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functions
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1 Introduction

In this expository article1, we review some aspects of poly-Bernoulli numbers and related zeta
functions.
The poly-Bernoulli number is a generalization of the classical Bernoulli number using the poly-

logarithm series. Although its definition looks rather artificial at first glance, it has turned out
recently that the poly-Bernoulli numbers of negative index have very nice combinatorial inter-
pretations, and also they appear in special values of certain zeta functions. It may therefore be
reasonable to seek arithmetic properties that may be involved with poly-Bernoulli numbers. The
author made one such attempt with late Arakawa in the hope of finding a nice zeta function which
connects poly-Bernoulli numbers with the so-called multiple zeta values, the subject of wide in-
terest not only in number theory but also in numerous other branches such as topology, quantum
groups, arithmetic geometry, mathematical physics etc. This work with Arakawa will be reviewed
in §3, after recalling definitions and properties of poly-Bernoulli numbers in §2. In §4 we give some
results and speculations concerning the “multiple harmonic sums mod p” and “multiple zeta-star
values.” In the final section, §5, we discuss a different type of zeta function which also has some
relation to poly-Bernoulli numbers as well as to certain generalized multiple zeta values.
The author would like to take this opportunity to express his deep gratitude to late Professor

Tsuneo Arakawa on the occasion of his sixtieth birthday, whose encouragement and interest at the
early stage of the research on this topic greatly helped in developing the work further.

2 Poly-Bernoulli numbers

In relation to the well-known formula for the sum of consecutive powers of integers, Takakazu Seki2

and Jacob Bernoulli3 independently introduced a sequence of rational numbers, nowadays known
as the “Bernoulli numbers,” Bn (n = 0, 1, 2, . . .). Their definition is by the recursion

n∑

i=0

(
n+ 1

i

)

Bi = n+ 1 (n = 0, 1, 2, . . .),

and this can be expressed by means of a generating series as

xex

ex − 1
=

∞∑

n=0

Bn
xn

n!
.

1This is an extended version of [20].
2“Katsu-you-san-pou”, published posthumously in 1712.
3“Ars conjectandi”, published also posthumously in 1713.
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We note that the left-hand side of this differs by x from the more commonly used defining series;

xex

ex − 1
=

x

ex − 1
+ x,

and as a result, with our definition we have B1 = 1/2 (instead of −1/2). The other values of Bn

are the same in both definitions and, because Bn = 0 for odd n ≥ 3, to convert any formula with
one definition into the other we only need to change Bn into (−1)nBn.

According to [18] and [4], we define the poly-Bernoulli number B
(k)
n and its relative C

(k)
n , for any

integers k ∈ Z and n ≥ 0, by the generating series

Lik(1− e−x)

1− e−x
=

∞∑

n=0

B
(k)
n

xn

n!
and

Lik(1− e−x)

ex − 1
=

∞∑

n=0

C(k)
n

xn

n!

respectively4. Here, Lik(z) denotes the formal power series
∑∞

m=1 z
m/mk (the kth polylogarithm

when k > 0, and the rational function (z d/dz)−k (z/(1− z)) when k ≤ 0). When k = 1, we have
Li1(z) = − log(1− z) and these generating series become

xex

ex − 1
and

x

ex − 1

respectively, and hence each of B
(k)
n and C

(k)
n generalizes the classical Bernoulli numbers Bn, by

choosing one of the above generating series for Bn. Since the two generating series for B
(k)
n and

C
(k)
n differ by a factor ex, the two numbers are related with each other by

B
(k)
n =

n∑

m=0

(
n

m

)

C(k)
m , C(k)

n = (−1)n
n∑

m=0

(−1)m
(
n

m

)

B
(k)
m .

Also, using

Lik(1− e−x)

1− e−x
= ex

Lik(1− e−x)

ex − 1
=
Lik(1− e−x)

ex − 1
+ Lik(1− e−x)

=
Lik(1− e−x)

ex − 1
+

∫ x

0

Lik−1(1− e−x)

ex − 1
dx,

we have the relation
B
(k)
n = C(k)

n + C
(k−1)
n−1 .

In particular, specializing k = 2 and using the fact that C
(1)
n = 0 for odd n ≥ 3, we have

B
(2)
n = C(2)

n for even n ≥ 4. (2.1)

We review here some of the known properties of poly-Bernoulli numbers. The first is the closed
formulas in terms of the Stirling number of the second kind. The Stirling number of the second
kind, denoted by

{
n
i

}
, is the number of ways to partition a set of n elements into i nonempty

subsets.

