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Abstract

In this article, we study the adaptation of visual and audio-visual speech recognition systems to non-ideal visual

conditions. We focus on overcoming the effects of a changing pose of the speaker, a problem encountered in

natural situations where the speaker moves freely and does not keep a frontal pose with relation to the camera. To

handle these situations, we introduce a pose normalization block in a standard system and generate virtual frontal

views from non-frontal images. The proposed method is inspired by pose-invariant face recognition and relies on

linear regression to find an approximate mapping between images from different poses. We integrate the

proposed pose normalization block at different stages of the speech recognition system and quantify the loss of

performance related to pose changes and pose normalization techniques. In audio-visual experiments we also

analyze the integration of the audio and visual streams. We show that an audio-visual system should account for

non-frontal poses and normalization techniques in terms of the weight assigned to the visual stream in the

classifier.

1 Introduction

The performance of automatic speech recognition (ASR)

systems degrades heavily in the presence of noise, com-

promising their use in real world scenarios. In these cir-

cumstances, ASR systems can benefit from the use of

other sources of information complementary to the

audio signal and yet related to speech. Visual speech

constitutes such a source of information. Mimicking

human lipreading, visual ASR systems are designed to

recognize speech from images and videos of the speak-

er’s mouth. This fact gives rise to audio-visual automatic

speech recognition (AV-ASR), combining the audio and

visual modalities of speech to improve the performance

of audio-only ASR, especially in presence of noise [1,2].

In these situations, we cannot trust the corrupted audio

signal and must rely on the visual modality of speech to

guide recognition. The major challenges that AV-ASR

has to face are, therefore, the definition of reliable visual

features for speech recognition and the integration of

the audio and visual cues when taking decisions about

the speech classes.

A general framework for AV-ASR [1,3] has been

developed during the last years, but for a practical

deployment the systems still lack robustness against

non-ideal working conditions. Research has particularly

neglected the variability of the visual modality subject to

real scenarios, i.e., non-uniform lighting and non-frontal

poses caused by natural movements of the speaker. The

first studies on AV-ASR with realistic conditions [4,5]

applied directly the systems developed for ideal visual

conditions, obtaining poor lipreading performance and

failing to exploit the visual modality in the multi-modal

systems. These studies pointed out the necessity of new

visual feature extraction methods robust to illumination

and pose changes. In particular, the topic of pose-invar-

iant AV-ASR is central for the future deployment of this

technology in genuine AV-ASR applications, e.g., smart-

rooms or in-car vehicle systems. In these scenarios the

audio modality is degraded by noise and the inclusion of

visual cues can improve recognition. However, in nat-

ural situations the speaker moves freely, a frontal view

to the camera is rarely kept and pose-invariant AV-ASR

is necessary. It can be considered, then, as the first step

in the adaptation of laboratory AV-ASR systems to the

conditions expected in real applications.

In lipreading systems, the variations of the mouth’s

appearance caused by different poses are more signifi-

cant than those caused by different speech classes and,

therefore, recognition degrades dramatically when non-
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frontal poses are matched against frontal visual models.

It is necessary to develop an effective framework for

pose invariant lipreading. In particular, we are interested

in pose-invariant methods which can easily be incorpo-

rated in the AV-ASR systems developed so far for ideal

frontal conditions and reduce the train/test mismatch

derived from pose changes. Techniques to adapt ASR

systems to working conditions have already been devel-

oped for the audio modality (Cepstral mean subtraction

[6] and RASTA processing [7]), but equivalent methods

are necessary for the visual modality. In fact, the same

problem exists in face recognition and several methods

proposed for pose-invariant face recognition [8-11] can

be applied to the lipreading problem. Motivated by

these studies and the potential of AV-ASR in human-

computer interfaces [12], we propose to introduce a

pose normalization step in a system designed for frontal

views, i.e., we generate virtual frontal views from the

non-frontal images and rely on the existing frontal

visual models to recognize speech. The pose normaliza-

tion block has also an effect on the audio-visual fusion

strategy, where the weight associated to the visual

stream in the speech classifier should reflect its reliabil-

ity. We can expect the virtual frontal features generated

by pose normalization to be less reliable than the fea-

tures extracted directly from frontal images. Therefore,

the weight assigned to the visual stream on the audio-

visual classifier should also account for the pose

normalization.

Previous study on this topic is limited to Lucey et al.

[13,14], who projected the final visual speech features of

complete profile images to a frontal viewpoint with a

linear transform. However, the authors do not justify

the use of a linear transform between the visual speech

features of different poses, are limited to the extreme

cases of completely frontal and profile views and their

audiovisual experiments are not conclusive. Compared

to these studies, we introduce other projection techni-

ques applied in face recognition to the lipreading task

and discuss and justify their use in the different feature

spaces involved in the lipreading system: the images

themselves, a smooth and compact representation of the

images in the frequency domain or the final features

used in the classifier. We also analyze the effects of pose

normalization in the audio-visual fusion strategy in

terms of the weight associated to the visual stream.

Lucey et al. [13] propose an audio-visual system based

on the concatenation of audio and visual features in a

single stream, which is later processed in the speech

classifier neglecting the multi-modal nature of speech

and the possibility to assign different weights to the

audio and visual streams. The main contributions of this

study, partially presented in [15], are the adaptation of

pose-invariant methods used in face recognition to the

lipreading system, the study of linear regression for pose

normalization in different feature spaces and the study

of its effects on the weight associated to the visual

stream in the classifier. Our experiments are the first

comprehensive experimental validation of pose normali-

zation in visual and audio-visual speech recognition,

analyzing the adaptation of laboratory AV-ASR systems

to the conditions expected in real applications.

The article is organized as follows. First, we review the

structure of an AV-ASR system and explains how the

pose-invariance is introduced. We then present the

techniques adopted in face recognition to obtain a

multi-pose system, adapt some of them to the lipreading

problem and study the different feature spaces where

the pose normalization can take place. Finally, we report

experimental results for visual and audio-visual ASR sys-

tems and present the conclusions of our study.

