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Abstract: In this article, a novel multi-port multi-directional converter (MPMDC) is proposed. Even
though the power stage of the MPMDC belongs to a single-stage structure, it can control power flow
direction handily among ports and achieve converter operation in up to five modes. The MPMDC
has the feature of galvanic isolation and can obtain a high voltage conversion ratio even under the
adoption of only one inductor and one transformer. The leakage energy of the transform can be
recycled to improve overall efficiency. Once the MPMDC is applied to deal with renewable energy,
battery, and bus energy, the advantage of multi-directional control of power flow can advance an
energy storage system to perfectly function power conditioning feature. In addition to the discussion
of converter operation, voltage gain, voltage stress, current stress, and inductance design are analyzed
theoretically. Comparisons with some of the latest similar converters are also carried out. A 200-W
prototype is built and measured. According to the practical results, it is verified that the hardware
measurements meet the theoretical derivations and the MPMDC is validated. The maximum efficiency
of the converter is up to 94%.

Keywords: multi-port multi-directional converter; galvanic isolation; high conversion ratio; leakage
energy recycling; single stage

1. Introduction

Recently, with the purpose of retarding global warming and climate change, the gener-
ation and application of renewable power have been developing rapidly, and especially
focusing on solar power [1–4] and wind turbines [5,6]. However, the usage of these kinds
of expeditiously growing energy is highly confined by some problems, such as weather, in-
termittence, and unstableness. To overcome the problems, incorporating an energy storage
system (ESS) to function as the feature of energy conditioning is an effective solution [7–9].
The ESS can save the generation power exceeding during periods of light loading and
afterwards release its stored energy during periods of heavy loading. The reliability of a
power system can accordingly be increased and the imbalance between renewable power
supply and load demand can also be alleviated. In addition, owing to the significant growth
and expansion of the electrical automobile industry [10,11], the capability and performance
of lithium cells have been improving more and more, which enriches the EES market and
its related applications as well. It is highly expectable that hybrid-generation systems that
combine green energy, a storage system, and utility will be in demand and developed. In
this article, a novel power converter is therefore proposed to deal with multiple types of
energy sources.

Figure 1a is a conventional PV power system, in which a battery is incorporated to
serve as energy backup. Since the PV panels and the battery are both low-voltage sources,
for DC-bus connection the system requires two converters to process power individually.
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One is the unidirectional high-step-up converter (UHSC), which boosts PV voltage to
a much higher level [12–14], and the other is the bidirectional converter (BC), which
performs battery charging and discharging [15–17]. However, the traditional structure
has disadvantages, such as low total conversion efficiency, high cost, and huge size. To
combine the two individual converters into a single one, a multi-port converter (MPC)
was developed and has become the current trend. As illustrated in Figure 1b, an MPC,
in general, integrates two DC–DC converters into a single-stage structure. In [18,19], the
power stages of the MPCs in a single-stage structure are mainly the combination of basic
converters. Having a simple structure is their merit, but no isolation and low voltage gain
are drawbacks. In [20], the MPC can gain a high conversion ratio, however, in which an
input port is in a floating connection. The three ports can be in common connection to yield
an easier design of a control circuit [21–23]. Nevertheless, these converters still exist with
the disadvantage of no galvanic isolation. In [24], the converter is derived by fundamental
boost and buck structures to obtain an MPC, in which the power stage is simple but galvanic
isolation still cannot be achieved. The converter in [25] incorporates a single core to fulfill
the feature of multi-port and to accomplish a variety of operation modes, but it cannot
possess the isolation feature and is unable to deal with two different kinds of input energy,
limiting its application field toward renewable generation system. The converter utilizes
two magnetic devices to carry out multi-port energy processing and can accomplish many
operation modes [26]. However, its voltage gain is lower than most structures of MPCs. The
MPC can be realized with a lower account of power devices to lower cost [27], nevertheless,
in which the input port will influence the function of battery charging. Besides, the input
port is floating. The MPCs in [28–33] adopt transformers and/or coupled inductors to
diminish the problems of non-isolation and low conversion gain. However, it is unavoidable
that the converters still have different kinds of shortcomings. The voltage gain of the
converter in [28] is low; besides, more magnetic components and active switches have
to be required. Even though high voltage gain can be completed in [29,30], the DC bus
is incapable of charging the battery. In [31], the converter lacks the function of battery
charging from the DC bus and exists the demerit of low voltage gain. Concerning [32],
more active power switches must be employed and voltage gain is not as high as expected,
both of which are shortcomings.
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In order to thoroughly solve all the aforementioned disadvantages, this article proposes
a novel multi-port multi-direction converter (MPMDC), as shown in Figure 1c, which has
the merits of high voltage-conversion ratio, the feature of galvanic isolation, leakage
energy recycling, battery charging/discharging, and multi-direction energy controlling.
The MPMDC is aiming at power processing for a microgrid system, not only for a UPS. A
microgrid system that incorporates PV panels and battery and then connects to DC bus
needs isolation between the PV and battery/bus, but not necessarily between battery and
bus. Therefore, the proposed converter is designed without isolation between the battery
and the DC bus. The MPMDC can accomplish a variety of system operation modes as
many as up to five modes. The power flow direction of each mode is indicated in Figure 2
and described as follows.
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Figure 2. Five operation modes of the proposed converter: (a) SISO-PV mode; (b) SISO-battery mode;
(c) DISO mode; (d) SIDO mode; and (e) BF mode.

