof. The mmwrator of H 111 (w, z: .::: 1 .... , .:::m) is a polynomial of degree lll in tlw 

variable 11• that vanishes at w = .::: . Therefore. H 111 ( w, :: : 1 •... , ::;,,, ) is n polynurnial 
of degree m - l in the variable w. Let Pm(w, z; .::: 1 , ... , ::;,,,) denote the function 
on the right-hand side of (2.3), which is also a polynomial of degre{' m - 1 in the 

variable w. Moreover, 

NI 

(2.4) H ( ' -·.,. c• ) -
'lil "-'8 ~ - ' -1; ... ; '-'fll - II (z-z!.:)=Pm(::;s,::;:zt·····::; 11 ,) 

for .s = 1, 2, ... , 111. Hm1ec, 

( 2.G) Hm(w, ::;; z1, ... , z,,,) = Pm(w, z; .:1 .... , 2m)· 

0 

Theorem 2.3. Let f (::;) be an analytfr: fllnction on an open set n c C and Sc 0 
with S consisting of rn. different points (m = p). Then. f(::;) has lht: multi-point 

Taylor e:i:pm1sim 1. 

N--1 "' 

(2.6) f(z) = L q11 ,m(z) II (z - z!.:)" + TN(z), 

n=O k=l 

where q,,, 111 ( z) is the ]!Ol:i;nomial of degrer m - l, 

~ nz~l.k;"J(.:: - .:::!,-) 
rj,,_,,,(.:::)=:L....,011.Jnfll (-·-' i· 

J=l k=l.1.-#J -; _,. 

(2.7) 

and the r·oefjicients an,J of this polynomial are gh•en hy the Cauchy inteyrnl 

1 1· f(w)dU' (2.8) - ·--
u,,,j = 2rri C (w - Zj) nz~l (w - ::;!.'.)". 

The remainder tF:rrn ,. N ( z) is giurn by the Cau.ch:i; integral 

(2.9) 
i ;· f(w) dw . [II'n (-

r·N(z) = -. .,,, !\' -
2rr1 c (w - z) [Ilk=l (w - :::,_)]. k=l 
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(a) (b) 

FIGURE 1. The case m = 3. (a) Contour C in the integrals (2.8) 

and (2.9). (b) For z E Om, we can take a contour C in rl that 

contains Om inside ctnd, therefore, TI~'.~1 lz - 2kl < n~:l lw - Zkl 

Vw EC 

/' = l'a T =Tb 

FIGURE 2. The shape of the "lemniscate <lomain'' Om for m = 3, 

which depends on the size of the parameter r defined in (2.10). In 

these pictures [22 - z:3[ < [z1 - z:il, [z1 - 22[ and l'a >Tb> r, .. 

The mntour of integration C is a s·irnple rlosed loop which encircles the points 

z1,z2, ... ,Zm (for 0 11 ,j) and 2.z1,z2, ... ,z,,, (for r·N(z)) ·in the couuterclockwise 

direction and is contained inn (see Figure l(a)). 

The e:cpansion (2.6) ·is conver:qent for· z E 0,,,., where: 

rn 

{
Ill } 

r = InfwE!C\ll rr. [w - ZA:[ . 
k=l 

(2.10) Om = {z En, IT [z - ZA:[ < 1·}, 
k=\ 

That ·is, (2.6) is convrrgent for z inside the lrrnn·iscatc n~'~1 I z - Zk I = ,. (8PC Fig·ure 

2; if m = l this domain is a disk; if m = 2 this domain is bounded b~t/ a Cassini 

oval). In paTtic·ular, if f ( z) is an entire function (rl = q, then the npansion (2.6) 

converges \I z E C 

Prnof. B:-· Cauchy's theorem. 

(2.11) f(z) = ~ ;· J(w) d·w, 
2m c w - z 

wht•re C is tlw contour defined above (Figure 1 (a)). We write 

lV - Z 

Hm('W, z; 21, ... , Zm) 1 

TIZ~ 1 (w - zA:) 1 - u' 
(2.12) 

where Hm(w. z:z1, ... ,zm) is given in (2.2) and 
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Now we use Lemma 2.2 and introduce the right-hand side of (2.3) and the expansion 

(2.14) 
1 N-1 N 

-- = ""\""" ·u n + _·_u _ 
1-u L_, l-u 

n=O 

in (2.12) and this in (2.11). After straightforward calculations we obtain formulas 

(2.6)--(2.9). 

For any z E Om, we can take a contour C in f2 such that 

m m 

(2.15) 

k=l k=l 

(see Figure l(b)). On this contour lf(w)I is bounded by some constant C: lf(w)I::; 
C. Introducing these two bounds in (2.9) we sec that limN-oo TJV(z) = 0 and the 

proof follows. D 

Vile need the following lemma to consider the case of coalescing points in the 

set S. 

Lemma 2.4. Given z, w E C, take m different points z1, z2, ... , Zm in <C. all dif

ferent from w too. Let those m points coalesce at Zm, .say. Then 

j" ~ rr~:l,k#j(z - Zk) _ ~l (z - Zm)j 

1m L_, c ) IT"' c ) - L_, ( ) ·+1. 
Z1,z2, .. .,Zm-1--+Zm j=l W - Zj k=l,k#j Zj - Zk j=O W - Zm J 

(2.16) 

Proof. We first note that the identity 

n j-1 n 

(2.17) L II(zn - zz) II (z1 - zz) = 0 

j=l l=l l=j+l 

holds for any set of points z1 , z2 , ... , Zn, n > l. It may be checked in the following 

way: we take the first two terms of the sum, which gives 

(2.18) 

Next we add to this the third term of the sum, which gives 

(2.19) 

We continue this process until we add then - 1-th term of the sum, obtaining 

(2.20) 

But this is just the last term of the sum with opposite sign. 

