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Multi-Pulse Pulse-Position-Modulation Signaling
for Optical Communication with

Direct Detection
M. K. Simon1 and V. A. Vilnrotter1

A modification of the traditional pulse-position modulation (PPM) scheme typi-
cally employed on the optical direct-detection channel is proposed that allows for sig-
nificantly improved information throughput and bandwidth advantage. The scheme
sends a multitude (K) of pulses per symbol interval and as such provides a signal
constellation whose size, for a given number of pulse slots (M), varies as MK (for
large M) rather than linearly with M , as is the case for conventional PPM. Maxi-
mum performance improvement is obtained for deep-space optical communications
applications, where narrow high-peak-power transmitted pulses offer significant ad-
vantages in terms of detection probabilities and background suppression capabilities
at the receiver.

I. Introduction

Pulse-position modulation, or PPM, is an accepted technique for transmitting information over the
optical direct-detection channel [1,2]. At the transmitter, the encoder maps blocks of L consecutive
binary symbols, or bits, into a single PPM channel symbol by placing a single laser pulse into one of
M = 2L time slots. The PPM symbols are orthogonal, since there is no overlap between pulses in any
pair of symbols. After establishing slot and symbol synchronization, the receiver detects the uncoded
PPM symbols by determining which of the M slots contains the laser pulse, and performs the inverse
mapping operation to recover the bit stream. Each correctly decoded PPM symbol conveys L bits of
information; however, the receiver must operate with much greater bandwidth than the actual data rate
to effect the decoding operation. If each bit is Tb seconds in duration, then L bits take LTb seconds to
transmit; this means the receiver must process 2L PPM time slots in LTb seconds to avoid overflow. The
processing rate of the system (both transmitter and receiver) therefore must be a factor of 2L/L times as
great as the transmitted bit rate, implying a required bandwidth expansion by a corresponding amount.
For large L, this bandwidth expansion can be severe, ultimately limiting the information throughput of
the system due to limitations on the sampling rate.

A natural extension of single-pulse PPM is the use of two or more pulses to convey information in each
channel symbol [3]. This can be accomplished by placing more than one pulse in all possible ways among
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M slots, generating a much larger number of usable channel symbols when M is large; however, not all of
the channel symbols are orthogonal, and the number of symbols in the set so generated is not necessarily
a power of two, thus complicating the encoding operation. Nevertheless, multi-pulse PPM2 has desirable
properties, namely the potential for significantly reducing bandwidth requirements at fixed average power
as compared to the “best” single-pulse PPM strategy, or increasing information throughput at a given
bandwidth without incurring significant performance penalties.

In the next section, we shall examine the information throughput and bandwidth requirement proper-
ties of multi-pulse PPM, and compare it to both conventional single-pulse PPM and the “best” single-pulse
PPM strategy that maximizes throughput with an average-power constraint. The maximum-likelihood
strategy for optimally decoding multi-pulse PPM will be derived in Section III for direct-detected optical
signals in the presence of multimode background radiation. Exact performance of two-pulse PPM will
be determined in Section IV, both for the erasure channel (no background radiation) and for the general
case with arbitrary background, and performance comparisons and numerical results will be presented in
Section V.

II. Information Throughput and Bandwidth Requirements

With a single pulse placed in one of M slots, as with conventional PPM, the number of bits per PPM
symbol is log2 M . The number of orthogonal symbols with “single-pulse PPM” is

(
M
1

)
= M . For the

simple case of M = 4, the PPM symbols could be listed as

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

where each “1” represents a laser pulse, with an average of Ks = λsτ photons per pulse at the receiver.
Here, τ denotes the duration of the PPM time slot and λs denotes the signal intensity in photons/second
(assumed to be constant over the time slot).3 Also, the symbol time associated with a single PPM
transmission is Ts = Mτ , and thus the average signal power of such a transmission is Ks/Ts.

Suppose that instead of using a single PPM pulse we employ two pulses, and consider the number of
possible “dual-pulse PPM” symbols that can be generated in this manner. The number of such symbols is
clearly

(
M
2

)
= [M(M − 1)]/2; however, not all dual-pulse PPM symbols are orthogonal, as the following

example illustrates. For the case M = 4, the number of possible two-pulse symbols is 6:

1 0 0 1
0 1 1 0
0 1 0 1
1 0 1 0
1 1 0 0
0 0 1 1

2 For the specific case of two pulses per channel symbol, we shall refer to this modulation scheme as either two-pulse PPM
or dual-pulse PPM.