1. Single input and single output for PV power processing (SISO-PV mode): Only the
PV panels forward power to the DC bus, as shown in Figure 2a. In this mode, the
battery has been fully charged and PV panels inject all the generated solar power into
the DC bus;
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2. Single input and single output for battery-energy providing (SISO-battery mode): As
referred to in Figure 2b, only the battery discharges toward the DC bus. This mode
works at night or during a rainy day;

3. Dual-input single-output mode (DISO mode): During the heavy-load period, the
DC bus must draw sufficient power from the generation system. To meet the load
demand, the PV panels and battery will provide energy simultaneously, which is
illustrated in Figure 2c;

4. Single-input dual-output mode (SIDO mode): The power flow is illustrated in Figure 2d.
While in the period of intensive insolation, The PV panels can supply enough power
to charge the battery and feed the DC bus as well;

5. Back-feeding mode (BF mode): As shown in Figure 2e, under the operation of BF
mode, the MPMDC can draw energy from the DC bus to charge the battery.

2. Converter Structure and Operation Analysis

The power stage of the proposed MPMDC is depicted in Figure 3. What the compo-
nents in Figure 3 stand for are described as follows: the Vpv, Vbat, and Vbus are the voltages
of PV panels, battery, and DC bus, respectively; the S1–S5 are power switches, which
inherently have body diodes DS1–DS5 in turn and parasitic capacitances CS1–CS5 as well;
the D1–D5 denote as diodes; the C1 and C0 are capacitors, while L1 expresses inductor; in
addition, N1 and N2 represent the turns of the primary and secondary windings of the
transformer, respectively, and Lm and Lk indicate the magnetizing inductance and leakage
inductance of the transformer, respectively.
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2.1. Operation Principle

The voltage polarity and current direction of the MPMDC are defined in Figure 4. For
the analysis of the converter in steady state, some conditions are made as follows:

1. Capacitors C1 and C0 are large enough so that the voltage ripples on C1 and C0 can
be neglected;

2. The diodes D1–D5 are considered ideal;
3. Parasitic capacitance in power switches is very small so that it can be reasonably omitted;
4. The leakage inductance Lk is much smaller than the magnetizing inductance Lm;
5. The duty ratios of switches S1 and S2 are all less than 0.5;
6. The turns ratio of the transformer Tr is defined as n and equal to N2

N1
.
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2.1.1. SISO-PV Mode

In SISO-PV mode, switches S1 and S2 are controlled, that is, both of which are in charge
of the role of main switches. While operating in this mode, both switches are turned on
and off simultaneously and driven by an identical control signal. The converter operation
can be mainly divided into two stages over one switching cycle. The key waveforms of the
converter in SISO-PV are depicted in Figure 5. In addition, the corresponding equivalent
stages are shown in Figure 6.
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Stage 1 [t0–t1]

This stage starts at time t = t0, as shown in Figure 6a. The switches S1 and S2 are
turned on at the same time, and the diodes D1–D5 are all in OFF-state. Over the whole time
interval t0–t1, that is, the ON-time period Dsw1T, the Lm and Lk both draw energy from PV
panels and capacitor C1. Meanwhile, the output capacitor Co pumps its stored energy to the
DC bus. Since switch S3 and diode D3 break the current path of the transformer, therefore,
there is no current flowing through the transformer. This stage ends at the time switches S1
and S2 are turned off.

Stage 2 [t1–t2]

At t = t1, as shown in Figure 6b, the switches S1 and S2 are turned off and diodes
D1–D4 become in ON-state. The energy stored in Lm has therefore released to the DC bus
via the transformer Tr. The PV panels and the magnetizing inductor Lm charge capacitor C1
simultaneously. The energy of leakage inductance Lk is recycled to capacitor C1. As switches
S1 and S2 are turned on again, the operation of SISO-PV mode over period T completes.

2.1.2. SISO-Battery Mode

In SISO-battery mode, the main switches become S4 and S5, that is, both of which are
turned on and off periodically and complementarily, while the other switches are kept in
OFF-state. During this mode, the steady-state operation of the MPMDC can be mainly
divided into two stages over one switching cycle. Figure 7 depicts the key waveforms of
the converter and Figure 8 is the equivalent stage for each stage.

Energies 2022, 15, x FOR PEER REVIEW 7 of 28 
 

 

the transformer Tr. The PV panels and the magnetizing inductor Lm charge capacitor C1 

simultaneously. The energy of leakage inductance Lk is recycled to capacitor C1. As 

switches S1 and S2 are turned on again, the operation of SISO-PV mode over period T 

completes.  

2.1.2. SISO-Battery Mode 

In SISO-battery mode, the main switches become S4 and S5, that is, both of which are 

turned on and off periodically and complementarily, while the other switches are kept in 

OFF-state. During this mode, the steady-state operation of the MPMDC can be mainly 

divided into two stages over one switching cycle. Figure 7 depicts the key waveforms of 

the converter and Figure 8 is the equivalent stage for each stage.  

 iL1

t

t1 t2

Dsw4T

T

Stage 1

t0

vgs4

Stage 2

t

t

 iS5 vds5

iS4 vds4

t

t
vgs5

(1 Dsw4)T

 

Figure 7. The key waveforms of the proposed converter while operating in SISO-battery mode. 

S1

D1

D2 D3

D4

C1

Co

Lm

Vbus

N1 N2

Ro

Lk
Vpv

S2

S5

S3

S4 Vbat D5

VL1

 

S1

D1

D2 D3

D4

C1

Co

Lm

Vbus

N1 N2

Ro

Lk
Vpv

S2

S5

S3

S4 Vbat D5

VL1

 
(a) (b) 

Figure 8. Equivalent stages of the proposed converter in SISO-battery mode: (a) stage 1; and (b) 

stage 2. 

Stage 1 [t0–t1] 

As shown in Figure 8a, this stage starts at the time t = t0. In this stage, switch S4 keeps 

closed, and thus the voltage across inductor L1 will be Vbat. The current flowing through L1 

increases linearly. The capacitor Co discharges its energy to the load Ro. When switch S4 is 

turned off, this stage ends. 