4We use the notation B
(k)
n instead of B

(k)
n , to avoid possible confusion with Carlitz’s Bernoulli number of higher

order.
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Theorem 2.1. We have the following formulas:
1) For any k ∈ Z and n ≥ 0,

B
(k)
n = (−1)n

n∑

i=0

(−1)ii!
{
n
i

}

(i+ 1)k
, C(k)

n = (−1)n
n∑

i=0

(−1)ii!
{
n+1
i+1

}

(i+ 1)k
.

2) For k, n ≥ 0,

B
(−k)
n =

min(n,k)
∑

j=0

(j!)2
{
n+ 1

j + 1

}{
k + 1

j + 1

}

,

C(−k−1)
n =

min(n,k)
∑

j=0

j!(j + 1)!

{
n+ 1

j + 1

}{
k + 1

j + 1

}

.

Proof. To prove 1), we expand the defining generating series by using the formula (see e.g. [17])

(ex − 1)i = i!
∞∑

n=i

{
n

i

}
xn

n!
(2.2)

for the Stirling numbers and compare the coefficients.
For 2), we calculate the two variable generating series

∞∑

n=0

∞∑

k=0

B
(−k)
n

xn

n!

yk

k!
and

∞∑

n=0

∞∑

k=0

C(−k−1)
n

xn

n!

yk

k!

by using formulas in 1), and as a result we have

ex+y

ex + ey − ex+y
and

ex+y

(ex + ey − ex+y)2

respectively. Writing the first expression as

ex+y

ex + ey − ex+y
=

ex+y

1− (ex − 1)(ey − 1)

= ex+y
∞∑

j=0

(ex − 1)j(ey − 1)j

=

∞∑

j=0

1

(j + 1)2
d

dx
(ex − 1)j+1 d

dy
(ey − 1)j+1

and using (2.2), we obtain the first formula of 2). The second can be proved similarly by using

ex+y

(ex + ey − ex+y)2
=

ex+y

(
1− (ex − 1)(ey − 1)

)2

= ex+y
∞∑

j=0

(j + 1)(ex − 1)j(ey − 1)j

=

∞∑

j=0

1

(j + 1)

d

dx
(ex − 1)j+1 d

dy
(ey − 1)j+1.
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The min(n, k) in the upper limits in the formulas is because the Stirling number
{
n
k

}
is 0 when

n < k. �

Corollary For k, n ≥ 0, we have the symmetries

B
(−k)
n = B

(−n)
k and C(−k−1)

n = C
(−n−1)
k .

With the aid of the above explicit formulas, C. Brewbaker [8, 9] and S. Launois [22] found

beautiful combinatorial interpretations of B
(−k)
n , which we now describe briefly.

A lonesum matrix is a matrix with entries 0 and 1 whose row-sums and column-sums determine

the matrix uniquely. For instance, the matrix

(
1 0
1 1
1 0

)

gives t(1, 2, 1) and (3, 1) as row- and column-

sums respectively, and from these two vectors, the original matrix is recovered uniquely. The
theorem of Brewbaker states that the number of lonesum matrices of a given size is equal to the
poly-Bernoulli number.

Theorem (Brewbaker [8, 9]) For k, n ≥ 1, the number of k × n lonesum matrices is equal to

B
(−k)
n .

The key fact in order to count the total number of lonesum matrices is the characterization
(using an old result of Ryser [27]) to the effect that a (0, 1)-matrix is lonesum if and only if it has

no 2 × 2 minor of the form
(
1 0
0 1

)

nor
(
0 1
1 0

)

. For a complete proof, we refer the reader to the

original papers [8, 9].

The second combinatorial interpretation of B
(−k)
n is related to the number of special type of

permutations. Let Sn denote the symmetric group of order n, identified with the set of all per-
mutations on the set {1, 2, . . . , n}. Launois proved the following.

Theorem (Launois [22]) Let k and n be positive integers. The cardinality of the set

{σ ∈ Sk+n| − k ≤ σ(i)− i ≤ n, 1 ≤ ∀i ≤ k + n}

is equal to B
(−k)
n .

