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Abstract Multi-proxy studies are becoming increasingly
common in palaeolimnology. Eight basic requirements and
challenges for a multi-proxy study are outlined in this essay
– definition of research questions, leadership, site selection
and coring, data storage, chronology, presentation of re-
sults, numerical tools and data interpretation. The nature
of proxy data is discussed in terms of physical proxies
and biotic proxies. Loss-on-ignition changes and the use
of transfer functions are reviewed as examples of problems
in the interpretation of data from multi-proxy studies. The
importance of pollen analysis and plant macrofossil anal-
ysis in multi-proxy studies is emphasised as lake history
cannot be interpreted without knowledge of catchment his-
tory. Future directions are outlined about how multi-proxy
studies can contribute to understanding biotic responses to
environmental change.
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Introduction

Ecosystems can be thought of as an almost infinite net-
work of interactions among biotic and abiotic components
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balanced between internal and external driving factors. In a
stable ecosystem the interactions are in balance, but when
they become unbalanced the character of the ecosystem
will change. The change may be small or substantial and
may occur suddenly in a short time or slowly over an ex-
tended period. A rapid change occurring in the present
may be monitored by regular observations. However, many
changes have been proceeding over a long period before
observation was possible, and some rapid and extensive
changes have occurred far back in the past. In order to
study the dynamics of these ecosystems we have to look
back into the past by using the record of changes in fos-
sil organisms and sediment characteristics (‘proxy’ data)
to reconstruct past ecosystems and biotic responses. Be-
cause of the complex network of interactions throughout
the ecosystem, it is desirable to study as many proxies
as possible in order to gain a wider overview of the sit-
uation than could be acquired from a single proxy (Smol
2002; NRC 2005). Such an investigation is called a multi-
proxy study. In this essay about multi-proxy studies we
shall concentrate on lake-sediment studies (palaeolimnol-
ogy) in temperate areas, although one should be aware that
successful multi-proxy studies have been carried out on
peats (e.g. Booth and Jackson 2003; Pancost et al. 2003;
Booth et al. 2004; Chambers and Charman 2004; Charman
and Chambers 2004; Mighall et al. 2004), dendrochrono-
logical series (e.g. McCarroll et al. 2003), archaeological
sites (e.g. Clark 1954; Wasylikowa et al. 1985; Davies et al.
2004; Selby et al. 2005), salt-marsh sediments (e.g. Gehrels
et al. 2001), freshwater-marsh sediments (e.g. Finkelstein
et al. 2005) and marine sediments (e.g. Andersson et al.
2003; Oldfield et al. 2003a; Risebrobakken et al. 2003;
Haug et al. 2005), and in tropical (e.g. Verschuren et al.
2000; Vélez et al. 2005) and extreme polar (e.g. Birks et al.
2004; Hodgson et al. 2005) environments.

The earliest multi-proxy studies, reviewed by Wright
(1966) and Birks and Birks (1980), used the palaeolim-
nological record to test ideas of lake ontogeny and biotic
responses over time to external perturbations and internal
processes. Although these studies used selected taxa and
proxies and there was little or no statistical or numerical
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analysis, they provided elegant and carefully argued nar-
ratives, emphasising limnological processes and the role
of catchment changes on lake dynamics. They are major
contributions and in many ways they present a challenge to
palaeolimnologists today to make further advances in our
understanding of lake development and dynamics (Deevey
1984; Likens 1985). In palaeolimnological studies these
days, a multi-proxy approach is the norm, but the aims
of investigating ecosystem dynamics have turned more to-
wards the reconstruction of past environments and climate
changes (Lotter 2003). The synthesis of multi-proxy re-
sults in successful studies exceeds the sum of the compo-
nent parts. However, as knowledge and experience expand,
problems have become apparent in the use of some of these
component parts for ecosystem reconstruction.

Extensive and detailed reviews of multi-proxy studies
in palaeolimnology and palaeoecology include Wright
(1966), Birks and Birks (1980), Delcourt and Delcourt
(1991), Smol (2002), Cohen (2003), Lotter (2003), Pienitz
et al. (2004) and NRC (2005). The four volumes on
palaeolimnological methods edited by Last and Smol
(2001a, b) and Smol et al. (2001a, b) provide detailed
accounts of the full range of field and analytical techniques
currently available in palaeolimnology.

The essential aspect of any multi-proxy study is that sev-
eral proxies are used simultaneously to address the aims of
the project. The methods used will, of course, be related
to the research question under investigation. The study of
lake sediments can be directed towards reconstructions of
the aquatic environment and/or of the terrestrial catchment
of the lake, even including the regional landscape beyond
the catchment. The factors or processes behind the recon-
structed changes (patterns) in the lake ecosystem can be
sought in terms of causal processes such as changes in cli-
mate, both temperature and precipitation, or human activ-
ity that affect most aspects of lake ecosystem functioning.
Often, more specific questions are asked concerning both
natural and human-induced changes in lake-water quality
and catchment characteristics, especially changes in vege-
tation and the catchment that affect the lake either directly
or indirectly (Birks et al. 2000; Lotter and Birks 2003).

The results of a multi-proxy study are usually presented
and discussed in a descriptive or narrative way (Birks
1993a), using all the lines of evidence to reconstruct vari-
ous aspects of the past ecosystem and to deduce the range
of changes it has undergone. The value of any multi-
proxy study clearly rests on the reliability of the prox-
ies used to reconstruct the past environmental conditions.
Different proxies reflect different environmental factors at
a range of spatial scales and consequently show different
strengths and weaknesses. By combining proxies, strengths
can be exploited and weaknesses can be identified (Mann
2002). However, weaknesses exposed by multi-proxy stud-
ies should not be ignored. They demonstrate shortcomings
in methodology and resolution, limitations in taxonomic
identifications, lack of understanding of the taphonomy
of fossils, and gaps in our knowledge of the relationships
of proxies, both biological and physical, to environmen-

tal factors. Thus important new lines of research may be
stimulated.

There have been many major advances in palaeolim-
nology in the last 25 years, as reviewed by Smol (2002).
In the context of multi-proxy studies discussed here there
have been at least six major areas of development. (1) the
study of new proxies such as stable isotopes, near-infrared
spectroscopy, organic chemistry and bio-markers, chirono-
mids and organic contaminants; (2) improved chronolog-
ical tools including the discovery of lakes with annually
laminated sediments, improvements in 14C dating, 14C cal-
ibration and 210Pb dating, and the development of other dat-
ing techniques; (3) increasing use of quantitative methods
for summarising patterns in complex stratigraphical data
and for deriving transfer functions to reconstruct quantita-
tively past environmental variables from biological proxy
data; (4) an increase in fine-resolution studies, often utilis-
ing laminated sediments; (5) increasing concern for careful
and rigorous project design, site selection, and hypothesis
testing; and (6) an emphasis, perhaps an over-emphasis, on
palaeoenvironmental reconstructions, with a correspond-
ing neglect of lake biotic responses to changing internal or
external factors, of lake dynamics and processes, and of the
underlying biology and ecology of the organisms preserved
as proxy records in lake sediments. The aim of this essay
is to outline some of the methodological and conceptual
aspects and challenges of multi-proxy studies in palaeolim-
nology. It makes no attempt to be exhaustive and inevitably
reflects our personal interests and biases, particularly to-
wards quantitative approaches and to recent (last 100–300
years), Holocene, and late-glacial palaeolimnology. It also
reflects our research experiences in temperate areas, and
our collaborations with colleagues in the UK, Fennoscan-
dia, USA, Canada, The Netherlands, and Switzerland.

Basic requirements and challenges for a multi-proxy
study

1. As in any scientific investigation, clear research ques-
tions are needed at the outset that the study aims to ad-
dress. This is especially important in multi-proxy studies
as they inevitably involve several scientists collecting a
large amount of data. This process is often very time-
consuming and therefore expensive in time, effort, and
resources.