3 The bandwidth of a particular modulation scheme is directly proportional to the inverse of the time slot duration. Thus,
two modulation schemes having the same τ will occupy the same bandwidth. This fact will play an important role later
on in the article when we deal with comparisons of the different modulation schemes.
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Starting at the top, we proceed down and note that with the above arrangement the first two symbols are
orthogonal; however, all the rest have one pulse overlap with the top two, and similarly for other pairs of
orthogonal symbols. In general, we note that each two-pulse PPM symbol is orthogonal to

(
M − 2

2

)
other

symbols, as can be seen by crossing out the columns occupied by the two laser pulses of any particular
symbol: that leaves (M −2) columns among which we can arrange two pulses in

(
M − 2

2

)
distinct ways,

none of which has any overlap with the original symbol. The number of symbols not orthogonal with a
given two-pulse PPM symbol is therefore

(
M
2

)
−

(
M − 2

2

)
−1. These relationships are easily verified for

the above example with M = 4: the number of symbols orthogonal to any given two-pulse PPM symbol
is 1, whereas the number of symbols not orthogonal to it is 4. We observe, however, that for large M
any given two-pulse PPM symbol will be orthogonal to most of the remaining symbols; for example, with
M = 256, any given symbol will be orthogonal to 32,131 other symbols, and not orthogonal to only 508
other symbols.

For conventional single-pulse PPM, the number of orthogonal symbols is equal to the number of
slots, M ; thus, the information throughput is log2 M bits/symbol. As stated above, the number of
symbols for two-pulse PPM is

(
M
2

)
=

M(M − 1)
2

∼=
M>>1

M2

2

With M slots, the two-pulse PPM set contains

N(2) = log2 M + log2(M − 1) − log2 2 ∼=
M>>22 log2 M (1)

bits of information per symbol. The extension to “K-pulse PPM” is straightforward. The number of
symbols generated by K pulses arranged in all possible patterns among M slots is

(
M
K

)
=

M !
K! (M − K)!

∼=
M>>K

MK

K!
(2)

Hence, the average number of bits per symbol is

N(K) =
K−1∑
i=0

log2(M − i) −
K∑

i=0

log2(K − i) ∼=
M>>KK log2 M (3)

Thus, for the case M >> K, the information throughput has been increased by nearly a factor of K over
single-pulse PPM with the same number of slots M . However, if each pulse contains the same average
photon count as a single PPM pulse, then the average signal power, i.e., K×(Ks/Ts), has effectively been
increased by a factor of K in order to achieve this gain. Perhaps, then, it might be more appropriate to
compare each multi-pulse PPM symbol not just to a single PPM symbol with the same average photon
count as one of the multi-pulse PPM symbols, but rather to a constellation of symbols composed of
K consecutive single-pulse PPM symbols, each of symbol duration Ts/K and dimensionality M/K. This
modulation scheme, which then has the same average energy per unit time, or equivalently the same
average power as the previously described K-pulse PPM, shall be referred to as compound-K single-pulse
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M-PPM.4 By dividing the M slots into K groups, each occupying M/K slots and assigning a conventional
single-pulse M/K PPM constellation to each group as was done in [3], then the number of compound-K
single-pulse PPM symbols is (M/K)K with a corresponding throughput

N (K) = K log2 M − K log2 K (4)

bits per symbol. Since
(

M
K

)
≥ (M/K)K , M > K, it is clear that K-pulse PPM contains more symbols

and hence conveys more information than compound-K single-pulse PPM since the latter is constrained
to have no more than one pulse in any of the M/K slot symbols. The actual number of symbols and the
corresponding information throughput for several values of K with M = 256 is shown in Table 1. It is
clear that K-pulse PPM always improves upon single-pulse (conventional or compound) PPM in terms
of information throughput, the improvement becoming significant as the number of pulses per symbol is
increased.