We omit the proof and only refer to [22]. It may be an interesting problem to establish a natural
bijection between the sets of n × k lonesum matrices and the above permutations. We note that

either of these interpretations of B
(−k)
n makes the above duality formula B

(−k)
n = B

(−n)
k apparent.

Further results obtained in [18, 5, 19] include Clausen-von Staudt type theorems for B
(k)
n , and an

analogue for C
(k)
n of the Akiyama-Tanigawa algorithm for computing Bernoulli numbers (similar to

Pascal’s triangle for binomial coefficients). As for the Clausen-von Staudt type result, a complete

description of denominators of B
(2)
n (di-Bernoulli numbers) is given in [18] and partial results are

obtained in [5] for general k.
An important open problem is to find a Kummer type congruence for poly-Bernoulli numbers.

This and its generalization may be of importance also in the theory of p-adic multiple zeta values,
as surmised by Furusho [13].
As another topic of further investigation, we point out that the extra symmetries or other nice

properties of dilogarithm function (see [32]) may force di-Bernoulli numbers (the case of the upper
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index k = 2) to have the more rich properties than the other ones (k 6= 2). We also point out

that in the di-Bernoulli case, both numbers B
(2)
n and C

(2)
n coincide when n is even, as noted before

(2.1).

3 Multiple zeta values and a zeta function

The multiple zeta value (MZV) is a real number associated to each index set (k1, k2, . . . , kn) of
positive integers with k1 ≥ 2, defined by the convergent series

ζ(k1, k2, . . . , kn) :=
∑

m1>m2>···>mn>0

1

mk1
1 m

k2
2 · · ·mkn

n

.

This is a rather naive generalization of values of the Riemann zeta function ζ(s) at positive integer
arguments, whose study was initiated by Euler [12] in the case of “depth” n = 2. Since 1990’s
when connections to quantum field theory, knot theory, mixed Tate motive, or quantum groups
were found ([10], [23], [14], [11]), the MZV has become a topic of intensive study. We refer the
interested reader to Mike Hoffman’s web page [16] for extensive references on MZV’s.

In [4], we studied the function ξk(s) (k ≥ 1) defined by

ξk(s) :=
1

Γ(s)

∫ ∞

0

ts−1

et − 1
Lik(1− e−t)dt, (3.1)

with the intention that we might be able to find a generalization of Euler’s celebrated formulas

ζ(2k) = (−1)k−1 B2k

2(2k)!
(2π)2k, ζ(1− k) = −Bk

k
(k ≥ 1),

with multiple zeta values on one hand, and poly-Bernoulli numbers on the other. What we obtained
in [4] is the following theorem.

Theorem 3.1 ([4]). 1) The integral (3.1) converges for Re(s) > 0 and the function ξk(s) analyti-
cally continues to an entire function of s.
2) We have the relation

ξk(s) = (−1)k−1
[
ζ(s, 2, 1, . . . , 1

︸ ︷︷ ︸

k−1

) + ζ(s, 1, 2, 1, . . . , 1
︸ ︷︷ ︸

k−1

) + · · ·+ ζ(s, 1, . . . , 1, 2
︸ ︷︷ ︸

k−1

)

+ s · ζ(s+ 1, 1, . . . , 1
︸ ︷︷ ︸

k−1

)
]
+

k−2∑

j=0

(−1)jζ(k − j) · ζ(s, 1, . . . , 1
︸ ︷︷ ︸

j

). (3.2)

Here, ζ(s, k2, . . . , kn) is a one variable function in s with fixed k2, . . . , kn, continued meromorphi-
cally to the whole s-plane.
In particular, the values of ξk(s) at positive integers are written in terms of MZV’s.
3) At non-positive integer arguments, we have

ξk(−n) = (−1)nC(k)
n (n = 0, 1, 2, . . .). (3.3)

We only briefly mention to the proof. Once the holomorphic continuation is established in a
standard manner such as used in [33, §4 of Part 1], the relation (3.2) is obtained by computing the
integral ∫ ∞

0
· · ·
∫ ∞

0
xs−1
k · x1 + · · ·+ xk

ex1+···+xk − 1
· 1

ex2+···+xk − 1
· · · 1

exk − 1
dx1 · · · dxk
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in two ways, one is by the repeated use of the Mellin transform and the other is the integration by
parts using

