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Abstract. A robust combiner for hash functions takes two candidate
implementations and constructs a hash function which is secure as long
as at least one of the candidates is secure. So far, hash function combiners
only aim at preserving a single property such as collision-resistance or
pseudorandomness. However, when hash functions are used in protocols
like TLS they are often required to provide several properties simul-
taneously. We therefore put forward the notion of multi-property pre-
serving combiners, clarify some aspects on different definitions for such
combiners, and propose a construction that provably preserves collision
resistance, pseudorandomness, “random-oracle-ness”, target collision re-
sistance and message authentication according to our strongest notion.

1 Introduction

Recent attacks on collision-resistant hash functions [17,19,18] have raised the
question how to achieve constructions that are more tolerant to cryptanalytic
results. One approach has been suggested by Herzberg in [11], where robust
combiners have been proposed as a viable strategy for designing less vulnerable
hash functions. The classical hash combiner takes two hash functions H0,H1 and
combines them into a failure-tolerant function by concatenating the outputs of
both functions, such that the combiner is collision resistant as long as at least
one of the two functions H0 or H1 obeys this property.

However, hash functions are currently used for various tasks that require
numerous properties beyond collision resistance, e.g., the HMAC construction
[2] based on a keyed hash function is used (amongst others) in the IPSec and
TLS protocols as a pseudorandom function and as a MAC. In the standardized
protocols RSA-OAEP [5] and RSA-PSS [6] even stronger properties are required
for the hash functions (cf. [3,4]), prompting Coron et al. [9] to give constructions
which propagate the random-oracle property from the compression function to
the hash function. A further example for the need of multiple properties is given
by Katz and Shin [13], where collision-resistant pseudorandom functions are
required in order to protect authenticated group key exchange protocols against
insider attacks.1

1 Technically, they require statistical collision-resistance for the keys of the pseudo-
random function.



Adhering to the usage of hash functions as “swiss army knives” Bellare and
Ristenpart [7,8] have shown how to preserve multiple properties in the design of
hash functions. In contrast to their approach, which starts with a compression
function and aims at constructing a single multi-property preserving (MPP) hash
function, a combiner takes two full-grown hash functions and tries to build a hash
function which should preserve the properties, even if one of the underlying hash
functions is already broken.

The Problem with Multiple Properties. Combiners which preserve a single prop-
erty such as collision-resistance or pseudorandomness are quite well understood.
Multi-property preserving combiners, on the other hand, are not covered by
these strategies and require new techniques instead. As an example we discuss
this issue for the case of collision-resistance and pseudorandomness.

Recall that the classical combiner for collision-resistance simply concatenates
the outputs of both hash functions Comb(M) = H0(M)||H1(M). Obviously, the
combiner is collision-resistant as long es either H0 or H1 has this property. Yet,
it does not guarantee for example pseudorandomness (assuming that the hash
functions are keyed) if only one of the underlying hash functions is pseudoran-
dom. An adversary can immediatly distinguish the concatenated output from a
truly random value by simply examining the part of the insecure hash function.

An obvious approach to obtain a hash combiner that preserves pseudoran-
domness is to set Comb(M) = H0(M)⊕H1(M). However, this combiner is not
known to preserve collision-resistance anymore, since a collision for the com-
biner does not necessarily require collisions on both hash functions. In fact, this
combiner also violates the conditions of [1,16] and [10], who have shown that
the output of a (black-box) collision-resistant combiner cannot be significantly
shorter than the concatenation of the outputs from all employed hash functions.
Thus, already the attempt of combining only two properties in a robust manner
indicates that finding a multi-property preserving combiner is far from trivial.

Our Construction. In this work we show how to build a combiner that prov-
ably preserves multiple properties, where we concentrate on the most common
properties as proposed in [8], namely, collision resistance (CR), pseudorandom-
ness (PRF), pseudorandom oracle (PRO), target collision resistance (TCR) and
message authentication (MAC).

To explain the underlying idea of our construction it is instructive to recall
the bit commitment scheme introduced by Naor [15]. There, the receiver sends
a random 3n-bit string t to the committing party who applies a pseudorandom
generator to a random n-bit seed r and returns G(r) ⊕ t to commit to 1, or
G(r) to commit to 0. Due to the pseudorandomness of the generator’s output,
the receiver does not learn anything about the committed bit. An ambiguous
opening of the commitment by the sender requires to find some r′ 6= r such that
G(r) = G(r′)⊕t. Yet, since there are only 22n pairs of seeds for the pseudorandom
generator but 23n random strings t, the probability that such a seed pair exists
is at most 2−n.



Adopting the approach of Naor we proceed as follows for each hash function
Hb. First we hash the large message M with Hb into a short n-bit “seed” xb.
Then we expand this value into a 5n-bit string (similar to the pseudorandom
generator). Next, we xor the result with a subset of n random strings tbi ∈
{0, 1}5n, where the subset is determined by the bits xb[i] = 1. We denote this
output by Hprsrv

b (M). Only in the final step we combine the two resulting values
for each function Hb into one output Comb(M) = Hprsrv

0 (M) ⊕ Hprsrv
1 (M) by

xor-ing them.

Due to the internal expansion of the short string xb into five hash values, one
can use a similar argumentation as in [15] together with the collision-resistance
of one of the hash functions to prove that collision-resistance is preserved. At the
same time, pseudorandomness is preserved by the final xor-combination of the
results of the two hash functions. Moreover, we also show that this construction
propagates several other properties, including PRO, TCR and MAC.