Stage 2 [t1–t2] 

The time interval of this stage is from t1 to t2. The equivalent stage is shown in Figure 

8b. During this time interval, switch S5 is in ON-state, whereas S4 is kept open. The energy 

Figure 7. The key waveforms of the proposed converter while operating in SISO-battery mode.

Energies 2022, 15, x FOR PEER REVIEW 7 of 28 
 

 

the transformer Tr. The PV panels and the magnetizing inductor Lm charge capacitor C1 

simultaneously. The energy of leakage inductance Lk is recycled to capacitor C1. As 

switches S1 and S2 are turned on again, the operation of SISO-PV mode over period T 

completes.  

2.1.2. SISO-Battery Mode 

In SISO-battery mode, the main switches become S4 and S5, that is, both of which are 

turned on and off periodically and complementarily, while the other switches are kept in 

OFF-state. During this mode, the steady-state operation of the MPMDC can be mainly 

divided into two stages over one switching cycle. Figure 7 depicts the key waveforms of 

the converter and Figure 8 is the equivalent stage for each stage.  

 iL1

t

t1 t2

Dsw4T

T

Stage 1

t0

vgs4

Stage 2

t

t

 iS5 vds5

iS4 vds4

t

t
vgs5

(1 Dsw4)T

 

Figure 7. The key waveforms of the proposed converter while operating in SISO-battery mode. 

S1

D1

D2 D3

D4

C1

Co

Lm

Vbus

N1 N2

Ro

Lk
Vpv

S2

S5

S3

S4 Vbat D5

VL1

 

S1

D1

D2 D3

D4

C1

Co

Lm

Vbus

N1 N2

Ro

Lk
Vpv

S2

S5

S3

S4 Vbat D5

VL1

 
(a) (b) 

Figure 8. Equivalent stages of the proposed converter in SISO-battery mode: (a) stage 1; and (b) 

stage 2. 

Stage 1 [t0–t1] 

As shown in Figure 8a, this stage starts at the time t = t0. In this stage, switch S4 keeps 

closed, and thus the voltage across inductor L1 will be Vbat. The current flowing through L1 

increases linearly. The capacitor Co discharges its energy to the load Ro. When switch S4 is 

turned off, this stage ends. 

Stage 2 [t1–t2] 

The time interval of this stage is from t1 to t2. The equivalent stage is shown in Figure 

8b. During this time interval, switch S5 is in ON-state, whereas S4 is kept open. The energy 

Figure 8. Equivalent stages of the proposed converter in SISO-battery mode: (a) stage 1; and (b) stage 2.



Energies 2022, 15, 5629 7 of 26

Stage 1 [t0–t1]

As shown in Figure 8a, this stage starts at the time t = t0. In this stage, switch S4 keeps
closed, and thus the voltage across inductor L1 will be Vbat. The current flowing through L1
increases linearly. The capacitor Co discharges its energy to the load Ro. When switch S4 is
turned off, this stage ends.

Stage 2 [t1–t2]

The time interval of this stage is from t1 to t2. The equivalent stage is shown in
Figure 8b. During this time interval, switch S5 is in ON-state, whereas S4 is kept open. The
energy stored in L1 is released to the load Ro, and therefore its current decreases linearly.
When S5 is turned off and the switch S4 is turned on again, this stage ends.

2.1.3. DISO Mode

In DISO mode, switches S1, S2 and S4 serve as main switches, in which S1 and S2
are turned on and off simultaneously; meanwhile, the switch S4 is also turned on at the
same time as S1 and S2 but its ON-state will last for a longer time than S1 and S2. The
operation of DISO can be mainly divided into four stages over one switching cycle. The
key waveforms of DISO are depicted in Figure 9. In addition, the corresponding equivalent
stage of each stage is illustrated in Figure 10.
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Stage 1 [t0–t1]

This stage starts at the time t = t0, of which the equivalent stage circuit is presented in
Figure 10a. During the time interval t0–t1, switches S1, S2 and S4 are closed and then the
magnetizing inductance Lm and leakage inductance Lk absorb energy from the PV panels
and capacitor C1. The battery Vbat is across the inductor L1 directly and the current flowing
through L1 increases linearly. The capacitor Co discharges to the load Ro. When the switches
S1 and S2 are turned off, this stage ends.

Stage 2 [t1–t2]

This stage lasts from t1 to t2 and Figure 10b is the equivalent stage circuit. Switch
S4 is still in ON-state and diodes D1 and D2 are forward biased. The PV panels along
with magnetizing inductance Lm release energy to capacitor C1. At the same time, leakage
inductance Lk recycles its energy to capacitor C1. The battery voltage Vbat is still charging
the inductor L1, and capacitor Co supplies energy to the load Ro. Since switch S3 and
diode D3 have broken the current path of the transformer, no current flows through the
transformer. This operating stage ends when switch S4 is turned off.

Stage 3 [t2–t3]

At the time t2, the converter operation enters Stage 3. Figure 10c is the equivalent
stage of this stage, in which diodes D1, D2, and D4 are forward biased, and parasitic diodes
DS3 and DS5 are also in ON-state. The inductor L1 releases energy to the load Ro through
D4, DS3, and DS5. When parasitic diode DS5 is reversely biased, this stage ends.

Stage 4 [t3–t4]

The time interval of this stage is from t3 to t4. As shown in Figure 10d, diodes D1,
D2, D4, and parasitic diodes DS3 still keep conducting. The energy stored in Lm and L1 is
simultaneously released to the load Ro. This operation stage ends when switches S1, S2,
and S4 have been turned on again.