Using the above identity we have 

IT (zs - ::::1) [:t IT (zs - zz) IT (zk - zt)] IT (zk - z1) = 0 

l=l j=k l=k l=j+l l=s+l 

(2.21) 

for any .s = 1,2,3, ... , m and any k = 1, 2,3, ... , m with k-=/=- s. Then 

s j-1 m m j-1 m 

(2.22) LIT (zs - z1) II (zk - z1) = L II (zs - zt) IJ (zk - zt) = 0 

j=k l=l l=j+l j=l l=l l=j+l 

for any s, k = 1,2,3, ... ,m with k-=/=- s. 
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Now, for every s = 1, 2, 3, ... , m, we define the following polynomials of degree 

m - 1 in the variable z: 

m m J-1 m 

(2.23) R.(z) = II (z - zi). Ss(z) = L II (z - z1) II (zs - zi). 

l=l,l#s j=l l=l l=j+l 

The zeros of R8 (::;) are Zk fork== 1, 2, 3, ... , rn, k i- s and from (2.22), Ss(zk) = 0 

for k = 1. 2. 3, .... m, k :j:. s. Moreover, the leading coefficient of Rs ( z) and that of 

S.(z) coincide. Therefore, Rs(z) = S8 (z) for s = 1, 2, 3, ... , rn. 

Finally, define the following polynomials of degree m - 1 in the variable w: 

P( ~) == ~ IT;;'=Lkh(z - Zk) rr;=l.k#j(w - zk) 
(2.24) w, ,_ _ L Ilm. ( ) , 

j=l k=l.ktj Zj - Zk 

m j-1 m 

(2.25) Q(w. z) = L II (z - zk) II (w - Zk)· 

j=lk=l k=j+l 

For every s = 1, 2. 3, .... m we have P(z8 , z) = R.(z) and Q(z., z) = S 8 (z). But 

R.(z) = SAz) and therefore P(w, z) = Q(w, z). Then, 

m nm ( ) ~ k=l,kh z - ZA: _ P(w, z) 
L TI1n - m 
j=l (w - Zj) k=l,k#j(Zj - Zk) Ilk=l (w - Zk) 

Q ( ) II/. Ilj - 1 ( ) 
= m w, Z = L k=l Z - Zk . 

ITk=I (w - zk) J=l Ilf= 1 (w - zk) 

(2.26) 

Taking the limits z1 , z2 , ... , Zm-I -> Zm. on the left- and right-hand sides of these 

equalities, we obtain the desired result. D 

Theorem 2.5. Let f ( z) be an analytic function on an open set n c <C and S c n. 
Then, f(z) has the multi-point Taylor expansion 

N-1 p 

(2.27) f(z) = L qn,m(z) II (z - zk)nmi. + rN(z), 

n=O k=l 

where q71 ,m(z) is the polynomial of degree m - 1, 

P TIP ( ~ )mk m1-l 
_ ~ k=l,ktj z- "I.' ~ I 

qn,m(z) = L ITP . ( . _ ~ )"'k L an,j.t(z - Zj) , 
j=l k=l.ktj ZJ ~k 1=0 

(2.28) 

and the coefficients an.j,l of this polynomial are given by the Cauchy integral 

(2.29) C!n · / = _1_ 1· j(w) dw . 
'1' 2rri. c (w - ZJ)l+I f1f= 1 (w - zk)""'" 

The remainder terrn rN(z) is given by the Cauchy integral 

(2.30) 1 ;· f(w) dw [ r ] N 
rN(z) = -. N IT (z - Zk)mk 

2rr·t c (w - z) [Ilf=1 ( w - Zk )"1k] k=l 

The contoitr of 'integration C is a simple closed loop which encircles the points 

z1,z2, ... ,zp (for an,J,l) and z,z1,z2, ... ,zp (for rN(z)) in the c01mterclockwise 

direction and is contained inn (see Figure l{a)). 

----
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The e:cpansion (2.27) is conver:qent for z E Op: 

/.! 

(2.31) Op= {z En. IT lz - z1.:lmk < r}, 
k=l 

that is. inside the lcmniscatc fif= 1 /z-zklm' = r. In particu.lar. if f(z) is an entire 
fllnction (n = C). then tlu e:rpansion (2.27) conuc1:qes Vz EC. 

Proof If all the poiuts iu S arc different, we have from (2.7) and (2.8) 

(2.32) 

This last sum ma,v be also decomposed iu the form 

( 2 .:5:3) 

Now let the first m 1 points coalesce to z 1 , the second 1112 points coalesce to ::2 , and 

so on, and apply Lemma 2.4 to every one of tlic p sums above to obtain (2.27). 

