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Abstract 

In this paper we prove the existence of multi-pulse orbits homoclinic to a slow manifold in a two-mode truncation of 
the damped-forced nonlinear Schr6dinger equation (first suggested by Bishop et al.). These orbits are jumping, i.e., the 
corresponding solutions keep switching in time between neighborhoods of the two characteristic "breathers" of the integrable 
limit. In the case of no damping, we find multi-pulse Smale horseshoes in the two-mode model, while in the dissipative case 
we establish the existence of structurally stable, multi-pulse, heteroclinic connections between two unstable equilibria. The 
orbits we construct are not amenable to Melnikov-type perturbation methods. In both the Hamiltonian and the dissipative 
case we find homoclinic trees, which describe the repeated bifurcations of multi-pulse solutions. To illustrate the theoretical 
predictions, we also present visualizations of these complicated structures. 

1. Introduct ion  

Partial differential equations are often analyzed through finite dimensional reduced models. These models 

can be studied without the heavy machinery of  functional analysis using finite dimensional dynamical systems 

methods. The reduction of  the dimension from infinite to finite can be achieved in several ways, e.g., by 

applying modal truncations (or Galerkin approximations), Lyapunov-Schmidt reduction, center manifold theory 

or inertial manifold theory. While the latter three methods have fairly solid mathematical foundations (see, 

e.g., Marsden and McCracken [27] ,  Mielke [29] and Constantin et al. [5 ] ) ,  they usually involve extensive 

calculations. Modal truncations are much easier to carry out which makes them very popular in applications 

(see, e.g., Cascon et al. [4] ,  Holmes [21] ,  Feng and Wiggins [11],  etc.). On the other hand, the relation 

between the modal equations and the full PDE is usually not fully understood. 
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Besides being simple and physically meaningful in most cases, modal truncations can also be extremely 

useful in another respect: they may admit a particular element in their phase space geometry which is known to 

be present in the underlying PDE, too. In such cases a thorough understanding of the mode equations can lead 

to the development of new methods directly applicable to the original infinite dimensional problems. A good 

example of this situation is the relation between the PDE describing the oscillations of a forced beam and its 

one-mode truncation, the Duffing oscillator (see Holmes [ 18] and Holmes and Marsden [ 19] ). Both systems 

exhibit homoclinic orbits in their unperturbed geometry which give rise to Smale horseshoes in the perturbed 
problems. 

The subject of this paper, a particular two-mode truncation of the damped-driven nonlinear Schr6dinger 

equation (NLS), has also proven itself inspiring for infinite dimensional methods, while being interesting in its 

own right. It is our hope that our results, which reveal an unexpected level of complexity in this model, again 

lay the groundwork for a similar direct study of the PDE. Since many finite dimensional problems admit exactly 

the same structure as the truncated NLS, this paper is also intended as a detailed exposition of the methods we 

use. Based on what follows, one can directly analyze similar finite dimensional problems (see Section 2 for a 

list of such problems). 

The main topic of this paper originates from the perturbed sine-Gordon equation 

utt - Uxx + sinu = e( -&ut  + Autxx + Psin  tot), (1.1) 

with boundary conditions 

u ( x = - l L ,  t) = u ( x = l L ,  t) ,  u(x , t )  = u ( - x , t ) .  (1.2) 

In Eq. (1.1) we let 0 < e& << 1, 0 < elA I << 1, ~o = 1 - e ~ .  The constants L and ~, and the perturbation 

parameter e are all positive. The terms &ut and ~]Utxx are damping terms. The difference between these two 

types of damping can be seen through a Fourier modal representation of u. For &ut all modes are damped 

identically and for flUtxx the modes with higher wave number are damped more strongly. This can be seen 

explicitly when we shortly consider a two-mode truncation of the equations. 

System (1.1) has been the subject of a series of papers started by the study of Bishop et al. [2,3]. For small 

amplitudes and frequencies close to 1, one can seek a solution of (1.1) in the form 

u~(x,t)  = 2~e~[  B( X ,T)e  i°~t + B( X ,T)e  -i~°t ] + O(e) ,  (1.3) 

with X = 2v~ ~ x  and T = egot. Substituting (1.3) in (1.1), one arrives at the perturbed nonlinear Schr6dinger 

equation (NLS) 

- i B r  + Bxx + (IB] 2 - 1)B = e( iaB - iABxx + iF) ,  (1.4) 

with & = 2egoa, ~ = A, and P = 8t33/2¢~3/2p, X C [--1Lx, ½Zx], and Lx = ~ L .  It is well known that for 

e = 0 the NLS is an integrable Hamiltonian system (see Zakharov and Shabat [36] ). One can readily verify 

that this integrable system possesses an invariant plane of solutions with no spatial dependence (Bx =- 0). 

Within this plane there is a circle offixed points satisfying IBI = 1. All points on this circle are interconnected 

through heteroclinic orbits of the NLS (see Bishop et al. [ 2 ], Ablowitz and Herbst [ 1 ], and Li and McLaughlin 

[26] ). This "whiskered" circle is in fact a singular limit of a family of whiskered tori which can be studied 

using the infinite number of conserved quantities of the integrable problem (see Li and McLaughlin [26] ). 

Numerical experiments suggest (Bishop et al. [2] ) that the unperturbed homoclinic structure gives rise to 

characteristic chaotic "jumping" behavior in the perturbed problem: a solitary wave keeps switching in time 

between two spatially dependent states through a spatially independent state (see Bishop et al. [2] for more 
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details). Bishop et al. also found that much of this apparent chaotic behavior of system ( 1.4) is already captured 

by a two-Fourier-mode truncation 

B ( X , T )  = c (T)  + b(T)  cosKX,  K =  L--7' 

which, upon substitution into Eq. (1.4), yields the mode equations 

- i~  + (Icl 2 + ½1bl 2 - 1)c + ½(cb + b~)b = ie(ac + F) ,  

- i b  + (Icl 2 + ¼lbl 2 - (1 + k2))b + ½(cb + b?)c = ieflb, (1.5) 

with F = v/2F and fl = a + AK 2. This two-mode model carries several essential features of the underlying 

PDE (see Kova~i6 and Wiggins [24] for details): 

- it is integrable for e = 0, 

- it is Hamiltonian for a = fl = 0, 

- it has an invariant plane given by b - 0, 

- this plane contains a circle of fixed points satisfying Icl = 1, 

- the points of this circle are interconnected by heteroclinic orbits which are contained in two symmetric three 

dimensional manifolds homoclinic to the plane b ~ 0 

These similarities inspired a great deal of work on (1.5) in hope of the better understanding of the chaotic 

behavior of the NLS. We briefly survey the most important results obtained in previous studies below. 

To make use of the S 1 symmetry of the integrable unperturbed model, Kova6i~ and Wiggins [24] introduced 

a change of coordinates 

c = le -i~b, b = (Xl -+- ix2)e -i4~, 

which puts Eqs. (1.5) in the form 

_K2x2 3 2 1 3 [ x2 
= - - ~ X l X 2 + z x 2 - - e  ~ F v / 2 I - - x ~ - - x ~  s in~ + flXl 

5c2 = (K 2 - 2I )x ,  + 7 x~ + ~XlX 2 + e F x , / 2 1  _ x~ - x 2 

l = - e  [FV/2I  - x2 - x~ coscb + ( / 3 -  a ) (x2  + x2) + 2aI ] , 

(b = 1 - 1 + x 2 + e F  1 s i n  ~ b .  ( 1 . 6 )  

¢ 2 1  - x 2 - x 2 

They studied system (1.6) under the assumption a 4= /3 which means unequal damping for different modes 

(A 4= 0 in (1.4)) .  Using geometric singular perturbation theory and a special Melnikov-type method, they 

showed that for e > 0 sufficiently small and 

W / F 2 14 F ,  a /3 ~ - 7 . 9 2  1 - 2  - 1. (1.7) T < 0"13' T 

system (1.6) has a Silnikov-type orbit homoclinic to a saddle-sink-type fixed point. This fixed point lies in 

an O(x/~)-thick resonance band around the resonant circle 1 = 1 in the invariant plane xl = x2 = 0 of (1.6). 

Here the term resonance refers to the fact that for e = 0 the frequency q~ vanishes on this circle. Although 

the approach in [24] had fundamental effects on later studies of the model, the Silnikov-type orbits found 
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in that reference exist only for uneven damping of the modes with a > 0 and fl < 0, respectively, which 

was not the case in the numerical experiments of Bishop et al. In Hailer and Wiggins [ 13] the Hamiltonian 

limit a = fl = 0 (no damping) of the two-mode model is analyzed. Using Melnikov's method combined with 

Fenichel's geometric singular perturbation theory, and some transversality arguments, [ 13 ] shows the existence 

of transverse homoclinic orbits to a family of periodic solutions in the resonance band. This implies the presence 

of Smale horseshoes and chaotic dynamics on a family of energy surfaces intersecting the resonance band. 

Recently, McLaughlin et al. [28] reconsidered the dissipative system (1.6). Extending the techniques used in 

[24] they established the existence of a symmetric pair of orbits homoclinic to a saddle-saddle-type equilibrium 

created in the resonance zone. They also showed that when these orbits break, nearby topological horseshoes 

are created in the dissipative system. 

As we mentioned earlier, system (2.1) has also been inspiring for related infinite dimensional studies of the 

full NLS. Li and McLaughlin [26] (see also Ercolani et al. [6] and Ercolani and McLaughlin [7] ) study the 

unperturbed hyperbolic structure of the NLS in detail. They find that the function space of the integrable limit 

is foliated by invariant tori. The singular leaves of this foliation contain lower dimensional whiskered tori, i.e., 

tori with homoclinic manifolds. 

Another important result is given in Li [25] which is directly motivated by the finite dimensional results in 

[24] and [28]. Li shows the existence of an orbit homoclinic to a saddle-focus-type equilibrium created in the 

breakup of the circle of equilibria in the NLS. He also sketches a construction of horseshoes near this orbit 

which would establish the existence of chaotic dynamics in the infinite dimensional system. As in the similar 

finite dimensional results of Kova~i~ and Wiggins [24] and McLaughlin et al. [28], the homoclinic orbit exists 

on a codimension one set of the parameter space; hence it is not structurally stable. 

In this paper, using different methods, we present a new global picture of the homoclinic behavior of the 

two-mode model both for the undamped and the damped case. The results for the latter case hold on a parameter 

domain which includes a = fl (A = 0), the setting of mode independent damping, which was originally studied 

numerically by Bishop et al. Our main result is the existence of a spatially complicated set of multi-pulse jumping 

orbits which connect various objects created in the resonance band. Here "multi-pulse" means multiple passages 

near the resonance band followed by fast departures and returns, and "jumping" means alternating passages near 

the two broken homoclinic manifolds. Such orbits remained hidden to all previous analytical studies described 

above as they cannot be detected by Melnikov-type methods. This is because classical Melnikov methods cannot 

"track" solutions that make multiple passages near a hyperbolic invariant set. 

In the Hamiltonian case, most of the multi-pulse, jumping orbits are tranverse homoclinic orbits to "slow" 

periodic solutions. In the dissipative case they may leave the resonance band in forward or backward time. 

However, for any element Nj > 1 of a certain pulse sequence {Nj} of positive integers we are able to prove 

the existence of structurally stable, multi-pulse, heteroclinic orbits which connect two unstable equilibria lying 

in the dissipative resonance band. The number of such orbits for any Nj tends to infinity as the perturbation 

parameter e tends to zero. Most importantly, the bifurcation diagram of multi-pulse orbits is a complicated set 

which approaches an infinite binary tree as e, a ,  fl ~ 0. We are able to compute this homoclinic tree explicitly 

through simple algebraic manipulations. We propose that the spatially and temporally complicated multi-pulse, 

jumping orbits form an organizing center for the irregular behavior of the two-mode model. 