2.1.4. SIDO Mode

While in SIDO mode, the switches S1, S2, and S3 act as the main switch. The S1 and
S2 are turned on and off at the same time, that is, both of which are controlled by an
identical switching signal. Concerning S3, it is turned on synchronously as S1 and S2 but
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asynchronously at turn-off time. The converter operation in SIDO can be divided into four
stages over one switching cycle. The key waveforms are shown in Figure 11, while the
equivalent stages are illustrated in Figure 12.
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Stage 1 [t0–t1]

This stage starts at t = t0. Figure 12a is the equivalent stage circuit, in which switches
S1, S2, and S3 are turned on at the same time. The series voltage of Vpv and VC1 is connected
to Lm and Lk, and thus the currents iLm and iLk increase linearly. The secondary of the
transformer forwards energy to the inductor L1 and the load Ro. When the switch S3 is
turned off and the body diode of switch S4, DS4, is forward biased, this stage ends.

Stage 2 [t1–t2]

The time interval of this stage is from t1 to t2, as shown in Figure 12b, in which S3 is
OFF while S1 and S2 are still ON. The PV panels and capacitor C1 keep charging the Lm
and Lk. The inductor L1 releases its stored energy to charge the battery, and capacitor Co
supplies the load Ro. In this state, the current path of the transformer will be broken by
switch S3 and diode D3. This stage ends when both switches S1 and S2 are turned off.

Stage 3 [t2–t3]

At t = t2, Stage 3 begins, whose equivalent stage is shown in Figure 12c. At the primary
of the transformer, the diodes D1 and D2 become forward-biased, and the energy stored in
the Lm and Lk is released to capacitor C1. There is the same circuit behavior at the secondary
of the transformer, in which the inductor L1 is still charging the battery, and capacitor Co
supplies the load Ro. When the current of inductor L1 decreases to zero, this stage ends.

Stage 4 [t3–t4]

The time in this stage is from t3 to t4, as shown in Figure 12d. During this time
interval, diodes D1 and D2 are still conducted. The magnetizing inductor Lm is continuously
charging capacitor C1, and capacitor Co supplies the load Ro. This operating stage ends
when switches S1, S2, and S3 have been turned on again.

2.1.5. BF Mode

In BF mode, the main switches are S4 and S5, which are controlled complementarily.
The BF-mode operation has two main stages over one switching cycle. The key waveforms
of BF mode are depicted in Figure 13; meanwhile, its corresponding equivalent stages are
illustrated in Figure 14.
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Stage 1 [t0–t1]

As shown in Figure 14a, this stage lasts from t0 to t1, in which switch S5 is ON-state.
The voltage of Co is applied to L1 and therefore the current flowing through L1 will increase
linearly. This linearly increasing current stops raising at the time switch S5 is turned off.

Stage 2 [t1–t2]

At the moment S5 is turned off and S5 is turned on, this stage starts. Stage 2 continues
from t1 to t2, the equivalent stage of which is shown in Figure 14b. During this stage, the
energy of inductor L1 is released and then charges the battery. This operating stage ends
when switch S5 is turned on again.

3. Steady-State Analysis

To simplify the steady-state analysis of the proposed converter, the following assump-
tions are made:

• All components are considered ideal;
• All the values of capacitors are large enough to keep their voltage constant during one

switching cycle;
• The turns ratio of the transformer Tr is expressed as n = N2

N1
;

• The Lm of the Tr and the inductor L1 both are operated in CCM.

3.1. Voltage Gain

The voltage-gain derivation toward the operation modes, that is, SISO-PV mode,
SISO-battery mode, DISO mode, SIDO mode, and BF mode, are discussed one by one
as follows.

3.1.1. Derivation for SISO-PV Mode

As referred to in Figure 6a, the switches S1 and S2 are ON, and the series voltage of
VC1 and Vpv is connected to Lm. That is,

VLm,SISO-PV = Vpv + VC1 (1)

When the switches S1 and S2 are OFF, as shown in Figure 6b, the difference voltage of
Vpv and VC1 is applied to Lm. In addition, the secondary of the transformer is connected to
the load through the diodes D3 and D4. Accordingly, the following relationships hold:

VLm,SISO-PV = Vpv −VC1 (2)

and
nVLm,SISO-PV = −Vbus (3)
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Based on the volt-second balance criterion (VSBC), the voltage gain of bus voltage to
PV voltage in SISO-PV mode, MSISO-PV, is therefore concluded as:

MSISO-PV =
Vbus
Vpv

=
2nDsw1

1− 2Dsw1
, (4)

in which the Dsw1 stands for the duty ratio of S1. To further understand how the Dsw1
affects the voltage gain MSISO-PV, the curve to illustrate their relationship is depicted in
Figure 15, in which the turns ratio, n, is set to be 1.5.
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3.1.2. Derivation for SISO-Battery Mode

In Figure 8a, switch S4 is closed, and the battery is directly connected to inductor L1.
Then,

VL1,SISO-Battery = −Vbat. (5)

While switch S4 is open, the corresponding equivalent stage is shown in Figure 8b, in
which the inductor L1 pumps its stored energy to the bus. That is,

VL1,SISO-Battery = Vbus. (6)

Similarly, based on VSBC, the voltage gain of the converter in SISO-battery mode can
be expressed as:

MSISO-battery =
Vbus
Vbat

=
Dsw4

1− Dsw4
. (7)

In (7), the MSISO-battery denotes the ratio of bus voltage to battery voltage. The relation-
ship between the voltage gain MSISO-Battery and duty cycle Dsw4 is represented in Figure 16.
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3.1.3. Derivation for DISO Mode

To derive the voltage gain of the converter in DISO mode, Figure 10 is referred to.
In Figure 10a, switches S1, S2, and S4 are closed. On the primary side of the transformer,
magnetizing inductance Lm absorbs energy from the PV panels and capacitor C1. On the
secondary side, the battery charges the inductor L1. Therefore,

VLm,DISO = Vpv + VC1. (8)