(2.28) and (2.29). Eq1mtion (2.:m) follows from (2.9). The proof of the convergence 

of (2.27) in the region OJ! is a straightfonvard gcnf'ralizatiou of the cmTcsponding 

proof in Theorem 2.:3. 0 

2.1. Explicit forms of the coefficients. Fornmla (2.2D) is not appropriate for 

111111wrical cmuputatious. A more practical fornrnla to eornput(• tlw coefficients of 

the above nmlti-point Taylor expansion is givPn in the following proposition. First 

we have a definition: 

Definition 2.6. Let f(w) he analytic at w; then for n = ll, 1, 2, ... the differential 

operator D.;;J(v 1) is clcfiuecl by 

(2.34) 
1 er'' 

D;;J(w) = - 1 -1-. f(w). 
ii. r U' 11 

Proposition 2. 7. The r·oefjicientii an,JJ, for n = l, 2, 3, .... j = 1, 2, ... , p. I = 

0, 1, .... 1111 - 1 in the e:rpansion (2.27) arc also given by the fonn.ula: 

(2.35) 

. ·- D""'.1+1 [ f(w) l I 
0.11 . .1.1 - Ii' TIµ .(w - Z .)'"ns 

s=l,."ii:J ,"! U'=ZJ 

+ t D;;,mrl [(w -- :; )l+l IT!~w) .(w - Zs)""'· l I 
k:=l,i,fj } o-1.~fl; w=z,. 

Proof. We deform tlw coutour of integration C in equation ( 2. 29) to any coutom 

of the form C1 u C2 u · · · U Cp. also contained in n, where C1c, /,: = 1, 2, .... p, is a 

simple closed loop which encircles the point z,, in the countereloc:kwiHe direction 
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(a) (b) (c) 

FIGURE 3. Integration contours Ck for p = 3 and q = 1. 

(a) The function rr~=l,s#(w - Zs)-nm, J(w) is analytic inside ck 

fork= 1, 2, ... , p. 

(b) The functions 

ITP (w _ .,. )-nmsgk(w) and [JP (w _ z )ln+l)msgk(w) 
s=l,s,.Ok ~s s=l,s#k s 

are analytic inside ck fork= 1, 2, ... ,p. 

( c) The functions 

rr~=l,s#(w - Zs)-nm,gk(w), 

rr;=l,s#(w - Zs)-nm, IT~=q+l,s#(w - Zs)nmsgk(w) and 

ITq (w - z )-(n+l)m. np (w - z )<n+l)m.gk(w) 
s=l,s,.Ok s s=q+l,s#k s 

are analytic inside ck for k = 1, 2, ... 'p. 

and does not contain any other point Zj, j = 1, 2, ... , p, j =/= k inside (see Figure 3 

(a)). Then, 

1 P 1 f(w) dw 
an·z=-

,J, 2ni L c (w - z·)l+l ITP (w - z )nm, (w - zk)nmk 
k=l,k,.Oj k J s=l,s;6k s 

1 1 f(w) dw 
+ 2ni c ITP .(w - z )nm, (w - z·)nmJ+l+l' 

j s=l,B#J S J 

(2.36) 

from which equation (2.35) follows. 0 

2.2. Multi-point Taylor polynomials. In Theorem 2.3 we have assumed that 

the function f(z) is analytic in n. If f(z) is not analytic in n but has a finite 

number of derivatives at z1, z2, ... , zp, we can still define the multi-point Taylor 

polynomial of the function J(z) at z1 , z2 , ... , Zp in the following way: 

Definition 2.8. Let z be a real or complex variable. If f(z) is Nmk - 1 times 

differentiable at z1 , z2 , ... , zp, we define the multi-point Taylor polynomial of degree 

mN - 1 of f(z) at the points of Sas 

N-1 p 

(2.37) PN(z) = L qn,m(z) IT (z - zktmk, 

n=O k=l 

where qn,m(z) is the polynomial of degree m - 1 

P ITP ( )mk mJ-1 

qn m(z) = L IT;=l,k#j z - Zk) L an,j,t(z - Zj)l 
' j=l k=l,k#j(Zj - Zk mk l=O 

(2.38) 

and the coefficients an,j,l are given in (2.35). 
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Proposition 2.9. In the conditions of the above definition, define the remainder 

of the appro:z:imation of f(z) by PN(z) at the points of S as 

(2.39) rN(z) = f(z) - PN(z). 

Then. (1) rN(z) = o(z - zk)Nmk-l as z--+ Zk, k = L 2, ... ,p. {ii) If f(z) is Nm,, 

time.~ differentiable at zk for some k:, then rN(z) = O(z - z1-:)Nmk as z--+ Zk·· 

Proo f. The proof is trivial if f ( z) is analytic at every z 1 , z2 , ...• z P by using ( 2.30). 

In any case, for a real or complex variable, the proof follows by using l 'Hopital's 

rule and (2.35). D 

Remark 2.10. Observe that the degree mN - 1 Taylor polynomial of f(z) at the 

points of S is Hermite 's interpolation polynomial of f ( z) at z1 • z2 •...• Zp with data 

j'(" ) j"'(~ ) f(Nm,-1)(,, ) k· - 1 ") p 
-k ~ """k , ... ' -k ' - ~ _, ... ' . 

3. J\1ULTJ-POINT LAURENT EXPANSIONS 

In the standard theory of Taylor and Laurent expansions much analogy exists 

between the two types of expansions. For multi-point expansions, we have a similar 

resemblance in the representations of coefficients and remainders. 