Weak vs. Strong Preservation. We prove our construction to be a strongly multi-
property preserving combiner for {CR,PRF,PRO,TCR,MAC}. That is, it suffices
that each property is provided by at least one hash function, e.g., if H0 or H1 has
property MAC, then so does the combiner, independently of the other proper-
ties. We also introduce further relaxations of MPP, denoted by weakly MPP and
mildly MPP. In the weak case the combiner only inherits a set of multiple proper-
ties if they are all provided by at least one hash function (i.e., if there is a strong
candidate which has all properties at the same time). Mildly MPP combiners
are between strongly MPP and weakly MPP combiners, where all properties are
granted, but different hash functions may cover different properties.

Our work then adresses several questions related to the different notions
of multi-property preservation. Namely, we show that strongly MPP is indeed
strictly stronger than mildly MPP which, in turn, implies weakly MPP (but
not vice versa). We finally discuss the case of general tree-based combiners for
more than two hash functions built out of combiners for two hash functions, as
suggested in a more general setting by Harnik et al. [12]. As part of this result we
show that such tree-combiners inherit the weakly and strongly MPP property of
two-function combiners, whereas mildly MPP two-function combiners suprisingly
do not propagate their security to trees.

Organization. We start by defining the three notions of multi-property pre-
serving combiners and giving definitions of the desired properties in Section 2.
In Section 3 we give the construction of our MPP combiner and prove that
it achieves the strongest MPP notion. A brief discussion about variations of
our construction, e.g., to reduce the key size, conclude this section. Section 4
deals again with the different notions of property preservation by showing the
correlations between strongly, mildly and weakly MPP combiners. The issue of
composing combiners resp. multi-hash combiners is then addressed in Section 5.



2 Preliminaries

2.1 Hash Function Properties

A hash functionH = (HKGen,H) is a pair of efficient algorithms such that HKGen

for input 1n returns (the description of) a hash function H, and H for input H
and M ∈ {0, 1}∗ deterministically outputs a digest H(M) ∈ {0, 1}n. Often,
the hash function is also based on a public initial value IV and we therefore
occassionally write H(IV,M) instead of H(M). Similarly, we often identify the
hash function with its digest values H(·) if the key generation algorithm is clear
from the context.

A hash function may be attributed different properties P1,P2, . . . , among
which five important ones stand out (cf. [8]):

collision resistance (CR): The hash function is called collision-resistant if for
any efficient algorithm A the probability that for H ← HKGen(1n) and
(M,M ′) ← A(H) we have M 6= M ′ but H(H,M) = H(H,M ′), is negligible
(as a function of n).

pseudorandomness (PRF): A hash function can be used as a pseudorandom
function if the inital value IV is replaced by a randomly chosen key K
of the same size (i.e., the key generation algorithm outputs a public part
(H, IV) and IV is replaced by a secret key K). Such a keyed hash function
H(K, ·) is called pseudorandom if for any efficient adversary D the advantage
Prob

[

DH(K,·)(H) = 1
]

− Prob
[

Df (H) = 1
]

is negligible, where the proba-
bility in the first case is over D’s coin tosses, the choice of H ← HKGen(1n)
and the key K, and in the second case over D’s coin tosses, the choice of H ←
HKGen(1n), and the choice of the random function f : {0, 1}∗ → {0, 1}n.

pseudorandom oracle (PRO): A hash function Hf based on a random or-
acle f is called a pseudorandom oracle if for any efficient adversary the
construction Hf is indifferentiable from a random oracle F , where indiffer-
entiability [14] is a generalization of indistinguishability allowing to consider
random oracles that are used as a public component. More formally, a hash
function Hf is indifferentiable from a random oracle F if for any efficient
adversary D there exists an efficient algorithm S such that the advantage

Prob
[

DHf ,f (H) = 1
]

− Prob
[

DF,SF (H)(H) = 1
]

is negligible in n, where

the probability in the first case is over D’s coin tosses, H ← HKGen(1n) and
the choice of the random function f , and in the second case over the coin
tosses of D and S, and H ← HKGen(1n) and over the choice of F .

target collision-resistance (TCR): Target collision-resistance is a weaker se-
curity notion than collision-resistance which obliges the adversary to first
commit to a target message M before getting the description H ← HKGen(1n)
of the hash function. For the given H the adversary must then find a second
message M ′ 6= M such that H(M) = H(M ′). More formally, an adversary A
consists of two efficient algorithms (A1,A2) where A1(1n) first generates the
target message M and possibly some additional state information st. Then,
a hash function H ← HKGen(1n) is chosen and A2 has to compute on in-
put (H,M, st) a colliding message M ′ 6= M . A hash function is called target



collision-resistant if or any efficient adversary A = (A1,A2) the probability
that for (M, st) ← A1(1n), H ← HKGen(1n) and M ′ ← A2(H,M, st) we
have M 6= M ′ but H(M) = H(M ′), is negligible.

message authentication (MAC): We assume again that the intial value is
replaced by a secret random key K. We say that the hash function is a
secure MAC if for any efficient adversary A the probability that for H ←
HKGen(1n) and random K and (M, τ)← AH(K,·)(H) we have τ = H(K,M)
and M has never been queried to oracle H(K, ·), is negligible.

For a set prop = {P1,P2, . . . ,PN} of properties we write prop(H) ⊆ prop for
the properties which hash function H has.