Another way to compare these schemes is in terms of bandwidth required for the same information
throughput. Denoting the total number of slots for K-pulse, compound-K single-pulse, and conventional
single-pulse PPM by M (A), M (B), and M (C), respectively, then, analogous to the development in [3],
equating the total number of symbols for the three schemes, their information throughputs are equal
when

M (C) =
(

M (B)

K

)K

=
(

M (A)

K

)
∼=

M>>K

(
M (A)

)K

K !
(5)

Solving for M (B) in terms of M (A), for example, yields

M (B) ∼= K
K
√

K !
M (A) (6)

Table 1. Comparison of the number of symbols and information throughput of three different PPM schemes:
conventional single-pulse PPM, compound-K single-pulse PPM, and K-pulse PPM signal-sets; M = 256.

Information Information
Compound-K Information

K-pulse throughput, throughput,
single-pulse throughput,

M -PPM, conventional compound-K
K M -PPM, K-pulse

no. of single-pulse single-pulse
no. of M -PPM,

symbols M -PPM, M -PPM,
symbols bits/symbol

bits/symbol bits/symbol

1 256 256 8 8 8

2 16,384 32,640 — 14 15

4 16,777,216 174,792,640 — 24 27.4

8 1.1 × 1012 4.1 × 1014 — 40 48.54

4 We point out that an equivalent comparison to compound-K M -PPM is a comparison to conventional single-pulse
M/K-PPM having symbol rate K/Ts. Specifically, both schemes have the identical bit rates, i.e., (1/Ts) log2 (M/K)K

for the former and (K/Ts) log2 (M/K) for the latter, and furthermore since the K symbols in compound-K PPM are
independently chosen, optimal detection should yield identical bit-error rates (more about this later on in our discussion
of performance).
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The factor involving K on the right-hand side of Eq. (6) is equal to
√

2 when K = 2, and it ap-
proaches the number e as K approaches infinity. Since for a fixed symbol time, Ts, the slot time is
given by τ = Ts/M , then the above indicates that, in order to convey the same amount of information,
compound-K single-pulse PPM requires significantly greater bandwidth than does K-pulse PPM. With
limitations on digital sampling rates imposed by hardware considerations, this property of K-pulse PPM
could become a significant factor for implementing high-data-rate telemetry.

III. Maximum-Likelihood Decision Metric

The maximum-likelihood metric for deciding optimally between an arbitrary number of intensity-
modulated optical symbols, modulated according to any format whatsoever, has been previously derived
[1]. Here we summarize the specific results pertinent to the problem under investigation in this article. It
is assumed that Poisson statistics apply to both the detected signal and the detected background fields and
to their sum when appropriate; this simplifying assumption is valid whenever a large number of space–time
modes are observed and is generally true for signal-plus-background radiation under nominal operating
conditions. The decision is based on a vector of time-disjoint count observables covering the symbol
duration; here we assume that M distinct and disjoint counting intervals are sufficient to characterize
each received symbol, and we base the decision on the M -component count vector k = (k1, k2, · · · , kM ).
We denote the ith hypothesis, corresponding to the ith distinct intensity-modulated symbol, by Hi. The
probability of each count component is Poisson distributed with average value Kb = λbτ (λb denotes the
background intensity) when only background radiation is observed, and λijτ + Kb when both signal and
background are present; here the subscript i refers to the hypothesis, whereas the subscript j identifies
the observation interval within the count vector.

Since, conditioned on the intensity (hence the hypothesis), Poisson counts from disjoint intervals
are independent, the joint probability for the count vector, conditioned on a given hypothesis, can be
expressed as the product of the individual probabilities corresponding to each count:

P (k|Hi) =
M∏

j=1

(λijτ + Kb)kj

kj !
e−(λij+Kb) (7)

The maximum-likelihood decision rule is to compute the conditional probability for each hypothesis given
the observed count vector and to select that hypothesis that yields the greatest value (i.e., that is most
likely). The conditional probability, evaluated at the values of the observed count vector, is called the
likelihood function. Since the logarithm is a monotone-increasing function of its argument, a much simpler
computation may result if we equivalently base the decision on the “log-likelihood function,” which is the
natural logarithm of Eq. (7). Denoting the ith log-likelihood function by Λi, the decision can be based on
the metrics obtained by evaluating Λi for each hypothesis and selecting the one that achieves the greatest
value. Thus, we compute