To obtain the above results, we use the energy-phase method developed in Hailer and Wiggins [ 15]. For 

completeness, we present an exposition of this method for the particular case of resonance bands in Section 2 of 

this paper, with as few technical details as possible. This version of the method is also of independent interest, 

since it applies to a large class of problems (see Section 2 for a partial list). In our exposition we treat both 

the purely Hamiltonian and the dissipative case. Accordingly, we study the homoclinic behavior in the forced 

two-mode model (1.6) with zero dissipation ( a  = fl = 0) in Section 3.1, then with nonzero dissipation in 
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Section 3.2. For the former case we present a visualization of the invariant manifolds containing the multi-pulse 

jumping orbits. We also visualize the homoclinic tree mentioned above, and show by explicit calculations how 

it breaks up under the effect of dissipation. We summarize the results and their implications in Section 4 and 

speculate about their relationship to the jumping behavior in the underlying PDE. 

2. Multi-pulse orbits near resonance bands 

2.1. Set-up 

In this section we describe our main tool for the analysis of the truncated NLS. This tool is a special 

application of a more general global perturbation technique, the energy-phase method (see Hailer and Wiggins 

[ 15] ) which is designed to detect multi-pulse homoclinic orbits to slow manifolds of near-integrable two- 

degree-of-freedom systems (see below for definitions). We will be concerned with systems of the form 

Jc = J D x H o ( x , l )  + e J D x H t ( x , I ,  dp;e) + egx(x , l , (b ,  lx;e),  

[ = --eD~bHl (x,  1, dp; e) + egt (x ,  1, (b; tz, e) ,  

(b = DtHo(x ,  I )  + eDtHt  (x,  I, (b, I.t; e) + eg o (x, I, ~b,/z; e), (2.1) 

which is defined on the phase space 7 ~ = R 2 x R × S l with the matrix J given by 

j = (  01 1 
- 0 ) "  

We will refer to the individual equations in (2.1) as (2.1) x, (2.1) i and (2.1) ~, respectively. The above system 

has a Hamiltonian part deriving from H = Ho ÷ eHt,  which is assumed to be C r+l smooth in its arguments 

with r _> 3. The C r functions gx, gt, and g4, may contain general dissipative terms, and possibly depend on 

some parameter vector/z C R p. Notice that for e = 0 (2.1) is integrable with the two integrals Ho(x,  1) and 1. 

As a result, (2.1)x decouples from the rest of the equations and can be analyzed as a one-degree-of-freedom e=0 

Hamiltonian depending on the parameter 1. We make the following assumption on the phase space structure of 

(2.1) x. 

(H1) There exist It,  12 G ~, I1 < 12, such that for any I E [ 11 12 ] (2.1)x has a hyperbolic fixed point, .~0(i) 
' ~:=0 

connected to itself by two homoclinic trajectories, xh+(t, I )  and x h- (t, I ) .  

Then, considering the Cartesian product of the hyperbolic fixed points with the invariant circles corresponding 

to the phase variable ~b, i.e. 2°(1) × S l for every I E [It, 12], we obtain an invariant two dimensional manifold 

.Ao for system (2.1)~=o. This manifold can conveniently be written in the form 

.Ao = { (x , I ,~b)  E 791x = Yc°(I), I E [ l t , I z] ,  (b E St}.  (2.2) 

For a more compact formulation of the upcoming results, it will also be useful to think of ,,4o as the image of 

the annulus A = [ It, 12 ] × S t under the map 

go: (I,~b) = (Yc°(1),l ,~b). (2.3) 

It is easy to see that under assumption (H1), ,,4o has two three dimensional homoclinic manifolds of orbits, 

W~- and W o ,  which contain the two components of its stable and unstable manifolds, WS(.Ao) and WU(,Ao), 



316 G. Hailer, S. Wiggins / Physica D 85 (1995) 311-347 
I 

Fig. 1. The manifolds ,,4o and Wo with the q~ coordinate suppressed. 

respectively (see Fig. 1). The solutions of (2 .1 ) ,~  on W~ can be written in the form 

! 

0 

In general the above solutions lie on orbits which are homoclinic to periodic solutions contained in the manifold 

.,4o. These periodic solutions satisfy I _= I0, x -- x0(10), (b = DtH(Yc°(lo),lo) ~ 0, and their two dimensional 

stable and unstable manifolds coincide for e = 0. This geometry was studied extensively by several authors, 

e.g., Holmes and Marsden [20], Robinson [31], and Wiggins [33] in domains of the phase space where the 

unperturbed frequency (b = DtHo does not vanish restricted to .,4o. Using generalizations of a method originally 

due to Melnikov, the above authors gave conditions under which the periodic orbits on ,,4o survive and their 

stable and unstable manifolds intersect to yield persisting homoclinic orbits in the perturbed problem. Here we 

will be interested in a case when the above results do not apply. Namely, we will assume that the motion on 

one of the periodic orbits of ./to slows down to zero, giving rise to a circle of fixed points. In precise terms, 

we will assume the following: 

(H2) There exists L 6 ( l l , /2 )  such that 

DIHo(Yco( Ir), It) = O, 

m(Ir)  = D2[Ho(~o(1),I)]I1=h 4: O. 

The notation/~ refers to the occurrence of a resonance: the circle Cr labelled by I = h in Mo can be viewed 

as a degenerate or resonant periodic solution with vanishing frequency 6. An immediate consequence of this 

resonance is that the solutions with 1 = Ir in W~ will connect equilibria lying on the resonant circle Cr. Two 

interconnected equilibria will share the same x and I coordinates, but their ~b coordinates will differ by the 

amount of the net change of ~b along the connecting heteroclinic orbit. This change, AS, will be referred to as 

the phase shift and using (2.4) it can be written as 

+ o o  

A(b :t: = f DtHo(xh+(t ,  I t) ,  1) dt, (2.5) 
d 

- - o o  

where the sign 4- depends on which of the two homoclinic manifolds we take the connecting orbit from (see 

Fig. 1). If A~b + is an integer multiple of 27r, then the points in C~ are connected to themselves by homoclinic 

orbits lying in W~. Otherwise, these connections are heteroclinic orbits between different equlibria in C~. In 

either case, the connection orbits form two two-dimensional homoelinic manifolds, W~ (Cr) and W o (C~). This 
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unperturbed geometry occurs quite frequently in mode interaction problems, such as in Cascon et at. [4], Feng 

and Sethna [8-10],  Feng and Wiggins [11], Nayfeh and Pai [30], Yang and Sethna [35], and Tien and 

Namamchchivaya [32]. We note that in the general theory in [ 15] DtHo is allowed to vanish on all of ..40, 

which occurs, e.g., in the systems studied in Holmes [21] and Hailer and Wiggins [ 14]. 

Our second major assumption on the unperturbed structure of (2.1) is a symmetry hypothesis: we require 

the two phase shifts A~b + and Am- to be equal to the same value A~b: 

(H3) 

+ o o  +(3o 

A~p= / DlHo(xh+(t, lr),lr)dt~ i DlHo(xh-(t'lr)'lr)dt" 
-oo -oo 

For the case of unequal phase shifts the reader is referred to Hailer and Wiggins [ 16]. 

The invariant manifold .,40 is normally hyperbolic, which roughly means that stretching rates normal to the 

manifold dominate the stretching rates in directions tangent to the manifold (see, e.g., Wiggins [ 34] for precise 

definitions). As a result of this property, classic theorems guarantee the survival of ,40 under small perturbations 

(see, e.g., Fenichel [ 12] or Wiggins [34] ). This means that for e > 0 sufficiently small .A0 perturbs to a C r 

e-close invariant manifold .A~ of (2.1) which lies in the image of the annulus A under a C r map 

g~(I, 4)) = ( ~ ( I ,  gb), I, ~b) = (~0(I) + ex 1 (1, ~b, e),  I, ~b). (2.6) 

.A~ also has surviving stable and unstable manifolds, W~(.A~) and Wu(.A~), respectively, but they usually split 

and do not form homoclinic manifolds. 

Our main concern will be the following problem: what motions exist on .A~ in a neighborhood of 1 = 1~ 

and how are they related to trajectories in WS(.A~) and Wu(.A~)? To focus on a neighborhood of the resonant 

action value I = lr, we introduce the transformation (see Kova~i~ and Wiggins [24] ) 

I = Ir + rlv/-~, 77 C [-r/0,~7o], (2.7) 

with r/0 > 0 to be determined later. This transformation blows up the resonance band 

T~yT= {(x,l,~b) C 791 1 E [ I r -  V / ~ l o ,  l r 'q  - V/-~T]0] } (2.8) 

of the phase space 79. We will be interested to find trajectories of (2.1) for e > 0 which are doubly asymptotic 

to the near-resonance strip 

,4.~ = ,4~ n 79~ 

of the invariant manifold .A,, which is the image of the annulus 

,~ = [ - ~ 7 0 , r / 0 ]  x S 1 ( 2 . 9 )  

under the map g~ o b~ -1 with b~: A ~ ,~ defined as 

b~(I,~b) = \ x/_ d , ) .  (2.10) 

To describe the homoclinic trajectories of interest more precisely, we introduce the rotation map 

7~(~?,q~) = (~?,~b + A6b(Ir)), (2.11) 
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Fig. 2. A 3-pulse orbit homoclinic to .A~ with j ump  sequence { + 1, - 1, + 1 }. 

which rotates objects in the annulus .4 by the amount of the phase shift A~b. We now introduce the following 

definition. 

Definition 2.1. Let j . N = {Ji}i=l be a sequence of + l ' s  and - l ' s .  We say that an orbit N y~, homoclinic to the 

slow manifold .A~ of system (2.1), is an N-pulse orbit with jump sequence j =_ j(y~) ,  if there exists a point 

b_ = (0, ~b_ ) E/~ and a constant 80 > 0, such that for 0 < 8 < 8o outside a fixed, small neighborhood of .A~ 

y~ is C l 81/4-close to the set 

N 

yjN=UYo(i), 
i=1 

(2.12) 

where 

yo(i) C { woW~ ififjiji = = +1,_ 1, (2.13) 

is an unperturbed orbit of (2.1),=o asymptotic to the points go o b~ -l (~i--I (/9_)) and go o b~ -l (7~i(b_)) in 

backward and forward time, respectively (7~ ° - Id). 

For an illustration of this definition see Fig. 2, which shows a 3-pulse orbit with jump sequence +1, - 1 ,  

+ 1. Note that, by definition, the N-pulse orbit is "shadowed" by a sequence of unperturbed heteroclinic orbits 

which connect points of the resonant circle Cr. The methods we will use give an error of O(e  t/4) in shadowing 

multi-pulse orbits and this is exactly the reason for the appearence of an order O (e  t/a) neighborhood in 

Definition (2.1). Most of this error occurs when the homoclinic orbit passes by the slow manifold .Aft, i.e., it 

leaves a neighborhood of yo(i) and starts to follow yo(i + 1) (see Hailer and Wiggins [15] for details). To 

find such orbits is fairly easy to do numerically, but to prove their existence is a delicate matter. Melnikov-type 

arguments do not help in this situation because of the singular nature of the e = 0 limit of the manifold .Aft. In 

the following we will give an analytical criterion which enables one to detect N-pulse orbits (in the sense of 

Definition 2.1) in given examples. We will first consider purely Hamiltonian perturbations and then treat the 

more general dissipative case. For a detailed discussion of the method and for complete proofs the reader is 

referred to Hailer and Wiggins [ 15]. 
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2.2. Hamiltonian perturbations 

319 

To apply the energy-phase method in a specific case, one has to perform the following main steps. 

1. Identify the dynamics on the slow manifold .Af, at least approximately. This can be done by computing the 

one-degree-of-freedom reduced Hamiltonian ~(rl, dp) defined in (2.15) below. 