∂

∂x1
Li2(1− e−x1−···−xk) =

x1 + · · ·+ xk
ex1+···+xk − 1

and similar formulas for higher Lik. Formula (3.3) in 3) is deduced also in a standard way. Or
rather, we have so defined the function ξk(s) that we have (3.3). (Note, however, we face with a

convergence problem if we want B
(k)
n instead of C

(k)
n .) Interesting point is that the function ξk(s)

has the expression (3.2) in terms of the multiple zeta function.
We remark that the multi-variable function

ζ(s1, s2, . . . , sn) :=
∑

m1>m2>···>mn>0

1

ms1
1 m

s2
2 · · ·msn

n

is also meromorphically continued to Cn, thanks to the works of Akiyama-Egami-Tanigawa [2]
and Zhao [34]. To seek for a connection between poly-Bernoulli numbers (or its generalization)
and the values of ζ(s1, s2, . . . , sn) at non-positive integers may be an interesting problem, but, as
described in [2], those points are “points of indeterminacy” and we have no canonical values there.
Still, it is possible to find a connection with any fixed way of limiting process.
As for values at positive integers of ξk(s), formulas

ξk(n) =
∑

a1+···+ak=n−1
∀aj≥0

(a1 + 1)ζ(a1 + 2, a2 + 1, . . . , ak + 1) (k, n ≥ 1),

and

ξk(2) =
1

2

k−2∑

i=0

(−1)iζ(i+ 2)ζ(k − i) (k: even ≥ 2)

are obtained in [4]. Y. Ohno discovered, as an application of his renowned formula [25], that the
first expression can be transformed into the following simple formula:

Theorem (Ohno [25]) For k, n ≥ 1, we have

ξk(n) = ζ⋆(k + 1, 1, . . . , 1
︸ ︷︷ ︸

n−1

), (3.4)

where

ζ⋆(k1, k2, . . . , kn) :=
∑

m1≥m2≥···≥mn≥1

1

mk1
1 m

k2
2 · · ·mkn

n

is the multiple “zeta-star” value.

This formula plays an interesting role in finding a “duality” phenomenon of multiple zeta-star
values, which we discuss in the next section.

4 Finite multiple zeta sums mod p and multiple zeta-star values

Let p be an odd prime number. Consider the finite sums obtained by truncating the series for
ζ(k1, k2, . . . , kn) and ζ

⋆(k1, k2, . . . , kn) right before the prime p appears in denominators;

Hp(k1, k2, . . . , kn) :=
∑

p−1≥m1>m2>···>mn≥1

1

mk1
1 m

k2
2 · · ·mkn

n

,
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H⋆
p (k1, k2, . . . , kn) :=

∑

p−1≥m1≥m2≥···≥mn≥1

1

mk1
1 m

k2
2 · · ·mkn

n

.

Hoffman [15] and Zhao [35] studied these sums (“multiple harmonic sums” in Hoffman’s termi-
nology) mod p. For a particular type of index (“height 1” case), Hoffman showed that there is
essentially no difference in modulo p between “zetas” and “zeta-stars”:

Theorem (Hoffman [15, Th. 5.1]) For prime p > n, it holds the congruence

H⋆
p (k, 1, . . . , 1

︸ ︷︷ ︸

n−1

) ≡ (−1)kHp(k, 1, . . . , 1
︸ ︷︷ ︸

n−1

) mod p.

And he conjectures that all sums Hp(k1, k2, . . . , kn) and H⋆
p (k1, k2, . . . , kn) can be written mod p

as sums of products of the height one sums Hp(k, 1, . . . , 1).
For these conjectural “building blocks” Hp(k, 1, . . . , 1) mod p, he gave a closed formula as a sum

involving the Stirling numbers of the second kind. A simple manipulation using Fermat’s little

theorem and the closed formula of C
(k)
n in Theorem 1-2) shows that his formula can be stated

simply in terms of poly-Bernoulli numbers as follows.

Theorem (Hoffman [15, Th. 5.4]) For k, n ≥ 1 and any prime p > n, we have

H⋆
p (k, 1, . . . , 1

︸ ︷︷ ︸

n−1

) ≡ (−1)nC(k−1)
p−1−n mod p. (4.1)

Proof. The formula of Hoffman [15, Th. 5.4] reads

Hp(k, 1, . . . , 1
︸ ︷︷ ︸

n−1

) ≡
p−n
∑

j=1

(−1)j(−j)p−k(j − 1)!

{
p− n
j

}

mod p.