Λi ≡ lnP (k|Hi) =
M∑

j=1

kj ln(λijτ + Kb) −
M∑

j=1

ln(kj !) −
M∑

j=1

(λijτ + Kb) (8)

Note that the second term on the right-hand side of Eq. (8) does not depend on the hypothesis, and hence
cannot contribute to the decision; this term can be ignored. The third term on the right-hand side of
Eq. (8) is the total energy of the signal and background for the ith symbol, which we denote by Ei. This
term contributes to the decision only if the total symbol energy depends on the hypothesis; otherwise,
for the case of equal-energy symbols, it too can be ignored. Observe that the first term on the right-hand
side of Eq. (8) can be rewritten in a slightly different form, by dividing by the background energy:
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M∑
j=1

kj ln(λijτ + Kb) =
M∑

j=1

kj ln
(

1 +
λijτ

Kb

)
+

M∑
j=1

kj ln(Kb) (9)

Again, the second term on the right-hand side of Eq. (9) is independent of the hypothesis; hence, it can
be ignored. Taking these simplifications into account, the log-likelihood function for the general case can
be rewritten as

Λi =
M∑

j=1

kj ln
(

1 +
λijτ

Kb

)
− Ei (10)

where Ei is the energy associated with the ith hypothesis. Next, we apply these results to the case of
two-pulse PPM and determine its performance, first with negligible background and then in the presence
of background radiation.

IV. Performance

The decision rule derived above is defined in terms of log-likelihood metrics consisting of the sum of
logarithmically weighted counts obtained from each “signal slot” of the various hypotheses. The decision
rule is to select that hypothesis corresponding to the greatest log-likelihood function, given the vector of
observables. For the special case of equal-energy signal pulses, the logarithmic weights for all likelihood
functions are exactly the same, and hence can be ignored. This means that the log-likelihood functions
consist of the sum of counts from all possible patterns of two slots among the M slots available for each
symbol.

The symbol-error probability performance of conventional single-pulse PPM is well known and is
repeated here for reference in the form derived in [4], namely,

Ps(E) = 1 − 1
M

e−(Ks+MKb) −
∞∑

k=1

(Ks + Kb)k

k!


M−1∑

l=0

1
l + 1

(
M − 1

l

) (
Kk

b

k!

)l

k−1∑

j=0

Kj
b

j!




M−1−l



× e−(Ks+MKb) (11)

where Ks = λsτ and λs is the signal intensity. An alternative form for Eq. (11) can be obtained by
making use of the combinatorial identity

M−1∑
l=0

1
l + 1

(
M − 1

l

)
albM−2−l =

(a + b)M − bM

aM
(12)

resulting in5

Ps(E) = 1 − 1
M

∞∑
k=0

(
Ks + Kb

Kb

)k





 k∑

j=0

Kj
b

j!




M

−


k−1∑

j=0

Kj
b

j!




M

 e−(Ks+MKb) (13)

5 J. Hamkins, “Accurate Computation of the Performance of M -ary Orthogonal Signaling on a Discrete Memoryless Chan-
nel,” Jet Propulsion Laboratory, Pasadena, California, submitted to IEEE Trans. Letters.
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Although Eq. (13) is more compact than Eq. (11), numerical results obtained from the former tend
to be inaccurate at large values of Ks (relative to Kb) due to the fact that, for large values of the
summation index k, the term in brackets corresponds to the difference of two numbers that are very close
to one another. A way around this difficulty has been suggested.6 However, for our numerical evaluation
purposes here, we will continue to use the form in Eq. (11) .

Another possible simplification is the replacement of the third sum in Eq. (11) [equivalently, the second
and third sums in Eq. (13)] by known tabulated functions, i.e.,

k1−1∑
j=0

Kj
b

j!
= eKbQk1

(
0,

√
2Kb

)
= eKb

Γ (k1, Kb)
Γ (k1)

(14)

where Qm (α, β) is the mth order Marcum Q-function [5] and Γ (n, k) is the incomplete gamma function
[6]. Once again, for numerical evaluation purposes, this simplification does not appear to offer any strong
advantage.

We now proceed to derive an expression for the equivalent-performance characterization of dual-pulse
PPM. Our goal is to obtain an exact expression for the average symbol-error probability performance
of this modulation scheme in contrast to an upper bound on such performance obtained previously [7].
Aside from the obvious analytical satisfaction, an exact expression will allow more accurate numerical
results to be obtained for small values of M . With no loss in generality, we shall assume that the first
hypothesis is true, denoted by H1, corresponding to the transmission of laser pulses in the first and second
of the M slots.