2. For any positive integer n compute the nth order energy-difference function An~'~ (~/~) to be defined in (2.18). 

In a certain sense this function replaces the usual Melnikov-function in the calculation, but it is usually much 

simpler to evalute since one does not have to compute improper integrals in the process. In the special case 

of n = 1 one can show that the energy-difference function coincides with a special Melnikov-function, which 

was used in Hailer and Wiggins [ 13] to detect single-pulse orbits homoclinic to resonance bands. 

3. Based on the zero sets of An~(~b) associate a pulse number N(~) (see (2.23)) to any structurally stable 

orbit ~, of the reduced Hamiltonian ~ .  If this pulse number is well defined, it indicates the existence of a 

transverse N(~,)-pulse orbit homoclinic to the slow manifold .Aft, which is asymptotic in backward time to 

a slow orbit approximated by ~,. For certain parameter values N(¢/) will not be well defined, in which case 

one can work with the resonant pulse number Nn(~) (see (2.24)) and obtain the same result without the 

transversality of the NR (9)-pulse homoclinic orbit. 

4. Finally, to describe the shape of the multi-pulse orbits obtained this way, it is enough to determine the jump 

sequence {ji} introduced in Definition 2.1. It turns out, that this sequence coincides with the sign sequence 

X(Y) (see Definition 2.3) which can again be computed based on solely the unperturbed geometry and the 

reduced Hamiltonian 7~. 

In the following we will discuss the quantities involved in the above algorithm in detail and formulate the 

results in precise terms. 

2.2.1. The dynamics on the manifold ,An 

For purely Hamiltonian perturbations of system (2.1)~=0 we have g = 0. In this case the solutions of the 

perturbed system are still confined to energy level surfaces of the form 

E~(h) = { (x,l,~b) ~7~ln(x,I,~;~) = h  }. (2.14) 

Using a Taylor expansion in e one can see that for small e > 0 the solutions on the manifold .Aft will be close 

to the level curves of the reduced Hamiltonian 

~( r / ,  ~b) = ½m(Ir)r/2 + H1 (~°(Ir) ,  It, ~b; 0), (2.15) 

with m(l~) defined in hypothesis (H2). More precisely, in ,Aft the dynamics is governed by a one-degree-of- 

freedom reduced system of the form 

( ~ )  =v~JD(6,n)7~+O(x/~2). (2.16) 

The characteristic time scale of this system is O(v/Z), which shows that ,Aft is a "slow manifolar'. 

Formally, the reduced Hamiltonian ~ is defined on the annulus ,4, but we can use the projection map 

n~=b~og2~:Af ~ A (2.17) 

to project orbits from the slow manifold .Aft to the annulus A and compare them to the level curves of ~ .  

(2.16) shows that for any structurally stable orbit of 72/, g0 C A, we can find a slow orbit y~ C .Aft of (2.1) 

such that ~'0 and the projection ll~(y~) are C ~-2 v/Z-close in ,4. 
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II S 

0 2~ 

Fig. 3. The relation between slow orbits on .A~ and internal orbits of ~. 

Definition 2.2. We will call a non-equilibrium orbit of 7~ an internal orbit, if it is structurally stable under 

Hamiltonian perturbations and it is isolated from the boundary of A. 

In view of our discussion above, all internal orbits of ~ indicate orbits on the slow manifold Jtff whose 

projection on fi~ are O(v/-~) close to the corresponding internal orbits (see Fig. 3). The sets of orbits forward 

(backward) asymptotic to an orbit y~ c ,A~ will be denoted by WS(y~) (WU(y~)). The multi-pulse orbits (see 

Definition 2.1 ) we will construct in this subsection will lie in the intersection of stable and unstable manifolds 

of slow orbits on .Aft. 

2.2.2. Energy-difference functions 

For any positive integer n we define the nth order energy-difference function, An~, as 

An~(~b) = 7~(r/, ~b + nA~b) - 7~(r/, ~b) 

= Hi (~° (It) ,  Ir, ~b + na4~; 0) - Hi (.~° (L) ,  I~, ~b; 0) ,  (2.18) 

and its zero set 

~-~ ={  (~7,~) C,4 I A"~(~ )  = 0 } .  (2.19) 

Note that AnT~ contains energy-type information from the perturbed problem and phase-type information from 

the unperturbed problem. Also note that it roughly measures the leading order energy difference between points 

of .Aft which were formerly connected by heteroclinic orbits. 

We will particularly be interested in the transverse zeros of An~, which are contained in the set 

2 ~_ = { (r/, ~b) E V_ ~ ] O~A"7~(~b) 4 :0  }. (2.20) 

We will also need the nA~b translates of these sets in the ~b coordinate direction, so we define 

f'+ = 7~n(f/_n), 2~_ = 7~n(~"), (2.21) 

where the map 7~ is defined in analogy with the rotation map 7~, but on the annulus ,~, i.e., 

~ : ,~  --, ,~, 

( n , ~ )  ~ (m ~ + a4,). 
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p 

Fig. 4. The definition of the normal p(p+) in two possible cases. 

Finally, for later notational convenience (see (2.23) and (2.24) below), we introduce the definition 

~_ = O. (2.22) 

2.2.3. Pulse numbers 
To describe multi-pulse connections between orbits in .A~, we will associate pulse numbers to the tr-limit 

sets of these connections. To this end, for any internal orbit ~, C 3, of 7~ we define the pulse number 

N(~/) =min{ n >  1 [ ~ f q ~ = 0 ,  k = 0  . . . . .  n - l ,  ~ n _ ~ } ,  (2.23) 

where the symbol • refers to nonempty transversal intersection. In words, the pulse number of a given internal 

orbit 5, of 7~ is the minimum index n such that the intersection of 5/with V_ k is empty for k = 0 . . . . .  n - 1, but 

has a nonempty transversal intersection with ~_. (A little bit of thinking shows that the geometric meaning 

of N(~)  is the following: it equals the minimum number of rotations of 5, by the amount of the phase shift 

A~b in the annulus fit, such that the rotated image of 5/intersects transversally an internal orbit of 7~ with the 

same energy). 

A frequent situation when N(T) may not be defined is when the phase shift A~b is constant and "resonates" 

with 2~, i.e., there exist relative prime positive integers N and k such that NAcb(I) =_ 2kTr. In this case 

the zero set V_ u equals the whole annulus fit itself, and ~_u = 0. As a result, if "~ does not intersect V_ ~ for 

k = 1 . . . . .  N - 1 then the pulse number N(~,) is not defined. To treat such a situation we introduce the resonant 

pulse number 

N R ( ~ ) = m i n { n _ > l  I f '_kfq~=0, k = 0  . . . . .  n - l ,  f ,n=fit}.  (2.24) 

2.2.4. Sign sequences 

Before formulating an existence result on multi-pulse orbits homoclinic to .A~, we need one more technical 

ingredient. Let us consider the homoclinic loops 

17.+(1) {xh+(t; I) +oo = }t=-~,  /2- (1)  {xh-(t; +o~ = (2.25) 

The loop /2+(1) divides the (xl ,x2)  plane into two disjoint open sets, the exterior of E+(1), denoted 

Ext( /2+(1)) ,  and the interior of /2+(I),  denoted In t (E+( I ) ) .  Let us pick a point p+ C /2+(1) and let 

p(p+) denote the unit normal to E+(I) at the point p+ pointing in the direction of the other homoclinic 

loop /2- (1) .  In other words, p(p+) points to Ext(/2+(1)) i f / 2 - ( 1 )  C Ex t (E+( I ) ) ,  and p(p+) points to 

Int(E+(1) ) if E-(1) C Int (E+(1)) ,  as shown in Fig. 4. We define the sign constant 

o- = sign (DxHolp+,p(p+)). (2.26) 

Note that o- is independent of I and of the choice of p+ by the normal hyperbolicity of the unperturbed manifold 

./to. o- also remains the same if we interchange the roles of /2+(1)  and /2-(1). Using the sign constant o- we 

now associate sign sequences to internal orbits of the reduced Hamiltonian 7-/. 
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Definition 2.3. Let 5/be an internal orbit of the reduced Hamiltonian ~ and suppose that N(S/) = N. Then the 

positive sign sequence X + (5,) + ^ N = {Xk (3,)}e--! of 5' is defined as 

a,i~(s/) = +1, X~,-+~(S/) =o'sign(akT-2ls/)X~,-(s/), k=  1 . . . . .  N -  1. (2.27) 

The negative sign sequence of S/is defined as X-(5') = - X  + (3,). 

Note that the assumption N(3,) = N is important for the sign sequences to be well defined, since generally 

7~ takes different values on points of 7~.k(s/). However, it follows from the definition of N that none of these 

values is equal to 7~1S/for k = 1 . . . . .  N - 1 otherwise 5, would intersect the zero set f,_k contradicting the fact 

that N(S/) = N. Consequently, by the continuity of 7~ on ~k(3, ) ,  either 7-([7~k(s/) > 7-(1S/ or 7-[[7~k(s/) < 7~/1S/ 

holds, and X++1 is well defined. 

2.2.5. The existence o f  N-pulse orbits homoclinic to .Aft 

Our main result in this subsection will be the following: Suppose that for an internal orbit 5'0 of the reduced 

Hamiltonian N(S/o ) = N. Then there is a slow orbit 3'7 on .Aft, with H~ (3,~-) O( q'7)-close to S/o, such that 3,7 

is the backward limit set of two N-pulse transverse homoclinic orbits to .Aft. Furthermore, the jump sequences 

of these N-pulse orbits are given exactly by the sign sequences X+(S/o) and X-(S/o)- The homoclinic orbits 

leave a neighborhood of .Aft near the point//71 (b_) and finally return to .Aft near the point//71 (b+), where 

go is defined in (2.3) and 

b_ = 5'0 N 2_ °,  b+ = 7~N(b_). (2.28) 

Furthermore, the positive limit set, + 3,,, of the homoclinic orbits projects down under//~ close to an internal 

orbit S/~- of 7~ which passes through b+. Hence, for, say, N = 3 one may obtain the existence of an orbit 

shown in Fig. 2 based on the knowledge of the reduced Hamiltonian 7~ and the location of the zero sets of the 

energy-difference function AnT~. The following theorem formulates all this in more precise terms. 

Theorem 2.1. Assume that hypotheses (H1)-(H3) hold and g --- 0 in system (2.1). Suppose that for an 

internal orbit 5'0 C ,4 of the reduced Hamiltonian 7~ 

(A1) N -- N(S/o ) is defined, 

(A2) Let b_ and b+ defined as in (2.28). Assume that the orbit S/~- C ,4 of the reduced Hamiltonian 7~ 

which contains b+ is an internal orbit with 2+N~S/~ - (see Fig. 5). 

Then there exists e0 > 0 such that for 0 < e < e0 

(l) The slow manifold .Aft has two N-pulse homoclinic orbits, yff+ and yff- with jump sequences X+(S/o) 

and X-(S/o),  respectively, which are positively asymptotic to an internal orbit 3,+ C .Aft and negatively 

in ~N A N  

z+ 

A 

m 
2~ 

Fig. 5. Assumption (A2) of Theorem 2.1. 
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asymptotic to an internal orbit y~- C .A~. Moreover, the projections H~ (y~-) and H~(y + ) are (._9( v/-~)-close 

to "Yo and ~- ,  respectively. 

(it) y N+ and yN- lie in the intersection of W"(y~)  and s + W (y~) ,  which is transversal within the energy 

surface E~(h) with h = HI~,~ + = HI~,~-. 

(tit) Suppose that ~'o ---- ~0 ~- Then y~- - y~+. In particular, if ~o is a periodic orbit, then ~-  is a periodic 

orbit which has at least two transverse homoclinic orbits. As a result, system (2.1) has Smale horseshoes on 

energy surfaces near H = HI~'~-. 