Theorem 3.1. Let 0 0 and n be a closed and an open set, respectively, of the 

complex plane, and n0 c n c <C. Let f(z) be an analytic function on n \ n0 and 

z1, z2, ... , Zp E Ou (that is, S E nu). Then, for any z E n \no, f(z) has the 

multi-point Laurent e:r;pansion 

N-1 p N-1 µ 

(3.1) f(z) = L qn,,,,(z) rr (z-::;k)'""' + L t,,,,,,(z) rr (:::-zk)-(n+l)mk +rN(z), 

n=ll k=l n=O k=l 

where q.,,,,,,(z) i8 the polynomial of degree m - 1, 

(3.2) 

and the coefficicnt.'i an,J,l of this polynomial arc given by the Cauchy integral 

( 3.3) 

Also, tn,m (::) is the polynomial of degree m - 1, 

p TIP (' .,, )m' rn,;-1 
~ - ~ k=l,ki'J .. - '-'k ~ l 

tn,m(,_,) = L TIP ,, . _.,, m,. L bn,j,L(Z - Zj) , 
j=l k=l,h/j (-1 -iJ l=O 

(3.4) 

where the coefficients b,,,J,l of this polynomial are gfoen by the Cauchy integral 

(3.5) - 1 1· rrJJ mk(n+l) f(w) dw 
bn.j,l = -2 . (w - zk) ( )l+l · 

'Tr'l r2 k=l W - Zj 
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(a) (b) 

FIGURE 4. The case p = 3. (a) Contours r1 and r2 in the integrals 
(3.3), (3.5) and (3.6). (b) For z E Ap. we can take a contour f 2 in 
S1 located between 0 0 and Ap and a contour r 1 in ~l snclt that Ap is 
inside this contour. Therefore, ITf.= 1 [z-z1.:["'k < f1f= 1 [w- zk\ 111

k 

\:/ w E r1 and ITf=1 [w - z1.:["'k < ITf=1 [z - z1.,\'"k V w E I'2. 

The remainder term f"N ( z) is given by the Cauchy integrals 

. ( - 1 lr' f(w) dw . ITP (' -. )N11lk· IN z) = - p N - - -k ??Ti (w - z) IT (w - zk) mk - · r, · k=L k=l 
(3.6) 

1 1· TIP ( )N"'k .f(w) dw - - W - Zk -------
'>7Ti . 11' - - TIP (' - 'k)Nmk·. - r2 k=l • "' k=l - - · 

l 

Jn these fritegrals, the conto·ur·s of integration r1 and r2 are simple closed loops 
contained in Sl \ flo which encircle the poi.nt8 Z1, z2, ... , Zp in fh(c CO/l'l/ferclockwise 
direction. Moreover, .: is not inside r 2• whereas r1 encirdes 1'2 and the point .:: 
(see F'igu.re 4(a)). 

The e:rpan8ion ( 3.1) is convPryent for z inside the "lemniscate annulus" (see 
Fig'Urc 5) 

1' 

(3.7) A.,,o::::{zEU\rlo, r2 < fliz-zk["'k <r1}, 
k=l 

where 

(3.8) , . - ~ , -,, Tri h· 
{ 

p } 
'2 = SupwEllu !I [w - ~1.·I · 

Prnof. By Cauchy's theorem, 

(3.9) .f(z) = ~.1 .f('w)dw _ ~ / .f(w) dw 
2w1 r, w - z 2m, ./r0 w - ;:; 

where r 1 and 1'2 are the contours defined above. First we assume that the 111 poiuU; 
of the sd 8 are all distinct and later we will let the first m 1 points coalesce to z1 1 

the second m 2 points coalesce to z2 and so on. We substitute (2.12) (2.1:3) into the 
first integral above and 

(3.lD) 
1 Hm(w,z;z1, ... ,zm) 1 

rrz~ 1 ( z - zk) 1 - tl , w-z 

where H,,,(w.z;z1 1 ••• ,zm) is defined in (2.2), into the second integral. Now we 
introduce the expansion (2.14) of the factor (1 - 11.)- 1 in both intr~grnls in (3.9). 
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(r~' ,.~) 

FIG URE 5. Shape of the "lemni::;cate annulus" Aµ for p = 3. which 

depends 011 the relative si~t' of the parameters 1·1 and r 2 defiued iu 

(3.8). The cliffoncnt forms arc labekd by (r 1 , r 2 ) with r 1 > r2. In 

these pictures lz2 - z3j < lz1 - .:d. lz1 - z2I and r~ > r3 > r2. 

U1:1ing (2.3) and after straightforward calculations we obtain 

ll.f - 1 'fll i\. - 1 1H 

(:3.11) f(z) = L q,,_,,,(z) IT(.:: - z1,.)" + L tn.m(z) IT (z - zk)-n-l + I'N(z). 

n=O lc=l n=ll k=1 

where CJn.111 (::;) is give11 by fornmla.s (2.7) and (2.8) replacing the contour c by r1. 
Also, 

(:~.12) 

I . = _1_ /' nm (· ,_' )n+l f(.w) di.l' 
!n.J - ' . IL '-k • 

2rr1 r· u•-::; 
• 2 k= l J 

a)l(l 

1 ;· f(1r) du• rr"' N 
1·v(z) = - 111 , (z - .:k) 

· 27ri r (w--·)f1 (u•-z•.) 1\ 

(3.13) 
l - k=l h k=l 

__ 1_ /· rr"' u• _ 'J. )-"'· f(u·) du 1 
-. __ I---. 

')rri ( - · w - z Tim (z - z,,)l'·: · 
- . 12 /,·=] k=l h 

Now we write 

. m "' flm (' ' ) 
. ' - 1 / rr . ' -- n+l .. ' '~ k=l.ki.1 - - '-k 

(3.14) tn,m(-)--, -. (u "-k) f(u)cluL.,( •-•·)f1"' (•·-') 
2Jr1. r, . u -J 1.·=11 .. -"1· -1 _,,. 