2. A good leader is required, with effective communi-
cation and co-ordination skills, a broad knowledge, a
flexible approach, and an enthusiasm and determina-
tion to synthesise and publish the results. Multi-proxy
studies accumulate large amounts of data (e.g. an esti-
mated 25,000 data points were collected in the Kråkenes
Project; Birks et al. 1996, 2000; Birks and Wright 2000).
Thus the project has to be carefully planned and co-
ordinated from the outset so that all the data are avail-
able to all the participants at the synthesis and writing-up
stages. A major benefit from a well co-ordinated study
is that all the participating scientists are involved and



237

cross-disciplinary links and collaboration can be estab-
lished.

3. Because so much work goes into a multi-proxy study it
is vital that the site or sites for investigation are chosen
in locations that will potentially provide answers to the
original aims of the project. Once a site is chosen, the
collection of the sediments must be done in the most
careful and precise way possible from an appropriate
place in the lake. It is vastly preferable to undertake all
the analyses on one core, as precise correlations can then
be made between proxy records. It is therefore worth
spending time on site selection, establishing the basic
morphometry and sediment stratigraphy of the basin,
and on obtaining continuous large-diameter (10–11 cm)
cores (e.g. Nesje 1992) or a series of overlapping large-
diameter cores (e.g. Cushing and Wright 1965). Such
cores usually provide enough material for the majority
of analyses to be performed, but perhaps not enough for
studies of fossil beetles or some organic bio-markers.
If more than one core is required, for example a central
core in deep water and a littoral core in shallow water, or
a transect of cores, then the cores should be correlated as
precisely as possible. This can be done using sediment
lithology and comparison of percent loss-on-ignition or
magnetic susceptibility measurements. If several lakes
are to be investigated, the cores can be correlated using
dating techniques (14C, 210Pb) or by correlating events in
a regional record such as anemophilous pollen, tephra,
or atmospheric contaminants such as sphaeroidal car-
bonaceous particles.

In practice there are three sampling and analytical sit-
uations in a multi-proxy study–(1) the ‘ideal’ situation
where all the analyses of the various proxies are made at
the same levels in the same core, (2) the ‘worst’ situation
where the analyses are made at different levels in two
or more cores from the same part of the basin, and (3)
the ‘compromise’ situation where different proxies are
studied at different levels but in the same core. To help
alleviate the ‘worst’ situation, reliable core correlation
can often be achieved using sequence-slotting proce-
dures (Birks and Gordon 1985; Thompson and Clark
1989) or other numerical procedures (Kovach 1993)
with percent loss-on-ignition [percentage weight loss
after burning at 550 or 900◦C], magnetic susceptibility,
and other sedimentary variables as the basis for core
comparison and correlation. In the ‘compromise’
situation of sampling different levels in the same core,
it may be necessary to interpolate the different data sets
to constant sampling interval or temporal resolution to
permit various types of time-series analysis (Birks 1998)
and to allow comparisons between different proxies.
A wide range of interpolation procedures is available
(Davis 2002; Weedon 2003). They all inevitably result
in some loss of information and temporal resolution.
The interpolation approach adopted depends very much
on the research questions under study.

4. Because so many data are collected, it is important to
store and co-ordinate them efficiently. A multi-proxy re-
lational data-base (e.g. Juggins 1996) ensures compati-

bility and consistency between data types and provides a
rapid and effective means of bringing together, compar-
ing, and cross-correlating different proxy records within
and between cores. It provides archival and research
tables of, for example, basic core data, physical and
chemical variables, biological data, chronological in-
formation, age-depth model results, and correlations. A
data-base allows rapid retrieval of data and provides the
basis for subsequent data manipulation and output for
further analysis.

5. For almost all multi-proxy studies a reliable chronology
is essential. This is usually provided by high-resolution
radiocarbon dating, preferably AMS 14C dating of care-
fully determined terrestrial plant material (e.g. Gulliksen
et al. 1998). Recent sediments can be dated by the 210Pb
method and associated radiometric techniques involv-
ing 137Cs and 241Am (e.g. Appleby 2004) and age-depth
models of recent peat profiles have been made by 14C
dating (Goslar et al. 2005). In rare instances, lake sed-
iments may be annually laminated and an absolute, or
at least a ‘floating’ absolute, chronology can be estab-
lished (Bradbury and Dean 1993; Anderson et al. 1995,
1996; Ralska-Jasiewiczowa et al. 1998, 2003; Lotter
1999, 2001; Smith et al. 2004) and used to establish
rates of compositional change in different proxies (e.g.
Lotter et al. 1992), to detect decadal or even annual envi-
ronmental changes (e.g. Smith et al. 2004), and to infer
catchment–lake interactions at a decadal scale (Ander-
son et al. 1995, 1996).

6. Clear presentation of the wealth of results from a multi-
proxy study is necessary. An important first step, essen-
tial if the data-sets are from different cores, is to establish
age-depth models for each core, so that all the data can
be plotted on a comparable age basis. Calibration of ra-
diocarbon dates into calendar years is needed to provide
a linear age scale into which other chronologies (e.g.
210Pb) can be combined. Techniques for radiocarbon cal-
ibration (e.g. Buck and Millard 2004) and the underlying
radiocarbon calibration data-sets (Reimer et al. 2005)
are continually evolving. There are many approaches to
age-depth modelling (e.g. Bennett 1994; Telford et al.
2004b; Heegaard et al. 2005), all with strengths and
weaknesses. The limiting factor of all age-depth models
is the number and reliability of the available radiocarbon
or other types of dates (Telford et al. 2004b).

Once a robust and realistic age-depth model is es-
tablished, the variables from the core(s) can be plot-
ted stratigraphically using computer software such
as TILIA, TILIA.GRAPH, and TGView (Grimm
1991–2004) or PDP (Palaeo Data Plotter, Juggins 2002),
now superseded by C2 (Juggins 2003). These programs
allow stratigraphical variables with different sampling
intervals to be plotted on a common depth or age basis
(e.g. Oldfield 1996; Oldfield et al. 2003a) or stratigraph-
ical variables with different sampling intervals and from
different sites or cores to be plotted on a common age
basis (Oldfield 1996).

7. Numerical techniques for detecting the major patterns
of variation in a range of stratigraphical data, often
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consisting of a large number of variables, and for sum-
marising the main stratigraphical patterns are an invalu-
able tool in synthesising data in multi-proxy studies.
The major numerical techniques are reviewed by Birks
(1998). A valuable philosophical concept is the princi-
ple of parsimony and hence the statistical concept of
the ‘minimal adequate model’ in numerical analysis and
model selection (Crawley 1993).

There are three classes of numerical techniques that
are useful for analysing multivariate multi-proxy strati-
graphical data. Independent zonations of different strati-
graphical proxies (e.g. pollen, diatoms, chironomids,
sediment geochemistry) using Gordon’s (1982) optimal,
non-hierarchical partitioning (see also Birks and Gordon
1985) and subsequent comparisons of the various par-
titionings with the broken-stick model (Bennett 1996)
will detect the minimal number of potentially ‘signifi-
cant’ zones. Zonation schemes based on different prox-
ies can then be compared visually (e.g. Lotter and Birks
2003) or statistically (e.g. Gardiner and Haedrich 1978).
Sequence-splitting (Walker and Wilson 1978; Walker
and Pittelkow 1981) is a potentially valuable tool for
summarising multi-proxy data. It was developed for
pollen-stratigraphical data and it has not, as far as we
know, been applied in palaeolimnology. It ‘zones’ each
stratigraphical variable (like individual pollen taxa) into
sections with distinct but homogenous means and stan-
dard deviations. The statistical significance of each split
is tested (Walker and Wilson 1978) and the occurrence
of all splits in time can be tested statistically (Gardiner
and Haedrich 1978). Birks and Gordon (1985) discuss
the approach in detail and Birks and Line (1994) present
a palaeoecological application involving statistical test-
ing within and between sequences. The procedure re-
quires statistically independent stratigraphical variables
(like accumulation rates). A simple way of transforming
relative percentage stratigraphical data into independent
variables is to represent them as principal component
or correspondence analysis axes that are, by definition,
orthogonal and uncorrelated. Each axis can be used as a
variable in sequence splitting. The temporal occurrence
of significant splits in the data can then be compared with
the occurrence of splits in other data-sets from the same
core, thereby identifying consistent periods of change in
different individual proxy variables.