2 Audio-visual speech recognition

In terms of the visual modality, AV-ASR systems differ

in three major aspects: the visual front-end, the audio-

visual integration strategy and the pattern classifier asso-

ciated to the speech recognition task. In Figure 1, we

present a typical AVSR system. First, the audio front-

end extracts the audio features that will be used in the

classifier. This block is identical to that of an audio-only

ASR system and the features most commonly used are

perceptual linear predictive [16] or Mel frequency ceps-

tral coefficients [17,18]. In parallel, the face of the

speaker has to be localized from the video sequence and

the region of the mouth detected and normalized before

relevant features can be extracted [1,19]. Typically, both

audio and visual features are extended to include some

temporal information of the speech process. Then, the

features are used in statistical classifiers, usually hidden

Markov models (HMM) [20], to estimate the most likely

sequence of phonemes or words. The fusion of informa-

tion between modalities can happen at two stages [1]:

merging the extracted features before going through

pattern classifiers or on the statistical models used for

classification. In the following, we focus on the visual

modality, in particular in the blocks affected by the pose

changes on the speaker: the extraction of visual features

from images of the mouth and the integration of the

visual and audio streams. Finally, we describe the stan-

dard AV-ASR system that we adopt and describe how

pose normalization can be included in it.

2.1 Visual front-end

The first task on the visual front-end is to identify and

extract a normalized region of interest (ROI), which is

usually a rectangle centered on the mouth of the

speaker [1,21,22]. The normalization of the ROI requires

a robust method to detect the face and extract centered,
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aligned, and scaled images of the mouth for each

sequence to makes recognition invariant to small move-

ments of the speaker [19]. This preprocessing step is

not part of the lipreading system and it is usually

included in the face detection block because the position

of the mouth, its size and alignment are determined in

relation to other face features (the eyes, the tip of the

nose). However, an accurate extraction of the mouth

ROI is critical in lipreading systems and induced the

term front-end effect to refer to the effects of the ROI

extraction in the performance of the speech recognition

system. In that sense, the use of markers or special lip-

stick on the speaker avoids the use of more complicated

mouth tracking techniques [19] to alleviate the front-

end effect.

Two main types of features are used for visual speech

recognition: appearance based features extracted directly

from the pixels of the ROI [1,21,22] and shape based

features extracted from the contour of the speaker’s lips

[23]. Several studies [24,25] report that appearance-

based features outperform shape based ones and are,

therefore, the features commonly chosen in lipreading

and AV-ASR systems. In this approach, the pixels of

the ROI themselves are used as features and, conse-

quently, locating the ROI needs to be done with very

good precision [26] and the front-end effect carefully

considered. The dimensionality of the obtained feature-

vector is too large to allow an accurate statistical mod-

eling in the classifiers and dimensionality reduction

techniques are necessary. The most popular of these

techniques are image compressing transforms [27], as

principal components analysis [21,22] or the discrete

cosine transform (DCT) [1]. They reduce the size of the

images by eliminating redundancy, but there is no guar-

antee that they are appropriate for the classification

task. Linear discriminant analysis (LDA) [28] is a

transform capturing relevant information for classifica-

tion and is thus commonly used in AV-ASR. Other

supervised transforms based on ideas from information

theory have also been proposed for AV-ASR [29-32],

but LDA is widely used because it is simple (linear),

gives good results and can easily incorporate dynamic

information. Dynamic features measure the visual

motion during speech and are more robust to skin

color or illumination conditions than the original fea-

tures. This motion can be represented either by delta

images or transforms measuring the inter-frame change

of the features, e.g., inter-frame LDA [1].

2.2 Audio-visual integration and classification

Audio-visual integration can be grouped into two cate-

gories: feature and decision fusion [1,3]. In the first case,

the audio and visual features are combined projecting

them onto an audio-visual feature space, where tradi-

tional single-stream classifiers are used [33-36]. Decision

fusion, on its turn, processes the streams separately and,

at a certain level, combines the outputs of each single-

modality classifier. Decision fusion allows more flexibil-

ity for modality integration and is the technique usually

adopted [1,3], in AV-ASR systems because it allows to

weight the contribution of each modality in the classifi-

cation task.

In the statistical models used in AV-ASR, the features

of the audio and visual streams are assumed class condi-

tionally independent [37,38], the joint probability distri-

bution is then factorized into single-stream distributions

and stream weights lA, lV are introduced to control the

importance of each modality in the classification task

[39,40]. The resulting joint probability distribution reads

p
(

xA, xV |q = qi

)

= p
(

xA|q = qi

)λAp
(

xV |q = qi

)λV , (1)

Figure 1 Standard AV-ASR system. Structure of audio-visual ASR system. Upper row corresponds to the audio system, where the features used

for speech recognition are extracted and fed to the audio-visual integration block and classifier. The lower part corresponds to the lipreading

system: first the mouth is tracked and a sequence of normalized mouth images is extracted, then the visual features are computed and finally

used in the audio-visual integration and classification blocks.
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where xA, xV are the audio and visual features and q

the class variable. This weighting scheme is naturally

introduced in the HMM classifiers by means of multi-

stream HMMs [41]. In multi-stream HMMs, indepen-

dent statistical models like Gaussian mixtures [42] are

used to compute the likelihood of each stream indepen-

dently, which are then combined accordingly to the

integration technique. In early integration the streams

are assumed to be state synchronous and the likelihoods

are combined at state level as indicated by Equation (1).

Late integration, in its turn, combines the likelihoods at

utterance level, while in intermediate integration the

combination takes place at intermediate points of the

utterance. The weighting scheme, nonetheless, remains

the same and early integration is generally adopted [3].

A common restriction is that the weights lA, lV sum up

to one, which assures that the relation between the

emission likelihoods and transition probabilities is kept

the same as in single-stream HMMs.

2.3 Our lipreading system

Our speech recognition system is similar to the state-of-

the-art presented in [1,3], which we take as a model and

introduce in it the pose normalization. On the following,

we describe our system, giving more details for the

blocks which play a role on the pose normalization task.

In order to minimize the front-end effect, we work

with sequences where the speaker wears blue lipstick

and we can accurately track the mouth by color infor-

mation. Our work focuses on the adaptation of the

visual features for pose normalization and the use of lip-

stick sequences allows us to decouple the performance

of the face tracker (optimized for frontal poses and

whose performance depends on the head pose and illu-

mination) from the extraction of accurate visual fea-

tures, which is critical in the case of appearance-based

features. In our sequences the mouth ROI is detected in

the hue domain and normalized mouths of 64 × 64 pix-

els are extracted for the definition of the visual features.