Suppose now that instead of assumption (A1) above we have 

(AI ' )  N _--- N r ( ~ o )  is defined. 

Then statements (t)-(Ut) still hold with the exception of the transversality of the N-pulse orbits and the 

existence of Smale horseshoes. 

Proof The main idea of the proof is to follow the unstable manifolds of slow orbits as they leave an (Q(8 I/4) 

neighborhood, U, of the slow manifold .A~ and then later return to it. As in the usual construction of orbits 

homoclinic to equilibria (see, e.g., Wiggins [33] ), one can define a global and a local map to track the above- 

mentioned departures and returns repeatedly. It turns out that the projections of these maps on the annulus 

,3, are well defined. Moreover, the projected local map is Cl-close to the identity map provided the unstable 

manifold of a given slow orbit does not intersect the local stable manifold of that orbit upon reentering U. 

Furthermore, the projected global map is Cl-close to a shift in ,~ by the amount of the phase shift, which is 

given by the rotation map 7~ defined in (2.11). Hence, N excursions of the unstable manifold W"(y~-) of a 

slow orbit ~ can be approximated by applying 7~ N to the projection of W" ( ~ )  on ,3,. However, this projection 

will be close to a level curve ~'o of the reduced Hamiltonian ~ ,  so one can appindly 7~ N to "Yo. One can 

show that i f  "~N('yO ) intersects another level curve, ~,+, of 7~ with "/~1~o = 7~1~ +, then there exists a slow 

orbit y~- such that WU(y~) intersects WlSoc(Y +) upon its nth return to the tubular neighborhood U. Hence, to 

obtain an n-pulse orbit connecting slow orbits on .A~, one needs to look for transverse zeros of the expression 

~( r / ,  ~b + nA~b) - 7~(r/, q~), which is just the nth order energy-difference function defined in (2.18). One has 

to find the minimal index n for each reduced orbit ~o such that 3'o contains a zero of An~, otherwise the 

approximation for the local map described above breaks down. This naturally leads to the definition of the 

pulse number N('~ o ) introduced in (2.23). Identifying the shape of the multi-pulse orbits constructed this way 

means finding the jump sequence appearing in Definition 2.1. This essentially means verifying on which side 

of the hypersurface Wi~,c(.A~) the multi-pulse orbit ends up after its kth pulse. Knowing the direction of the 

gradient of H, this can be checked by comparing the energy of Wu(9,~) to the energies of nearby orbits in 

Wioc(A~). One finds that this is the same as comparing the energy ~[~o  to the energies of the level curves of 

7~ which intersect 7~k(~,o ). This directly leads to the expressions for the sign sequences appearing in Definition 

2.3, which therefore are equal to the jump sequences of two multi-pulse orbits. For details of the arguments we 

sketched here the reader is referred to Hailer and Wiggins [ 15]. [] 

To apply the above theorem one has to compute the pulse number N('~) or NR(~) for all internal orbits ~, 

of interest (see assumption (A1)) .  This computation depends on the particular problem, but for internal orbits 

near local minima or maxima of the reduced Hamiltonian ?~ one can universally follow the procedure we will 

use in Section 3.1.2 (see Haller and Wiggins [ 15] for another example where the same computation works). 
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2.3. Dissipative perturbations 

We now turn to the more general case of nonzero dissipation in system (2.1), i.e., we drop the requirement 

g = 0. The simplest way to extend the results of the Hamiltonian limit to this case is to assume that the 

dissipative perturbation is much smaller than the Hamiltonian perturbation. Under this assumption one can 

show that the multi-pulse orbits homoclinic to .A~ obtained for Hamiltonian perturbations survive but their 

asymptotics changes according to the weakly dissipative dynamics on .A~. Here we will not deal with such 

weakly dissipative perturbations; instead we will allow the dissipation to be of the same order as the Hamiltonian 
perturbation terms deriving from H1. 

2.3.1. The dynamics on the manifold .A~ 

As one again finds from a simple Taylor expansion, the dynamics on the persisting slow manifold ,4~ can 

be approximated by the dissipative reduced system 

i? = -De7~o (~1, qb ) + v/~DIgt( Yc°( Ir), It, q~; 0)71, 

~ =  Dn~o(r l ,  qg) + v/-dgo(2°(l~),Ir,(b;O), 

where the function 7~O is of the form 

(2.29) 

7~D (rl, (b) = 7~(rl, dp) - / g/(YcO(lr), lr, U; O)du, 

0 

(2.30) 

with 7~ being the same as in (2.15). For e = 0 (2.29) is a locally Hamiltonian system. Locality comes from 

the fact that ~ o  is not necessarily periodic in ~b, so it does not necessarily give a single valued Hamiltonian 

on the annulus .4. However, on fixed regions [-r/0,r/0] x [d~0,~bn], ~bx - d ' 0  < 27r, 7~D is a Hamiltonian for 
(2.29)~=0. 

Definition 2.4. We will call a non-equilibrium orbit ~ C i{ of the reduced system (2.29)~=0 an internal orbit, 

if it is structurally stable with respect to locally Hamiltonian perturbations. 

We want the system (2.29) to be truely dissipative for e > 0, which can be guaranteed by the nondegeneracy 
condition 

(H4) 

Dtgt (xO(lr), lr, q~; O) + D¢~g$(20(Ir), Ir, Ca; O) ¢ O. 

Under this assumption the reduced system (2.29) approximates compact segments of the orbits on the slow 

manifold .Aft with an O(e)  precision. Note however, that for e > 0 there may be no orbits of (2.29), other 

than fixed points, which are isolated from &4. This is related to the fact that for non-Hamiltonian perturbations 

.Aft is usually an overflowing or inflowing invariant manifold, i.e., it is invariant only in one time direction. 

For what follows we assume that 

(H5) For any two unperturbed solutions y~ ( t, It, (b~ ) and Yo ( t, Ir, qb 0 ) of (2.1),=0 with y~ ( t, Ir, d)~ ) C W~ 
and Yo ( t, Ir, 4) o ) E W o for all t E IR and with 

= lim Yo(t ,  Ir,d~o ), lim y~(t ,  lr,dp~) t--.-oo 
t - - r - -  O0 
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the following is satisfied: 

+ o ~  + c a  

/ ,, , S ,  : f <DH0,g>l,o(,,,,o,dt 
- - C ~  - -OO 

This assumption simplifies the formulation of the upcoming results and it holds for all applications we know of, 

including the two-mode truncation of the damped, driven NLS equation studied in this paper. (H5) implies that 

the improper integrals in (2.31) below do not depend on which of the two unperturbed homoclinic manifolds 

the particular solution yi( t )  belongs to. 

2.3.2. Energy-difference functions 

In the dissipative case we define the nth order energy-difference function in the following way: 

+~x~ 

An~F-{D(~) = A n ~ ( ~ b )  -- ~ /(DHo, g)ly~(t)dt. (2.31) 
i=1 

- - o o  

where ~ n~  is the energy-difference function defined in (2.18) for the case of Hamiltonian perturbations and 

yi( t )  denotes any of the two unperturbed heteroclinic solutions of system (2.1)~=0 connecting the points 

( ycO( Ir) , lr ,  (b + ( i -- 1)A¢) and ( ~°( Ir) , Ir ,  (b + iA¢). 

We will again need to find the zeros of the energy-difference function defined above in order to associate 

pulse numbers to individual orbits of the reduced dynamics. We define the following zero sets in the annulus 

,4: 

f,o =o,  f,,n ={(~,,¢,) cAI,a"~o(4,)=0},  V : = ~ n ( ~ ) ,  

2~_={(~,4~)c~ID~,X"~o(4)) ~ 0 } ,  Z_7_=~"(2"),  n_>l .  (2.32) 

2.3.3. Pulse numbers 

For any internal orbit ~ of the reduced system (2.29)~_-0 (see Definition 2.4) we can again introduce the 

pulse number 

N(~,) =min{ n >  1 I ~ N ~ ' = 0 ,  k = 0  . . . . .  n - l ,  ~n~ .~  }. (2.33) 

We will not define the resonant pulse number NR for dissipative perturbations, because they only indicate 

the existence of nontransverse homoclinic orbits to .Aft in the Hamiltonian limit, which can be destroyed by 

arbitrarily small dissipative perturbations. 

2.3.4. Sign sequences 

We introduce the following definition: 

Definition 2.5. Suppose that for an internal orbit ~ of the reduced system (2.29)~=0, N(~,) = N is defined. 

Then the positive and negative sign sequences {X±(~)}~=1 of ~/ are defined as 

x~(~') = +1, 

X + (-~)= o-sign (Ak~I~,)X~-(T) k = 1, , N -  1, 
k + l  ' " " " 

x~-(5,) = -x~-(5,), ~ = 1 . . . . .  N -  1, 
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respectively, with o- defined in (2.26). 

2.3.5. The existence of N-pulse orbits homoclinic to .Ag, 

We will now present results on multi-pulse orbits connecting the slow manifold ,A~ to itself. By the possible 

overflowing or inflowing invariance of ,A~ these orbits will not necessarily asymptote to slow orbits on .A~ in 

both time directions. Rather, they will approach slow orbits at an exponential rate, as long as the latter orbits 

stay in the slow manifold in forward or backward time. We will use the following definition: 

Definition 2.6. We say that an N-pulse orbit yff of the dissipative system (2.1) positively approaches an orbit 

y+ C .A~, if after the Nth pulse solutions on y~ approach solutions on 3/+ at an exponential rate, as long as 

the latter solutions stay in .A~. Similarly, we say that y~ negatively approaches a slow orbit y~- C ,A,, if yff 

positively approaches y~- c ,A, in backward time. 

We note that if the solutions on y+ in the above definition never leave the slow manifold .A~ in forward time 

then "positively approaches" is equivalent to "positively" asymptotic. 

Using the quantities defined in Section 2.2, we have the following main result on the multi-pulse behavior 

in system (2.1) for nonzero dissipation. 

Theorem 2.2. Assume that hypotheses ( H I ) - ( H 5 )  are satisfied. Suppose that for an internal orbit J'o C A of 

the reduced system (2.29)~_-0, 

(A1) N - N($, o ) is defined. 

(A2) Let b_ E 2N A Yo and b+ = 7~N(b_). Assume that the orbit ~+ c A of system (2.29)~_-0 which 

contains b+ is an internal orbit with ~ff ~ y+. 

Then for each of the two jump sequences {X~), there exists e0 > 0 such that for 0 < 8 < e0, the dissipative 

system (2.1) has an N-pulse homoclinic orbit y~ with jump sequence {X~} which positively approaches a 
--1 + slow orbit y+ C ,A, and negatively approaches a slow orbit y~- C ,A~. Moreover, the orbits be o g, ( y , )  and 

~-  are (v/-e, C 1 )-close near b_, and be o g~-l (y+) and ~+ are (v/-~, C l )-close near b+. 