Ordination techniques (e.g. principal components
analysis, correspondence analysis) provide valuable
summaries of the major stratigraphical patterns in a
particular palaeolimnological variable (e.g. diatoms),
particularly when the sample scores on ordination axes
1, 2, etc. are plotted stratigraphically. Such plots (e.g.
Ammann et al. 2000; Birks et al. 2000; Birks and
Birks 2001; Lotter and Birks 2003) highlight the major
patterns of variation, and illustrate and summarise the
nature of the temporal changes. It is most parsimonious
to consider only those ordination axes that are statis-
tically significant, namely that have eigenvalues larger
than expected under the broken stick model (Jolliffe
2002; Jackson 1993). For biological data, detrended

correspondence analysis (DCA) (Hill and Gauch 1980)
is preferable because the sample scores are scaled in
‘standard deviation’ units of compositional change or
turnover (β-diversity). It is thus possible to obtain a
graphical summary of the magnitude of compositional
change within a stratigraphical proxy (like chironomids)
and between stratigraphical proxies (e.g. chironomids,
pollen, diatoms) from the same stratigraphical sequence
(e.g. Birks et al. 2000; Birks and Birks 2001). When
interest is focussed on the magnitude of compositional
change in a group of organisms over a specific time
interval between sites, a series of constrained DCCAs
( = detrended canonical correspondence analysis with
detrending by segments and non-linear rescaling: ter
Braak 1986) using sample age as the constraining
variable can be made and the estimates of compositional
change for the time interval at each site can be mapped
and compared (e.g. Smol et al. 2005).

8. Interpretation and publication of the large amounts of
data resulting from a multi-proxy study are major chal-
lenges.

Firstly, there are often too much data to assimilate readily
and it is here that numerical techniques for data summari-
sation are their most useful and powerful (see above, Birks
1998; Bradshaw et al. 2005a).

Secondly, there is the challenge to avoid the natural
tendency to believe that one type of proxy is, in some
way, more reliable or more informative than another proxy
record, and hence to give subconsciously greater weight to
some proxies than to others.

Thirdly, it is a major challenge to avoid the ‘reinforce-
ment syndrome’ (Watkins 1971; Thompson and Berglund
1976; Bennett 2002) or the tendency to adopt a ‘confir-
matory’ approach where data interpretation is forced to
fit into a particular favoured paradigm or stratigraphical
sequence of environmental changes. This syndrome was
articulated in the field of palaeomagnetism when Watkins
(1971) wrote “It is infinitely more difficult, if not impos-
sible, to prove that a given magnetic field behaviour has
not taken place, than to ‘show’ it has occurred. Superim-
posed on this is an important human element: it is far more
reasonable to generate the energy and the belief (? faith)
required for publication of data confirming a discovery
than to publish more negative data of a pedestrian nature.
Thus the initial discovery is reinforced.” In palaeolimnol-
ogy there is a tendency to try to match small changes in
proxy data-sets (‘signal’) to fit or to confirm the current
paradigm or model and to ignore other, perhaps equally
large, changes as ‘noise’. To avoid the reinforcement syn-
drome it is important to let the data speak for themselves.
Lotter et al. (1995) and Ammann et al. (2000) provide strik-
ing examples where numerical techniques helped the data
to speak for themselves. The relative sensitivities of dif-
ferent proxies were revealed and the presence or absence
of lags in biotic response to rapid climate change could
be assessed. An invidious effect of the reinforcement syn-
drome is so-called publication bias (Möller and Jennions
2001; Meiri et al. 2004) where only confirmatory results
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are published, especially in so-called ‘high-impact jour-
nals’ and non-confirmatory results are published in other
journals or, worst of all, are never published. As Watkins
(1971) noted, “it would be instructive to compile examples
of other applications of this ‘reinforcement syndrome’ to
see if there are any natural laws governing the blossoming
or survival of possibly spurious, or at least only partially
correct, observations or ideas.” Examples of this syndrome
may exist in the palaeoclimatological literature concerning,
for example, cycles or periodicities in Holocene climatic
change, the global extent of rapid and short-lived climatic
changes in the Late-glacial and early Holocene, and the
early Holocene thermal maximum.

Fourthly, a potentially rewarding approach to the inter-
pretation of large amounts of multi-proxy data is so-called
‘data-splitting’. One proxy (e.g. pollen) may be used to
reconstruct mean July air temperature and this reconstruc-
tion is then used to interpret stratigraphical changes in
another independent proxy (e.g. chironomids, diatoms) in
terms of biotic responses to climate change (e.g. Ammann
1989a, b, 2000). Lotter and Birks (2003) adopted this ap-
proach in their interpretation of Holocene multi-proxy data
at Sägistalsee. Plant macrofossil data were used to recon-
struct catchment vegetation, and these reconstructions were
then used, along with insolation and other independent cli-
mate proxies, as ‘predictors’ in statistical modelling to see
which ‘predictors’ best explained, in a statistical sense,
the observed changes in five different types of limnologi-
cal variables (chironomids, cladocera, sediment geochem-
istry, sediment magnetics, and sediment grain-size). This
hypothesis-testing approach is relatively new and has great
potential for future research development. It is a power-
ful way of testing ideas and it should be undertaken more
widely in the future (Birks 1993a, b, 1996, 1998), in an
attempt to test hypotheses about the possible processes
driving biotic and lake-ecosystem changes. Ammann et al.
(2000) used the oxygen-isotope stratigraphy from late-
glacial sediments as a record of climate change against
which observed biotic changes (pollen, chironomids, clado-
cera, beetles, plant macrofossils) could be compared and
evaluated in terms of lags in response to rapid climate
change. Other examples of this ‘data-splitting’ approach
as an effective means of using one or more proxy types to
help interpret the observed changes in another proxy type
include Seppä and Weckström (1999), Seppä et al. (2002),
Heiri et al. (2003), and Shuman et al. (2004).

Fifthly, it is a major challenge not only to interpret and
synthesise the results from a multi-proxy study in as fair
and as objective a way as possible, but also to write up
the results and to publish synthesis papers, which are, by
their very nature, often rather complex and long. There is a
tendency today towards the publication of more and more
short papers. This has the disadvantage that papers can eas-
ily be overlooked because of the ever-increasing number
of publications and ‘information-overload’ for readers. A
reader can become frustrated when, for example, environ-
mental reconstructions from the same core but based on
different numerical methods or calibration data-sets or on
different types of proxies are published in different jour-

nals, and presented and plotted in different ways and on
different scales. If the potential of multi-proxy studies is
to be maximised, it is essential that the results be synthe-
sised in a common format presenting points of similarity
and points of difference, the potential strengths and weak-
nesses, and the different potential sensitivities of different
proxies, so that their contribution to the conclusions can
then be evaluated. It will be vastly more interesting to dis-
cuss apparent contradictions in interpretation as these will
raise important questions about the proxies, what aspects
of the environment they may be reflecting and responding
to, and how to interpret them. Contradictions or anomalies
also raise important and productive research questions con-
cerning the appropriate use of calibration data-sets and the
limitations of our existing ecological, environmental and
limnological understandings (see Bigler et al. 2002; Rosén
et al. 2003). Palaeoceanographers now recognise that dif-
ferent proxies (diatoms, planktonic foraminifera, benthic
foraminifera, sediment grain-size, chemical ratios and sta-
ble isotopes) reflect different aspects of the ocean system
in terms of stratification, currents, and rates of overturn
(Andersson et al. 2003; Risebrobakken et al. 2003). Palae-
olimnologists could, with profit, adopt a similar approach
in their interpretation of multi-proxy data.