- k=l J=l · r 

aud rep('at the steps following (2.32) in the proof of Theorem 2.S for q,,_,,,(z) a)l(l 

fn,m(::; ). 
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For any z E Ap we can take simple closed loops r 1 and I'2 in n \ no such that 

(see Figure.Jo ( b)) 

p p 

( 3.15) IT lz - z1.Tn,. < IT lw - zkl"'' \:/ w E I'1 

k=l k=l 

and 

p p 

(3.16) IT lz - Zklmk > IT lw - zklmk 

k=l k=I 

On these contours lf(w)I is bounded by some constant C: lf(w)I :::; C. Introducing 

these bounds in (3.6) we see that limN-.oo rN(z) = 0 and the proof follows. D 

If the only siugularities of .f ( Z) inside no are just poles at Z1, Z2, ... , z1,, then 

alternative formulas of (3.3) and (~{.5) for computing the coefficieuts of the above 

multi-point Laurent expansion arc given in the following proposition. 

Proposition 3.2. Suppose that gk(z)::::: (z - zk)Pk .f(z), k = 1, 2, ... ,fl, arc ana

lytic fnnctions in n for certain P1, P2, ... , Pk E N. Then. for n = 0, 1, 2, . . . . the 

coefficients an.J.l and bn,J.l ·in expansion (3.1) are also given by the fornmlas: 

~ Dnrnk+Pk-l [ gk(w) l 
On.j,l = ~ w (w - z)l+I TIP . (w - z.)nm., 

k=l.k;ij · J s=l,s;ik s 

( 3.17) 

and 

(3.18) 

bri,j.l = 

+ vnm,+r1 +1 [ YJ(w) l I 
w TIP .(w _~.)nm, 

s=LsfJ ~s w=z1 

p 

I: 
k=l.k;ij 

DPk-(n+l)mk-l 
w 

'W=Zf...: 

w=zk 

Proof. We deform both contourn r 1 and r 2 of equations (3.3) and ( ~l.5), respectively, 

to any contour of the form C 1 UC2 U · · · UCp contained in n, where Cki k = 1, 2, ... , p, 

is a simple closed loop which encircles the point zk in the countercloc:kwise direction 

and does not contain the point ZJ, j = 1,2, ... ,p, j f. k, inside (Hee Figure 3(b)). 
Then, 

(:3.19) 
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and 

1 P l IY -'-k(w - z )Cn+l)m. 9k(w)dw b . _ _ "\""' s=l,sr s 

n,J,l - 2 · ~ ( )l+l ( )P (n+l)m 
7ri k=l,k;"j Ck W - Zj W - Zk k- k 

(3.20) 

_1_ r ITP ( - .,, )(n+l)m. gj(w)dw 
+ 27ri Jc . w Ns (w - z·)PJ-(n+l)m1+l+l. 

J s=l,S#J ) 

From this, equations (3.17) and (3.18) follow. D 

Remark 3.3. Let z be a real or complex variable. Suppose 9k(z) = (z - zk)Pk f (z) is 

Pk - 1 times differentiable at every Zk in S for some Pk EN, k = 1, 2, ... ,p. Define 

Af p 

(3.21) g(z) = f(z) - L tn,m(z) IT (z - Zk)-(n+l)mk' 

n=O k=l 

where M = LMax{(p1 - l)/m1, (p2 - l)/m2, ... , (pp - l)/mp}j and tn.m(z) is the 

polynomial defined in (3.4) and (3.18). Then, the thesis of Proposition 2.9 holds 

for f(z) replaced by g(z). Moreover, if rn=l(z - Zk)Pk f(z) is an analytic function 

in f!, then the thesis of Theorem 2.5 applies to g(z). 

4. MULTI-POINT TAYLOR-LAURENT EXPANSIONS 

For multi-point expansions we have the possibility (that we do not have in the 

standard theory) of expanding in Taylor series at some points and in Laurent series 

at other points. 

Theorem 4.1. Let 0 0 and 0 be closed and open sets, respectively, of the complex 

plane, and Oo c [! c c. Let f ( z) be an analytic function on n \ no' Z1, z2' ... ) Zq E 

O\Slo and Zq+l, Zq+2• ... , Zp E f!o (q points are ·in Sl\Oo and p-q points are in Oo). 