Proof. The main difference in the construction of multi-pulse orbits in the dissipative case is that the unstable 

manifold WU(~/~) of a slow orbit is not contained in a given three dimensional energy surface any more 

(see the proof of Theorem 2.1). As a result, we cannot use two-dimensional local and global maps to track 

solutions as they enter and leave neighborhoods of the slow manifold. Instead, we use three dimensional maps, 

which are defined in terms of the variables (r/, ~b) and the energy of a trajectory upon entering or leaving 

the neighborhood U of the slow manifold. From a local analysis near the slow manifold and by Gronwall 

estimates outside the set U, we obtain that the (r/, qg) component of the projected global and local maps are 

still Cl-close to 7~ and the identity, respectively. Thus we only have to find approximations for the change 

of energy along multi-pulse orbits. Careful estimates show (see [ 15] ) that for orbits with a finite number 

of pulses the change of energy during passages near ,Aft is smaller in order of magnitude than during global 

excursions in a vicinity of the unperturbed homoclinic manifolds. The coefficient of the leading order O(e)  

term in these global changes of energy is given by the second term in (2.31). Note that the individual terms 

in this sum do not depend on which of the two unperturbed manifolds the orbit yi(t) belongs to. This is a 

simplification made possible by hypothesis (H5). Using (2.31 ), an application of the implicit function theorem 

shows that transverse zeros of AnTeD give rise to n-pulse homoclinic orbits to the slow manifold Aft. The exact 

asymptotics of these orbits then can be found by applying Fenichel's results on the invariant foliations of stable 
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and unstable manifolds (see, e.g., [34] ). This again leads to the definition of the pulse number N('~) in (2.33) 

and proves the statements of the theorem (see Hailer and Wiggins [ 15] ). [] 

3. Multi-pulse orbits in the two-mode truncation of the damped-forced NLS 

In this section we return to the two-mode truncation of the damped-forced NLS introduced in Section 1 and 

investigate the existence of multi-pulse solutions, whose existence is suggested by the numerical experiments 

of Bishop et al. [3]. It is simple to verify that the mode equations in (1.6) are exactly of the form of system 

(2.1) with the parameter/.L = (ce, fl) and with the functions H0, H1, gx, gl and g,/, defined as follows: 

HO ½12 1 - 7 x 4 - 3  2 2 1,-2, 2 1,-2 2 gx lx  2 + ~ x  4 ÷ ( I -  - (3.1) = -- ~/'k X2, 7t~ )x  1 

H, = F~/21  - x 2 - x 2 sin 4', (3.2) 

g x l ( x , l , 4 , ; ~ , ~ )  = - ~ X l ,  g~ (x , I , 4 , ;~ ,~ )  = (~  - ~ ) ( x~  + x~) - 2~, 

gx2(x , l ,  4,;tx, e) = - f i x 2 ,  g ~ ( x , l ,  4,;Ix, e) -- O. (3.3) 

Furthermore, easy calculations show that (l.6)x=0 has a hyperbolic fixed point at ~°(1) = (0 ,0)  with a 

symmetric pair of homoclinic orbits for any I > K2/2. The phase portrait of (1.6)x=0 for such I values is 

shown in Fig. 6. (For more details on the unperturbed geometry the reader is referred to Kova~i~ and Wiggins 

[24] or Hailer and Wiggins [ 15].) Note that in Fig. 6 we also indicate the direction of the vectors p ( p + )  and 

DxHo which we defined in relation with (2.26) in the previous section. Using (2.26) we immediately obtain 

o- = - 1 .  (3.4) 

As a result of the geometry shown in Fig. 6, (1.6) satisfies hypothesis (HI )  in Section 2.1. Following the 

discussion in that section, for e = 0 we conclude the existence of a two dimensional invariant manifold 

. a o = { ( x , l , 4 , )  ~ ' l x = ~ ° ( 1 ) = 0 ,  l c [11,I2], 4 ,~  S j }, (3.5) 

with K2/2 < 11 < 1 < 12, and a symmetric pair of three dimensional homoclinic manifolds, W~- and W o of the 

type shown in Fig. 1. As a result of the symmetry x ~ - x  of (1.6), the invariant manifold ,A0 - .A~ survives 

the perturbation unchanged. This means that the maps defined in (2.3) and (2.6) take the simple form 

go(*,4') - g~(l,4') = (o,o,1,4,) .  

X~ 

Xj 

(3.6) 

Fig. 6. The phase portrait of (1.6)x~,. 
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One can see from from (1.6) that A0 contains a circle of equilibria, Cr, satisfying I = 1. Hence our hypothesis 

(H2) in Section 2.1 is satisfied for the resonant action value Ir = 1. From (3.6) we see that the projection map 

H~ definied in (2.17) is of the simple form H~(O,O,l,~b) = (r/,~b). Recall from Section 2.2.1 that for e > 0 

this map can be used to blow-up the dynamics on the slow manifold .Aft created near Cr, and project it to the 
annulus A defined in (2.9). 

As seen from the calculations of Kova6i~ and Wiggins [24], both homoclinic manifolds, W~- and W o ,  admit 

the same constant phase shift 

2 cot-I ( v / ~ - - ~ - ~ )  + ---~7 tanh-I ( ~ )  - 7r, i f 0 < K <  1 , 

A~b(K) = (3.7) 

2 t a n -  1 + ~ t a n h -  1 , i f  ½ < K < x/~. 

Consequently, system (1.6) also satisfies hypothesis (H3) in Section 2.1. A plot of A~ as a function of K can 

be found in Hailer and Wiggins [13]. Here we only note that the range of z ~ ( K )  is [0, +oe) .  

Based on the above observations, the two-mode model (1.6) is an ideal candidate for the application of the 

energy-phase method described in Section 2. Our main goal will be to find multi-pulse homoclinic behavior in 

this model in the sense of Definition 2.1. First, we consider the purely Hamiltonian undamped-forced system 

(o~ = fl = 0), then study the damped-forced equations with a,  fl > 0. 

3.1. The forced two-mode model ( a = f l  = O) 

We will now compute all the ingredients which are necessary for the application of the energy-phase method 

described in Section 2.2. 

3.1.1. Energy-difference funct ions and their zeros 

As we discussed in Section 2.2.1, the projection map H~ can be used to approximate the slow orbits in .Aft 

by the level curves of the reduced Hamiltonian defined in (2.15). For our two-mode problem we easily obtain 

7~(~/, ~b) = ½r/2 + x /2 r s in  if, (3.8) 

defined on (,4, &) with some 

r/0 > ~ = 2~¢/'v/2F. (3.9) 

Fig. 7 shows the level curves of ~ and explains our choice of r/0 in (3.9) to include all the internal orbits 

associated with the presence of the resonance (see Definition 2.2). Note that the phase portrait of the reduced 

Hamiltonian is just that of the ordinary pendulum shifted by - z r / 2  in ~b. As shown in Fig. 7, we denote the 

open domain enclosed by the heteroclinic cycle of the pendulum by S0. Note that the two elements of this cycle 

are in fact homoclinic orbits since they are asymptotic to the same point in forward and backward time. As a 

result, all orbits in .4, with the exception of the saddle and the center, are internal orbits by Definition 2.2. 

Using (2.18) and (3.8) we have the nth order energy-difference function of the form 

a"7~(~)  = v ~ r [ s i n  (4, + nA~b) - sin ~b]. 

From (3.10) we obtain that for any n satisfying 

(3.10) 

nAcb v~ 217r, l E Z ,  (3.11) 
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Fig. 7. The phase portrait of the reduced Hamiltonian ~. 

the zeros of A'7~ in [7r/2, 57r/2] are 

~b"__,~ = -~Tr- ½nA~bmod27r, ~b"__,2 = ~Tr - [~ '+  ½nA~b] mod2~'. (3.12) 

Both zeros are transverse under the condition (3.11 ). Introducing the two additional angles 

" ~b~_,2 = [(b_,2 + nA~b] mod 27"r, ~ + , 1  ---- [(~--,ln +nA~b] mod2~, n (3.13) 

and using the definitions of the zero sets in (2.19)-(2.21), we obtain 

f+ = Z~ = {(n,  ~b) C ,4 [ ~b E {~b+,,,~b%,2} }. (3.14) 

Notice that 2 ~_ and 2~_ are symmetric with respect to the line ~b = 3¢r, which contains the center shown in Fig. 

7. This has the important consequence that Yo = Y+ will hold for a periodic orbit ~'o satisfying the assumptions 

of Theorem 2.1, leading to homoclinic N-pulse orbits in all cases. 

3.1.2. Pulse numbers 

Note that under (3.11) all periodic internal orbits outside S0 intersect ~1_ transversally (see Fig. 7). Hence, 

for any periodic or homoclinic orbit ~, outside S0 the pulse number defined in (2.23) is N(~,) = 1. We will 

now classify the periodic orbits within S0 based on their pulse numbers using a geometric construction. 

Let us start by defining the energy sequence 

ho = x/2F, h. = min(7~(0,~b"--,1),~(0, "¢"w-,2)~,1 (3.15) 

and the sequence of sets 

Ao = (~, .A,, = {('r/, ¢b)E So I ~(r / ,  (b )>  h.}, n_>l .  (3.16) 

For n >_ 1 ,4, has the following simple meaning: it is the open set of internal orbits in S0 which intersect at 

least one component of ~n_ transversally (see Fig. 8a). We note that the element hn of the energy sequence in 

(3.15) gives the reduced energy of the periodic orbit ~,, which is the inner boundary of ,4n. Next, we extract 
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Fig. 8. The construction of the layer sequence. 

the maximal decreasing subsequence of  the energy sequence and arrange the indices in this subsequence into a 

pulse sequence, Nk. More precisely, we define the pulse sequence as 

N~ = 1 ,  Nk=min{nEZ+ln>N~-l ,  hn<~Nk_,}, k>_2. (3.17) 

Since the energy of  the periodic orbits in ~0 decreases monotonically as they shrink to the center, we must 

necessarily have 

• 4N,  C "4N2 C . . .  C -4N~ C . . . .  

This sequence of  sets is infinite if the condition (3.11) is satisfied for all n E Z. If, however, m is the minimal 

index such that NmAdp = 21~" occurs for some integer l, then the pulse sequence and the set sequence {,4/vk} 

are finite and have m elements, with ,4N, = S0. In both cases we can define the finite or infinite layer sequence 

LNk = Int (,~Nk\,~Nk_l), (3.18) 

where Int (-) refers to the interior of  a set. The construction of  the layer sequence is shown in Fig. 8b. Note 

that LNk is an open set and its inner boundary is the unique periodic orbit "Y~k in S0 with 

= hu . (3.19) 

Hence, as shown in Fig. 8b, the "half-width" of  the periodic orbit ~'lv~ is the inner angular radius of  the layer 

LN~, and it equals 

ru~ = m i n ( 1 3 7 r -  q~_~l I [~¢r N~ , - ~b_.21 ) . ( 3 . 2 0 )  

The significance of  the whole construction in this subsection lies in the following observation: if the pulse 

sequence is infinite, then no periodic orbit ~ C Luk intersects f,_n = ~n_ for n < Nk, but each of  them intersects 

2_Uk transversally. I f  the pulse sequence is finite, i.e., it terminates at an index Nm > 1, then a periodic orbit 

"~ C Luk does not intersect f'_" = ~_  for n < Nk < Nm but it intersects ~_~ transversally. Since in the latter 

case condition (3.11) is violated for n = Nm, we have f,N,_ = .~ and ~u,_ -- 0. Also note that any "boundary 

orbit" ~'ok has no intersection with ~n_ for n < Nk, but it is tangent to ~_Nk. Based on the definition of  pulse 

numbers in (2.23) and (2.24),  we have obtained the following result. 

Proposition 3.1. I f  condition (3.11) holds for all n > 1 (i.e., the pulse sequence is infinite), then for any 

periodic orbit ~ C L~vk we have N ( ~ )  = Nk. On the other hand, if  h > 1 is the minimal integer for which 

(3.11) is violated (i.e., the pulse sequence terminates at Nm = h) ,  then for any periodic orbit ~, C LNk, k < m, 
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we have N(~) = Nk. Furthermore, for any periodic orbit "~ C L/v, we have NR(~') = N,n = ~. Finally, for the 

boundary orbits ~Nk the pulse numbers N(~/Nk) and NR(~'sk) are not defined. 

Notice that, with the exception of the boundary orbits "YNk, we have formally computed the pulse numbers of 

all internal orbits lying in the pendulum domain S0. Based on Theorem 2.1, each layer Lsk of periodic orbits 

indicates a layer of slow periodic orbits on the manifold .Aft with its He-projection close to Lsk, such that 

each slow orbit in the layer admits (at least) two Nt-pulse homoclinic orbits. Before we elaborate on the exact 

number and shape of these multi-pulse orbits, we will give a more concrete description of the pulse sequences 

and layers we have constructed recursively. 