VL1,DISO = −Vbat. (9)

When switches S1 and S2 are turned off, as shown in Figure 10b, capacitor C1 will be
charged by the PV panels and the Lm. Therefore,

VLm,DISO = Vpv −VC1. (10)

When switch S4 is turned off, referred to in Figure 10d, the energy stored in both
inductors L1 and Lm will be released to the load. The voltage across L1 can be expressed
as follows:

VL1,DISO = Vbus + nVLm,DISO = Vbus + n
(
Vpv −VC1

)
. (11)

Then, based on VSBC, the voltage gain of the converter while operating in DISO mode,
MDISO, is therefore found as:

MDISO =
Vbus

Vpv + Vbat
=

2nVpvDsw1(1− Dsw4) + VbatDsw4(1− 2Dsw1)(
Vpv + Vbat

)
(1− 2Dsw1)(1− Dsw4)

. (12)

In (12), it can be observed that both duty cycles of S1 and S4 dominate the voltage gain
in DISO mode. Figure 17 indicates the relationship between MDISO, Dsw1, and Dsw4.
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3.1.4. Derivation for SIDO Mode

For the derivation of the voltage gain in SIDO, Figure 12a is referred to, in which
the switches S1, S2 and S3 are ON. The magnetizing inductor Lm stores energy from the
PV panels VPV and the capacitor C1. The PV panels and the capacitor C1 also supply
power to inductor L1 and the load Ro through the transformer. Therefore, the following
relationships hold:

VLm,SIDO = Vpv + VC1. (13)

VL1,SIDO = nVLm,SIDO = n(Vpv + VC1) = Vbus. (14)

When switches S1 and S2 are turned off, as shown in Figure 10c, the energy of the
magnetizing inductor Lm is released to capacitor C1. Inductor L1 will charge the battery
Vbat. Accordingly,

VLm,SIDO = Vpv −VC1. (15)

VL1,SIDO = −Vbat. (16)
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With VSBC, the voltage gain is concluded as:

MSIDO =
Vbat
Vpv

=
2nDsw3(1− Dsw1)

(1− 2Dsw1)(1− Dsw3)
. (17)

Figure 18 indicates the voltage gain MSIDO versus duty cycles Dsw1 and Dsw3.
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3.1.5. Derivation for BF Mode

In BF mode, since the energy is reversely drawn from the DC bus to charge the battery,
the voltage gain becomes the ratio of Vbat to Vbus. Referring to Figure 14a, it can be found
that because the switch S5 is closed, the voltage across the inductor L1 is equal to the bus
voltage. That is,

VL1,BF = Vbus. (18)

After switch S5 is turned off, as shown in Figure 14b, the energy stored in inductor L1
is released to charge the battery. That is,

VL1,BF = −Vbat. (19)

The circuit behavior of the BF mode resembles that of a buck converter. Applying
VSBC to the durations of switch-ON and switch-OFF can yield

MBF =
Vbat
Vbus

=
Dsw5

1− Dsw5
, (20)

in which the MBF and Dsw5 indicate the voltage gain of BF mode and duty cycle of switch
S5. Figure 19 depicts this voltage gain versus its related switch cycle.
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To clarify the voltage gain of the converter in different modes, Table 1 summarizes the
expression of MSISO-PV, MSISO-battery, MDISO, MSIDO, and MBF.

Table 1. Voltage gains of the proposed converter in different modes.

Mode Voltage Gain

SISO-PV mode MSISO−PV = Vbus
Vpv

= 2nDsw1
1−2Dsw1

SISO-battery mode MSISO−Battery = Vbus
Vbat

= Dsw4
1−Dsw4

DISO mode MDISO = Vbus
Vpv+Vbat

=
2nVpvDsw1(1−Dsw4)+VbatDsw4(1−2Dsw1)

(Vpv+Vbat)(1−2Dsw1)(1−Dsw4)

SIDO mode MSIDO = Vbat
Vpv

=
2nDsw3(1−Dsw1)

(1−2Dsw1)(1−Dsw3)

BF mode MBF = Vbat
Vbus

= Dsw5
1−Dsw5

3.2. Voltage Stresses on the Semiconductors

All semiconductor devices will sustain different levels of voltage and current in
different operation modes. The maximum sustained voltage and current among the five
modes should be treated as the power rating of a selected semiconductor device. In the
following, the estimation of the maximum voltage stress for all semiconductor devices
is first carried out, followed by the determination of the maximum current stress in the
next subsection.

The S1, S2, D1, and D2 in the power stage will block the same voltage in the modes
of SISO-PV, DISO, and SIDO. This blocking voltage is higher than that in the other modes
of the converter. Therefore, to calculate the voltage rating of S1, S2, D1, and D2, one of the
SISO-PV, DISO, and SIDO modes will be considered. According to Figure 6, the blocking
voltage is equal to the voltage across C1. Therefore,

VS1,stress = VS2,stress = VD1,stress = VD2,stress = VC1 =
Vpv

1− 2Dsw1
. (21)

The switch S3 will block a maximum voltage in DISO mode and SIDO mode as well.
From the equivalent stage in Figure 12b, this blocking voltage is calculated and given below:

VS3,stress = n
(
Vpv + VC1

)
+ Vbat = nVpv

(
1 +

1
1− 2Dsw1

)
+ Vbat. (22)

Considering S4 and S5, both switches have the highest voltage stress in DISO mode.
The voltage stresses of S5 and S4 can be determined in Figure 10a,c, respectively. Both
voltage stresses are the same and can be given as

VS4,stress = VS5,stress = Vbus + Vbat. (23)

To determine the voltage stress of diode D3, SIDO mode is considered and the equiva-
lent stage in Figure 12c is utilized, from which it can be concluded that