Writes=: m1 + m2 + · · · + mq. Then, for z E S1 \ Oo, f(z) has the Taylor-Laurent 

expansion 

f( ) ~ ( ) rrp ( )nmk ~l t(l) ( ) Tik=l (z - Zk)nmk 
Z = ~ Qn,m Z Z - Zk + ~ n,m Z TIP ( _ )nmk 

n=O k=l n=O k=q+l Z Zk 

N-1 Tiq (z _ Z )(n+I)mk 

+ L t~~~(z)TI/=1 (" - : )Cn+1)mk + rN(z), 
n=O k=q+ 1 - -k 

( 4.1) 

where qn,m(z) is the polynomial of degree m - 1, 

(4.2) 

p TIP ( )mk mj-1 - L k=l,k#j z - Zk "\""' l 
qn,m(z) = TIP ( ) _ ~ an,j,l(z - Zj), 

. z· - Zk mk 

j=l k=l,koj.J J l=O 

and the coefficients an,j,l of this polynom'ial are given by the Cauchy integral 

1 r f(w) dw 

( 4.3) an,j,l = 27ri Jr1 (w - Zj )l+l TI~=l (w - Zk )nmk . 

Also, t~~~(z) and t~~:n(z) are the following polynomials of degrees s-l and m-s-1, 

respectively: 

(1) _ ~ Tik=l,k;"j(z - Zk)mk m~l 1 
tn,m(z) = - ~ Tiq ( )rn ~ bn,j,l(z - Zj), 

j=l k=l,k;"j Zj - Zk k l=O 
( 4.4) 
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where the coefficients b,,,1,1 of this polynomial are given by the Cauchy integral 

1 ;· Il~=q+ 1 (w-zk)nm,. f(w)dw 

bn.j.l = ?'Tri Ilq (w - ;:;k)nmk (w - z ·)l+l' 
- G k=l 1 

(4.5) 

and 

( 4.6) 
p Ilp ( )mk m1-l 

(2) .,, - L k=q+l.k#J z - Zk "\""" c . (z - "'·)l 
t,, ,,,(-) = fIP . ( )m L n,J,l ~J ' . ..,,, - "k k 

j=q+l k=q+l.k#j ~J ~ l=O 

where the coefficients Cn.J.l of this polynomial are given by the Cauchy integral 

(4.7) 
1 i IT~=q+l (w - Zk)(n+l)m,. f(w) dw 

Cn.j.l = 27ri ITq (w- ~k)(n+l)mk (w - z·)l+l. 
I f2 k=l '° J 

The remainder term l'N (.::) is given by the Cauchy integrals 

1 i f(w) dw ITP ( )Nm,. l'N(z)=:- Z-Zk 
27ri r 1 (w-z)fl~= 1 (w-zk)Nmk k=l 

( 4.8) 

1 1 IT~=q+l(w- zk)Nmk f(w)dw ITk=l(z - Zk)N"'k 

- 27ri r Ilq (w - Zk)Nmk w - z ITP (z - "'k)Nm,. 
2 k=l k=q+l ~ 

In these integrals. the contours of integration r 1 and f 2 are simple closed loops 

contained in n \ r.!0 which encircle fl0 ·in the counterclockwise direction. Moreover, 

the points:: and Z1,z2, ..• ,Zq are not inside f2, whereas f1 encircles f2 and the 

po·ints z and ::: 1 , z2 , ... , zq (see Figure 6(a)). 

The expansion ( 4.1) is convergent in the region (Figure 1) 

(4.9) 

where r1 = lnfwEC\0. {fl~= 1 l(w - zk)i"'k} and 

r2 = In.fwEO.o {rr l(w- zk)imk IT i(w - zk)- 11"'k}. 
k=l k=q+l 

Proof. By Cauchy's theorem, 

f(::) = ~ r f(w) dw - ~ i f(w) dw 

27rt lrr w - z 27ri r w - z 
I 2 

(4.10) 

where f I and f 2 are the contours defined above. 

First W<' assume that the m points of the set S are all distinct. Later we will 

let the first m 1 points coalesce to ::1, the second m2 points to z2 , and so mi. We 
substitute (2.12) -(2.13) into th<' first integral above and 

(4.11) 
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(a) (b) 

FIGURE 6. The case q = 2, p = 3. (a) Contours r1 and r2 in the 

integrals (4.3), (4.5), (4.7) and (4.8). (b) For z E Dq.p• we can 

take a contour r 2 located between r20 and Dq.p and a contour r 1 

in n with Dq,p inside this contour. Therefore, nr=l lz - Zkl"'k < 
TI~=l lw-zkl 111

k· v w E r1 and TIZ=l lz-zklmk nr=q+1 lw-zklmk < 
I1q l"v - -, Im,. TIP I~ - ~ Im,. l::f 'll' E r k=l ' -,· k=q+l - -k 2· 

A • ~ ~ 
(rf,r2) (rf, r~) (r]', r2) (r'i', r1) 

e 0 G G 
.. .. (¥) ~ 

( rT, r2) (1-t, rg) (rt,r2) (rt, r1) 

0 0 G G 

• • • • ~ t) @ @ 

where 

( 4.12) 

(r),r2) (r1,r3) ( ri, i·2) (r'[. dl 

FIGURE 7. The region Dq,p defined in Theorem 4.1 is given by 

Dq,p = Op n Bq,p, where Op is the "lenmiscatc domain'" of foci 

z 1 , ... , Zp and parameter r 1 . Also, 

Bq,p = {z EC, TIZ=l l(z - zk)I"'' < r2 nr=q+1 l(z - Zk)lrn,. }. 
These pictures show the topologically different forms of Dq.p de

pending on the relative value of r 1 and r 2 when q = 2 and 

p = 3. The picturc8 are labeled with (r1 , r 2 ). In these pictures 

z1 lz1 - z2I < lz1 - z3I, lz2 - z3I and r2 > rg > r2 > r1. 
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and 