A. Negligible Background Radiation

We begin by first considering the performance of dual-pulse PPM for the noiseless case, so as to
introduce the key underlying concepts that will have to be generalized when we relax this constraint. The
number of two-pulse patterns among M slots is equal to

(
M
2

)
= [M(M − 1)]/2. Because of symmetry,

we assign equal a priori probabilities to all hypotheses, so that the probability of the ith two-pulse pattern

occurring is P (Hi) =
(

M
2

)−1

= 2/[M(M − 1)].
The following are the events that arise in the analysis of the error-probability performance of dual-

pulse PPM. Under the condition of negligible background radiation, photon counts only can occur in the
signal slots, but detection of no photon counts in either or both of the signal slots is also possible due
to the non-zero probability of getting zero counts with the assumed Poisson statistics. The probability
of getting zero counts in the slots that do not contain the signal is one, since we assumed zero average
background energy. Therefore, the probability of getting (a) a count of one or more in the first two slots
(taken to be the signal slots for hypothesis H1) and zero everywhere else is

P (k1 ≥ 1, k2 ≥ 1, k3 through kM = 0) =
(
1 − e−Ks

)2 (15)

When this event occurs, the transmitted hypothesis is identified correctly with probability one. However,
it is also possible to (b) receive a non-zero count in the first slot but no counts in the second slot,
(c) receive a non-zero count in the second slot but no count in the first slot, or (d) receive no counts in
either signal slot, hence no counts over the entire observation vector. The probabilities of these events
are

6 Ibid.
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P (k1 ≥ 1, k2 = 0, k3 through kM = 0) = P (k1 = 0, k2 ≥ 1, k3 through kM = 0)

= e−Ks
(
1 − e−Ks

)
(16)

P (k1 = 0, k2 = 0, k3 through kM = 0) = e−2Ks (17)

When (b) or (c) occurs, there is no clear decision strategy, because we do not have enough information
to distinguish between those patterns that have a signal pulse in the first (or second) slot; in this case,
optimality is not compromised by choosing randomly among the remaining possibilities. Since the number
of patterns with a pulse in the first (or second) slot is (M − 1), a random choice among these possibil-
ities yields a correct decision with probability 1/(M − 1). Similarly, when event (d) occurs, a random
choice among all possibilities yields a correct decision with probability [M(M − 1)/2]−1. Considering all
possibilities, the probability of a correct decision in the absence of background radiation is

P (C|H1) =
(
1 − e−Ks

)2 +
2

M − 1
e−Ks

(
1 − e−Ks

)
+

2
M(M − 1)

e−2Ks

= 1 − 2
(

M − 2
M − 1

)
e−Ks +

(
M − 2

M

)
e−2Ks (18)

Note that for M = 2 we get P (C|H1) = 1, meaning that we always choose correctly; however, since with
dual-pulse PPM there can be only one hypothesis in this case, there is no transfer of information. Finally,
since the result in Eq. (18) is independent of the hypothesis chosen, the average symbol-error probability
is given by

Ps(E) |dual pulse = 2
M − 2
M − 1

e−Ks − M − 2
M

e−2Ks (19)

For conventional single-pulse PPM, the corresponding relationship to Eq. (19) is

Ps(E) |conv. PPM =
M − 1

M
e−Ks (20)

Thus, for a given value of Ks, we observe that in the limit of large M and large Ks, single-pulse PPM
will outperform dual-pulse PPM by as much as a factor of two in symbol-error probability.