VD3,stress = n(Vpv + VC1) = n(Vpv +
Vpv

1− 2Dsw1
). (24)

The rest of the voltage-stress determination of the semiconductor component is for
diodes D4 and D5. Diodes D4 and D5 endure the same maximum voltage in DISO mode.
From Figure 10a, the voltage stresses of both diodes can be found as

VD4,stress = VD5,stress = Vbus. (25)
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3.3. Current Stresses on the Semiconductors

The semiconductor devices, S1, S2, D1, and D2, identically undergo maximum current
stress in SISO-PV mode. Therefore, from Figure 6a, the current stresses of S1 and S2 can be
derived as

IS1,stress = IS2,stress =
n

1− 2Dsw1
Io. (26)

In addition, from Figure 6b, it can be found that the current flowing through the
switches S1 and S2 will pass the diodes of D1 and D2. Therefore, the current stresses of D1
and D2 can be expressed as

ID1,stress = ID2,stress =
n

1− 2Dsw1
Io. (27)

The current stresses of S3, S4, S5, and diode D5 can be determined in SIDO mode, in
which these components will endure the highest current stresses. As Figure 12a is referred
to, the current stresses of S3, S5, and D5 can be calculated as

IS3,stress = IS5,stress = ID5,stress =
−1 + 2Dsw1 − 3Dsw3 + 2D2

sw3
(−2 + 2Dsw1)Dsw3

Io. (28)

While referring to Figure 12b, it can be found that the switch S4 endures the same
current as that of switch S5

IS4,stress =
−1 + 2Dsw1 − 3Dsw3 + 2D2

sw3
(−2 + 2Dsw1)Dsw3

Io. (29)

The remaining part of the current-stress determination is for diodes D3 and D4. For
diode D3, SISO-PV mode is applied. Based on Figure 6b, the current stress of diode D3 can
be accordingly calculated and given as

ID3,stress =
1

1− Dsw1
Io. (30)

Meanwhile, DISO mode is applied and then, the current stress of diodes D4 can be
obtained. According to Figure 10d, this current stress is given below:

ID4,stress =
nDsw4

1− 2Dsw1
Io. (31)

3.4. Inductance Design

There are two magnetic devices utilized in the MPMDC, which are L1 and Tr. The
inductance of L1 and the magnetizing inductance of Lm both have to be in good design for
achieving better features of converter operation. The Tr will be used in SISO-PV, DISO, and
SIDO modes, among which the SISO-PV is the major mode for the design of Tr. That is, the
Lm in Tr will carry the largest amount of current among all converter modes. Therefore,
the inductance design of Lm is based on SISO-PV mode. To ensure that the Lm can be in
continuous conduction mode (CCM) over all the five converter modes, the minimum of the
magnetizing current, iLm,min, is therefore estimated and expressed as

iLm,min = ILm,avg −
∆iLm

2
=

nIo

1− 2Dsw1
−

VpvDsw1

2Lm fs
. (32)
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At the boundary conduction mode (BCM), iLm,min is set to be zero. Accordingly, the
designed inductance of Lm has to be greater than the minimum inductance Lm,min for CCM
operation. The Lm,min will be calculated as follows:

Lm,min =
(1 − Dsw1)(1− 2Dsw1)Ro

2n2 fs
. (33)

For L1 design, it will be used in the modes of SISO-battery, DISO, SIDO, and BF. The
SISO-battery mode is the major mode because the L1 will carry the largest amount of
current in this mode. The minimum current of L1, iL1, can be derived as

iL1,min = IL1,avg −
∆iL1

2
=

VbatDsw4

R(1− Dsw4)
2 −

VbatDsw4T
2L1

. (34)

At boundary condition, the iL1, min is equal to zero. Then, calculating with (34) will
yield the minimum value of L1, L1,min, to ensure the converter can be in CCM operation.

L1,min =
(1− Dsw4)

2Ro

2 f s
. (35)

3.5. Capacitance Design

How large the value of capacitance will affect the voltage fluctuation on a capacitor.
The voltage variation of capacitor C1, denoted as ∆VC1, is determined by capacitor current
iC1, switching frequency fs, and its capacitance. That is,

∆VC1 =
iC1∆t

C1
, (36)

in which capacitor current iC1 can be estimated by

iC1 =
1− 2Dsw1

2nDsw1
Io. (37)

Therefore, the capacitance C1 can be obtained as

C1 =
(1− 2Dsw1)Io

2nDsw1∆VC1 fs
. (38)

From the above relationship, it can be realized that the smaller ∆VC1 is required, the
higher capacitance C1 must be adopted. In addition, switch duty ratio Dsw1, switching fre-
quency fs, and the output current Io will also influence the determination of the capacitance.

As for the other capacitor Co, voltage fluctuation on it can be expressed as

∆VCo =
iCo∆t

Co
. (39)

Since the iCo is equal to the output current Io, capacitance Co can thus be expressed as

Co =
IoDsw1

∆VCo fs
. (40)

The above relationship reveals that the capacitance Co is inversely proportional to the
voltage fluctuation on the output capacitor, ∆VCo. In addition, output current Io, the duty
ratio of switch S1, and switching frequency fs will also dominate the determination of Co,
which is the same as the estimation of C1.
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4. Experimental Results

To verify the feasibility of the proposed MPMDC, a 200-W prototype is built and
then tested. Figure 20 is the photograph of the prototype. The associated parameters and
circuit components used in the main power stage are summarized in Table 2. In converter
control, all the parameters at the terminals of the converter are detected to determine which
operation mode will be selected, as illustrated in Figure 21. Then, associated sub-control
blocks are called for to determine control signals for the corresponding operation of a
selected mode. There are three sub-control blocks, as shown in Figure 22, which are the sub-
control block of PV power injection (SCPVPJ), the sub-control block of battery discharge
(SCBD), and the sub-control block of battery charge (SCBC). The SCPVPJ is in charge of
the control of drawing PV power with maximum power point tracking (MPPT) and then,
exports the PV power to output by controlling the active switches S1 and S2. The SCBD is
responsible for the determination of the control signals for switches S4 and S5 so that the
proposed converter can perform battery discharging. Meanwhile, the SCBC is for switches
S3, S4 and S5 to fulfill the battery charging of the converter.
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Table 2. Circuit parameters and components used in the prototype.