2.2 Multi-Property Preserving Combiners

A hash function combiner C = (CKGen,Comb) for hash functions H0,H1 itself
is also a hash function which combines the two functions H0,H1 such that, if at
least one of the hash functions obeys property P, then so does the combiner. For
multiple properties prop = {P1,P2, . . . ,PN} one can either demand that the
combiner inherits the properties if one of the candidate hash functions is strong
and has all the properties (weakly preserving), or that for each property at least
one of the two hash functions has the property (strongly preserving). We also
consider a notion in between but somewhat closer to the weak case, called mildly
preserving, in which case all properties from prop must hold, albeit different
functions may cover different properties (instead of one function as in the case
of weakly preserving combiners).2 More formally,

Definition 1 (Multi-Property Preservation). For a set prop =
{P1,P2, . . . ,PN} of properties a hash function combiner C = (CKGen,Comb)
for hash functions H0,H1 is called weakly multi-property preserving (wMPP)
for prop iff

prop = prop(H0) or prop = prop(H1) =⇒ prop = prop(C),

mildly multi-property preserving (mMPP) for prop iff

prop = prop(H0) ∪ prop(H1) =⇒ prop = prop(C),

and strongly multi-property preserving (sMPP) for prop iff for all Pi ∈ prop,

Pi ∈ prop(H0) ∪ prop(H1) =⇒ Pi ∈ prop(C).

We remark that for weak and mild preservation all individual properties
P1,P2, . . . ,PN from prop are guaranteed to hold, either by a single function as
in weak preservation, or possibly by different functions as in mild preservation.
The combiner may therefore depend on some strong property Pi ∈ prop which

2 One may also refine these notions further. We focus on these three “natural” cases.



one of the hash functions has, and which helps to implement some other property
Pj in the combined hash function. But then, for a subset prop

′ ⊆ prop which,
for instance, misses this strong property Pi, the combiner may no longer preserve
the properties prop

′. This is in contrast to strongly preserving combiners which
support such subsets of properties by definition.

Note that for a singleton prop = {P} all notions coincide and we simply
say that C is P-preserving in this case. However, for two or more properties the
notions become strictly stronger from weak to mild to strong, as we show in
Section 4. Finally, we note that our definition allows the case H0 = H1, which
may require some care when designing combiners, especially if the hash functions
are based on random oracles (see also the remark after Lemma 3).

3 Constructing Multi-Property Preserving Combiners

In this section we propose our combiner for the properties CR, PRF, PRO, TCR

and MAC. We then show it to be strongly multi-property preserving for these
properties.

3.1 Our Construction

Our combiner for functions H0,H1 is a

M

Comb
H0,H1,T

sMPP (M) =

H
prsrv
0 (M)⊕H

prsrv
1 (M)

0||M0||M

H
prsrv

0 (M) H
prsrv

1 (M)
G0 T0 G1 T1

Fig. 1. Combiner Comb
H0,H1,T

sMPP

pair of efficient algorithms CsMPP =
(CKGensMPP,CombsMPP). The key gener-
ation algorithm CKGensMPP(1n) generates
a triple (H0,H1, T ) consisting of two hash
functions H0 ← HKGen0(1

n),
H1 ← HKGen1(1

n) and a public string
T = (T0, T1) where Tb = (tb1, . . . , t

b
n) con-

sists of n uniformly chosen values tbi ∈
{0, 1}5n.

The evaluation algorithm Comb
H0,H1,T
sMPP

for parameters H0,H1, T and message M first computes two hash values
Hprsrv

b (M) for b = 0, 1, each value based on hash function Hb and string Tb.
For this it proceeds in three stages (see Figure 2):

– First hash the large message M into a short string xb ∈ {0, 1}n via the hash
function Hb. For this step we prepend a 0-bit to M in order to make the
hash function evaluation here somewhat independent from the subsequent
stages.

– Then expand the short string xb into five hash values hb
i = Hb(1||xb|| 〈i〉3)

for i = 0, 1, . . . , 4, where 〈i〉3 denotes the number i represented in binary
with 3 bits. Concatenate these strings and denote the resulting 5n-bit string
by Gb(xb) = hb

0||h
b
1|| . . . ||h

b
4.

– Compute Tb(xb) = ⊕xb[i]=1t
b
i and add this value to Gb(xb). Denote the out-

put by Hprsrv
b (M) = Gb(xb)⊕ Tb(xb).



HbHb

Hb

HbHbHb

0||M

H
prsrv
b (M) = Gb(xb)⊕ Tb(xb)

xb

1||xb|| 〈0〉3 1||xb|| 〈1〉3 1||xb|| 〈2〉3 1||xb|| 〈3〉3 1||xb|| 〈4〉3

hb
0 hb

1 hb
2 hb

3 hb
4

Gb(xb) = hb
0||h

b
1||h

b
2||h

b
3||h

b
4 Tb(xb) = ⊕xb[i]=1t

b
i

Fig. 2. Construction of H
prsrv
b based on hash function Hb

Our combiner now sets Comb
H0,H1,T
sMPP (M) = Hprsrv

0 (M) ⊕ Hprsrv
1 (M) as the

final output.

3.2 Multi-Property Preservation

We next show that the construction satisfies our strongest notion for combiners:

Theorem 1. The combiner CsMPP in Section 3.1 is a strongly multi-property
preserving combiner for prop = {CR,PRF,PRO,TCR,MAC}.

The theorem is proven in five lemmas, each lemma showing that the combiner
preserves one of the properties (as long as at least one hash functions guarantees
this property). Since each lemma holds independently of further assumptions,
the strong multi-property preservation follows.

Lemma 1. The combiner CsMPP is CR-preserving.