(4.13) 

into the second. Next we introduce the expansion (2.14) of the factor (1 - u)- 1 in 

both integrals in (4.10). We observe that Frn(w,z;z1 , ... ,zrn) may be written as 

(4.14) 
k=s+l 

s 

- Hm-s(w, z; Zp+1 1 ••• , z,,,) IT (z - zk), 

k=l 

where Hrn(w, z; z1 , ... , zm) is defined in (2.2). Using this decomposition, equation 

(2.3), and after straightforward calculations we obtain 

N-l m N-l ns ( )n 
!( ") - " ( ) rrc~ )" " (1) (.,,) k=l z - Zk - - f='o qn,m z k=l "' - Zk + ~ tn,m ,_, nz~s+l (z - zk)n 

( 4.15) 
N-1 ns ( )"+l 
" (2) ~) k=l z - Zk . 

+ L., tn,m(" nm ( ~ _ ~ )n+l +I N(z), 
n==O k=s+l "' -"k 

where qn,m(z) is given by formulas (2.7) and (2.8) replacing the contour C by f 1 . 

Also, 

( 4.16) 

with 

( 4.17) 

(4.18) 

with 

( 4.19) 
1 1 nm c· )n+l 

c . = _ k=s+l W- Zk f(w)dw 
n,J - 2 . ns ( ) +1 

7r1 r2 k=l W - Zk n W - Zj 

and 

(4.20) 
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Now we write 

(4.21) 

t(l. l (~) = __ l_. ;· IT~'=s+l (w - zk)n ~ f(w)f1%=t.k,i)z - zk) l ' 
n rn " ') . IT' ( ) . L., ( ) IT' (. ) ( 1L, 

' -7r1 r 2 h:=l W - Zk 11 ;=l .U' - z1 k=l.k#J ZJ - Zk 

. ITl!l (· - " )n+l m f'(· ') ITm (" - '7 ) 

(2.) ( 7 ) __ l_ j. k=s+l. W -k ~.. . · u. k=s+Lk#j - . '-'k . . 1 

tn.m - - . IT"' ) +i L., ) ITrn ( du, 
27r'l I'" k=l(w - Zk n J=»+l (w - Zj k=s+l,k'fj Zj - zk) 

and repeat the steps following (2.32) in Theorem 2.5 for qn,m(z), di~),,(z) and 
(2) 

tn.m(z). 

For any z verifying (4.9), we c:an take sirnple closed loops r 1 and r2 inn\ 0 0 

suc:h that (see Figure 6(b)) 

p p 

( 4.22) II \z - z1J"''· < II \u• - zk\"''" Vw E r1 
k=l 

and 

q p 

( 4.2:3) II \w - z1.:\'nk II \z - z;,Jrnk 

k=l k=q+l 

'v' w E r 2 • On these contours \f(w)\ is bounded by some constant C: \f(w)\ ::::; C. 
Introducing these bounds in (4.8) we see that limtv~xi rN(z) = 0 and the proof 

follows. D 

If the cml;,: singularitil'S of f ( Z) inside no an' just poles at Zq+ l • Zq+2,. .. ,Zp, then 
alternative formulas of (4.3), (4.5) and (4.7) for computing the coefficients of the 

above two-point Taylor-Laurent expausiun is given iu the following proposition. 

Proposition 4.2. Su.ppose that [Jk-(z) = (z - z;,.)P'" f(z) is an analyhc function 

in n foT certain Pk E N and k = q +- L q +- 2, .... p. Define g/.:(w) = f (w) for 

A:= 1,2.3 ..... q. Then the coefjicientsn 11 .J.l· b,,,J,I andc 11 ,J,l in the eJ.:pansion (4.1) 

a.re also given by t.he f orrnulas: 

( 4.24) 

( 4.25) 

L<J D"'n .. -1 [ .f(w) ] 
an,jJ = l ITP 

. w (w - z ) +1 ·- . ·. (w - Zs )nm, 
k=l.k#J J 8-1,s'fl. 

p 

+- I: 
k=<1+l.kf-j 

D"mk+Pk-1 
tL' 

+Dn111.1+P.1+l[ .9J(w) .. JI 
w ITP (w - z )""'' 

sc=l,sf-J s w=z.1 

tL'=ZJ..:. 

bn,j,l = 

p 

2: 
l 

[
gk(w) IT~=<i+l.s-"k(w - z.,)mn,l DPk -lllHk - .,.-

w (u· _ ~ ·)l+l IT" (u• _ - .)nm, 
-; s=l · -s 
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+ DP.1-(n+l)rn,+l 
. ·w 

J s=q+Lsr'J s [g ·(u•) TIP . .(w .- z .. )(n+l)m .• l I 

Proof. V/e deform both the contour r 1 in equation ( 4.3) and the contour r 2 in 

equations ( 4.5) and ( 4.7) into any contour of the form C1 U C2 U · · · U Cp contained 

in 12, where Ck, k = 1, 2, ... ,p is a simple closed loop which encircles the point zk 

in the COUHterclockwise direction with Zj not inside Ck, j = l, 2, ... , j), j =/= k (see 

Figure ;3 ( c)). Then, 

~ j gk(w) da· 
Cln.1.I. = ?rri L (w _ z ·)l+l TIP (w _ z .)nm .• (v• _ 21,)nr,,,+Pk 