For compound-2 single-pulse PPM, a correct symbol decision requires that both pulses from the two
consecutive single-pulse M/2 PPM constellations be correctly detected. Thus, the probability of error for
this modulation scheme is

Ps(E) |comp. PPM = 1 −
(
1 − Ps(E)

∣∣∣ conv. PPM
M→M/2

)2

= 2Ps(E)
∣∣∣ conv. PPM

M→M/2
−

(
Ps(E)

∣∣∣ conv. PPM
M→M/2

)2

(21)

In other words, the probability of an error in the compound symbol is equal to the probability of error in
the first pulse (with the second pulse correct or not), plus the probability the second pulse is in error (with
the first pulse correct or not), and since this sum contains the simultaneous (squared) error term twice,
we need to subtract out one of the squared error terms in order to obtain the exact error probability.
Here again, for a given value of Ks, we observe that, in the limit of large M , compound-2 single-pulse
PPM will approach the performance of dual-pulse PPM.
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B. Non-Negligible Background Radiation

To begin the discussion, we point out that if any of the noise-only slots contain a number of counts
greater than the smaller of the number of counts in the two signal slots, then the signal slot containing
this smaller number of counts will not be included as part of the slot-pair decision, i.e., a decision error
will occur. Mathematically speaking, if for any i = 3, 4, · · · , M , ki > min (k1, k2), then such an event
cannot contribute to the probability of correct detection. With this in mind, we now spell out the various
events that contribute to this probability when background radiation is included.

Event 1. One or more photons are detected in slots 1 and 2 (k1, k2 ≥ 1) and all other M − 2 slots
have fewer detected photons than in either slot 1 or 2

(
k3, k4, · · · , kM < min(k1, k2)

)
. Here a correct

decision will be made with certainty and, thus, the contribution of this event to the probability of a
correct decision corresponds to the probability of occurrence of the event itself, namely,

P1(C) =
∞∑

k1=1

(Ks + Kb)
k1

k1!
e−(Ks+Kb)

∞∑
k2=1

(Ks + Kb)k2

k2!
e−(Ks+Kb)


kmin−1∑

j=0

Kj
b

j!
e−Kb




M−2

(22)

where kmin = min (k1, k2).

Event 2. An unequal number (but at least one) of photons are detected in slots 1 and 2 (k1 �= k2 ≥ 1);
any other l = 1, 2, 3, · · · , M−2 slots have kmin = min(k1, k2) detected photons; and the remaining M−l−2

slots have less than kmin detected photons. This event can occur in
(

M − 2
l

)
ways (corresponding

to the number of possible combinations of the l noise-only slots that contain kmin detected photons).
Furthermore, a correct decision is no longer guaranteed since there now are l + 1 equally likely ways for
a slot (other than the signal slot not corresponding to kmin) to have kmin > 0 detected photons, only one
of which produces the true correct decision. Thus, the contribution to the probability of correct decision
stemming from this event is

P2(C) =
M−2∑
l=1

1
l + 1

(
M − 2

l

) ∞∑
k1=1

(Ks + Kb)
k1

k1!
e−(Ks+Kb)

∞∑
k2=1
k2 �=k1

(Ks + Kb)
k2

k2!
e−(Ks+Kb)

×
(

Kkmin
b

kmin!
e−Kb

)l

kmin−1∑

j=0

Kj
b

j!
e−Kb




M−2−l

(23)

Event 3. An equal number (but at least one) of photons are detected in slots 1 and 2 (k1 = k2 =
k ≥ 1); any other l = 1, 2, 3, · · · , M − 2 slots have k detected photons; and the remaining M − l − 2
slots have less than k detected photons. (Note that k also could be denoted by kmin = min (k1, k2) since
k1 and k2 are equal. This will be convenient later on when combining events.) This event can occur

in
( M − 2

l

)
ways (corresponding to the number of possible combinations of the l noise-only slots that

contain k detected photons). Furthermore, a correct decision is no longer guaranteed since there now are(
l + 2

2

)
equally likely ways for a pair of slots to have k > 0 detected photons, only one of which produces

the true correct decision. Thus, the contribution to the probability of correct decision stemming from
this event is
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P3 (C) =
M−2∑
l=1

(
l + 2

2

)−1 (
M − 2

l

) ∞∑
k=1

(
(Ks + Kb)

k

k!
e−(Ks+Kb)

)2 (
Kk

b

k!
e−Kb

)l

×


k−1∑

j=0

Kj
b

j!
e−Kb




M−2−l

(24)

Event 4. One or more photons are detected in slot 1 (k1 ≥ 1), and all other slots have zero detected

photons. Furthermore, a correct decision is no longer guaranteed since there now are
(

M − 1
1

)
= M − 1

equally likely ways for a slot (other than the first) to have zero detected photons, only one of which
produces the true correct decision. Thus, the contribution to the probability of correct decision stemming
from this event is