In the second block of our system, state-of-the-art

audio and visual features are extracted. In terms of

audio features, we adopt Mel Frequency Cepstral Coeffi-

cients (MFCC), together with their first and second time

derivatives and their means removed by Cepstral mean

subtraction [6]. For the visual counterpart, we choose

appearance-based features and the following sequence of

dimensionality reduction transforms. From the original

ROI images xI (frontal) and yI (lateral), we extract a

compact low-dimensional representation of the image

space retaining only the first 140 DCT coefficients in

zig-zag order in xF, yF. To normalize the features for dif-

ferent speakers and sequences, we remove their mean

value over the sequence in an equivalent technique to

the Cepstral mean subtraction applied to the audio

features, and finally LDA transforms are applied to

further reduce the dimensionality of the features and

adapt them to the posterior HMM classifier. First, intra-

frame LDA reduces to 40 the dimensionality of the fea-

tures while retaining information about the speech

classes of interest (phonemes). Afterwards, inter-frame

LDA incorporates dynamic information by concatenat-

ing 5 intra-frame LDA vectors over adjacent frames and

projecting them via LDA to the final features xL, yL,

which have dimension 39 and will be modeled by the

HMMs.

The classifiers used are single- and weighted multi-

stream HMMs [43]. In the case of AV-ASR, the use of

weighted multi-stream HMMs incorporates the audio-

visual integration into the classification task, which is

done at state level with the weights leading to best per-

formance on an evaluation data.

In our system, see Figure 2, we assume the pose to be

known and introduce a pose normalization block to cre-

ate virtual frontal features from non-frontal ones at dif-

ferent stages of the visual feature extraction: the

extracted mouth ROI (xI, yI), a smooth and compact

representation of the images in the frequency domain

(xF, yF) or the final LDA features used in the classifier

(xL, yL). When the transformations are applied directly

to the image space, the pose normalization takes place

after the mouth extraction, indicated by number 1 in

Figure 2. In case of applying the pose-transformation to

the selected DCT or LDA features, the transformation

block is introduced after the corresponding feature

extraction, numbered 2 and 3 in Figure 2.

3 Pose-invariant lipreading

In this section, we present the techniques adopted in

face recognition to obtain a multi-pose system, justify

the choice of linear regression (LR) as the technique

best suited to our AV-ASR system and study the differ-

ent feature spaces where the pose normalization can

take place.

3.1 From face recognition to lipreading

The techniques proposed for pose-invariant face recog-

nition can be classified into viewpoint transform and

coefficient-based techniques [8]. Coefficient based tech-

niques estimate the face under all viewpoints given a

single view, either by defining pose-invariant features

known as “face lightfields” [44] or estimating the para-

meters of 3-D face models [45]. In the viewpoint trans-

form approach the face recognition system is designed

and optimized for the dominant view (frontal) and a

preprocessing step transforms the input images corre-

sponding to undesired poses to the desired view [8].

The same two strategies can be applied to the lipreading

task. We adopt the viewpoint-transform approach
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because lipreading predominantly takes place with fron-

tal views and coefficient-based techniques would suffer

from over-generalization [8], i.e., only a small fraction of

the time the system would benefit from the definition of

pose-invariant features, while most of the time it would

be outperformed by a system optimized for frontal

views.

In the viewpoint transform approach there are two

strategies to generate virtual frontal views from non-

frontal poses: 3-D models [9,10] and learning-based

methods [46,47]. In the first case, a 3-D morphable

model of the face must be built from 2-D images before

virtual views from any viewpoint can be generated with

graphic rendering techniques. It is computationally

expensive and time consuming to match the input 2-D

image with the 3-D model and, therefore, that technique

is not aimed to the real-world applications of AV-ASR.

To overcome that issue, learning-based approaches learn

how to estimate virtual views directly in the 2-D

domain, either via a 2-D face model or from the images

themselves. Working directly with the images, a simple

and yet effective way to project the images from lateral

to frontal views is based on linear regression [8,11]. Sev-

eral reasons justify the use of the images themselves

instead of introducing a mouth model to estimate the

virtual views of the mouth. First, most lipreading sys-

tems use directly images of the mouth as visual features

and do not require mouth or lip models, which we do

not want to introduce only for the pose normalization

[3]. Second, the visual features extracted from the

images themselves are more informative than features

based on lip-modeling, as they include additional infor-

mation about other speech articulators such as teeth,

tongue, and jaws also useful in human speech percep-

tion [48]. Besides, appearance based features directly

obtained from the image pixels are generic and can be

applied to mouths of any viewpoint compared to lip

models which have to be developed for any possible

view. Finally, these pose normalization techniques

involve transforms that can be quickly computed and

allow real-time implementations required in most AV-

ASR applications.

3.2 Linear regression in multi-pose face recognition

Given a set of M training examples of the undesired

viewpoint Y = [y1... yM] and their synchronous examples

on the target viewpoint X = [x1 ... xM], a matrix W per-

forming LR is determined minimizing the cost function

Q

Q(W) =

M
∑

i=1

∥

∥xi − Wyi
∥

∥

2
+ β‖W‖2, (2)

which measures the mean square error on the training

dataset and might include a Tykhonov regularization

term (weighted by parameter b) introducing additional

smoothness properties and leading to a ridge regression

[49]. The well-known solution to the LR is given by W

= XYT (YYT + bI)-1, with I the identity matrix.