The complex nature of proxy data

The essential feature of multi-proxy studies is that sev-
eral stratigraphical proxies are used to investigate a com-
mon aim. Each proxy takes its own unique place in the
ecosystem network and may be used to reconstruct differ-
ent facets of the ecosystem. Besides the standard much-
used proxies, new techniques and proxies are continually
being developed, often for specific purposes. Rather than
trying to discuss all the various types of proxies available
in palaeolimnology, we illustrate the complexities of de-
riving reliable and robust palaeoenvironmental inferences
in multi-proxy studies by focusing on the interpretation of
a commonly used physical proxy, namely sediment loss-
on-ignition, and on the interpretation of biological proxies
using transfer functions.

Physical proxies

Percent loss-on-ignition (% LOI) is the most widely used
and perhaps the most useful, simple, physical proxy in
palaeolimnology. It reflects the proportion of organic car-
bon, carbonate, and mineral matter in the sediment (Dean
1974; Boyle 2004). Loss-on-ignition at 550◦C (Heiri et al.
2001) has been found to be a remarkably good summarising
proxy for many changes in a lake ecosystem (e.g. Levesque
et al. 1994; Birks et al. 2000; Battarbee et al. 2001, 2002).
However, it is a percentage, and thus an increase can re-
flect an absolute increase in organic matter or an absolute
decrease in mineral matter, or some combination of both.
In addition, organic and mineral matter can both originate
in the lake (bioproduction, biogenic silica and carbonate)
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and/or in the catchment (bioproduction, humus or mineral
inwash due to catchment instability). Thus % LOI is a sim-
ple measurement that can have a complex interpretation
(Shuman 2003). Livingstone et al. (1958) were the first to
realise this, but few absolute estimates of organic accumu-
lation have been made. Recently, Velle et al. (2005a) esti-
mated the rates of accumulation of organic and mineral mat-
ter at Råtåsjoen, central Norway, and were able to interpret
changes in % LOI as processes related to early Holocene
increased lake productivity and decreased mineral inwash
resulting from stabilisation and vegetation of the catch-
ment. Maximum organic matter deposition occurred around
5000 cal b.p. and was related to the climate-induced loss
of trees from the catchment. The organic matter stored in
the soils was released and washed into the lake. Velle et al.
(2005a) were also able to show that % LOI was not related
to diatom productivity of biogenic silica. It was slightly
correlated with Holocene temperature changes as deduced
from the chironomid record, but the organic matter accu-
mulation rate was not. The absolute amount of carbon in the
sediments was related much more strongly to changes in
catchment vegetation, as deduced from the plant macrofos-
sil and pollen records. The predominant catchment origin
of organic matter in sediments in upland lakes was long-
ago proposed by Mackereth (1965, 1966), and has been
elegantly confirmed by whole-lake additions of 13C (Pace
et al. 2004).

% LOI has also been interpreted more directly as a cli-
mate signal (e.g. Willemse and Törnqvist 1999). At Lochan
Uaine, Scotland, changes in the chironomid assemblage
could be related to small temperature changes coinciding
with changes in the % LOI curve (Battarbee et al. 2001),
suggesting that the % LOI was reflecting greater biopro-
duction and preservation during times of either warm or
cool temperatures. In the Jotunheim mountains of central
Norway, Nesje and Dahl (2001) found sharp decreases in
% LOI in several lakes at around 8200 cal b.p. that were
related to times of glacier re-advance, the so-called Finse
event. This cool and/or wet event is correlated in time to a
major cool period in the Greenland ice cores (Alley et al.
1997). It is unlikely that the dips in % LOI in the Jotun-
heim lakes were caused by changes in bioproduction, as
the sediments are visibly more silty, suggesting that the %
LOI is reflecting minerogenic inwash from the catchment.
At Lake Tsuolbmajavri in northern Finland, the % LOI
(Seppä and Weckström 1999) follows the annual precipi-
tation reconstruction more closely than the summer tem-
perature curve reconstructed from the pollen data (Seppä
and Birks 2001), suggesting that precipitation effects on
the catchment may have influenced the minerogenic input
and thus the % LOI in this sub-arctic lake. Shuman (2003)
emphasises that changes in % LOI in a single core may be
difficult to interpret because of within-lake processes and
thus multiple cores increase the interpretability of the %
LOI record.

Various other chemical and physical proxies have been
measured in lake sediments, most notably stable isotopes
of H, O, C and N, and carbonate content, chemical compo-
sition and magnetic properties. Developing proxies include

near-infrared spectroscopy (Rosén et al. 2000, 2001) and
bio-markers in sediment organic geochemistry. The last is
particularly useful as it is a record of organic compounds
produced by organisms that leave no visible remains, such
as algal groups, bacteria and cyanobacteria (e.g. Fritz 1989;
Lotter 2001). Long-chain lipids from leaf cuticles have
been used to characterise terrestrial vegetation changes in
response to changes in precipitation and run-off into near-
shore marine sediments in Venezuela (Hughen et al. 2004).
A new approach by Huang et al. (2004) has shown the
potential of studying isotopes in specific lipid biomarkers
preserved in lake sediments as a record of environmental
change.

Biotic proxies

Environmental reconstructions

Biotic proxies are as numerous as the organisms that leave a
record in lake sediments (Smol et al. 2001a, b). As special-
ist knowledge is needed to identify the fossil material, the
organisms are usually studied as groups, such as diatoms,
pollen, plant macrofossils, chironomids etc. If enough is
known about the biology and ecological tolerances of a
taxon, that taxon may be used as an indicator species for
the reconstruction of past habitat, community, and environ-
ment, including climate (Birks and Birks 1980). Similarly if
an assemblage of taxa resembles a modern community that
lives in a defined ecological range today, that assemblage
may be used to infer past conditions. The indicator species
and assemblage approaches rely on modern analogy and as-
sume that the limiting conditions in the past were the same
as they are today (Birks and Birks 1980; Birks 2003). The
assemblage approach has been quantified as the Mutual
Climatic Range Method (MCRM) used with Coleoptera
(Atkinson et al. 1987), with molluscs (Moine et al. 2002)
and with plant macrofossils (Sinka and Atkinson 1999;
Pross et al. 2000). It is also the basis of probability density
functions used with plants (Kühl et al. 2002; Kühl 2003;
Kühl and Litt 2003) and modern analogue techniques, of-
ten used on marine assemblages (e.g. Telford et al. 2004a;
Telford and Birks 2005), but also on terrestrial pollen as-
semblages (e.g. Bartlein and Whitlock 1993; Davis et al.
2003). These methods are designed to reconstruct past en-
vironments from fossil assemblages of taxa whose envi-
ronmental limits have been either determined or assumed
by correlation of taxon distributions and abundance with
climate or other environmental data.

Another approach to environmental and climate re-
construction is the transfer function approach (Birks
1995, 1998, 2003). Within a group of organisms, taxa
from surface-sediment samples are related numerically
to environmental parameters by means of a quantitative
transfer function. Using the transfer function, past
environmental parameters are reconstructed from fossil
assemblages. The most widely used transfer functions are
between diatoms and lake-water pH, salinity, and total P,
pollen and mean July and January temperature and annual
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precipitation, chironomids and mean July air temperature
and water temperature, and Cladocera and mean July air
temperature. The use of transfer functions to reconstruct
past climate has often been an aim of multi-proxy
studies, but surprisingly few multi-proxy studies have
compared the resulting reconstructions. When the mean
July temperature reconstructions using various methods
(transfer functions for pollen, chironomids, and cladocera;
MCRM for Coleoptera; indicator species and assemblages
for plant macrofossils) were compared for the Late-glacial
and early Holocene at Kråkenes (Birks and Ammann
2000) the results were somewhat surprising. Although the
patterns of the temperature curves were all the same, as
one might expect given the temperature-driven changes
through the Late-glacial, the estimated temperature values
of the reconstructions were different. The reasons for
the discrepancies need to be sought in a more detailed
examination of the performance of the numerical recon-
struction methods and the representativity of the training
sets, especially near the limits of biological existence that
prevailed during the Younger Dryas in western Norway.