To demonstrate the dependence of the pulse sequence (3.17) on the parameters, we chose to vary A~b instead 

of k (one can relate these two parameters using (3.7)). In Figs. 9a-c we plotted the pulse sequence as a 

function of the phase shift AS. We chose 500, 100, and 10, respectively, as upper bounds on the pulse numbers. 

By definition, each point (A~b, Nk) of this diagram indicates the existence of an infinite number of internal 

orbits with pulse number Nk for the given parameter value A~b. These plots show a stable pulse-distribution for 

low pulses but show an increasing sensitivity of higher and higher pulses to small changes in the phase shift. 

Note that while single-pulse orbits exist for all parameter values, there seems to be no general rule describing 

possible higher-pulse connections. Rather, an infinite number of combinations of subsequent pulse numbers are 

possible and they are all realized as the phase shift varies from 0 to 27r. It is important to point out, however, 

that for finite values of e one has to cut off these plots at some finite pulse number, because the methods used 

in the proof of Theorem 2.1 do not work for orbits arbitrarily close to the center in Fig. 6. Still, the meaningful 

part of the pulse-diagram and so the number of distinct pulse-sequences tends to infinity as e ~ 0. 

As an alternative characterization of the layer structure on the slow manifold ,Aft, one can plot how the layer 

radius sequence defined in (3.20) varies with the parameter A~b. To construct this plot, we first observe that 

the periodic orbit ~'N, has the following property: its image under the map R/vk (see (2.11)) is tangent to 7sk 

itself, and Ng is the minimal positive integer for which this tangency occurs. A simple calculation yields that, 

in general, 7~s(~,) is tangent to "~, if the angular radius rN of ~, satisfies the relation 

rN = II~"- ½NA4~I (3.21) 

for some integer l. Then, looking at the steps leading to Proposition 3.1, one finds that the construction of 

the layer sequence is equivalent to the following construction of layer radii: 1. Select N = 1 and consider the 

two one-parameter families of lines on the (r,A~b) parameter space given by (3.21). 2. Keeping in mind that 

the maximal meaningful value of r is ~r and restricting A~b to [0, 2~r], find the line segments from the above 

families within the rectangle [0,Tr] x [0,2zr] which are the closest to the A~b axis. This gives a tent-like 

object, as shown in Fig. 10a, which shows how the inner angular radius rl of the layer Ll changes with A~b. 

3. Next, set N = 2 and consider the line segments from the families in (3.21) which lie below the L1 tent and 

are the closest to the A~b axis. As shown in Fig. 10b, this time we obtain an "inverse" tent, which we will call 

L2-tent. Once again, the L2-tent shows how the inner radius r2 of the L2 layer, if it exists at all, changes as A~b 

varies. 4. Repeat the above construction recursively: always increase the integer N by one and define the LN+I 

tent to be the line segments from the families (3.21) which lie below all previous tents and are the closest to 

the A~b axis (see Fig. 10a for N = 3 and Fig. 10b for N = 4). 

The diagram obtained this way can, in principle, be constructed up to arbitrary high indices by hand, but 

it is best to implement the simple algorithm leading to the layer radius sequence (3.20) on a computer. We 

obtained Fig. 11 in this manner, which shows the union of all LH-tents for N < 100. By definition, for any 

fixed value of the phase shift the points of the diagram above this value show the inner angular radii for the 

layers LNk with Nk < 100. The resulting plot approaches an infinite binary tree as N --, c~, so we will refer to 
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Fig. 11. The layer radius sequence as a function of the phase shift. 

the structure shown in Fig. 11 as the homoclinic tree in the limit N --~ e~. At the branching points one of  the 

layers bifurcates to two new layers with different pulse numbers. As for any binary tree, the set of  branching 

points forms a countable set as N tends to infinity. As we discussed in connection with the pulse sequence 

plotted in Fig. 9, the homoclinic  bifurcations that occur on this set of  parameters do not necessarily double or 

triple the value of  N. We finally note that the homoclinic tree intersects the A~b axis at the values of  A~b where 

condition (3 .11)  is violated for some n and l. These points indicate degenerate layers of  s low periodic orbits 

for which only the resonant pulse number NR is defined. 

3.1.3. Jump sequences 

In this section we  compute the sign sequences introduced in Section 2.4.4. As one can see from (t)  of  

Theorem 2.1, these sequences can be used to describe the shape of  the N-pulse homoclinic  orbits we  found 

above. 
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Suppose that for some internal orbit ¢/o C S0 the pulse number N(~, o )  - N > 1 is defined. Then from 

(2.23) we obtain that for k = 1 . . . . .  N -  1 7~k(~o) does not intersect any orbit with reduced energy 7~1~, o.  

In particular, it does not intersect ~'o itself. Since 7~ preserves area, this means that 7~k('¢/o) lies outside the 

domain encircled by Yo- But all orbits outside Yo have energies higher than J'o; hence the value of the reduced 

Hamiltonian ~ at any point of 7~k('~O) will be higher than ~lJ 'o  for k = I . . . . .  N - 1. Therefore, we have 

sign(7~lT~k('yo) -?~1~o)  = + l ,  k=  1 . . . . .  N -  1. 

Using this, (3.4), and the definition of the positive and negative sign sequences in Definition 2.3 we obtain 

X+('~o) = { + 1 , - 1 ,  + I , - 1  . . . .  }, X-( '~o)  = { -1 ,  + 1 , - 1 , + 1  . . . .  }. (3.22) 

According to (l) of Theorem 2.1 and Definition 2.1, this means that the multi-pulse orbits constructed in the 

previous section always jump from the neighborhood of one unperturbed homoclinic structure to the other. The 

same argument shows that for N = NR the jump sequences are also alternating. 

3.1.4. Multi-pulse orbits 

As we have seen, for any element Nk of the pulse sequence which satisfies the nonresonance condition (3.11 ) 

we can guarantee the existence of transverse Nk-pulse orbits with alternating jump sequences, which are doubly 

asymptotic to the slow manifold `An- Most of these orbits will be homoclinic to slow periodic solutions, which 

either lie inside or outside the domain ,~0. In the latter case the corresponding homoclinic orbits are all 1-pulse 

orbits, and each periodic orbit admits four such homoclinic orbits since the corresponding internal orbits outside 

S0 intersect both components of the zero set ~l_ transversally (see Hailer and Wiggins [ 13] for a discussion on 

such orbits). The internal orbits lying inside S0 within some layer Lrck have two distinct intersections with the 

component of ~lvk which lies closer to the center at q~ = 3~r. As a result, the corresponding slow periodic orbits 

on ,A n admit four transverse homoclinic orbits (see Hailer and Wiggins [13] for illustration). A sub-layer 

L1,1 of LI is exceptional, because it contains internal orbits intersecting both components of ;~(¢. Consequently, 

the corresponding slow periodic orbits on ,An admit eight transverse homoclinic orbits. Finally, any layer LNk 

with Nk > 1 indicates a set of periodic orbits on the slow manifold ,An which admit four transverse, Nk-pulse 

solutions with alternating jump sequences (see Fig. 12 for an illustration for the case N2 = 2). 

Since, as mentioned in Section 5.1.3, the pulse number of the separatrices forming the boundary of aS0 

equals one, and the separatrices intersect both components of Z l ,  Theorem 2.1 implies the existence of four 

transverse 1-pulse orbits homoclinic to the two saddle-saddle fixed points (see Hailer and Wiggins [ 13] for a 

derivation and illustration of this result using a Melnikov-type method). We now summarize our main results 

for the forced, undamped two-mode model of the NLS in the following theorem. 

Theorem 3.1. For some fixed value of the parameter A~b let us consider the pulse sequence defined in (3.17) 

and plotted as a function of A~b in Figs. 9a-c. Then for any element Nk of this sequence satisfying (3 . l l )  

there exists e0(/z, Nk) > 0 such that for 0 < e < e0(Nk) 

(t) System (1.6) (with a = fl = 0) has an infinite number of transverse Nk-pulse orbits homoclinic to slow 

periodic solutions on the manifold `An (see Fig. 12 for Nk = 2). Accordingly, there exist Smale horseshoes 

on the energy levels containing these orbits. Each such slow periodic orbit in these level sets has in fact two 

transverse Nk-pulse homoclinic orbits with the jump sequence + 1 , -1  . . . .  and two with the jump sequence 

- 1 , + 1  . . . . .  

(u) The slow periodic orbits with transverse Nk-pulse orbits form a smooth layer L~v k on ,A~ which is C l 

x/e-close to H71 (~,~¢~). A subset of L~ contains slow periodic orbits with eight 1-pulse homoclinic orbits. 
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Fig. 12. Double:pu|se orbits homoclinic to slow periodic orbits. 

( m )  For Ark = 1 there also exist four transverse l-pulse transverse homoclinic orbits saddle-saddle-type 

equilibrium. 

If Nk does not satisfy condition (3.11 ) then the above statements still hold with the exception of transversality 

and the existence of Smale horseshoes. 

To illustrate the statements of Theorem 3.1 numerically, we first selected the parameter values k = 0.65 and 

F = 1.0. Then one obtains from (3.7) that the value of the phase shift is Aq~ = 2.8890. As one can verify 

from the pulse diagrams in Figs. 9a-c, for this value of the phase shift the first four elements of the pulse 

sequence are: N1 = 1, N2 = 2, N3 = 11, and N4 = 24. The corresponding inner angular radii for the first four 

elements of the layer sequence in (3.18) can be computed to equal rl = 1.4445, r2 = 0.2525, rll = 0.1818, and 

r 2 4  = 0.1 111 (see also (3.20)).  Based on (t),  (tt) of Theorem 3.1, there exists a smooth layer L~ C .,4 R such 

that each periodic orbit in L~ has two 2-pulse homoclinic orbits for both possible alternating jump sequences. 

We selected a periodic orbit 5'0 C L2 of ~ as shown in the upper right hand corner of Fig. 13. The figure also 

shows the location of the zero sets 2 2_ and ~+2 in ,4. We then located a slow periodic orbit y~ on .Aft which 

projects C 1 v,r~-close to "~0 under the map He; hence it must fall in L~. To find a 2-pulse orbit homoclinic 

to y~ with jump sequence {+1, -1} ,  we followed the component of the unstable manifold of y~ which lies 

near the unperturbed homoclinic manifold W~-. We also iterated a part of the stable manifold of y~ which lies 

near the unperturbed homoclinic manifold W o .  The results are projected on the (xl ,  r/, ~b) coordinate space. As 

Fig. 13 shows, the two invariant manifolds intersect in a fashion predicted by Theorem 3.1, giving rise to two 

transverse double-pulse homoclinic orbits. We also show the "shadowing set" y2+ of unperturbed heteroclinic 

orbits which appear in Definition 2.1. By the symmetry x ~ - x  of the two-mode model (1.6), these numerical 

results imply the existence of another pair of homoclinic orbits with opposite jump sequence, as predicted by 

Theorem 3.1. Fig. 14 shows the numerical construction of a 3-pulse jumping orbit predicted by Theorem 3.1. 

Here the parameter values are k = F = l., which yield the phase shift A~b = 1.8714. This time the first four 

elements of the pulse sequence are Nt = l, N2 = 3, N3 = 7, and N4 = 10. The corresponding inner angular 

radii are rl = 0.9357, r3 = 0.3345, r 7  = 0.2668, and r l 0  = 0.0677 (see also (3.20)).  The selected internal orbit 

~0 from the layer L3 is shown in the upper right hand corner of the figure, and the global unstable and local 
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Fig. 13. Double-pulse homoclinic orbit (e = 10 -4, stepsize = 1 x 10 -4, integrationtime = 16.0). 

stable manifolds of a nearby slow periodic orbit are followed numerically to find a 3-pulse homoclinic orbit 

with jump sequence { + 1 , - 1 ,  +1}. Again, the shadowing set y3+ of unperturbed orbits is also plotted in the 
figure. 