Linear regression is theoretically justified when images

of the same object but from different poses are subject

to the same illumination. In the case of face recognition,

in [11] Chai et al. show that if the face images are well

aligned, there exists an approximate linear mapping xI =

WIyI between images of one person captured under vari-

able poses xI and yI, which is consistent through differ-

ent people. Unfortunately, in real-world systems face

images are only coarsely aligned, occlusions derived

from the 3-D nature of faces affect the different views

and the linear assumption no longer holds. To this end,

Audio

Feature

extraction

Audio

classifier

Audio-Visual

classifier

Video

Mouth

extraction

1 DCT Feature

extraction

2 LDA intra

LDA inter

3 Visual

classifier

Figure 2 AV-ASR system adopted in our experiments. Block diagram of the AV-ASR system adopted in our experiments. We consider this

system as a model and introduce in it a pose normalization block in order to allow multi-pose speech recognition. The lower part corresponds

to the lipreading system, where the pose normalization is incorporated after the mouth has been tracked and normalized. The possible feature

spaces where the pose normalization can take place are related to the different steps involved in the computation of the visual features: first the

images themselves, then a low-dimensional representation in frequency domain and finally the LDA features designed for the classification task.

The audio-visual fusion is also adapted in order to take into account the reliability associated to the visual stream after pose normalization.
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the authors propose the use of a piecewise linear func-

tion to approximate the non-linear mapping existing

between images from different poses. The main idea of

the proposed method lies in the following intuitive

observation: partitioning the whole face into multiple

patches reduces the face misalignment and variability

between different persons and the transformation asso-

ciated to pose changes can be better approximated with

a linear map for the patches than for the whole image.

That technique is called local LR (LLR) in opposition to

the previous implementation of LR, which considered

the images as a whole and is therefore designated as

global LR (GLR).

Intuitively, LLR partitions the whole non-frontal image

into multiple patches and applies linear regression to

each patch. Given the training set {X, Y}, each face

image is divided into blocks of rectangular patches {Xi,

Yi}i = 1...N. Then, for each pair of frontal and lateral

patches the linear regression matrix Wi is computed as

in the GLR case. In the testing stage, any input image

with known pose is partitioned into patches, which are

used to predict the corresponding frontal patches with

the LLR matrices {Wi}i = 1,...,N. Afterwards, all the virtual

frontal patches are combined into a whole vector to

construct a virtual frontal image. The patches can be

adjacent or overlap, alleviating in that case the block

effect but increasing the cost of reconstruction as the

value associated to a pixel sampled by several patches is

then computed as the mean of the specific pixels in the

overlapping patches. Consequently, the patch size and

overlapping are parameters to choose for the LLR

method to succeed. While a too large patch size suffers

from the linear assumption and can lead to blurring of

the images, a patch too small is more sensible to misa-

lignments and produces artefacts on the reconstructed

image. The overlapping criteria, on its turn, is a trade-

off between over-smoothing (high overlapping of

patches) and introducing block effects on the recon-

structed images (adjacent patches). For the frontal views

a uniform partition of the images is adopted, while for

non-frontal images each patch contains surface points of

the same semantics as those in the corresponding fron-

tal patch. In the case of a completely profile image, for

instance, we associate two frontal patches to each profile

patch by imposing symmetry on the frontal view. See

Figures 3 and 4 for an example of a pair of patches

defined across different views.

3.3 Linear regression and lipreading

In our study, the LR techniques are applied considering

X and Y to be either directly the images from frontal

and lateral views XI, YI or the visual features extracted

from them at different stages of the feature extraction

process. A first set of features XF, YF are designed to

smooth the images and obtain a more compact and

low-dimensional representation in the frequency

domain. Afterwards, those features are transformed and

their dimensionality again reduced in order to contain

only information relevant for speech classification, lead-

ing to the vectors XL, YL used in the posterior speech

classifier.

The visual features XF, YF are the first coefficients of

the two-dimensional DCT of the image following the

zigzag order, which provide a smooth, compact and low

dimensional representation of the mouth. Note that the

selected DCT can be obtained as a linear transform, XF

= SDXI, with D the matrix of two dimensional DCT

basis transform and S a matrix selecting the DCT coeffi-

cients of interest. Therefore there is also an approximate

linear mapping DWIDT between the DCT coefficients of

the frontal and lateral images xD, yD. Indeed, as the

DCT forms an orthonormal base in the image space, we

can write the original linear mapping between the

images as

xD = DxI = DWIyI = DWI
(

DTD
)

yI = DWIDTyD. (3)

Consequently, if all DCT coefficients are selected and

S = I, the DCT coefficients obtained from WI by project-

ing images yI and the WF projected coefficients from yF
coincide. The linear relationship, however, no longer

holds when we consider only a reduced set of DCT

coefficients xF = SDxI and the transform WF found with

the LR method should be considered an approximation

of the non-linear mapping existing between any pair of

reduced DCT coefficients xF and yF. In that case, select-

ing the DCT features corresponding to lower frequen-

cies to compute the transform WF corresponds to

smoothing the images previous to the projection and

estimating a linear transform forcing the projected vir-

tual image to be smooth by having only low-frequency

components. Moreover, the lower-dimensionality of XF,

YF compared to XI, YI improves accuracy of the LR

matrix estimation due to the Curse of Dimensionality

[50], which states that the number of samples necessary

to estimate a vectorial parameter grows exponentially

with its dimensionality. In that sense, the effect of the

regularization parameter b is more important in the

estimation of WI than WF, as imposing smoothness

reduces the number of required samples.

It is important to note that the proposed LLR techni-

que on the DCT features provides a different meaning

to the patches. If we choose the patches to be adjacent

blocks of the DCT coefficients, we are considering dif-

ferent transforms for different frequency components of

the image. Consequently, we use an equal partition of

the selected DCT coefficients to define the frontal and

associated lateral patches in the LLR transform. In that
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case, LLR approximates the existing non-linear mapping

between frequency features XF and YF by distinct linear

functions between the different frequency bands of the

images.