Transfer functions perform well when the environmental
changes are large and are within the central range of the
modern training set (Birks 1998). In the Late-glacial, the
large temperature changes are well reconstructed. However,
reconstructions become less reliable when the values of the
environmental variables are near the limits of the train-
ing set (Birks 1998). In cold climates, diversity is reduced
and the same cold-adapted assemblage of e.g. chironomids,
may exist over a wide temperature range. The same restric-
tion applies to pollen, but there is the additional compli-
cation of the presence of long-distance-transported pollen
from trees in warmer regions into the pollen assemblages
deposited beyond the arctic or alpine tree-lines (Birks and
Birks 2003). Thus, the reconstruction of cold tempera-
tures and associated precipitation levels from pollen assem-
blages is difficult (Birks et al. 2000; Larsen and Stalsberg
2004). A similar imbalance is present in diatom/total phos-
phorus reconstructions; diatoms are sensitive to low and
medium total-P concentrations but relatively insensitive to
high total-P situations. Related problems of insensitivity
can arise when inferring Holocene temperature changes
from fossil chironomid assemblages. Temperature changes
in the Holocene are smaller and more subtle than late-
glacial changes. Reconstructed changes are nearly always
within the inherent prediction error range of reconstruc-
tion, although trends may be apparent (Birks 2003), and
the reconstructions may also be rendered insensitive by
the overall predominance of common species with wide
ecological tolerances. Small reconstructed environmental
changes may result from the chance occurrence of species
with narrow tolerance ranges (Velle et al. 2005b).

Apparent discrepancies in quantitative environmental re-
constructions based on transfer functions and a range of or-
ganisms raise important and critical questions about trans-
fer functions and their robustness. There are several as-
sumptions behind the transfer-function approach (Birks
1995). The most relevant here are the assumptions that
(1) the environmental variable(s) to be reconstructed is, or

is linearly related to, an ecologically important determi-
nant in the ecosystem of interest; and (2) environmental
variables other than the one of interest have negligible in-
fluence, or their joint distribution with the environmental
variable of interest in the past is the same as in the modern
calibration data-set (Birks 1995). Transfer functions are, by
necessity, correlative in character; they model numerically
the relationship between the observed occurrence and abun-
dance of organisms in surface-sediment samples and mod-
ern environmental variables, for example the relationships
between chironomid assemblages and mean July air tem-
perature. It is probable that chironomids respond to water
temperature rather than directly to air temperature (Brooks
and Birks 2001; Brooks 2003). Although there is a strong
correlation today between lake-water and air temperatures
(Livingstone and Lotter 1998; Livingstone et al. 1999), and
transfer functions for modern chironomid assemblages and
air temperature perform well as assessed by statistical cri-
teria in cross-validation using modern samples, the critical
question is whether the relationship between lake-water and
air temperature would be the same if winter precipitation
as snow increased by 100–200% or more, as it probably
did in parts of the Holocene in the Norwegian mountains
(Nesje et al. 2001; Bjune et al. 2005; Bakke et al. 2005a).
Large amounts of snow melt-water would result in cool
lake-water even though the mean summer air temperature
may be the same as in the periods with less winter precipi-
tation. Brooks and Birks (2001) discuss two lakes today in
Norway with cold-water modern chironomid assemblages
but with high summer air temperatures. Both lakes are ‘out-
liers’ when chironomids are used to infer modern summer
air temperatures, giving estimates of air temperature 4◦C
cooler than the observed values. Observed differences be-
tween reconstructed values of mean July air temperature
based on pollen and plant macrofossils and on chirono-
mids in the Holocene (Brooks and Birks unpublished) may
be, in part, a result of the relationship between mean July
air temperature and July water temperature not having the
same joint distribution in the past. A further complication in
the use of chironomid transfer functions for inferring past
climate is the strong covariance between modern tempera-
ture and lake trophic conditions (Broderson and Anderson
2002). Velle et al. (2005b) discuss possible additional con-
founding variables in chironomid-inferred air temperatures
for the Holocene in western Norway. A similar problem
may arise in the use of diatom–climate transfer functions
as several limnological variables (e.g. alkalinity, pH, con-
ductivity) may covary with temperature (Anderson 2000).

Although there are several numerical procedures for eval-
uating transfer function models (e.g. Birks 1995; Telford
and Birks 2005), the most powerful means for assessing the
reliability and sensitivity of a particular transfer function is
to compare palaeolimnological reconstructions using trans-
fer functions with known historical records (e.g. Renberg
and Hultberg 1992; Fritz et al. 1994; Bennion et al. 1995;
Lotter 1998; Teranes et al. 1999; Bradshaw and Anderson
2001). In general the environmental reconstructions based
on transfer functions parallel the trends in the historical
records but do not always match the absolute values.
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Discrepancies emerging from multi-proxy studies (e.g.
Birks and Ammann 2000; Rosén et al. 2003) encourage
researchers to ask what particular transfer functions really
reflect – air temperature, water temperature, length of
growing season, trophic status, pH, lake habitat, or a com-
plex interaction of these and other variables? Recent work
by Heegaard et al. (2006) indicates that there are significant
differences between modern chironomid, cladoceran, and
diatom assemblages along an altitudinal gradient in the
Swiss Alps in terms of where major compositional changes
occur. There appears to be no consistent ‘aquatic ecotones’
between the three groups of organisms. This suggests that
each is responding to different environmental variables
or complexes of variables that may influence the rates
of compositional change between the taxonomic groups
with altitude. Thus different proxies and their responses
to different aspects of the environment can be utilised
to demonstrate varying degrees of inertia and different
thresholds (Smith 1965; Maslin 2004). This adds to the
challenges of interpreting multi-proxy data and illustrates
its potential to differentiate a range of biotic responses to
environmental change.

Environmental reconstructions using transfer functions
may depend on a surprisingly small number of taxa (e.g.
Racca et al. 2003). If there is a preponderance towards
abundant taxa with wide ecological tolerances in Holocene
fossil assemblages and taxa with narrow tolerances are rare
or absent, transfer functions may be rather insensitive, as
they appear to be in several reconstructions of Holocene
past climate (e.g. Brooks and Birks 2001; Rosén et al.
2001, 2003; Bigler et al. 2002; Korhola et al. 2002; Velle
et al. 2005b).

Given current uncertainties about what environmental
variables are the major determinants of the occurrence and
abundance of different groups of organisms, it is advisable
to avoid any attempts to derive ‘consensus’ reconstruc-
tions based on different groups of organisms. Given the
hidden biases and assumptions in different numerical re-
construction procedures (Telford et al. 2004a; Telford and
Birks 2005), ‘consensus’ reconstructions based on the same
group of organisms but involving different numerical tech-
niques may conceal important differences in the behaviour
of the numerical procedures and are similarly not recom-
mended (cf. Birks 1995, 1998).

A further problem associated with environmental recon-
structions in multi-proxy studies is distinguishing between
‘signal’ and ‘noise’ (Birks 1998). The SiZer smoothing
procedure of Chaudhuri and Marron (1999) helps to assess
which features in a smoothed time-series are statistically
significant and hence which features may represent ‘signal’.
Korhola et al. (2000) provide a palaeoecological applica-
tion of SiZer. The approach could be extended to consider
several stratigraphical records from a multi-proxy study to
help distinguish ‘signal’ from ‘noise’.