Proof. The proof is by contradiction. Assume that an adversary AComb on input
H0,H1, T , with noticeable probability, outputs M 6= M ′ with Comb

H0,H1,T
sMPP (M) =

Comb
H0,H1,T
sMPP (M ′). Then a collision

Hprsrv
0 (M)⊕Hprsrv

1 (M) = Hprsrv
0 (M ′)⊕Hprsrv

1 (M ′)

(G0(x0)⊕ T0(x0))⊕ (G1(x1)⊕ T1(x1)) = (G0(x
′

0)⊕ T0(x
′

0))⊕ (G1(x
′

1)⊕ T1(x
′

1))

implies

G0(x0)⊕G0(x
′

0)⊕G1(x1)⊕G1(x
′

1) = T0(x0)⊕ T0(x
′

0)⊕ T1(x1)⊕ T1(x
′

1), (1)

where xb denotes the hash value Hb(0||M) of the first hash function evaluation
and Gb(xb) the subsequent computation hb

0||h
b
1||h

b
2||h

b
3||h

b
4 of the the hash values

hb
i = Hb(1||xb|| 〈i〉3) for i = 0, 1, . . . , 4.



The short inputs x0, x
′
0, x1, x

′
1 of n bits only give 24n possible values on

the left side of equation (1), while the probability (over the random choice of
the ti’s) that for such a fixed tuple with x0 6= x′

0 or x1 6= x′
1 a collision with

T0(x0) ⊕ T0(x
′
0) ⊕ T1(x1) ⊕ T1(x

′
1) occurs, is 2−5n. This follows since for x0 6=

x′
0 or x1 6= x′

1 at least one of the sums T0(x0) ⊕ T0(x
′
0) = T0(x0 ⊕ x′

0) or
T1(x1)⊕ T1(x

′
1) = T1(x1 ⊕ x′

1) on the right hand side cannot cancel out. Hence
the possibility that there exists some tuple x0, x

′
0, x1, x

′
1 with x0 6= x′

0 or x1 6= x′
1

such that equation (1) is statisfied, is at most 24n · 2−5n = 2−n and therefore
negligible.

Thus, with overwhelming probability a collision on the combiner only occurs
if already the hash values xb, x

′

b at the first stage of the construction collide, i.e.,
H0(0||M) = H0(0||M

′) and H1(0||M) = H1(0||M
′) for M 6= M ′. This, however,

contradicts the assumption that at least one of the underlying hash functions
is collision-resistant. This can be easily formalized through an adversary Ab

for b ∈ {0, 1} which, on input Hb ← HKGenb(1
n), samples the other public

values Hb ← HKGenb(1
n) and T and runs the adversary AComb against the

combiner on these data. Whenever AComb outputs (M,M ′) adversary Ab returns
(0||M, 0||M ′). By assumption, both adversaries A0,A1 find collisions for H0 and
H1, respectively, with noticeable probability then. ⊓⊔

Lemma 2. The combiner CsMPP is PRF-preserving.

Proof. The combiner Comb
H0,H1,T
sMPP is pseudorandom if the distribution of the

combiner’s output cannot be distinguished from a truly random function by any
polynomial-time adversary. Assume that one of the hash functions H0 or H1 is
pseudorandom, yet the combiner is not pseudorandom, i.e., there is an adversary
DComb that can distinguish the function Comb

H0,H1,T
sMPP (K0,K1, ·) from a random

function F with non-negligible probability. We show that this allows to construct
a successful distinguisher Db for each underlying hash function Hb, which will
contradict our initial assumption.

Recall that adversary DComb has oracle access to a function that is either a
random function F : {0, 1}∗ → {0, 1}5n or the keyed version of our construction

Comb
H0,H1,T
sMPP (K0,K1, ·) , where the initial values IV1, IV2 in the applications of

H0 and H1 are replaced by random strings K0,K1 of the same size. Then any
efficient adversary DComb can be transformed into an adversary Db (for some
b ∈ {0, 1}) that distinguishes a random function f : {0, 1}∗ → {0, 1}n and a
keyed hash function Hb(Kb, ·) : {0, 1}∗ → {0, 1}n for a randomly chosen key Kb

with the same advantage.
First, the adversary Db on input Hb samples Hb ← HKGenb(1

n) and a key
Kb and chooses random strings T . It then simulates DComb on input (H0,H1, T ).
For each oracle query M of DComb, the adversary Db computes a response by
simulating the hash construction with the previously chosen key T , the function
Hb(Kb, ·) and its own oracle, i.e., each evaluation of the underlying hash function
Hb in the computation of Hprsrv

b (Kb,M) is replaced by the response of Db’s
oracle for the corresponding query. When DComb eventually stops with output
bit d algorithm Db, too, stops and returns d.



For the analysis recall that the underlying oracle of Db is either a random
function f or the hash function Hb(Kb, ·). In the latter case, Db perfectly sim-
ulates applications of our combiner and therefore generates outputs that are
identically distributed to the hash values of the combiner. Hence, the output dis-
tribution of Db in this case equals the one of DComb with access to Comb

H0,H1,T
sMPP ,

i.e.,

Prob
[

D
Hb(Kb,·)
b (Hb) = 1

]

= Prob

[

D
Comb

H0,H1,T

sMPP
(K0,K1,·)

Comb
(H0,H1, T ) = 1

]

.