Note that the transverse intersection of the two invariant manifolds indicated by the projection is real, since 

on a fixed small tube around .A~ Dx2H ~ 0; hence the energy surface is locally a graph over the (xl,  r/, ~b) 

variables. However, the self-intersections of the stable manifolds in the figures are of course artifacts of the 

projections from the four dimensional phase space. To show this, we plotted a "four dimensional" image in 

Fig. 15 for the intersection of the stable and unstable manifolds of a slow periodic orbit admitting 1-pulse 

homoclinic orbits. The parameter values here are again k = 0.65, F = 1., so the value of the phase shift, as 

well as the pulse sequence and layer radius sequence are the same as in our first numerical experiment. This 

time, however, we color-coded the stable and unstable manifolds of the slow periodic orbit according to the 

value of the fourth coordinate (i.e., x2) at its points. Notice, that along the apparent self-intersection of the 

unstable manifold the limits of the colors are significantly different (see also the color table in the figure). This 

confirms that the invariant surface does not intersect in the four dimensional phase space. 
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Fig. 14. Triple-pulse homoclinic orbit (e = 10 -4 ,  stepsize = 1 × 10 -4,  integrationtime = 22.3). 

3.2. The forced-damped two-mode model (o~,/3 4= O) 

In this section we study the multi-pulse behavior in system (1.6) for nonzero damping. This includes the 

special case of mode independent damping a =/3 which was studied numerically by Bishop et al. [2]. 

First we note that from (3.3) we obtain that 

Dtgl ( YcO( Ir) ,  It, (b; O) + D~g~( Yc°( lr), Ir, qb; O) = -2a ,  

hence hypothesis (H4) of Section 2.3.1 is satisfied for c~ > 0. Furthermore, (3.2) and (3.3) together yield 

3 4 I 2 2 (Dno,g)ll=tr=l = (or+ ~/3)x 1 + ( a +  ~/3)XlX 2 -~- 2 [/3(1 - ½K 2) - a] x~ + / 3 ( K  2 - ¼)x 2. 

Since this expression is even in both xl and x2, and for the unperturbed homoclinic orbits we have xh+(t,/~) = 

--Xh-(t, lr), hypothesis (H5) of Section 2.3.1 is also satisfied. 

3.2.1. The dissipative reduced system 

As we noted in Section 2.3.1, for e > 0 sufficiently small compact pieces of the orbits on the slow manifold 

.A~ can be approximated by the dissipative reduced system (2.29) provided the nondegeneracy condition (H5) 

holds. Here the dissipative reduced system (2.29) takes the concrete form 
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Fig. 15. Single-pulse homoclinic orbit (e = 10 -4 ,  stepsize = 8 x 10 -5 ,  integrationtime = 11.0). 

=7.  (3.23) 

Recall that for e = 0 this is a locally Hamiltonian system that can be derived from the function 

~o(7,~b;/z0)  = ½72 + v ~ F s i n  ~b + 2~b,  (3.24) 

which we computed using (2.30). 

We will restrict the analysis to the nontrivial case when 

0 < ~ < 1, (3 .25)  

holds, in which case (3.23),_-0 has a center and a saddle in its phase portrait, as shown in Fig. 16a. The center, 

/~c, and the saddle,/~s, are located at the points 

(7c,~bc) = (0 ,~ r+cos - l (x /2~ ' ) ) ,  (7s,~bs) = (0, z r - c o s - l ( v ~ ' ) ) ,  (3.26) 

respectively, with ~" = a/F. To incorporate the whole domain, ~¢, bounded by the orbit homoclinic to the saddle 

in our study, we define the blown-up annulus ,4 with some 70 satisfying 

70> ,7 = 2 X / x / 2 r ( r  - 2~2) + ,~[~ - cos-' ( v S a / r ) ] ,  
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Fig. 16. The phase portrait of the dissipative reduced system. 

in accordance with Fig. 16a. For e > 0 the forced pendulum-type phase portrait of (3.23) changes into a 

dissipative one shown in Fig. 16b. Note that the locations of the two equilibria do not change, but Pc becomes 

a sink and Ps becomes a saddle whose eigenvalues add up to a small negative number. 

3.2.2. Energy-difference functions and their zeros 
As we have seen in Section 2.3, the first step in locating multi-pulse homoclinic orbits to .A~ is to identify 

the zero sets of the (dissipative) nth order energy-difference function (2.31) which now takes the form 

O O  

A"~o(4'; g0) = x/2F[sin (4' ÷ nA4') -- sinv] -- n f (Ono, g)ly,(t)dt, 

- - O O  

(3.27) 

where we used the fact that all elements in the sum of integrals in (2.31) are equal. Using the form of the 

unperturbed vector field and the calculations of Kova~i~ and Wiggins [24], we can write 

O O  O O  

C(o~,fl, K) = -- / ( D H o ,  g)[y,(t)dt= / [ - 2 o t ( b - b ( o t - f l ) ( x  2 -b x2)~b-k fl(Xl±2 -k x2Jcl) ] dt 

- - 0 0  - - 0 0  

= - 8 a K 2 A 0 ( K )  + ( a  - fl) • 8 [Kx/2 - / ( 2  + (1 + 3K2)A,tb(K) ], (3.28) 

where 

2 
A~k(K) = - ~ tanh-I ~/27--~-~K2 ' 

2 
- ~ tanh-1 2 7 ~ ~  ' 

i f 0 < K <  1, 

1 v / ~ ,  i f 7  < K <  

(3.29) 

and A4'(K) is defined in (3.7). Using the identity for the difference of the sines of two angles and assuming 

that 

nC(a, fl, K) 
2x/2F sin na~(r) 

2 

< 1, (3.30) 

the transverse zeros of An~D(V;/zo) can be written as 
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4't.1 - nA4' nC(ot, j3, K) 
2 cos -1 2v/_~Fsinna~(x ) + ( 2 l +  1)Tr, I E Z ,  

2 

4'., nA 4' nC (a,  fl, K) 
n,2 - 2 4- c°s-I  2x/~Fsin ~a~(x) 4- (2m 4- 1)or, m E Z .  (3.31) 

2 

To obtain the zero sets defined in (2.32), we will consider the particular members of the above families of 

zeros which fall in the interval [ 4's, 4'~ + 27r] : 

4'"--,1 =4's 4- 2 1 r -  [4'~ 4- 2~ - -  4'°,1] mod27r, 

4"--,2 =¢s  4- 2~r - [4's 4- 2 ~ -  4'°,2] mod 2~r, (3.32) 

with 4's defined in (3.26). Introducing the angles 

n n [ n 
= 4'+,2 4' - ,2  + 4'+,1 [4'-,1 + n a 4 ' ]  mod2cr, n = na4'] mod2cr, 

we obtain the zero sets in (2.32) in the form 

(3.33) 

9_" = 2"_ = { ( n , 4 ' )  I 4' ~ {4'"-,~,4"-,2} },  n _> l ,  

V+ = 2+ = {(r/, 4') I 4' E {4'+,1, 4'+,2} }, n > 1. (3.34) 

Our particular choice for the interval [4's, 4's 4- 2¢r] in the above construction is related to the upcoming 

construction of a layer sequence within S( which will be similar to that of Section 3.1.2. This time, however, 

the zero sets 2~ ~_ do not necessarily intersect S¢, and we must have a way to decide whether this intersection 

occurs or not. If we pick the zeros of the energy difference function AnT~o from the interval [ 4's, 4's + 2¢r], then 

we can check the above intersection based on the following observation: in the set [-r /0,  r/0] x [4's, 4's + 27r] 

all points which lie within S¢ have 7~o energies lower than 7~0 (0, 4's). Hence, to construct an energy sequence 

similar to (3.15), one can select h0 = 7~o(0,4's) and define hn as in (3.15), then proceed the same way as in 

Section 3.1.2. The reason why this whole construction is dependent on the right choice of zeros is that 7~o is 

originally defined on the real line and it does not define a single valued "energy" on the annulus ,~. 

Finally, there is one more observation we want to make for later purposes. Note that if a point b_ is contained 

in ~_N N S¢, then the point b+ E ~ with the same r/coordinate will be contained in ~(. This follows from the 

fact that, by construction, b+ has the same or lower 7~o-energy than b_, so if b_ lies in the domain S¢, so 

does b+. As a result, it follows from Theorem 2.2 that for small e > 0 any multi-pulse orbit "taking off" from 

the open domain H~(S() of the slow manifold .A~ will ultimately land on the same domain. 

3.2.3. Pulse numbers 

We first note that from (3.30) we directly obtain an upper bound on the pulse numbers: 

V'2 (3.35) 
n < ]~ . la4' ,  

which shows that for arbitrarily small dissipation and for K E (0, 1/2) U ( 1/2, x/~) the infinite homoclinic tree 

we found in Section 3.1.2 will break into a finite tree. As in Section 3.1.2, the pulse number of any internal 

orbit outside S~- is equal to 1. Furthermore, as we discussed in the previous subsection, for the orbits inside SC 

one can adapt the same construction as in Section 3.1.2 to classify them based on their pulse numbers. Namely, 

one can again define the energy sequence 

h0 = 7~o(0,4's;/xo), hn = min(~o(0,4 '~_A;/ . t0) ,~o(0,4 'nz; /Z0)) .  (3.36) 
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a) b) 
Fig. 17. The construction of the layer sequence for (3 .23)~.  

Then the definitions of {.4n}, the pulse sequence {Nk} and the layer sequence {LN~} are the same as in the 

undamped case (see Figs. 17a,b). This time, however, all these sequences are finite by (3.35). As earlier, we 

obtain that for any periodic orbit ~ C Llvk the pulse number is N(~,) = Nk. 

To simplify our discussion, we now restrict our analysis to the case of a =/3  > 0. As we indicated earlier, 

this is the case of mode independent damping which is relevant if we want to relate our results to the numerical 

experiments of Bishop et al. As seen from (3.28), we have 

C(a ,  ce, K) = -8aK2A~p(K) > 0, (3.37) 

which shows that the zeros defined in (3.31) can be rewritten as 

dptn,1 - n A q ~  -2x/~(nK2A~k( K) 
2 c°s - I  na4,(K) + (2l + 1 )rr, I C Z , 

sin 2 

nAcb -- 2x/2fnK2 ACz( K) 
~b~',2 = - ~ - - -  + c°s - I  na4,(K) + (2m + 1)at, m G Z . (3.38) 

sin 2 

This form of the zero sets enables us to construct the pulse numbers and layer radii, for fixed values of the 

dissipation factor ( ,  as a function of the parameter K. The results are shown in Figs. 18a,b for various values 

of ( .  In these plots we used K as bifurcation parameter, as opposed to the phase shift A~b in Section 3.1.2. For 

comparison with the the undamped case, in Fig. 18a we also show the pulse number and layer radius diagrams 

for zero damping ( (  = 0) as a function of K. In all plots in Figs. 18a,b the layer radii are defined as 

/ 
4,u91 14,c 

Nk 
"x 

rN, = min~ I~bc- [ , -  ~b_21 ) .  (3.39) 

In these diagrams one can see a gradual break-up of the homoclinic tree as the dissipation is increased compared 

to the forcing. The meaning of the pulse diagram is again the same: it shows the existing multi-pulse solutions 

which approach the slow manifold .A~ positively and negatively as the wave number K changes. According 

to Theorem 2.2, the layer radius diagram shows the approximate distances of the "take-off" points of these 

multi-pulse orbits from the slow sink on .A~ (see also the phase portrait in Fig. 17b). 