There have been considerable advances in the theory,
methodology, and development of quantitative transfer
functions in the last 20 years (Birks 1995, 1998, 2003).
However, as a result of recent multi-proxy studies, prob-
lems in some transfer functions are emerging. There is thus

the need to ‘return to basics’, in particular to study the en-
vironmental requirements and niche parameters of species
commonly found as fossils (e.g. Broderson et al. 2004).
There is considerable scope for incorporating ecological
knowledge into environmental reconstructions and inter-
pretations of multi-proxy studies within a Bayesian frame-
work for inference and prediction – see Ellison (2004) and
Clark (2005) for recent lively discussions about why ecol-
ogists (and thus palaeoecologists) are becoming or should
become Bayesians.

A wider-based multi-proxy approach is now develop-
ing where transfer functions, involving whole groups of
organisms, are being used in combination with indicator
species information. The interest is shifting away from
climate or pH reconstruction as ends in themselves and
more towards whole lake ecosystem reconstructions and
the causes behind the changes. To do this, one has to look
inside the proxy group and seek reliable indicator species.
This was the original approach to palaeolimnology. It is
particularly appropriate for aquatic macrophytes, where in-
dividual species ecology has always been important (e.g.
Iversen 1954; Watts 1978; Birks et al. 1976, 2001; Birks
2000, 2001). Less is known about the ecology of freshwa-
ter algae, including diatoms, but ecological studies of arctic
and Antarctic lakes and ponds (e.g. Douglas et al. 2004)
are contributing much to our knowledge of diatom and
chrysophyte ecology. The modern ecology of chironomid
taxa has recently been used to help to rationalise anoma-
lous temperature reconstructions made from chironomids
(Brodersen et al. 2004; Velle et al. 2005b). Cladoceran ecol-
ogy has always been of more interest than climate recon-
struction from the whole group (e.g. Hofmann 1996, 2000;
Duigan and Birks 2000; Milecka and Szeroczyńska 2005).
Coleopteran ecology has also always played a large role
in palaeoecological investigations although climate recon-
structions using MCRM have now become dominant (e.g.
Elias 1994, 1997, 2001; Elias et al. 1999). The ordination
method detrended correspondence analysis (DCA) can be
used to summarise compositional turnover for groups of or-
ganisms that can then be directly compared among groups
(e.g. Birks et al. 2000). Individual species changes can
then be investigated to seek the reasons for rapid changes
in turnover and ecological factors can be inferred to explain
the changes (e.g. Birks and Birks 2001).

Pollen analysis and plant macrofossils

As palaeolimnology has made considerable methodolog-
ical and conceptual advances in the last 20 years (e.g. Bat-
tarbee 2000; Smol 2002; Brooks 2003; Fritz 2003; Mackay
et al. 2003), it has increasingly developed its own identity,
with its own journal, meetings and research agenda. Pollen
analysis has not, however, played a major part in the
recent development of palaeolimnology (Birks 2005) even
though pollen analysis and the associated study of plant
macrofossils can provide the main evidence for catchment
vegetation over long time periods. Pollen and plant
macrofossil analysis (e.g. Wick et al. 2003) are becoming
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increasingly important in multi-proxy palaeolimnological
studies as the role of the lake’s catchment and its vegetation
and soils is so important in understanding lake biotic and
sedimentary changes (e.g. Anderson et al. 1995; Korsman
and Segerström 1998; Seppä and Weckström 1999; Lotter
1999, 2001; Birks et al. 2000; Bradshaw et al. 2000, 2005a;
Bradshaw 2001; Lotter and Birks 2003; Oldfield et al.
2003b). Limnologists are exploring links between water
chemistry and nutrient status and catchment vegetation
(Maberly et al. 2003; van Breemen and Wright 2004).
There is also a resurgence of interest in biogeochemistry
(Jackson and Hedin 2004). Palaeolimnological techniques
such as sediment geochemistry can also be used to address
critical questions in understanding changes in vegetation
history by providing information about catchment soil
development and change (e.g. Engstrom and Hansen 1985;
Ford 1990; Willis et al. 1997; Ewing 2002; Ewing and Nater
2002). There is thus an increasing need for close collabo-
ration and interaction between pollen analysts, vegetation
historians, and palaeolimnologists in multi-proxy studies.

Another area where close collaboration is needed is the
analysis of plant macrofossils. Besides providing unique
evidence for the local presence of taxa in or near the study
lake, macrofossils of aquatic macrophytes are a record of a
major component of the lake ecosystem, namely the macro-
phyte flora (Birks 2000, 2001). Aquatic macrophytes are
a major habitat for other aquatic biota, are sensitive to
changes in lake level and nutrient status, and represent
one alternative equilibrium state in shallow lakes. Interest
in plant macrofossils is greatly increasing, not only to pro-
vide terrestrial material for 14C AMS dating, but also to help
understand changes in aquatic biota in multi-proxy studies
(e.g. Sayer et al. 1999, 2006; Birks et al. 2001; Brodersen
et al. 2001; Odgaard and Rasmussen 2001; Bradshaw et al.
2005b; Davidson et al. 2005).

Pollen and plant macrofossils represent different but in-
determinate spatial scales. The regional pollen rain reflects
vegetation at a regional scale, but pollen may also be de-
rived more locally, such as from lake-side and aquatic veg-
etation (Birks 2005). Plant macrofossils are usually not
dispersed far from their source. However, they can be car-
ried long distances by water and by wind. For example, it
has been difficult to determine the local significance of iso-
lated Betula fruits and small fragments of Pinus bark in sites
above the tree-line (Eide et al. 2006). Within a lake, aquatic
macrofossils are usually related closely to the parent vege-
tation. Consequently, they are better represented in shallow
water where the macrophytes were growing (Birks 2001).
Thus a core from deep water in the centre of a lake, ideal
for pollen, is not always so suitable for macrofossil repre-
sentation. Central cores appear to contain a good represen-
tation of the chironomid community (Heiri 2004), whereas
marginal cores can give a biased record of chironomids
(Brooks 2000). Central cores contain diatoms from all the
available lake habitats (plankton, mud, sand, stones, macro-
phytes). However, few comparisons have been made of
central and littoral cores in multi-proxy studies, mainly be-
cause of the large amount of work involved (e.g. Digerfeldt
1971, 1986; Anderson et al. 2005). The multi-proxy study

at Lobsigensee led by Brigitta Ammann is an impressive ex-
ample of using both central and littoral cores to study a wide
range of late-glacial proxies and their responses to climatic
changes (Ammann et al. 1983, 1985; Ammann and Tobol-
ski 1983; Chaix 1983; Eicher and Siegenthaler 1983; Elias
and Wilkinson 1983; Hofmann 1983; Ammann 1989b).

Recent examples of multi-proxy studies

The Kråkenes Project (Birks and Wright 2000) is an ex-
ample of how a variety of proxies can be used to recon-
struct the lake ecosystem, including the catchment, and
climate changes over the Late-glacial and early Holocene.
Plots of DCA sample scores on axis 1 of the groups to-
gether with the % LOI and Pediastrum curves, all showed
synchronous changes at the end of the Allerød intersta-
dial, the inception of the glacier in the catchment during
the Younger Dryas stadial, and its melting and the tem-
perature rise at the beginning of the Holocene. A similar
synchroneity was observed at Pine Ridge Pond in eastern
Canada (Levesque et al. 1994), indicating that temperature
changes were the over-riding forcing factor in late-glacial
ecosystem change. During the early Holocene at Kråkenes,
however, major changes in turnover of the various groups
were not synchronous and different groups reached compo-
sitional stability at different times. This suggests that inter-
nal ecosystem factors were playing an important role, such
as the development of macrophyte communities, cessation
of mineral inwash from the catchment, natural acidification
and reduction of nutrients in the lake water, and catchment
vegetation and soil development culminating in the immi-
gration of birch trees and the development of birch forest
(Birks et al. 2000).