Another option to apply pose normalization, is to pro-

ject the final features XL, YL used in the pattern classi-

fier. Those features are obtained from linear

dimensionality reduction transforms aimed at speech

classification [3]. The transforms are usually based on

LDA, which is a supervised transform projecting the

DCT features to the linear subspace maximizing the

separability of the C speech classes. Specifically, LDA

finds the K-dimensional linear subspace maximizing the

projected ratio R = S−1
w Sb between the inter-class scatter

matrix Sb and intra-class scatter matrix Sw, defined as

Sw =

C
∑

i=1

pi�i Sb =

C
∑

i=1

pi(μ − μi)(μ − μi)
T , (4)

where pi is the percentage of samples on the training

set belonging to the class i, μi and Σi are the mean and

covariance matrix for those samples and μ is the mean

value of all the training samples in the dataset. The

LDA projection matrix is then defined by the eigenvec-

tors of R with K largest associated eigenvalues. If there

is a linear mapping between the original features x =

Wy, we can also relate the corresponding LDA projec-

tions with a linear mapping. Observing that

Sx
b = WSu

bWT Sx
w = WS

y
wWT (5)

it is easy to prove that if v is an eigenvector of Ry with

eigenvalue lv, then W-1v is an eigenvector of Rx with

the same eigenvalue and, consequently, there is also a

linear mapping between the LDA projections associated

to the frontal and lateral views. Two extra considera-

tions have to be taken into account for the projection of

the XL and YL features. First, XL and YL are obtained by

applying LDA into the reduced DCT features XF and YF,

Figure 3 Example of frontal patch of a mouth. Example of the definition of a frontal patch of a mouth image necessary to the LLR

computation.

Estellers and Thiran EURASIP Journal on Advances in Signal Processing 2012, 2012:51

http://asp.eurasipjournals.com/content/2012/1/51

Page 7 of 23



which means that the projection by WL is only a linear

approximation of the real mapping between the LDA

features in the same way WF linearly approximates the

relation between XF and YF. Second, two stages of LDA

are necessary to obtain XL and YL from XF and YF: first

intra-frame LDA on the DCT features and then an

inter-frame LDA on concatenated adjacent vectors

extracted from the intra-frame LDA. In the intra-frame

LDA, x = xF, y = yF, and W = WF in Equation (5), from

which we obtain LDA projected vectors xl and yl, related

with an approximated linear mapping Wl. In the inter-

frame LDA, each x and y corresponds to the concatena-

tion of 5 time-adjacent vectors xl and yl, and thus the

approximated linear mapping W is given by a block

matrix whose diagonal entries correspond to 5 block

matrices Wl. As a consequence, if the linear approxima-

tion of XF = WFYF holds, then it is also a valid assump-

tion for the projection of the speech features by XL =

WLYL.

The performance of the linear regression applied to

the images or the extracted features can be analyzed by

Equation (2) as the cost function Q normalized to the

size of the vectors X and Y. The mean value taken by

the cost function in our training dataset is presented in

Figure 5. The curse of dimensionality is observed in the

larger values of the mean square error in Q associated

to the estimation of WI in comparison to WF or WL. As

experiments will show, the smaller dimensionality of the

DCT and LDA features allow us to learn more accu-

rately the GLR transform matrices, leading also to better

speech recognition performance.

Consideration should be given to the fact that apply-

ing the pose normalization on the original images, or

even to the low-frequency DCT coefficients, is indepen-

dent of the features we posteriorly use for speech recog-

nition and could be adopted with other appearance or

contour-based visual speech features. The use of the

LDA features, however, is specific to the speech

Figure 4 Example of lateral patch of a mouth. Example of the definition of a frontal patch of a mouth image necessary to the LLR

computation.
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recognition system and involves an additional training of

LDA projections for the different poses. In that sense,

applying the LR techniques to the original images pro-

vides a more general strategy for the multi-pose pro-

blem, while the LDA features might be able to exploit

their specificity for the speech recognition task.

3.4 Projective transforms on the images

A simple option when working with the images them-

selves is to estimate a projective transform from the lat-

eral to the frontal views as a change of the coordinate

systems between the images. In fact, as the difference in

pose involves an extra dimension not taken into account

in the projective model (3-D nature of the head rota-

tion), that approach can only be justified for small pose

changes, e.g., being impossible to implement for 90° of

head rotation. We include in our experiments two pro-

jective transforms to measure the gain obtained by the

learning approach of the LR techniques in comparison

to projective transforms. In that case, we estimate a 3 ×

3 projective transform T between the image coordinates

in a semi-manual and automatic procedure. The coordi-

nate points P used for that purpose are the corners of

the lips, the center of the cupid’s bow and the center of

the lower lip contour for the different poses. In the

manual procedure, we selected several frames of each

sequence, manually marked the position of those four

points for the frontal and lateral views and estimated

the transform T minimizing the error of Pfrontal = TPlat-

eral over the selected frames of the sequence. For the

automatic method, we segment the image based on

color and region information and detect the lip’s con-

tour and the position of the points P from the segmen-

tation. Examples of the images obtained with that

method are shown in Figures 6, 7, and 8, where the

deformations caused by neglecting the 3-D nature of

head rotation are obvious. That effect is not encoun-

tered with the LR technique applied to the images, as

the training stage on the process is responsible of learn-

ing how the mouth views change with the poses. In that
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Figure 5 Value of optimized cost function on training. Value of cost function Q for the LR training sequences applied to the images XI, the

selected DCT coefficients XF and LDA speech features XL.

Estellers and Thiran EURASIP Journal on Advances in Signal Processing 2012, 2012:51

http://asp.eurasipjournals.com/content/2012/1/51

Page 9 of 23



Figure 6 Manual annotation of frontal image. Original frontal image with manually annotated points Pfrontal used in the estimation of a

projective transform between images from different poses.

Figure 7 Manual annotation of frontal image. Original lateral image with manually annotated points Plateral used in the estimation of a

projective transform between images from different poses.
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sense, the projective techniques can be used with any

kind of images and do no exploit the fact that all the

images correspond to mouths.

4 Experimental results

We present two sets of experiments: one on lipreading

studying the adaptation of the visual stream to multi-

pose conditions and another on AV-ASR analyzing the

effects of the pose normalization on the audio-visual

integration strategy. In lipreading experiments we first

quantify the loss of performance associated to non-fron-

tal poses, we then justify quantitatively the necessity of a

pose normalization step and final analyze the perfor-

mance of the proposed pose normalization strategies. In

audio-visual experiments, we first study if the visual

stream can still be exploited for speech recognition after

the pose normalization has taken place, something that

previous studies [4,5] on AV-ASR in realistic working

conditions failed to do. In AV-ASR we are also inter-

ested in the influence of the pose normalization in the

final performance and, specially, on the optimal value of

the weight associated to the visual stream.