If the oracle of Db returns random values using a truly random function f , then
the simulated response originates from a structured computation involving f .
Yet we claim that the output still looks like a truly random function as long
as no collision on the first stage of the construction occurs. With probability
at most 2−n any pair of queries M 6= M ′ of DComb yields a collision under
f , i.e., such that f(0||M) = f(0||M ′) which implies a collision on the final
output of the simulation of Hprsrv

b . The probability that any collision among
q = q(n) = poly(n) queries of DComb occurs, is therefore at most

(

q
2

)

· 2−n. Given
that this does not happen, each value hb

i = Hb(1||xb|| 〈i〉3) for i = 0, . . . , 4 for
the second stage is unique and the corresponding images under f are therefore
independently and uniformly distributed. Hence (hb

0||h
b
1||h

b
2||h

b
3||h

b
4) ⊕ Tb(xb) is

an independent random string, even when adding the value Hprsrv

b
(Kb,M). This

shows our claim.
Overall, the output distribution of Df

b satisfies

Prob
[

Df
b (Hb) = 1

]

≤ Prob
[

Df
b (Hb) = 1

∣

∣

∣
no Collision

]

+ Prob[Collision]

= Prob
[

DF
Comb(H0,H1, T ) = 1

]

+

(

q

2

)

· 2−n.

Hence, the probability that Db distinguishes Hb from f is

Prob
[

D
Hb(Kb,·)
b (Hb) = 1

]

− Prob
[

Df
b (Hb) = 1

]

≥ Prob

[

D
Comb

H0,H1,T

sMPP
(K0,K1,·)

Comb
(H0,H1, T ) = 1

]

− Prob
[

DF
Comb(H0,H1, T ) = 1

]

−

(

q

2

)

· 2−n

and thereby not negligible. This contradicts the assumption that either hash
function H0 or H1 is a pseudorandom function. ⊓⊔

Lemma 3. The combiner CsMPP is PRO-preserving.

There is a small caveat here. Our definition of combiners allows to use the
same hash functionH0 = H1, albeit our combiner samples independent instances
of the hash functions then. In this sense, it is understood that, if hash function
H0 is given by a random oracle (as required for property PRO), then in case
H0 = H1 the other hash function instance uses an independent random oracle.



Proof. We show that Comb
H0,H1,T
sMPP is indifferentiable from a random oracle F :

{0, 1}∗ → {0, 1}5n, when at least one underlying hash function H0 or H1 is
a random oracle. By symmetry we can assume without loss of generality that
H0 : {0, 1}∗ → {0, 1}n is a random oracle. The (efficient) function H1 can
be arbitrary (but H1 is sampled independently). It suffices that combiner and
the simulator only have black-box access to H1. The value T , required for the
final output of the combiner, is chosen at random and given as input to all
participating parties.

The adversary D has now oracle access either to the combiner Comb
H0,H1,T
sMPP

and the random oracle H0 or to F and a simulator SF . Our Comb
H0,H1,T
sMPP is indif-

ferentiable to F if there exists a simulator SF , such that adversary D cannot have
a significant advantage on deciding whether its interacting with Comb

H0,H1,T
sMPP and

H0, or with F and SF . We will use the simulator described below:

Simulator SF

H0,H1,T (X): //use setEntry(), getEntry() to maintain list of queries/answers

on query X check if some entry Y ← getEntry(X) already exists
if Y = ⊥ //no entry so far

if X = 0||M for some M

setEntry(X) = x0 where x0 is randomly chosen from {0, 1}n

get U ← F(M) for query M

get x1 ← H1(0||M) and subsequently h1
i ← H1(1||x1|| 〈i〉3) for i = 0, . . . , 4

calculate (h0
0||h

0
1||h

0
2||h

0
3||h

0
4) = U ⊕ (h1

0||h
1
1||h

1
2||h

1
3||h

1
4)⊕ T1(x1)⊕ T0(x0)

save values h0
0, . . . , h

0
4 of potential queries 1||x0|| 〈0〉3 , . . . , 1||x0|| 〈4〉3:

setEntry(1||x0|| 〈i〉3) = h0
i for i = 0, 1, . . . , 4

if X 6= 0||M , choose a random Y ∈ {0, 1}n

and save the value by setEntry(X) = Y

output Y ← getEntry(X)

The simulator’s goal is to mimic H0, i.e., to produce an output that looks consis-
tent to what the distinguisher can obtain from F . To simulate H0, the simulator
S creates a database, where in addition to the previously processed queries and
answers also answers to potential subsequent queries of D are stored. Those ad-
ditional entries are generated if S receives a new query X = 0||M , that might
be an attempt of D to simulate the construction of our combiner with the an-
swers of S. In this case, the simulator first chooses a random answer x0. Then
S invokes the random oracle F on input M and the black-box function H1 on
input X, where the answer x1 ← H1(X) is used for further queries 1||x1|| 〈i〉3
to H1. The responses to those queries correspond to the values h1

0, . . . , h
1
4 at the

second stage of the Hprsrv
1 evaluation. With the help of those values and the out-

put F(M) of the random oracle, the simulator is able to compute the “missing”
answers h0

0, . . . , h
0
4 that it has to return. Each h0

i for i = 0, . . . , 4 is stored for the
corresponding query 1||x0|| 〈i〉3 which D might submit later. For any new query
X that is not of type 0||M the simulator responds with a random value from
{0, 1}n and stores the value.

Except for two events E1, E2 (defined below), the simulator will provide
outputs that are consistent with F , such that D cannot distinguish between



(Comb
H0,H1,T
sMPP ,H0) and (F , SF ). The first event E1 is a collision for S with

S(0||M) = S(0||M ′), M 6= M ′ but F(M) 6= F(M ′), that occurs with probability
at most

(

q
2

)

· 2−n where q denotes the number of queries by D.
The second event E2 occurs if D makes queries to S of the form 1||x0|| 〈i〉3

where x0 has not been an answer of the simulator before, but on a subsequent
query X = 0||M the simulator picks x0 as its answer. In this case S has already
fixed at least one value h0

i for i = 0, . . . , 4 and cannot later define this value
after learning F(M). In particular, S is then unable to provide a consistent
output. But, since S returns random values from {0, 1}n on new queries X, the
probability for S(X) = x0 for any previous query x0 is at most q · 2−n, where q
is the maximal number of queries of type 1||x0|| 〈i〉3 in D’s execution. Overall,
event E2 happens with probability at most q2 · 2−n.