By changing j to j + 1 and multiplying out a suitable power of −1, the right-hand side becomes

(−1)k+n(−1)p−n−1
p−n−1
∑

j=0

(−1)j(j + 1)p−kj!

{
p− n
j + 1

}

mod p.

By Theorem 1 and the previous theorem of Hoffman, this gives the congruence

H⋆
p (k, 1, . . . , 1

︸ ︷︷ ︸

n−1

) ≡ (−1)nC(k−p)
p−1−n mod p. (4.2)

By Fermat’s little theorem, (j + 1)p−k ≡ (j + 1)1−k mod p, and the formula of Theorem 1, the

right-hand side is also congruent to (−1)nC(k−1)
p−1−n mod p, which establishes the theorem. �

With (4.1) and (3.3) together, we obtain

H⋆
p (k, 1, . . . , 1

︸ ︷︷ ︸

n−1

) ≡ ξk−1(−p+ 1 + n) mod p. (4.3)

In view of the formula (3.4) of Ohno, this congruence looks very suggestive, although for the
moment it is only a superficial curiosity. The curious point is this: Start with the value of the
function ξk−1(s) at a positive integer n. This is, by Ohno’s Theorem (3.4), the multiple zeta-star
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value ζ⋆(k, 1, . . . , 1
︸ ︷︷ ︸

n−1

). Take an odd prime p and truncate this series to getH⋆
p (k, 1, . . . , 1

︸ ︷︷ ︸

n−1

), and reduce

it modulo p. Then the resulting value is congruent mod p to the value of ξk−1(s) at n − (p − 1),
the shift of the initial n by p− 1!

ξk−1(n) = ζ⋆(k, 1, . . . , 1
︸ ︷︷ ︸

n−1

)
truncate
=⇒ H⋆

p (k, 1, . . . , 1
︸ ︷︷ ︸

n−1

)
mod p
=⇒ ξk−1(n− (p− 1)).

Now, we trace our original thinking to get the idea of a kind of “duality” for multiple zeta-stars.
In the same paper, Hoffman also proved the duality congruence ([15, Th.5.2])

(−1)nH⋆
p (n, 1, . . . , 1

︸ ︷︷ ︸

k−1

) ≡ (−1)kH⋆
p (k, 1, . . . , 1

︸ ︷︷ ︸

n−1

) mod p.

Note that, given the relation to poly-Bernoulli numbers (4.2), this is just a consequence of the
duality of poly-Bernoulli numbers in Corollary to Theorem 1 (when p > k, n). As a possible
different approach however, first note the congruence of truncated Riemann zeta values

1 +
1

2n
+

1

3n
+ · · ·+ 1

(p− 1)n
≡ 0 mod p

which is valid for all p > n + 1. The above mentioned duality of Hoffman would follow from this
if the difference

(−1)nH⋆
p (n, 1, . . . , 1

︸ ︷︷ ︸

k−1

)− (−1)kH⋆
p (k, 1, . . . , 1

︸ ︷︷ ︸

n−1

)

could be expressed as a polynomial in the truncated Riemann zeta values. Actually, Hoffman
proved in [15] many of the congruences in this way. However, the duality in question is proved in
another way and we do not know if there is such an expression.
Anyway, inspired by this and the above mentioned curious analogy, we surmised that the differ-

ence of the two multiple zeta-star values

(−1)nζ⋆(n, 1, . . . , 1
︸ ︷︷ ︸

k−1

)− (−1)kζ⋆(k, 1, . . . , 1
︸ ︷︷ ︸

n−1

) (4.4)

may be written as a polynomial over Q in the Riemann zeta values, and did numerical experiments.
The result was in favor of the speculation, and soon after the author had informed him of this
speculation, Yasuo Ohno proved that this was indeed true. He obtained, using (3.4) and (3.2)
together with his main result in [25], the formula

(−1)nζ⋆(n, 1, . . . , 1
︸ ︷︷ ︸

k−1

)− (−1)kζ⋆(k, 1, . . . , 1
︸ ︷︷ ︸

n−1

)

= (k − 1)ζ(k + 1, 1, . . . , 1
︸ ︷︷ ︸

n−2

)− (n− 1)ζ(n+ 1, 1, . . . , 1
︸ ︷︷ ︸

k−2

)

+(−1)k
k−2∑

j=1

(−1)jζ(k − j)ζ(n, 1, . . . , 1
︸ ︷︷ ︸

j−1

)