Parameters Values & Specifications

Pbus (DC-bus power) 200 W
Pbat (Battery power) 50 W

Vbus (DC-bus voltage) 200 V
Vpv (PV voltage) 24 V

Vbat (Battery voltage) 48 V
fs (Switch frequency) 50 kHz

L1 (Inductance) 300 µH
Lm (Magnetizing inductance) 270 µH

Lk (Leakage inductance) 3.6 µH
S1 and S2 (Power MOSFET) IXTK90N25L2 (250 V/90 A)

S3, S4 and S5 (Power MOSFET) IXFH36N50P (500 V/36 A)
D1 and D2 (Diodes) DSSK 60-02A (200 V/2 × 30 A)

D3, D4 and D5 (Diodes) DPG60C300HB (300 V/2 × 30 A)
C1 (Electrolytic capacitor) 3 × 10 µF
Co (Electrolytic capacitor) 100 µF

Cbat (Electrolytic capacitor) 68 µF
n (Transformer turns ratio) 43:65
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4.1. SISO-PV Mode

While the MPMDC works in SISO-PV mode and at full load, Figure 23 shows associ-
ated experimental measurements. Figure 23a is the switch voltage of S1 and S2, along with
the corresponding control signals, in which the blocking voltage of both switches is around
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160 V. Figure 23b is the measured current waveform of switches S1 and S2. The current
waveform reveals that the average current of both switches is about 9.92 A, which is close
to the theoretical result of 9.87 A calculated from (26). The leakage current is illustrated in
Figure 23c. In addition, the average current of diodes D1 and D2 is presented in Figure 23d,
which is calculated as 9.89 A, and this value approaches the theoretical estimation of (27).
Similarly, the measured current of D3 is given in Figure 23e, and its average is about 1.77 A,
which meets the calculating result from (30).

Energies 2022, 15, x FOR PEER REVIEW 21 of 28 
 

 

PI
Vbat,ref

Vbat Ibat

PI

vgs3

Vbat Vbat,ref

IPV

0

vgs5

vgs4
 

(c) 

Figure 22. The three sub-control blocks of the converter: (a) SCPVPJ, (b) SCBD, and (c) SCBC. 

4.1. SISO-PV Mode 

While the MPMDC works in SISO-PV mode and at full load, Figure 23 shows associ-

ated experimental measurements. Figure 23a is the switch voltage of S1 and S2, along with 

the corresponding control signals, in which the blocking voltage of both switches is 

around 160 V. Figure 23b is the measured current waveform of switches S1 and S2. The 

current waveform reveals that the average current of both switches is about 9.92 A, which 

is close to the theoretical result of 9.87 A calculated from (26). The leakage current is illus-

trated in Figure 23c. In addition, the average current of diodes D1 and D2 is presented in 

Figure 23d, which is calculated as 9.89 A, and this value approaches the theoretical esti-

mation of (27). Similarly, the measured current of D3 is given in Figure 23e, and its average 

is about 1.77 A, which meets the calculating result from (30). 

vds1, vds2 (100 V/div)

vgs1, vgs2 (10 V/div)
5 μs/div

 

iS1, iS2 (10 A/div)

vgs1, vgs2 (10 V/div)
5 μs/div

 
(a) (b) 

vgs1, vgs2 (10 V/div)

iLk (10 A/div)

5 μs/div

 

iD1, iD2 (10 A/div)

vgs1, vgs2 (10 V/div)

5 μs/div

 
(c) (d) 

Energies 2022, 15, x FOR PEER REVIEW 22 of 28 
 

 

iD3 (2 A/div)

vgs1, vgs2 (10 V/div)
5 μs/div

 
(e) 

Figure 23. Measured waveforms of the MPMDC in SISO-PV mode: (a) switch voltages of S1 and S2; 

(b) switch currents of S1 and S2; (c) leakage-inductance current; (d) diode currents of D1 and D2; and 

(e) diode current of D3. 

4.2. SISO-Battery Mode 

While the MPMDC works in SISO-Battery mode and at full load, Figure 24 shows the 

associated experimental measurements. Figure 24a is the switch voltage of S4, along with 

the corresponding control signal, in which the blocking voltage of the switch is around 

200 V. Figure 24b is the measured current waveform of switches S4. This current waveform 

reveals that the average current of both switches is about 5.34 A. The inductor current iL1 

is illustrated in Figure 24c. In addition, from Figure 24d, since the switch current iS5 is 

negative, the switch S5 can be worked as a synchronous switch. In SISO-battery mode, the 

practical average current of S5 is around 5.31 A. 

5 μs/div
vgs4 (10 V/div)

vds4 (100 V/div)

 

5 μs/div
vgs4 (10 V/div)

iS4 (5 A/div)

 
(a) (b) 

vgs4 (10 V/div)
5 μs/div

 iL1 (5 A/div)

 

vgs4 (10 V/div)

iS5 (5 A/div)

5 μs/div

 

(c) (d) 

Figure 24. Measured waveforms of the MPMDC in SISO-Battery mode: (a) switch voltage of S4; (b) 

switch current of S4; (c) inductor current of L1; and (d) switch current of S5. 