3.2.4. Jump sequences 

The argument we gave in Section 3.1.2 cannot be used here to give a general description of jump sequences 

in the dissipative case. Instead of attempting to classify all the possible jump sequences, we only note that for 

small values of ct = /3  the multi-pulse orbits are continuations of those constructed in Section 3.1, hence the 

corresponding jump sequences are all alternating. 



3 4 2  

la) 

N 

20 
19 
18 
17 
16 
15 
14 
13 
12 
11 
10 
9 
8 

7 
6 
5 
4 
3 
2 
1 
0 
0.0 

G. Hailer, S. Wiggins / Physica D 85 (1995) 311-347 

~=0 

° .. 

° . .  

° . 

i J  
. . . .  i . . . .  i . . . .  i . . . .  , . . . .  I i i i r ~  

0.2 0.5 0.8 1.0 1.2 

r 
1.60 _ N  k 

1.40 

1.20 

1.00 

0.80 

0.60 

0.40 

0.20 

o%1 o 

i 

0.2 0.5 0.8 1.0 1.2 
K 

N k 

20 
19 
18 
17 
16 
15 
14 
13 
12 
11 
10 

9 
8 
7 
6 
5 

~= 10"" 

. .  D 

m 

i 

D 

1.60 

1.40 

1.20 

1.00 

0.80 

0.60 

0.40 

0.20 

. . . .  i . . . .  i . . . .  i . . . .  i . . . .  i . . . 

0o 02 0~ 08 ,0 12 K 00% 

rN  k 

A 
0.2 

~= 10 "4 

0.5 0.8 1.0 1.2 
K 

N k 

20 
19 
18 
17 
16 
15 
14 
13 
12 
11 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 
0 
0.0 

~=10  .2 

° -  . B - -  

1.60 

1.40 

1.20 

1.00 

0.80 

0.60 

0.40 

0.20 

IS" 
I I 

I I I 

' ' ' ' ' ' ' ' ' ' ' r ~  0 , C K ]  

B 

0.2 0.5 0.8 1.0 1.2 0.0 

~= 10 .2 
rN k 

. . . . .  , , , , , , i , i , , , , , , , , , 

0.2 0.5 0.8 1.0 1.2 
K 

F i g .  18 .  T h e  p u l s e  s e q u e n c e  a n d  t h e  l a y e r  r a d i u s  s e q u e n c e  a s  f u n c t i o n s  o f  t h e  w a v e  n u m b e r  K f o r  t h e  d a m p e d - f o r c e d  t w o - m o d e  m o d e l .  

3.2.5. Multi-pulse orbits 

Having the construction of  the pulse sequence {Nk} at hand, we know about the existence and bifurcations 

of multi-pulse orbits which positively and negatively approach the slow manifold ,A f .  We have constructed the 

zero sets ; ~  in a way such that any 2_  Nk will necessarily have a nonempty intersection with the homoclinic 
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K 

domain S¢ of the reduced system (3.23)~=0. It follows from Theorem 2.2 that for any slow orbit y~- C An 

intersecting H~ -] (~lvk f3 S¢) there exist two Nk-pulse orbits, yffk+ and yffk- which negatively approach y~-. As 

we discussed in Section 3.2.1, the projection of the dissipative slow dynamics on ,A n onto the annulus fi~ can 

be approximated by the dissipative reduced system (3.23) with its phase portrait shown in Fig. 17b. Regarding 

this phase portrait we observe the following: for any Nk > 0 one can select e > 0 sufficiently small, so that a 
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a) b) 

Fig. 19. The construction of a structurally stable, multi-pulse heteroclinic orbit for Nk = 3. 

component of  the unstable manifold W u (Ps) (which perturbs from the homoclinic loop of (3.23),_-0) intersects 

the zero set ~Nk transversally in at least two points, which lie inside S0 in some (.9(1) distance from aS0. 

Furthermore, the angle of the intersection is of O( 1 ) as e ~ 0 and the number of intersections tends to infinity 

as e ~ 0 (see Fig. 19a). As a result, there will be Nk-pulse orbits in the forced-damped two-mode model 

which negatively approach the unstable manifold of a saddle-type equilibrium on ,Aft (this equilibrium is a 

saddle-saddle when viewed in the full four dimensional phase space). Consequently, these multi-pulse orbits 

are negatively asymptotic to a saddle-saddle lying in the resonance band. 

The next question is the forward asymptotics of these multi-pulse orbits, which can be easily answered based 

on our final observation in Section 3.2.2. In this way one can conclude that any of the multi-pulse orbits 

backward asymptotic to the saddle-saddle will be forward asymptotic to a "slow" sink on ,Aft whose existence 

can be inferred from the phase portrait of the dissipative reduced system shown in Fig. 17b. The geometry of 

such a multi-pulse orbit is shown in Fig. 19b. Note that the construction of these orbits is robust with respect 

to small changes in the parameters; hence the multi-pulse orbits are structurally stable. Another way of seeing 

this is that they lie in the generically one dimensional intersection of the two dimensional unstable manifold of 

the saddle-saddle with the three dimensional stable manifold of the saddle-sink. Using Theorem 2.2, we obtain 

the following main result for the damped-forced two-mode model. 

Theorem 3.2. For some fixed value of the parameters K and F and a = fl let us consider the pulse sequence 

defined in Section 3.2.3 and plotted as a function of K in Figs. 18a, b for some values of ( = a / F .  Then for 

any element Nk of this sequence there exists e0 such that for 0 < e < e0 the following hold: 

(t) The damped-forced system (1.6) has at least four structurally stable, Nt,-pulse jumping orbits homoclinic 

to the slow manifold ¢4~. These orbits are backward asymptotic to a saddle-saddle-type equilibrium and are 

forward asymptotic to a saddle-sink-type equilibrium (see Fig. 19b). The actual number of  such orbits tends 

to infinity as e --* 0. 

(u) The distance of the take-off points of the above multi-pulse orbits from the saddle-sink is O(e¼)-close 

to rNk, where rN~ is defined in (3.39), and plotted in Figs. 18a,b. 

The direct visualization of multi-pulse orbits guaranteed by the above theorem is much harder than in the 

Hamiltonian case, because we cannot use energy conservation any more. Firstly, this makes it more difficult to 

keep track of the accuracy of the simulation. Secondly, three coordinates are no longer enough to demonstrate 

the intersection of the stable and unstable manifold of orbits on .3,,. Thirdly, once the multi-pulse orbits get 

very close to the slow manifold before their first pulse in backward time and after their last pulse in forward 

time, they slow down and will be driven away from .Aft near its unstable manifold. To counteract this tendency, 

one has to use a more sophisticated numerical algorithm combined with careful error estimates, which can be a 

subject of a separate paper. Even without this, however, one can use the simulation pictures Figs. 13-15 to get 
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an idea of  the nature of jumping orbits in the dissipative case, since they stay close to Hamiltonian multi-pulse 

orbits during their finite times of flight outside a neighborhood of the slow manifold. As far as the behavior 

these orbits is considered in a thin "boundary layer" near .A~, one can refer to Fig. 19b to see their forward 

and backward asymptotics. 

4. Conclusions 

In this paper we proved the existence of multi-pulse orbits in a two-mode truncation of the damped-forced 

nonlinear Schrt~dinger equation. These orbits are backward and forward asymptotic to .A~, a two dimensional 

"slow" manifold of solutions. In the case of no damping, .A~ can be chosen invariant, and it carries a slow 

pendulum-type dynamics. As we have seen in Section 3.1, the open domain of "rotational" periodic orbits of 

this pendulum dynamics can be divided into layers indexed by integer numbers N~, for which we derived a 

recursive formula depending on the system parameters (see Figs. 9a-c for a plot of the results). The layer 

structure has the following property: for any slow periodic orbit y~ lying in the Njth layer there exist at least 

four transverse, jumping Nk-pulse homoclinic orbits doubly asymptotic to y~. All these orbits have alternating 

jump sequences (see Definition 2.1), but these sequences start with +1 for two of them and with - 1  for 

the rest. By the transversality of these homoclinic orbits, we established the existence of Smale horseshoes 

and hence chaotic dynamics on Cantor sets on most energy levels intersecting the slow manifold A~. For our 

methods to work we have to exclude energy levels which intersect .A~ in small amplitude periodic solutions 

lying in a (_9(v/-~) neighborhood of the center of the slow pendulum dynamics. The nature of the dynamics on 

such energy levels is still an open question, although its influence on the numerically observable jumping is not 

significant. To decribe how the layer structure changes as the phase shift A~b varies, we presented a recursive 

construction to calculate the inner angular radii of all existing layers (see Fig. 10). As the magnitude of the 

pulses considered tends to infinity, this bifurcation diagram approaches an infinite binary tree shown in Fig. 1 1. 

We illustrated the results by numerical simulation visualizing the intersection of stable and unstable manitblds 

of periodic orbits. 

We also studied the multi-pulse behavior in the damped-forced two-mode model. Although our general results 

are valid for all values of a and /3, we chose to discuss them in more detail for the case when ce = /3. In 

terms of the underlying PDE, this condition means that all modes are equally damped, as was assumed in the 

numerical study of Bishop et al. [2]. We have shown that if the dissipation factor ( = ce/F is not too large, 

then there exist structurally stable multi-pulse jumping orbits in the damped-forced two-mode model, which 

connect a saddle-saddle-type equilibrium to a saddle-focus-type equilibrium. These orbits admit three different 

time scales: 1. fast alternating bursts in the form of pulses near the two unperturbed homoclinic manifolds; 

2. intermediate slow-downs between two subsequent pulses; 3. very slow asymptotic approach to the saddle- 

saddle in backward time and to the saddle-focus in forward time. The distribution of existing pulses is shown 

in Figs. 18a,b together with the bifurcation of take-off distances from the saddle-focus as the wave number K 

varies. These plots show how the homoclinic tree found for the Hamiltonian limit of pure forcing breaks up as 

the damping coefficients increase compared to the forcing amplitude. 

We believe that our results give a more direct explanation for the jumping behavior observed in the two-mode 

model than related earlier studies, which were all concerned with the existence of single-pulse homoclinic orbits, 

and found such orbits only on codimension one sets of the parameter space. In contrast to all these results 

described in Section 1, the orbits found in this paper are structurally stable. Furthermore, as it is shown in Haller 

and Wiggins [ 15 ], the multi-pulse orbits constructed by the energy-phase method spend an O(log(  1/x/~) ) time 

in a neighborhood of the slow manifold between subsequent pulses. Using standard Gronwall estimates one can 



346 G. Haller, S. Wiggins / Physica D 85 (1995) 311-347 

therefore conclude the existence of an open set of initial conditions of measure O ( v ~  ) near any multi-pulse 

orbit described above, such that trajectories starting from that open set exhibit the same jumping behavior for 

finite times as the underlying multi-pulse orbit. Hence the presence of multi-pulse orbits we constructed provide 

a numerically observable jumping mechanism. This distinguishes our construction from that of Kaper and 

Kova~i~ [ 23 ] who constructed multi-pulse orbits near resonance bands using a modified Melnikov-type method 

and the Exchange Lemma of Jones, Kaper, and Kopell [22]. Their multi-pulse orbits lie in an exponentially 

small neighborhood of single-pulse orbits and spend times of O(1/x/~ ) within a small neighborhood of the 
slow manifold between all their subsequent pulses. 

Finally, it is of great importance to find a similar multi-pulse jumping behavior for the damped-forced 

nonlinear SchrGdinger equation itself. Based on the work of Li [25], one expects this to be possible, since the 

geometric structure of the full PDE has many elements in common with that of the two-mode truncation studied 

in this paper. Hence the next major step in tackling the dynamics of the damped-forced NLS is to generalize 

the energy-phase method to infinite dimensions. This work is in progress and will appear in Hailer [ 17]. 
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