Given that neither event occurs all replies by S are random (but consistent
with the values provided by F). Comparing the two games we note that, for a
consistent run, the simulator’s random choices and the replies of F to the sim-
ulator’s queries implicitly define a random function f , where the only difference
to the original construction of Hprsrv

0 and the “forward” usage of f is that f in
the simulation here is defined “backwards” through F . Still, the two experiments
look identical from D’s viewpoint.

The advantage of the adversary D is thus at most the probability that
one of the events E1 or E2 happens, i.e., Prob[E2 ∨ E2] ≤

((

q
2

)

+ q2
)

· 2−n.
Hence, the probability that D can distinguish whether it is communicating with
(Comb

H0,H1,T
sMPP ,H0) or with (F , SF ), is negligible. ⊓⊔

Lemma 4. The combiner CsMPP is TCR-preserving.

The proof that our combiner is target collision-resistant follows the argument
for collision-resistance closely and appears in the full version.

Lemma 5. The combiner CsMPP is MAC-preserving.

Proof. Assume towards contradiction that our combiner is not a secure MAC.
Then there exists an adversary AComb which, after learning several values τi =
Comb

H0,H1,T
sMPP (K0,K1,Mi) for adaptively chosen Mi’s, outputs M 6=

M1,M2, . . . ,Mq and τ such that τ = Comb
H0,H1,T
sMPP (K0,K1,M) with noticeable

probability.
Given AComb we construct a MAC-adversary Ab against hash function Hb

for b ∈ {0, 1}. This adversary Ab is given Hb as input and oracle access to a
function Hb(Kb, ·) and uses the attacker AComb in a black-box way to produce
a forgery. To this end, Ab first samples T and Hb ← HKGenb(1

n) and Kb as
specified by the combiner, and then invokes AComb for input (H0,H1, T ). For
each query Mi of AComb our adversary computes the combiner’s output with
the help of its oracle Hb(Kb, ·) and knowledge of the other parameters. In par-
ticular, for each query adversary Ab calls its oracle six times about 0||Mi and
1||xb,i|| 〈0〉3 , . . . , 1||xb,i|| 〈4〉3.

If, at the end, AComb returns M and τ such that M is not among the previous
q queries Mi, then adversary Ab flips a coin c← {0, 1} and proceeds as follows:



– If c = 0 then Ab chooses an index i at random between 1 and q and looks
up the answer xb,i it received in response to its query 0||Mi. It stops with
output (0||M,xb,i).

– If c = 1 then Ab queries its oracle about 0||M to receive an answer xb. It
then uses its knowledge about the other parameters to compute Hprsrv

b
(M)

and calculates y = τ ⊕Hprsrv

b
(M)⊕Tb(xb). It outputs the message 1||xb||000

and the first n bits of y and stops.

If AComb fails to output a pair (M, τ) or returns a previously queried message
M = Mi, then Ab reports failure and terminates.

For the analysis we consider the two exclusive cases of an successful AComb.
First, the adversary AComb manages to find a new M and a valid τ such that
Hb(Kb, 0||M) collides with some value Hb(Kb, 0||Mi) for some query 0||Mi. Given
this, adversary Ab outputs 0||M and Hb(Kb, 0||M) with probability 1

2q
, namely,

if c = 0 and the guess for i is correct. But then 0||M is distinct from all of Ab’s
previous queries (because all 0||Mi’s are distinct from 0||M and all other queries
of Ab are prepended by a 1-bit). Hence, if AComb successfully forges such a MAC
with noticeable probability, then so does Ab. Put differently, the probability that
AComb succeeds for such cases is negligible by the security of Hb.

The second case occurs if AComb outputs a fresh M and a valid tag τ such
that xb = Hb(Kb, 0||M) is distinct from all values xb,i = Hb(Kb, 0||Mi) for
the queries 0||Mi. In this case, if c = 1, adversary Ab “unmasks” τ to recover
y = Hb(Kb, 1||xb|| 〈0〉3)|| . . . ||Hb(Kb, 1||xb|| 〈4〉3). Note that this requires Ab to
make a further oracle query about value 0||M . But this value (in addition to all
other queries) is different from 1||xb||000, andAb therefore returns a valid forgery
with noticeable probability (if AComb would succeed with noticeable probability
for this case).

In summary, it follows that any successful adversary on the combiner MAC
immediately yields successful attacks on both hash functions, proving the claim.

⊓⊔

3.3 Variations

In this section we briefly deal with some variations of our previous construction.

Reducing the Key Size. To reduce the key size in our construction we may assume
that one of the hash functions is a random oracle and has property PRO, and
move from strongly preserving combiners to mildly preserving ones. This also
shows that such weaker combiners may come with a gain in efficiency.

If we assume that one hash function behaves like a random function then,
instead of picking the ti’s at random and putting them into the key, we define
tbi := H0(‡||b||i)⊕H1(‡||b||i) for a special symbol ‡ different from 0 and 1 (e.g.,
in practice encode 0 and 1 as 00 and 01, respectively, and set ‡ = 11). The prefix
‡ makes the values independent of the intermediate values in the computation,
and the values tbi can now be computed “on the fly” instead of storing them in
the key.