−(−1)n
n−2∑

j=1

(−1)jζ(n− j)ζ(k, 1, . . . , 1
︸ ︷︷ ︸

j−1

).
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Since we know that the multiple zeta values of height 1 (= of type ζ(m, 1, . . . , 1)) can be expressed
as polynomials over Q in the Riemann zeta values ([3], [11], see also [26]), we conclude that the
quantity (4.4) is a polynomial in the Riemann zeta values. Using this formula, we can compute
the two variable generating series of (4.4):

∑

k,n≥2

(
(−1)nζ⋆(n, 1, . . . , 1

︸ ︷︷ ︸

k−1

)− (−1)kζ⋆(k, 1, . . . , 1
︸ ︷︷ ︸

n−1

)
)
xk−1yn−1

= ψ(x)− ψ(y) + π (cot(πx)− cot(πy))
Γ(1− x)Γ(1− y)
Γ(1− x− y) .

Here, ψ(x) = Γ′(x)/Γ(x) is the digamma function. To compute this, we use the formula of Aomoto
[1] and Drinfeld [11]

∑

k,n≥1

ζ(k + 1, 1, . . . , 1
︸ ︷︷ ︸

n−1

)xkyn = 1− Γ(1− x)Γ(1− y)
Γ(1− x− y)

and the well-known Taylor expansion of the (logarithm of) gamma function

Γ(1 + x) = exp

(

−γx+

∞∑

n=2

(−1)n ζ(n)
n

xn
)

(|x| < 1, γ : Euler’s constant).

From this we have

Γ(1− x)Γ(1− y)
Γ(1− x− y) = exp

(
∞∑

n=2

ζ(n)

n
(xn + yn − (x+ y)n)

)

,

ψ(x) = −1

x
− γ +

∞∑

n=2

(−1)nζ(n)xn−1,

π cot(πx) =
1

x
+ ψ(1− x)− ψ(1 + x) =

1

x
− 2

∞∑

n=1

ζ(2n)x2n−1,

and expanding these out we obtain a rather complicated (in fact too complicated to neatly describe,
because we have to expand the exponential) expression of

(−1)nζ⋆(n, 1, . . . , 1
︸ ︷︷ ︸

k−1

)− (−1)kζ⋆(k, 1, . . . , 1
︸ ︷︷ ︸

n−1

)

as a polynomial in Riemann zeta values. All the details and possible generalizations will be
discussed in a joint paper [21].
Recall the duality (in height 1 case) for the usual multiple zeta values;

ζ(n+ 1, 1, . . . , 1
︸ ︷︷ ︸

k−1

) = ζ(k + 1, 1, . . . , 1
︸ ︷︷ ︸

n−1

).

This does not hold for ζ⋆-values when we just replace ζ by ζ⋆, and, to the best of our knowledge,
no duality-like formula for ζ⋆ is known so far. The established assertion

(−1)nζ⋆(n, 1, . . . , 1
︸ ︷︷ ︸

k−1

)− (−1)kζ⋆(k, 1, . . . , 1
︸ ︷︷ ︸

n−1

) ∈ Q[ζ(2), ζ(3), ζ(5), . . .]
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may be regarded as a kind of duality (modulo the ring of Riemann zeta valuesQ[ζ(2), ζ(3), ζ(5), . . .]).
We do not know the reason why the correspondence of indices

(n, 1, . . . , 1
︸ ︷︷ ︸

k−1

)←→ (k, 1, . . . , 1
︸ ︷︷ ︸

n−1

)

for this ζ⋆ case is different from that of the duality of usual multiple zeta values,

(n+ 1, 1, . . . , 1
︸ ︷︷ ︸

k−1

)←→ (k + 1, 1, . . . , 1
︸ ︷︷ ︸

n−1

)

Finally, we point out the potential importance of studying further the function ξ(k1, . . . , kr; s), a
multiple generalization of ξk(s) introduced in [4], in order to understand and generalize properties
and phenomena of the multiple zeta-star values discussed in this section.

5 Values of the central binomial series

In this final section, we review some facts on the values of the “central binomial series” ζCB(s),
defined by the following absolutely convergent Dirichlet series;

ζCB(s) :=
∞∑

m=1

1

ms
(
2m
m

) (∀s ∈ C).