(4.27) - k=l.k#j C, J s=l,s# ·' 

+ j' .<JJ(w) dw 

TI /.' . (·l1' _ z )nni,, (w _ z. )nm1 +p1 +l+ l ' 
C1 s=l,s#J · s · J 

( 4.28) 
1 P j' TIP (·11• ' )nm, ( ) l s=q+ 1.s#k · - 'S . .iJk 'll' ( IU 

bn,j.l = 2rri L (w - z. )l+l Tiq- (w - Zs)nm, (w - Zk)Pk-nm,' 
k=q+l ck J •• -1 

( 4.29) 

l'n,J.l = 
P l 1. TIP (w _.,, )(n+l)m .• 
~ s=q+l.s;"'k ~s 

L . 27fi c (w - Z.1·)l+l Tiq.··--.l(w - Zs)(n+l)111, (w - Zk)Pk-(n+l)111, 
k=q+l.k#J ,. ' 

g1c(w)d11• 

1 j' +-. 
2rrt. c 

J 

IT J! .(w _ z .)(n+l)m .• 
s=q+l.s;tJ · ·' 

rr 'l f,IL' - Z .)( 11 +l)ll1. .• 
.s=l \ ' ,i.;, 

From this, equations (4.24), (4.25) and (4.26) follow. 0 

Rernark 4.3. Let z be a real or complex variable and suppose that ( z - zic)P' f ( z) 

is Pk - 1 times differentiable at Zk for certain Pk EN. Define 

( 4.30) 

AI . Tiq (" _.,, l"m' f\[ IT". (- __ l(11+1i,,,,. 
) - '.) ~t(l)(·) k=l' -k ~(2) .k=l~ -k 

g(z = j(z - L n.m z rrp (z - z,..Jnm, - L t,,,m(z) ITP (z - z .)ln+l)m,' 
n =ll k=q+ 1 n=O k=q+ 1 k 

whcreM = ll\Iax{(Pq+1-l)/mq+1,(Pq+2-l)/mq+2, ... ,(pµ-l)/111p}j m1dd,1,;11(z) 

and d,2;,,(z) are the polynomials defined in (4.4), (4.G). (1.25) and (,l.26). Then, 

th(' thesis of Proposition 2.9 holds for f (z) replaced by y(z). 

'.\Ioreover, if ITf=q+l (z - ;;k)Pk f(z) is an analytic function inn, then the thesis 

of Theorem 2.5 applies to g( z). 

5. DISCUSSION AND CONCLUDING REMARKS 

111 an earlier paper [6] we have discussed the theory of two-point Taylor expan

sions, two-point Laurent expausions and two-point Taylor-Laurent expansions. In 

the present paper we have generalized these two-point cas(~S to multi-point cases. 

\Ve have given details on the regions of convergence and on representations of the 

coefficients and the remainders of the expansions in terms of Cauchy-type integrals. 
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Multi-point Taylor expansions are related with topics from interpolation theory, 

in particular with the Newton interpolation theory with applications in numerical 

analysis. For example, applications can be found in initial and boundary value 

problems in connection with ordinary differential equations and in numerical quad

rature of integrals. 

From the point of view of interpolation theory detailed information on multi

point expansions can be found in [8], Chapters 3 and 8. The theory of several-point 

Taylor expansions is discussed in Chapter 3 of [8], although in a setting that is 

different from our approach. Our approach gives explicit Cauchy-type integrals 

of coefficients and remainders which cannot be found in Walsh's approach. In 

particular, we cannot find explicit formulas for the polynomials qn,m(z) of formula 

(2.27) as we have in (2.28)-(2.29). Knowledge of these explicit formulas is necessary 

to construct asymptotic expansions of integrals with several saddle points. 

In addition to this, our Laurent and Taylor-Laurent expansions are new. They 

have a formal similarity with the rational approximations of Chapter 8 of [8]: they 

involve negative powers of z. But they are completely different. The rational 

approximations, in particular the Pade-type approximations Pn(z)/Qm(z), are of 

interpolatory type. These are generalizations of the Taylor polynomial at several 

points: a quotient of polynomials instead of a polynomial. However, our expansions 

(3.1) or (4.1) have a different form and a different approximation property: they 

approach not only at regular points like Pade-type approximations but also at 

singular points of J(z). And of course, the regions and convergence properties in 

[8] are different from ours. 

Apart from applying the present results in problems from interpolation theory, 

in particular in problems from numerical analysis, we expect to find applications in 

asymptotic analysis of integrals, which application area is our main motivation; see 

[6]. In that paper certain orthogonal polynomials have been considered and we have 

given new convergent expansions that also have an asymptotic property for large 

values of a parameter (the degree n of the polynomials). Orthogonal polynomials 

and special functions can be studied when the variable and several parameters are 

large. In that case more than one or two so-called critical points occur that may give 

the main contributions to the integral, and expansions of analytic functions at these 

points again give the possibility of constructing new convergent expansions with an 

asymptotic property. This method avoids the complicated conformal mapping of 

the phase function of the integral into a standard form (say a cubic or higher 

polynomial). In addition, when the critical points are multiple poles, Laurent

type expansions may be considered. A few application areas are mentioned in the 

Introduction (see the integral in (1.4)), which we expect to approximate in terms 

of Airy functions and the Pearcey integral (1.5) and its derivative with respect to 

x and y. 
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