Given that either hash function has property PRO the values tbi are pseudo-
random and the proofs in the previous section carry over and we get a mildly
multi-property preserving combiner for prop = {CR,TCR,MAC,PRF,PRO}.
The key size now equals the one for the two underlying hash functions.

Hash Functions with Different Output Sizes. Our construction utilizes the fact
that both hash functions have the same output length n. This implies that the
concatenation of 5 hash function values Hb(1||xb|| 〈i〉3) for each function Hprsrv

b

has the same length.

If we consider two hash functions with distinct output sizes n0 and n1, then
we need to concatenate 5·max{n0, n1} bits of output. For this we simply concate-
nate enough hash values Hb(1||xb|| 〈i〉ℓb

) (with increasing counter values i) for
ℓb = ⌈log2(5 ·max{n0, n1}/nb)⌉, and truncate longer outputs to 5 ·max{n0, n1}
bits. At the same time the tbi ’s are also chosen to be of length 5 ·max{n0, n1}.
With these modifications all the proofs carry over straightforwardly.

Combining More Hash Functions. To combine h ≥ 3 hash functions, each with
output size n0, n1, . . . , nh−1, we set again n := max{n0, n1, . . . , nh−1} and, this
time, produce (2h + 1) · n output bits for each function Hprsrv

b . Accordingly, we
let the tbi ’s be of length (2h + 1) · n. As long as h is polynomial the proofs can
be easily transferred to this case.

Alternatively, one can apply our general method to combine three or more
hash functions as discussed in Section 5. Yet, this general construction yields a
less efficient solution than the tailor-made solution above.

4 Weak vs. Mild vs. Strong Preservation

The first proposition shows that strong preservation implies mild preservation
which, in turn, implies weak preservation. The proof is straightforward and given
only for sake of completeness:

Proposition 1. Let prop be a set of properties. Then any strongly multi-property
preserving combiner for prop is also mildly preserving for prop, and any mildly
preserving combiner for prop is also weakly preserving for prop.

Proof. Assume that the combiner is sMPP for prop. Suppose further that
prop(C) 6⊆ prop such that there is some property Pi ∈ prop− prop(C). Then,
since the combiner is sMPP, we must also have Pi /∈ prop(H0) ∪ prop(H1),
else we derive a contradiction to the strong preservation. We therefore have
prop 6⊆ prop(H0) ∪ prop(H1), implying mild preservation via the contraposi-
tive statement.

Now consider an mMPP combiner and assume prop = prop(H0) or prop =
prop(H1). Then, in particular, prop = prop(H0) ∪ prop(H1) and the mMPP
property says that also prop = prop(C). This proves sMPP. ⊓⊔



To separate the notions we consider the collision-resistance property CR and
the property NZ (non-zero output) that the hash function should return 0 · · · 0
with small probability only. This may be for example required if the hash value
should be inverted in a field:

non-zero output (NZ): A hash function H has property NZ if for any efficient
adversary A the probability that for H ← HKGen(1n) and M ← A(H) we
have H(M) = 0 · · · 0, is negligible.

Lemma 6. Let prop = {CR,NZ} and assume that collision-intractable hash
functions exist. Then there is a hash function combiner which is weakly multi-
property perserving for prop, but not mildly multi-property preserving for prop.

Proof. Consider the following combiner (with standard key generation, (H0,H1)
← CKGen(1n) for H0 ← HKGen0(1

n) and H1 ← HKGen1(1
n)):

The combiner for input M first checks that the length of M is even, and
if so, divides M = L||R into halves L and R, and
– checks that H0(L) 6= H0(R) if L 6= R, and that H0(M) 6= 0 · · · 0,
– verifies that H1(L) 6= H1(R) if L 6= R, and that H1(M) 6= 0 · · · 0.

If the length of M is odd or any of the two properties above holds, then
the combiner outputs H0(M)||H1(M). In any other case, it returns 02n.

We first show that the combiner is weakly preserving. For this assume that the
hash function Hb for b ∈ {0, 1} has both properties. Then the combiner returns
the exceptional output 02n only with negligible probability, namely, if one finds
an input with a non-trivial collision under Hb and which also refutes property NZ.
In any other case, the combiner’s output H0(M)||H1(M) inherits the properties
CR and NZ from hash function Hb.

Next we show that the combiner is not mMPP. Let H ′
1 be a collision-resistant

hash function with n − 1 bits output (and let H1 include a description of H ′
1).

Define the following hash functions:

H0(M) = 1n, H1(M) =

{

0n if M = 0n1n

1||H ′
1(M) else

.

Clearly, H0 has property NZ but is not collision-resistant. On the other hand,
H1 obeys CR but not NZ, as 0n1n is mapped to zeros. But then we have prop =
{CR,NZ} = prop(H0)∪prop(H1) and mild preservation now demands that the
combiner, too, has these two properties. Yet, for input M = 0n1n the combiner
returns 02n since the length of M is even, but L = 0n and R = 1n collide under
H0, and M is thrown to 0n under H1. This means that the combiner does not
obey property NZ. ⊓⊔

Lemma 7. Let prop = {CR,NZ}. Then there exists a hash function com-
biner which is mildly multi-property perserving for prop, but not strongly multi-
property preserving for prop.



Proof. Consider the following combiner (again with standard key generation):

The combiner for input M first checks that the length of M is even,
and if so, divides M = L||R into halves L and R and then verifies that
H0(L) 6= H1(R) or H1(L) 6= H1(R) or L = R. If any of the latter
conditions holds, or the length of M is odd, then the combiner outputs
H0(M)||H1(M). In any other case it returns 02n.