The technical details of the experimental set-up are

the following. The task considered is connected speech

recognition under different speaker poses relative to the

camera. Training and testing has been done with the

multi-speaker paradigm (all speakers are on train and

test set but with different sequences) with three fold

cross-validation and the results are given in terms of

word accuracy. The same multi-speaker cross-validation

is used to estimate the LR transforms for the different

poses and features. The parameters of the feature

extraction blocks and classifiers are chosen based on

experiments with an evaluation dataset to optimize

speech recognition. To fairly analyze the performance

associated to frontal and lateral views, the same kind of

classifiers are trained for each possible pose: frontal and

lateral at 30°, 60° and 90° of head rotation. The HTK

tool-kit [51] is used to implement three-state phoneme

HMMs with a mixture of three Gaussians per state. For

the multi-stream HMMs, the same number of states

and Gaussians than in single-stream case is used. The

parameters of the model are initialized with the values

estimated for independent audio and visual HMMs and

posteriorly re-estimated jointly. The audio and visual

weights are considered fixed parameters of the system,

restricted to sum up to one and optimized for speech

recognition on the evaluation dataset.

4.1 Database

For our experiments, we required speech recordings

with constrained non-ideal visual conditions, namely,

fixed known poses and natural lighting. To that purpose

we recorded our own database, which is publicly avail-

able at our webpage. It consists of recordings of 20

native French speakers with simultaneous different

Figure 8 Virtual frontal image obtained by the projective transform. Virtual frontal image obtained by the projective transform T associated

to the solution of Pfrontal = TPlateral from Figures 6 and 7.
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views, one always frontal to the speaker and the other

with different lateral poses.

The recordings involve one frontal camera plus one

camera rotated 30°, 60°, and 90° relative to the speaker

in order to obtain two simultaneous views of each

sequence, see Figures 9, 10, and 11. The first camera

was fixed with a frontal view, while the second camera

provided different lateral views. For each possible posi-

tion of the second camera, the speaker repeated three

times the digits, giving a total of three couples of repeti-

tions of each digit for each pose: 9 for frontal views in

total and 3 lateral repetitions for each possible degree of

head rotation.

To comply with the natural conditions, the corpus was

recorded with natural lighting conditions, resulting in

shadows on some images under the nose and mouth of

the subjects. The videos were recorded with two high-

definition cameras CANON VIXIA HG20, providing

1920 × 1080 pixels resolution at 25 frames per second,

and included the head and shoulders of the speaker.

Figure 10 Frontal view of one speaker from our database. Frontal view of one speaker from our database captured with the first camera.

Figure 9 Schema of the simultaneous recordings. Schema of

simultaneous recordings with different poses of the speaker. The

first camera captures a frontal view of the speaker, while the second

one records simultaneously a lateral view at 30°, 60°, or 90° of head

rotation.
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In terms of audio set-up, two different micros were

used for the recordings, an external micro close to the

speaker’s mouth, without occluding its view, and the

built-in micro of the second camera. That set-up pro-

vided two conditions for the audio signal, a clean audio

signal obtained with an external microphone tailored for

human voice and a noisy signal recorded with a lower

quality microphone at some meters of distance to the

speaker. Audio was recorded with a sample rate of

48000 Hz and 256 kbps for both micros and used to

synchronize the videos, as it offered better time resolu-

tion than pairing of the video frames (offering only 40

milliseconds of frame resolution). For the two audio sig-

nals we computed the correlation of their normalized

MFCC features within each manually segmented word,

obtained an estimate of the a delay for each word and

averaged over the whole sequence. The same delay was

considered for the video signals, after correcting for the

difference in distance between the two micros and the

speaker.

The word labeling of the sequences was done manu-

ally at the millisecond and phone labels were posteriorly

obtained by force alignment of the clean audio signals

with the known transcriptions.

4.2 Visual speech recognition

In a first set of experiments we quantify the loss of per-

formance of a lateral system compared to a fully frontal

one. To that purpose, we paired the frontal and lateral

sequences and test each sequence with the correspond-

ing classifier, i.e., frontal sequences with frontal classifier

and, for each possible head rotation, lateral sequences

with their lateral classifier. That gives us a measure of

how visual speech degrades with the different poses,

presented in Figure 12. As happens with human lipread-

ing [52], speech recognition deteriorates with non-fron-

tal poses, which of course is more acute for 90° of head

rotation (9% of loss of performance with respect to the

frontal system) than for 60° (5% of loss of performance

with respect to the frontal system). Figure 12 also shows

Figure 11 Lateral view of one speaker from our database. Lateral view of one speaker from our database captured with the second camera

at 60°. The image is the lateral view associated to the frontal image of Figure 10.
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the performance of the frontal classifier tested with the

lateral sequences when no pose normalization is applied,

i.e., there is a mismatch on the train/test conditions in

terms of pose and the system performs poorly, with

mean word accuracy dropping from 71% to 22%. This

justifies the necessity of pose normalization.

Next, we test the different pose normalization techni-

ques on the lateral sequences with the classifier trained

and optimized for frontal sequences. Figure 13 compares

the results of the pose normalized lateral sequences to

the corresponding frontal sequences with the frontal

classifier and to the original lateral sequences on their

lateral classifier. The results of the ideal frontal system

represent the best we can do in terms of original pose

and trained system, while the results of the completely

lateral system represent the best we can do when the

original images present a non-frontal pose with a lip-

reading system adapted to it. For each possible feature

space, we choose the best-performing LR technique:

LLR on the images and GLR on the selected DCT and

LDA feature spaces. As expected, the features obtained

after the pose normalization can neither beat the frontal

system, because there is a loss of valuable information

in the non-frontal images, nor obtain the performance

of the corresponding lateral system, due to the limita-

tions of the pose normalization techniques. For the dif-

ferent poses, the projected LDA features clearly

outperform the other techniques (between 4% to 12% of

loss of accuracy for the different poses compared to the

frontal views) because they exploit the specificity of the

features for speech recognition compared to the more

general image or DCT feature spaces (accuracy loss 25%

to 34% compared to the frontal views). As expected, the

original images and the selected DCT coefficients pre-

sent similar performance with different LR techniques

and regularization parameters b. The accuracy of the LR
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Figure 12 Lipreading performance associated to frontal and lateral views. This figure shows the loss of performance in visual-only

experiments associated to non-frontal poses and the existence of a train/test pose mismatch when no pose normalization is applied to the

visual stream. The first column corresponds to the frontal (F) sequences tested on the frontal classifier. The second column to the lateral (L)

sequences with the corresponding lateral classifier. The last column to the lateral sequences directly tested on the frontal classifier, without the

proposed pose normalization.
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estimates decreases with the dimension of the feature

space and, therefore, for the raw images it is necessary

to both partition the image into patches to decrease the

dimensionality of the LR estimates and to increase the

value of the regularization parameter b. It is not worth

then to work in the high dimensional image space with

the LLR transform instead of applying the GLR to its

reduced DCT features. Any improvement on the virtual

views obtained in the LLR projection of images is lost

on their posterior projection to the DCT space. Simi-

larly, the projective transforms obtain poor recognition

results (50% of accuracy loss compared to the frontal

views) because they neglect the effects of 3-D pose

changes on the views of the mouth.

Figure 14 compares the different LR techniques

applied to the original images, where LLR performs bet-

ter than GLR. Splitting the images in four patches and

allowing an overlapping of 75% of the patches lead to

the best results, showing the expected trade-off between

the size-of the patch and the overlapping. A patch size

too large (GLR case) suffers from the linear assumption

and leads to blurring of the images, while a patch too

small is more sensible to misalignments. Similarly, for

each patch size, a high overlapping of patches results in

over-smoothing, while low values cause block effects on

the reconstructed images. At the same time, the value of

the optimal regularization parameter b increases with

the size of the patches.

For the selected DCT coefficients, however, the gen-

eral mapping defined by GLR obtains better results,

while for the LDA case both techniques perform simi-

larly, see Figures 15 and 16. The worst performance of

the LLR with the selected DCT features can be

explained by the observation that the patches defined in

Figure 13 Lipreading with frontal, lateral and posed normalized sequences. The first column corresponds to the frontal sequences tested

on the frontal classifier. The second column to the lateral sequences with the corresponding lateral classifier and the rest of columns to the

pose-normalized lateral sequences tested on the frontal classifier. Third and forth columns corresponds to the projective transforms, while the

last three correspond to the best LR technique applied to each feature space, i.e., LLR for the image space ( with 32 × 32 pixel patches, 75%

overlapping, b = 15) and GLR on the selected DCT (b = 5) and LDA (b = 0) feature spaces.
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Figure 14 Lipreading performance with pose normalization in the image space. This figure shows the performance of a frontal classifier

when the input corresponds to a lateral view of the speaker and the visual features have been normalized to a frontal pose in the image space.

The experiments show the expected trade-off between the size-of the patch and the overlapping. N stands for the number of patches and o for

the patch overlapping used in the LLR transform.

Figure 15 Lipreading performance with pose normalization in the DCT space. This figure shows the performance of a frontal classifier when the

input corresponds to a lateral view of the speaker and the visual features have been normalized to a frontal pose in the DCT space. GLR outperforms

LLR because the patches corresponding to high frequencies (containing the details of the image) can not be matched by a linear mapping.
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the DCT space correspond to high and low-frequency

components of the images. It seems likely, therefore,

that a linear transform between the low-frequency com-

ponents of the images exist, but that assumption does

not hold for the high-frequency components associated

to image details. In the case of LDA features there is no

interpretation of the patches defined on the LLR techni-

quea and we observe that the mapping between the

frontal and lateral features can be similarly approxi-

mated with the GLR and LLR techniques. In fact, there

is no statistical difference between the performance of

the GLR and LLR techniques in that feature space.

4.3 Audio-visual speech recognition

This set of experiments study how pose changes and

normalization affects AV-ASR systems. Since the visual

stream is most useful when the audio signal is cor-

rupted, we report audio-visual experiments with a noisy

audio signal and compare it to an audio-only ASR

system. In an audio-visual system, the weight assigned

to the visual stream controls to which extend the classi-

fier’s decision is based on the visual features, therefore

differences between visual streams are more evident

when the weight assigned to the video is high. The

extreme cases correspond to a completely corrupted

visual stream, where lA = 1, lV = 0 and the different

pose normalization techniques obtain the same perfor-

mance, and to a corrupted audio signal with weights lA
= 0, lV = 1 and the lipreading performance already

observed. Consequently, the differences in performance

of the pose normalization methods are more acute with

0 dB than 7 dB of audio SNR and almost imperceptible

with clean audio data. To that purpose we artificially

added babble noise extracted from the NOISEX [53]

database to the clean audio signal with 7 dB and 0 dB

of SNR and test our pose normalization techniques in

these conditions. The HMM audio parameters were

trained in clean conditions, but tested with the

Figure 16 Lipreading performance with pose normalization in the LDA feature space. This figure shows the performance of a frontal

classifier when the input corresponds to a lateral view of the speaker and the visual features have been normalized to a frontal pose in the LDA

feature space. GLR and LLR perform similarly.
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corrupted audio stream. The visual counter-part corre-

sponds to the previous lipreading system, with the best

GLR or LLR technique for each feature space.

Figures 17 and 18 show the performance for the

audio-visual system for frontal and lateral poses. The

performance of the different streams is coherent with

the visual-only experiments, with frontal views outper-

forming lateral ones and GLR on the LDA space clearly

outperforming the other pose normalization methods.

The LR projection techniques applied to the original

images or DCT coefficients are only able to improve

audio recognition when the audio signal is highly cor-

rupted (0 dB), while the projection on the LDA space

always ameliorates the recognition of the audio system.

The LR results for the images and DCT coefficients at 7

dB point out the fact those techniques are not useful for

AV-ASR and, in fact, are outperformed by an audio-

only system. In that case, the audio-visual system can

not exploit the pose-normalized visual features because

the errors incurred in the audio domain are not uncor-

related with the errors in the visual domain.