P4 (C) =
1

M − 1

[ ∞∑
k1=1

(Ks + Kb)
k1

k1!
e−(Ks+Kb)

]
e−(M−2)Kbe−(Ks+Kb)

=
1

M − 1
(
eKs+Kb − 1

)
e−(2Ks+MKb) =

1
M − 1

(
e−(Ks+(M−1)Kb) − e−(2Ks+MKb)

)
(25)

Event 5. This is the counterpart to Event 4—one or more photons are detected in slot 2 (k2 ≥ 1),
and all other slots have zero detected photons. By symmetry, the probability of correct decision, P5 (C),
stemming from this event is identical to P4 (C).

Event 6. All slots have zero detected counts. Here a random decision among
(

M
2

)
= [M(M − 1)]/2

possible slot pairs is made, resulting in a contribution to the probability of correct decision of

P6(C) =
2

M(M − 1)

[
e−(Ks+Kb)

]2

e−(M−2)Kb =
2

M(M − 1)
e−(2Ks+MKb) (26)

Examination of the probability of Event 1 as given in Eq. (22) reveals that it can be included in Event 2
and Event 3 by allowing the summation on l in Eqs. (23) and (24) to run from zero to infinity instead of
one to infinity. Then the total probability of correct detection is obtained from the sum of Eq. (23) and
Eq. (24) (modified as above) through Eq. (26). Some simplification of the various terms that contribute
to this summation is possible; however, before proceeding with this and discussing its value in regard
to numerical evaluation, we first check that the end result agrees with the result previously obtained for
the special case of no background noise, i.e., Kb = 0. For this special case, each of the contributing
probabilities is evaluated as follows.

For Event 1, only the j = 0 term in the third sum survives. Thus, from Eq. (22),

P1(C) =

( ∞∑
k1=1

Kk1
s

k1!
e−Ks

) ( ∞∑
k2=1

Kk2
s

k2!
e−Ks

)
=

(
eKs − 1

)2
e−2Ks (27)

The probabilities corresponding to Events 2 and 3 are equal to zero. For the equiprobable Events 4 and 5,
we have
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P4(C) + P5(C) =
2

M − 1
(
e−Ks − e−2Ks

)
(28)

Finally, for Event 6 we obtain

P6(C) =
2

M(M − 1)
e−2Ks (29)

Thus, summing up Eqs. (27) through (29) gives

P (C) = 1 − 2
(

M − 2
M − 1

)
e−Ks +

M − 2
M

e−2Ks (30)

which agrees with the previously obtained result in Eq. (18).

Including Eq. (22) as the l = 0 term in Eqs. (23) and (24) as discussed above and reordering the
summations, we obtain

P1(C) + P2(C) + P3(C) =
∞∑

k1=1

(Ks + Kb)
k1

k1!

∞∑
k2=1

(Ks + Kb)
k2

k2!

×


M−2∑

l=0

I(l, k1, k2)
(

M − 2
l

) (
Kkmin

b

kmin!

)l

kmin−1∑

j=0

Kj
b

j!




M−2−l

 e−(2Ks+MKb)

(31)

where

I(l, k1, k2) =




1
l + 1

, k1 �= k2

(
l + 2

2

)−1

=
2

(l + 2)(l + 1)
, k1 = k2

(32)

Finally, summing Eqs. (25) through (27), adding the result to Eq. (31) and subtracting from 1, we obtain
the desired expression for average symbol-error probability, namely,

Ps(E) = 1 − 2
M − 1

e−(Ks+(M−1)Kb) +
2
M

e−(2Ks+MKb) −
∞∑

k1=1

(Ks + Kb)k1

k1!

∞∑
k2=1

(Ks + Kb)k2

k2!

×


M−2∑

l=0

I(l, k1, k2)
(

M − 2
l

) (
Kkmin

b

kmin!

)l

kmin−1∑

j=0

Kj
b

j!




M−2−l

 e−(2Ks+MKb) (33)
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With some abuse of the notation, it is possible to write Eq. (33) in yet a more compact form that
incorporates the second and third terms in the summations on k1 and k2. In particular, after some
manipulation it can be shown that

Ps (E) = 1 −
∞∑

k1=0

(Ks + Kb)
k1

k1!