We first prove that the combiner above is mMPP. Given that prop ⊆ prop(H0)∪
prop(H1) at least one of the two hash functions is collision-resistant. Hence, even
for M = L||R with even length and L 6= R, the hash values only collide with neg-
ligible probability. In other words, the combiner outputs H0(M)||H1(M) with
overwhelming probability, implying that the combiner too has properties CR and
NZ.

Now consider the constant hash functions H0(M) = H1(M) = 1n for all M .
Clearly, both hash functions obey property NZ ∈ prop(H0) ∪ prop(H1). Yet,
for input 0n1n the combiner returns 02n such that NZ /∈ prop(C), implying that
the combiner is not strongly preserving. ⊓⊔

The proof indicates how mildly (or weakly) preserving combiners may take
advantage of further properties to implement other properties. It remains open
if one can find similar separations for the popular properties like CR and PRF,
or for CR and PRO.

5 Multiple Hash Functions and Tree-Based Composition

of Combiners

So far we have considered combiners for two hash functions. The multi-property
preservation definition extends to the case of more hash functions as follows:

Definition 2. For a set prop = {P1,P2, . . . ,PN} of properties an m-function
combiner C = (CKGen,Comb) for hash functions H0,H1, . . . ,Hm−1 is called
weakly multi-property preserving (wMPP) for prop iff

∃j ∈ {0, 1, . . . ,m− 1} s.t. prop = prop(Hj) =⇒ prop = prop(C),

mildly multi-property preserving (mMPP) for prop iff

prop =

m−1
⋃

j=0

prop(Hj) =⇒ prop = prop(C),

and strongly multi-property preserving (sMPP) for prop iff for all Pi ∈ prop,

Pi ∈

m−1
⋃

j=0

prop(Hj) =⇒ Pi ∈ prop(C).



For the above definitions we still have that sMPP implies mMPP and mMPP
implies wMPP. The proof is a straightforward adaption of the case of two hash
functions.

Given a combiner for two hash functions one can build a combiner for three
or more hash functions by considering the two-function combiner itself as a hash
function and applying it recursively. For instance, to combine three hash func-
tionsH0,H1,H2 one may define the “cascaded” combiner by C2(C2(H0,H1),H2),
where we assume that the output of C2 allows to be used again as input to the
combiner on the next level.

More generally, given m hash functions and a two-function combiner C2 we
define an m-function combiner Cmulti as a binary tree, as suggested for general
combiners by [12]. Each leaf is labeled by one of the m hash functions (different
leaves may be labeled by the same hash function). Each inner node, including
the root, with two descendants labeled by F0 and F1, is labeled by C2(F0,F1).

The key generation algorithm for this tree-based combiner now runs the
key generation algorithm for the label at each node (each run independent of
the others, even if two nodes contain the same label). To evaluate the multi-
hash function combiner one inputs M into each leaf and computes the functions
outputs recursively up to the root. The output of the root node is then the
output of Cmulti. We call this a combiner tree for C2 and H0,H1, . . . ,Hm−1.

For efficiency reasons we assume that there are at most polynomially many
combiner evaluations in a combiner tree. Also, to make the output dependent on
all hash functions we assume that each hash function appears in (at least) one
of the leaves. If a combiner tree obeys these properties, we call it an admissible
combiner tree for C2 and H0,H1, . . . ,Hm−1.

We first show that weak MPP and strong MPP preserve their properties for
admissible combiner trees:

Proposition 2. Let C2 be a weakly (resp. strongly) multi-property preserving
two-function combiner for prop. Then any admissible combiner tree for C2 and
functions H0,H1, . . . ,Hm−1 for m ≥ 2 is also weakly (resp. strongly) multi-
property preserving for prop.

Proof. We give the proof by induction for the depth of the tree. For depth d = 1
we have m = 2 and Cmulti(H0,H1) = C2(H0,H1) or Cmulti(H0,H1) = C2(H1,H0)
and the claim follows straightforwardly for both cases.

Now assume d > 1 and that combiner Comb2 is wMPP. Then the root node
applies C2 to two nodes N0 and N1, labeled by F0 and F1. Note that by the
wMPP prerequisite we assume that there exists one hash function Hj which has
all properties in prop. Since this hash functions appears in at least one of the
subtrees under N0 or N1, it follows by induction that at least one of the functions
F0 and F1, too, has properties prop. But then the combiner application in the
root node also inherits these properties from its descendants.

Now consider d > 1 and the case of strong MPP. It follows analogoulsy to
the previous case that for each property Pi ∈ prop, one of the hash functions
in the subtrees rooted at N0 and N1 must have property Pi as well. This carries



over to the combiners at nodes N0 or N1 by induction, and therefore to the root
combiner. ⊓⊔

Somewhat surprisingly, mild MPP in general does not propagate security for
tree combiners, as we show by a counter-example described in the full version.
Note that we still obtain, via the previous proposition, that the mMPP combiner
is also wMPP and that the resulting tree combiner is thus also wMPP. Yet, it
loses its mMPP property.

Proposition 3. Let prop = {CR,NZ} and assume that there are collision-
intractable hash functions. Then there exists a two-function weakly multi-property
preserving combiner C2 for prop, and an admissible tree combiner for C2 and
hash functions H0,H1,H2 which is not mildly multi-property preserving for
prop.

Note that the cascading combiner can also be applied to our combiner in
Section 3 to compose three or more hash functions (with the adaption for hash
functions with different output lengths discussed in Section 3.3). The derived
combiner, however, is less efficient than the direct construction sketched there.
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