A good chronology can be used to estimate rates of bi-
otic change, as at Kråkenes (e.g. Birks et al. 2000). Here,
rapid rates of change in the Late-glacial coincided with
the major temperature changes. In the early Holocene rates
of change were variable among proxies, reflecting major
stages in the successions of the different groups, related
particularly to catchment vegetation and soil development
and to lake nutrient status. In contrast, the chronology of
the recent sediment sequences in the CASSARINA project
in North Africa was often poor because of low 210Pb ac-
cumulation (Appleby et al. 2001). However, all the se-
quences covered about 100–150 years. Plots of the DCA
sample scores on axis 1 of the organism groups (aquatic
and terrestrial macrofossils, pollen, zooplankton, diatoms;
Birks and Birks 2001) showed very large amounts of com-
positional turnover, quantifying the enormous changes in
aquatic ecosystems that had occurred within decades un-
der strong forcing imposed by human activity, in this case
freshwater withdrawal or continuous freshwater supply in
the Nile Delta.

When palaeolimnological data are available from many
sites and for the same time period (e.g. last 150 years), the
amount of compositional change or biotic turnover for the
time interval of interest can be estimated for each site and
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compared between sites (Smol et al. 2005). This approach
was applied to 55 palaeolimnological records from lakes
in the circumpolar Arctic and it demonstrated widespread
changes in algal and invertebrate communities that are con-
sistent with recent climate warming (Smol et al. 2005). The
observed palaeolimnological changes in diatoms, chryso-
phytes, chironomids, and cladocera are interpreted as re-
flecting increases in arctic lake primary production (Smol
et al. 2005). This hypothesis has been tested for six lakes
on Baffin Island by using reflectance spectroscopy to infer
changes in lake sediment chlorophyll a concentrations and
hence change in lake primary productivity (Michelutti et al.
2005). The inferred changes in chlorophyll a are paralleled
by changes in total organic carbon reflecting the balance
between the production and decomposition of organic car-
bon, in biogenic silica, and in C:N ratios. The changes in
these four biogeochemical proxies are all consistent with
the hypothesis of increased primary production since a.d.
1850. Similarly, a multi-proxy study of Svalbard lakes has
illustrated how lake development has responded to climate
change over the last century (Birks et al. 2004).

A similar multi-proxy approach involving a range of
biological, biogeochemical, and stable isotope variables,
and numerical techniques has been used to test hypotheses
about recent (last 100 years) changes in diatom assem-
blages in alpine lakes in the Colorado Front Range. The
changes appear to be a response to anthropogenic nitrogen
deposition from agricultural and industrial sources to the
east of the Rockies (Wolfe et al. 2001, 2002, 2003; Das
et al. 2005). The effects of recent human impact have also
been demonstrated by a multi-proxy study of Upper Kla-
math Lake, USA (Bradbury et al. 2004) and the impact
of lake pollution and subsequent recovery were traced by
Hynynen et al. (2004). Human impact has also been studied
in an archaeological context (Davies et al. 2004).

A recent development in multi-proxy studies is the sta-
tistical testing of alternative hypotheses about the causes
of the observed or reconstructed changes. This has already
been mentioned at Sägistalsee (Lotter and Birks 2003).
There is great potential for developing this approach more
specifically in future multi-proxy studies (Lotter and Birks
1997; Birks 1998, 2003) as a means of evaluating multiple
alternative hypotheses.

Future directions

Multi-proxy studies are making major contributions to
palaeoecology and palaeolimnology. Our knowledge about
the history of past climate change and past ecosystem de-
velopment and lake ontogeny is steadily increasing. Each
proxy reflects the environment at its own spatial scale, tak-
ing its place in the network of interactions that comprise an
ecosystem, thus providing insights into different facets of
an ecosystem.

New proxies are continually being recognised, applied
and evaluated. Some of the most promising and diverse in-
clude biogeochemistry (e.g. Meriläinen et al. 2001; Fisher
et al. 2003; Hynynen et al. 2004; Das et al. 2005; Sayer

et al. 2006) and stable isotopes (e.g. Finney et al. 2000,
2002; Hammarlund et al. 2002; Veski et al. 2004; Wooller
et al. 2004; Seppä et al. 2005). As well as the development
of under-utilised fossil proxies (e.g. animal hairs Hodgson
et al. 1998, phytoliths Carnelli et al. 2004, fish scales
Davidson et al. 2003), well-known proxies are being used
in new ways, using newly developed analytical techniques
and improved chronologies to estimate amounts and rates
of change through time, and using new approaches to
detect morphological or genetic changes in response to
environmental change (e.g. Weider et al. 1997; Kerfoot
et al. 1999; Cattaneo et al. 2004; Hairston et al. 2005).

An important new direction in multi-proxy studies is a
shift in the approaches to the interpretation of palaeolimno-
logical data. Many multi-proxy studies today are focusing
on palaeoecological questions as well as environmental
reconstructions, invoking ecological indicator species and
assemblages to provide new insights into past ecosystem
functioning and pushing proxies further in interpretations
of possible causal processes and driving factors. Data in-
terpretation used to be primarily descriptive in terms of
the reconstruction of past populations, communities, en-
vironments, and ecosystems (Birks and Birks 1980) but
it can become more ecologically focused on the poten-
tial causes of the observed patterns of change or stability
(Bennett and Willis 2001). It is here that well-designed
multi-proxy studies can make a great contribution in the
future because they can provide several potentially inde-
pendent lines of evidence that can help to evaluate and
resolve alternative competing hypotheses set up as expla-
nations for a given stratigraphical pattern in the data (Ben-
nett and Willis 2001). Multi-proxy studies can thus explore
‘the geological record of ecological dynamics’ (NRC 2005)
and use ‘the geological record as an ecological laboratory’
(NRC 2005) to study critical research problems concern-
ing biological diversity, community structure, the role of
biogeochemistry, ecological impacts of climatic variabil-
ity, habitat alteration, and the dynamics of biotic invasions.
The resolution of such problems requires the fourth dimen-
sion of time that can only be provided by palaeolimno-
logical or other palaeoecological data. Carefully designed
and rigorously implemented multi-proxy studies have the
potential to provide unique records of ecological dynamics
over time and thus to contribute to our understanding of the
natural variability of populations, communities, and envi-
ronments, and of the responses of biological assemblages
to a range of different environmental changes and forcing
functions. Statistical techniques that take account of the in-
herent properties of multi-proxy data (Birks 1993b, 1996,
1998) can play an important role in testing competing hy-
potheses concerning possible causal factors and will allow
a fuller exploitation of ‘the geological record as an eco-
logical laboratory’ (NRC 2005). Deevey (1964) proposed
over 40 years ago the idea of ‘coaxing history to conduct
experiments’ as a way of exploiting the palaeoecological
record as a long-term ecological experiment. The available
analytical and statistical tools have expanded greatly and
become increasingly more refined and will no doubt con-
tinue to do so. They can be used in the future to focus multi-
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proxy studies on ecological interpretations and causal fac-
tors and to exploit the palaeolimnological record as a unique
source of information on biotic changes and responses over
a wide range environmental changes at many temporal
scales.

A further exciting development in multi-proxy studies is
the involvement of ecological dynamic models. For exam-
ple, a forest succession model has been used to simulate
tree-line dynamics and forest composition over long time
periods. Climatic parameters derived from palaeolimnolog-
ical proxies that are independent of the vegetation proxies
(e.g. chironomid-inferred temperatures) were used to drive
the model (Heiri et al. 2006). In this elegant study the
model results were compared with pollen and plant macro-
fossil reconstructions of the catchment vegetation, making
it possible to disentangle the effects of climate and human
impact on long-term vegetation dynamics. The combina-
tion of ecological models and palaeolimnological proxies
(e.g. Keller et al. 2002; Lischke et al. 2002; Heiri et al.
2006) is a powerful means of interpreting observed pat-
terns of ecological changes and dynamics in terms of sev-
eral causal processes, and highlights the future potential of
multi-proxy studies in the modelling and understanding of
palaeoecological patterns and processes.