4.3. DISO Mode 

To demonstrate the converter in DISO-mode operation, associated key measure-

ments at full load are illustrated in Figure 25. Figure 25a is the switch current of S4 and its 
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Figure 23. Measured waveforms of the MPMDC in SISO-PV mode: (a) switch voltages of S1 and S2;
(b) switch currents of S1 and S2; (c) leakage-inductance current; (d) diode currents of D1 and D2; and
(e) diode current of D3.

4.2. SISO-Battery Mode

While the MPMDC works in SISO-Battery mode and at full load, Figure 24 shows the
associated experimental measurements. Figure 24a is the switch voltage of S4, along with
the corresponding control signal, in which the blocking voltage of the switch is around
200 V. Figure 24b is the measured current waveform of switches S4. This current waveform
reveals that the average current of both switches is about 5.34 A. The inductor current iL1
is illustrated in Figure 24c. In addition, from Figure 24d, since the switch current iS5 is
negative, the switch S5 can be worked as a synchronous switch. In SISO-battery mode, the
practical average current of S5 is around 5.31 A.
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Figure 24. Measured waveforms of the MPMDC in SISO-Battery mode: (a) switch voltage of S4;
(b) switch current of S4; (c) inductor current of L1; and (d) switch current of S5.

4.3. DISO Mode

To demonstrate the converter in DISO-mode operation, associated key measurements
at full load are illustrated in Figure 25. Figure 25a is the switch current of S4 and its
control signal, in which the switch current is measured to be around 3.02 A. In Figure 25b,
the inductor current iL1 increases or decreases linearly, which verifies that the voltage
across inductor L1 can be invariable during the periods of switch ON and switch OFF.
That is, the capacitances adopted in the converter are valid for constant-voltage sustaining.
Additionally, the iL1 is negative, which proves that battery energy can be fed to the DC-bus.
The diode currents of D1 and D2 are shown in Figure 25c, the average of which is measured
as 4.23 A. This value is lower than that in Figure 25d, which confirms that the diodes D1
and D2 endure a maximum current in SISO-PV mode. The measured current of D4 is also
given in Figure 25d, and its average is about 3.11 A, which meets the calculating result
from (31).
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Figure 25. Measured waveforms of the MPMDC in DISO mode: (a) switch current of S4; (b) inductor
current of L1; (c) diode currents of D1 and D2; and (d) diode current of D4.



Energies 2022, 15, 5629 22 of 26

4.4. SIDO Mode

As for working in SIDO mode, Figure 26 is the related measurement of switch currents
at full load. Figure 26a shows the switch current of S3, from which it can be calculated
that the average of this current is 3.21 A. This value is close to the theoretical estimation of
2.98 A according to (28). Figure 26b is the measured current waveform of S1 and S2, which
reveals that the peak current of both switches is less than 10 A.
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Figure 26. Measured waveforms of the MPMDC in SIDO mode: (a) switch current of S3; and
(b) switch currents of S1 and S2.

4.5. BF Mode

While in BF mode, Figure 27 illustrates the experimental voltage and current wave-
forms. The switch S5 serves as the main switch, and its voltage along with the control
signal is shown in Figure 27a. Meanwhile, Figure 27b is the measured current waveform
of S5, according to which the average current of S5 can be found and about 1.22 A. The
inductor current iL1 is also measured and presented in Figure 27c, observed from which
this current is always positive. That is, the DC bus charges the battery in this mode.
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As for the demonstration of a sudden change from an operation mode to another mode,
the mode change from SISO-battery to DISO is carried out and the voltages of DC bus, PV
panels, and battery are measured, which are shown in Figure 28. In this case, the DC-bus
requires a specific power of 200 W, and at the beginning, the battery supplies this 200-W
loading. Then, PV panels begin to inject energy into the DC bus to share the power supply
and will provide half of the load at the end. Accordingly, the providing power of the battery
will drop to 100 W. Figure 28 illustrates that the converter can achieve system stability
over the mode change. Figure 29 depicts the converter efficiency of the prototype from
light load to full load. This measurement reveals that the DISO possesses higher efficiency
than the other operation modes and its peak efficiency can be up to 94%. The converter
efficiency will vary with which operation mode to select and how much power to be dealt
with. Among the five operation modes, in terms of average efficiency from light load to
full load, the converter will obtain the best efficiency in DISO mode and the worst in SIDO
mode. The reason is that conduction losses dominate conversion efficiency. At a specific
power, the PV port will carry a still higher current in SIDO than that in DISO, which results
in lower efficiency in SIDO. The power budget of the converter in DISO mode and SIDO
mode at rated power is illustrated in Figures 30 and 31, respectively, from which it can be
observed that switch losses and diode losses will dominate the converter efficiency. In DISO
mode, switch losses and diode losses count for 26% and 47%, respectively. Meanwhile, in
SIDO mode, count for 37% and 30%, respectively. To improve efficiency, a soft-switching
mechanism and power semiconductor devices with better performance and low forward
voltage can be considered.
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Figure 29. The measured efficiency of the prototype. 
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6. Conclusions

A multi-port multi-directional converter is proposed, which can accomplish a variety
of power flow controls to perfectly function clear-energy management in a single-stage
structure. The converter operation modes can be up to five, which surpass other similar
converters in power processing. In addition, the proposed converter possesses galvanic
isolation and can achieve a high voltage-conversion ratio even only utilizing an inductor
and a transformer. The energy stored in the leakage inductance of the transform can be
recycled. To demonstrate the feasibility and verify the theoretical analysis of the converter,
a 200-W prototype is built and then tested. From the measurements, it is confirmed that
all the practical results can be consistent with the theoretical discussion and the converter
is very suitable to deal with various clean-energy sources. At full-load conditions, the
conversion efficiency of the converter in SISO-PV, SISO-battery, DISO, SIDO, and SISO are
85%, 88%, 91%, 84%, and 90%, respectively.
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