In [6], Borwein, Broadhurst and Kamnitzer show that the value ζCB(k) for each positive integer
k ≥ 2 is written as a Q-linear combination of multiple zeta values (of height 1) and multiple
Clausen and Glaisher values. The latter two are real or imaginary parts (according to the parity
of weights) of values at a 6th root of unity of the multiple polylogarithm function

Lik1,...,kn(z) :=
∑

m1>···>mn>0

zm1

mk1
1 · · ·mkn

n

.

In analogy with “Zagier’s conjecture” for multiple zeta values5, they conjecture the following

Conjecture ([6]) Consider the following dimensions of the Q-vector spaces

ak := dimQ

∑

k1+···+kn=k

ki≥1, n≥1

Q · Re
(

ik1+···+knLik1,...,kn(e
πi/3)

)

,

bk := dimQ

∑

k1+···+kn=k

ki≥1, n≥1

Q · Im
(

ik1+···+knLik1,...,kn(e
πi/3)

)

.

Then, these numbers ak and bk are determined recursively by

a0 = a1 = 1, b0 = b1 = 0,

an = an−1 + bn−2, bn = bn−1 + an−2.

5This is a conjecture posed in [31] concerning the dimension of the Q-vector space spanned by MZV’s of fixed
weight. The conjecture predicts that the dimensions in question satisfy a simple Fibonacci-like recursion. Decisive
result to the effect that the conjectural dimension does give an upper bound was given by Goncharov [14] and
Terasoma [30].
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(In particular, the number an + bn is the Fibonacci number.)

It would be a very interesting problem to find an arithmetic/geometric interpretation of the
conjecture and to prove, as in Goncharov [14] and Terasoma [30], that these numbers actually give
upper bounds of the spaces.

On the other hand, all the values ζCB(k) for k ≤ 1 are Q-linear combinations of 1 and π/
√
3.

This fact follows from a result due to D. H. Lehmer [24], who adopted the formula

2x arcsin(x)√
1− x2

=
∞∑

m=1

(2x)2m

m
(
2m
m

) |x| < 1

and its successive differentiations to derive the following explicit formula.
Define two sequences of polynomials {pk(t)} and {qk(t)} (k = −1, 0, 1, 2, . . .) over Z by p−1(t) =

0, q−1(t) = 1 and the recursion

pk+1(t) = 2(kt+ 1)pk(t) + 2t(1− t)p′k(t) + qk(t) (k ≥ −1),
qk+1(t) = (2(k + 1)t+ 1) qk(t) + 2t(1− t)q′k(t) (k ≥ −1).

The first few examples are

p0(t) = 1, p1(t) = 3, p2(t) = 8t+ 7, p3(t) = 20t2 + 70t+ 15, . . . ,

q0(t) = 1, q1(t) = 2t+ 1, q2(t) = 4t2 + 10t+ 1, . . . .

Then we have for k ≥ −1
∞∑

m=1

(2m)k(2x)2m
(
2m
m

) =
x

(1− x2)k+3/2

(

x
√

1− x2pk(x2) + arcsin(x)qk(x
2)
)

and consequently

ζCB(−k) =
1

3

(
2

3

)k

pk

(
1

4

)

+
1

3

(
2

3

)k+1

qk

(
1

4

)
π√
3

(k ≥ −1). (5.1)

This shows that the values ζCB(k) (k ≤ 1) all lie in the two dimensional Q-vector space spanned
by 1 and π/

√
3, the fact which is parallel to the result of Euler for ζ(s): Namely, the values of ζ(s)

at positive integers give variety of (conjecturally independent) transcendental numbers including
powers of π (at even arguments) and almost unknown ζ(odd), whereas the values at negative
integers all lie in the one dimensional Q-vector space, Q itself, and these values are explicitly
described by the Bernoulli numbers.
It is therefore interesting to note that, for the value (5.1), R. Stephan [29] observed the (still

conjectural) formula
(
2

3

)k

pk

(
1

4

)

=

k∑

j=0

B
(−j)
k−j .

An explicit formula given in [7] may be of help to establish this identity. It would also be interesting
if we could find any connection of the coefficient of π/

√
3 in (5.1) to poly-Bernoulli or allied

numbers, but so far no such connection seems to have been found.

We may consider various analogues of the function ζCB(s) and its values at integer arguments.
It is possible that among them there are similar descriptions as in the case of ζCB(s) described
above.
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