It is interesting to analyze the relation between the

value of the optimal video weight lV assigned to the dif-

ferent pose normalization techniques and their perfor-

mance in lipreading experiments. Figure 19 shows how

the weight given to the visual modality decreases with

the quality associated to the visual stream: for frontal

sequences lV takes higher values than for the lateral

ones, the projected lateral sequences have higher

weights than the pose normalized ones, and the values

for 90° of head rotation are lower than for 30°. Figure

20 shows that there is a clear correlation between the

values of the optimal visual weight and the stream’s per-

formance in lipreading experiments. We can then con-

clude that the performance of the pose normalization

techniques in lipreading is directly related to their

Figure 17 Performance of different AV-ASR systems with a corrupted audio stream with 7 dB of SNR. Mean word accuracy for audio and

audio-visual systems with different visual streams and classifiers. The audio stream is a corrupted with 7 dB of SNR, while different visual streams

are considered: the ideal frontal (F) views of the speaker, the original lateral (L) views at 30°, 60° and 90° of head rotation and the corresponding

streams after pose normalization.
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performance in audio-visual experiments and the value

of weight assigned to the visual stream in the classifier.

4.4 Statistical significance of the results

In our experiments, we compare different views from

the speaker and pose normalization strategies learned

and tested on the same data and the results, therefore,

reflect differences between the views and pose normali-

zation strategies rather than differences in the test data-

sets. In this case, the statistical significance of the

results cannot be evaluated by means of confidence

intervals associated to the performance of each method

independently, but requires the comparison of the dif-

ferent methods in a one-to-one basis for the same sen-

tences, speakers and train/test datasets. In this study, we

use the “probability of error reduction” pe presented in

[54] to assess the differences in performance of the pro-

posed weighting schemes. We refer the reader to the

original article [54] for a detailed description of pe, give

only an intuitive definition and use it to assess if one

method significantly outperforms another. Intuitively,

the probability of error reduction pe between two sys-

tems A and B measures the number of independent

testing samples that favor system A over B while leaving

the rest of the samples unchanged.

To asses if the differences in performance between

pose normalization applied in different feature spaces

are statistically significant, we compute pe with respect

to a lateral system in the lipreading experiment. For the

image and DCT feature spaces, performance degrades in

every single test case for all the possible lateral views (pe
= 1). In the case of LDA feature space (with the GLR

technique), performance degrades in 70% of the cases

for 30° of head rotation and in 80% for the rest of the

lateral views. We conclude that LR pose normalization

is more successful in the LDA space, while the DCT

Figure 18 Performance of different AV-ASR systems with a corrupted audio stream with 0 dB of SNR. Mean word accuracy for audio and

audio-visual systems with different visual streams and classifiers. The audio stream is a corrupted with 0 dB of SNR, while different visual streams

are considered: the ideal frontal (F) views of the speaker, the original lateral (L) views at 30°, 60° and 90° of head rotation and the corresponding

streams after pose normalization.
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and image spaces perform poorly. At the same time,

even though the final accuracy of the lateral system is

close to the projected LDA features, there is a signifi-

cant loss of performance due to the pose normalization.

For the audio-visual experiments, we compare each of

the systems to an audio-only recognizer. Only the pose

normalization in the LDA space is able to exploit the

visual stream with 7 dB of SNR, with performance

improving in 98%, 95%, and 89% of the sequences at 30,

60, and 90° in comparison to an audio-only system. This

percentage is inferior to 16% and 13% for the DCT or

image space, pointing out that pose normalization in

these feature spaces fails to exploit the visual modality

in an AV-ASR system. In a more noisy environment

with 0 dB of SNR, the projection on the LDA space is

always beneficial, while the DCT and image spaces only

do better than an audio-only system in 80% of the cases.

This analysis confirms that pose normalization is only

really successful in the LDA feature space in both visual

and audio-visual ASR systems.

5 Conclusions

In this article, we presented a lipreading system able to

recognize speech from different views of the speaker.

Inspired by pose-invariant face recognition studies, we

introduce a pose normalization block in a standard sys-

tem and generate virtual frontal views from non-frontal

images. In particular, we use linear regression to project

the features associated to different poses at different

stages of the lipreading system: the images themselves, a

low-dimensional and compact representation of the

images in the frequency domain or the final LDA fea-

tures used for classification. Our experiments show that

the pose normalization is more successful when applied

directly to the LDA features used in the classifier, while

the projection of more general features like the images

Figure 19 Optimal video weight in the multi-stream system with a corrupted audio stream with 7 dB of SNR. Optimal value of the

weight associated to the visual stream in the audio-visual classifier. The audio stream is a corrupted with 7 dB of SNR, while different visual

streams are considered: an ideal frontal view of the speaker, the original lateral views at 30°, 60° and 90° of head rotation and the corresponding

streams after pose normalization.
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or their low-frequency representation fails because of

misalignments on the training data and errors on the

estimation of the transforms.

In terms of AV-ASR, we study the effects of pose nor-

malization in the fusion strategy of the audio and visual

modalities. We evaluate the effects of pose normaliza-

tion on the weight associated to the visual stream and

analyze for which one of the proposed techniques the

audio-visual system is able to exploit its visual modality.

We show that only the projection of the LDA features

used in the classifier is really able to normalize the

visual stream to a virtual frontal pose and enhance the

performance of the audio system. As expected, there is a

direct relation between the optimal weight associated to

the pose normalized visual stream and its performance

in lipreading experiments. Consequently, we can simply

study the effects of pose normalization in the visual

domain and transfer the improvements into the audio-

visual task by adapting the weight associated to the

visual stream.

Endnotes
aFor simple LDA we can interpret the patches as direc-

tions on the original space maximizing the projected

ratio R, so that if we sort the eigenvectors on the LDA

projection according to their eigenvalue, we could inter-

pret the patches as linear subspaces decreasingly maxi-

mizing the projected ratio. However, as we include intra

and inter-frame LDA in the WL transform, no interpre-

tation is possible for the patch definition on the xL, yL
space.
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Figure 20 Scatter between optimal video weight and lipreading performance for a corrupted audio with 7 dB of SNR. Scatter plot

between the optimal value of the weight associated to the visual stream in the audio-visual classifier and the performance of the corresponding

visual stream in lipreading experiments. The audio stream is a corrupted with 7 dB of SNR, while different visual streams are considered: an ideal

frontal view of the speaker, the original lateral views at 30°, 60°, and 90° of head rotation and the corresponding streams after pose

normalization.
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