Conclusions

Multi-proxy studies are deceptively simple, highly seduc-
tive, and seemingly full of promise. In practice, they are a
huge amount of work, they are never simple, they are full
of surprises, even shocks, and they are rarely neat, tidy, or
simple to interpret. In terms of multi-proxy reconstructions
of past climates, we may be near the resolution of current
data and predictive abilities of our transfer-function mod-
els. The sample-specific errors of prediction estimated by
bootstrapping or some form of statistical cross-validation of
about 0.8–1.5◦C for July temperatures (Birks 2003) encom-
pass the likely range of summer temperature change within
the Holocene. In Norway the major changes in glaciers
during the Holocene appear to be a response to changes in
winter precipitation rather than to changes in summer tem-
perature (e.g. Bjune et al. 2005). Reconstruction of the full
picture of Holocene climate change here thus requires a ma-
jor multi-proxy combination of biological, geological, and
sedimentological data (e.g. Dahl et al. 2003; Bakke et al.
2005a, b; Bjune et al. 2005). Multi-proxy studies are not
really ‘safe’ science. It is relatively easy and ‘safe’ to de-
velop modern organism-environment calibration data-sets
and associated transfer functions. However, complexities
can and do arise when these transfer functions are applied
to stratigraphical data in multi-proxy studies (e.g. Rosén
et al. 2003; Velle et al. 2005a, b).

Despite these problems, multi-proxy studies are impor-
tant research activities as they provide the means to study
lake and biotic responses to environmental change which
may have social implications. For example, the CASSA-
RINA project in North Africa (Birks and Birks 2001; Birks
et al. 2001; Flower 2001) revealed alarming amounts of

biotic change in the last 100 years in response to human
impacts. In the Egyptian Nile delta lakes, hydrological and
salinity modifications resulted from the year-round inflow
of fresh irrigation water controlled by the Nile dams and the
rise in the freshwater table due to inadequate drainage in the
flat delta. Azolla nilotica recently became extinct in these
lakes (Birks 2002), probably as a result of eutrophication
and salinity changes. Without the evidence provided by the
analysis of plant macrofossils, pollen, diatoms, mollusca,
foraminifera, ostracods, and other animal remains from the
same cores, the extinction of A. nilotica would not have
been recorded and the likely causes would have remained
obscure.

Multi-proxy studies are challenging. Projects are usually
expensive because of the labour involved, so they have to
be carefully designed and coordinated and suitable sites
must be chosen to provide the maximum amount of useful
information in relation to the aims of the project. It is a
major challenge to synthesise the large amount of diverse
data and to prepare it for publication. Although we now
have vast computing resources, a diverse range of numer-
ical techniques, and large numbers of modern calibration
data-sets and transfer functions, the real challenge is to
improve on the classical pioneer studies and to argue as
logically and as rigorously as was done in the early multi-
proxy studies (e.g. Livingstone 1957; Livingstone et al.
1958; Cowgill et al. 1966; Wright 1966; Hutchinson 1970;
Deevey 1984; Likens 1985). There has been a tendency in
some aspects of palaeolimnology to get too pre-occupied
with the minutiae of reducing modern prediction errors
from 0.91 to 0.89◦C when the environmental data them-
selves have inherent variability of 1 or 2◦C, or with the
details of a particular ordination or time-series technique.
As a result there is a danger that we can lose sight of the
important research questions, of the research hypotheses
we are trying to test, of the long-term trends we are trying
to detect, and of the limitations of our data, methods, and
approaches. Carefully designed and critically implemented
multi-proxy studies have the potential to contribute greatly
to our understanding of how lakes and their biota respond
to internal and external forcing, and to our appreciation
of the sensitivities, strengths, and weaknesses of different
proxies. They will enable us test specific hypotheses about
lake development and biotic responses to specific factors.
The interpretation of multi-proxy data raises many im-
portant research questions involving new approaches such
as ecological modelling and statistical testing. Much has
been achieved in such studies, much more remains to be
done.
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Elias SA, Andrews JT, Anderson KH (1999) Insights on the cli-
matic constraints on the beetle fauna of coastal Alaska, USA,
derived from the mutual climatic range method of paleoclimate
reconstruction. Arctic Antarctic Alpine Res 31:94–98

Ellison AM (2004) Bayesian inference in ecology. Ecol Lett 7:509–
520

Engstrom DR, Hansen BCS (1985) Postglacial vegetational change
and soil development in southeastern Labrador as inferred from
pollen and chemical stratigraphy. Can J Bot 63:543–561

Ewing HA (2002) The influence of substrate on vegetation history
and ecosystem development. Ecology 83:2766–2781

Ewing HA, Nater EA (2002) Holocene soil development on till and
outwash inferred from lake-sediment geochemistry in Michigan
and Wisconsin. Quat Res 57:234–243

Finkelstein SA, Peros MC, Davis AM (2005) Late Holocene paleoen-
vironmental change in a Great Lakes coastal wetland: integrating
pollen and diatom datasets. J Paleolimnol 33:1–12

Finney BP, Gregory-Evans I, Sweetman J, Douglas MSV, Smol JP
(2000) Impacts of climatic change and fishing on Pacific salmon
abundance over the past 300 years. Science 290:795–799

Finney BP, Gregory-Evans I, Sweetman J, Douglas MSV, Smol JP
(2002) Fisheries productivity in the northeastern Pacific Ocean
over the last 2200 years. Nature 416:729–733

Fisher E, Wake R, Oldfield F, Boyle J, Wolff GA (2003) Molecular
marker records of land use change. Organic Chem 34:105–119

Flower RJ (2001) Change, stress, sustainability and aquatic ecosys-
tem resilience in North African wetland and lakes during the
20th century: an introduction to integrated biodiversity studies
within the CASSARINA Project. Aquatic Ecol 35:261–280

Ford MS (1990) A 10,000-year history of natural ecosystem acidifi-
cation. Ecol Monographs 60:57–89

Fritz SC (1989) Lake development and limnological response to
prehistoric and historic land-use in Diss, Norfolk, U.K. J Ecol
77:182–202

Fritz SC (2003) Lacustrine perspectives on Holocene climate. In:
Mackay A, Battarbee RW, Birks HJB, Oldfield F (eds) Global
change in the Holocene. Hodder Arnold, London, pp 328–341

Fritz SC, Engstrom DR, Haskell BJ (1994) “Little Ice Age” aridity in
the North American Great Plains: a high-resolution reconstruc-
tion of salinity fluctuations from Devils Lake, North Dakota,
USA. The Holocene 4:69–73

Gardiner FP, Haedrich RL (1978) Zonation in the deep benthic
megafauna. Application of a general test. Oecologia 31:311–
317

Gehrels WR, Roe HM, Charman DJ (2001) Foraminifera, tes-
tate amoebae, and diatoms as sea-level indicators in UK salt-
marshes: a quantitative multiproxy approach. J Quat Sci 16:210–
220

Gordon AD (1982) Numerical methods in Quaternary palynology V.
Simultaneous graphical representation of the levels and taxa in
a pollen diagram. Rev Palaeobot Palynol 37:155–183

Goslar T, Knaap WO van der, Hicks S, Andric M, Czernik J, Goslar
E, Räsänen S, Hyotyla H (2005) Radiocarbon dating of modern
peat profiles: pre- and post-bomb 14C variations in the construc-
tion of age-depth models. Radiocarbon 47:115–134

Grimm EC (1991–2004) TILIA, TILA.GRAPH, and TGView. Illi-
nois State Museum, Research and Collections Center, Spring-
field, USA (http://demeter.museum.state.il.us/pub /grimm/)

Gulliksen S, Birks HH, Possnert G, Mangerud J (1998) A calen-
dar age estimate of the Younger Dryas–Holocene boundary at
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F (2002) Effects of climate, fire, and humans on forest dynamics:
forest simulations compared to the palaeological (sic) record.
Ecol Model 152:109–127

Kerfoot WC, Robins JA, Weider LJ (1999) A new ap-
proach to historical reconstruction: combining descriptive
and experimental limnology. Limnol Oceanography 44:1232–
1247

Korhola A, Weckström J, Holmström L, Erästö P (2000) A quan-
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