∞∑
k2=0

(Ks + Kb)
k2

k2!

×


M−2∑

l=0

I (l, k1, k2)
(

M − 2
l

) (
Kkmin

b

kmin!

)l

kmin−1∑

j=0

Kj
b

j!




M−2−l

 e−(2Ks+MKb) (34)

where it is understood that, if kmin = 0, then the summation on j equals zero, and thus
( ∑kmin−1

j=0

[Kj
b/j!]

)M−2−l = 0 unless l = M − 2, in which case
( ∑kmin−1

j=0 [Kj
b/j!]

)M−2−l = 1.

Due to the symmetry of Eq. (33) or Eq. (34) in k1 and k2, it is possible to reduce the infinite sum on
one of these indices to a finite sum. In particular, the double sum

∑∞
k1=1

∑∞
k2=1 (·) can be replaced by

2
∑∞

k1=2

∑k1−1
k2=1 (·) +

∑∞
k1=1 (·) |k2=k1 , leading to the simplification

Ps (E) = 1 − 2
M − 1

e−(Ks+(M−1)Kb) +
2
M

e−(2Ks+MKb) − 2
∞∑

k1=2

(Ks + Kb)
k1

k1!

k1−1∑
k2=1

(Ks + Kb)
k2

k2!

×


M−2∑

l=0

1
l + 1

(
M − 2

l

) (
Kk2

b

k2!

)l

k2−1∑

j=0

Kj
b

j!




M−2−l

 e−(2Ks+MKb)

−
∞∑

k=1

[
(Ks + Kb)

k

k!

]2

M−2∑

l=0

2
(l + 1) (l + 2)

(
M − 2

l

) (
Kk

b

k!

)l

k−1∑

j=0

Kj
b

j!




M−2−l

 e−(2Ks+MKb)

(35)

Once again it is possible to apply the relation in Eq. (12) to algebraically simplify the term on the second
line of Eq. (35). However, as previously mentioned, this simplification potentially leads to computational
inaccuracy and thus for the purpose of our numerical results we shall use the form given in Eq. (35).

The performance of dual-pulse PPM and its comparison with that of the conventional and compound
single-pulse PPM approaches under average-power, peak-power, and bandwidth constraints is the subject
of the next section.

V. Numerical Results

The advantages of multi-pulse PPM over the best single-pulse strategy in terms of information through-
put have been described in Section II. However, throughput is not the only criterion for evaluating and
comparing modulation formats; performance also must be taken into account. Since single-pulse PPM
is a completely orthogonal modulation while dual- or multi-pulse PPM is only partially orthogonal, per-
formance degradation for the multi-pulse modulation formats is expected since not all of the energy is
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available for differentiating between non-orthogonal symbols. For example, in the case of two-pulse PPM,
where the maximum overlap between non-orthogonal pulses is equal to the energy of one pulse, only half
of the energy is used to differentiate between the correct pulse and competing non-orthogonal pulses.
On the other hand, multi-pulse PPM signals contain more channel symbols than do the corresponding
repeated single-pulse PPM sets, and therefore enjoy a bandwidth advantage when equal throughput is
the design criteria. In view of the above discussion, performance should be compared both at equal
bandwidth and at equal information throughput. Finally, since increased bandwidth (narrower slot time)
necessitates greater peak signal power to maintain constant average pulse energy, average-power and
peak-power constraints also should be applied when comparing single-pulse and multi-pulse PPM signals.

The performance of single-pulse (conventional or compound) PPM can be compared with multi-pulse
PPM symbols in several ways, namely, under a bandwidth constraint or under an information throughput
constraint; each of these can further be divided into average-power-constrained or peak-power-constrained
signals. For the purpose of numerical comparison, we consider only the case of K = 2. To facilitate the
notation associated with the various comparisons, and to be consistent with notation used earlier in this
article, we shall assign the superscripts (A), (B), and (C) to the parameters associated with dual-pulse,
compound-2 single pulse, and conventional PPM modulations, respectively.

A. Peak-Power Constraint

The first set of comparisons to be made assumes that we impose a peak-power constraint on the
signal, i.e., λ

(A)
s = λ

(B)
s = λ

(C)
s

�= λs. The peak-power constraint is particularly important in deep-space
optical communications applications, where narrow high-peak-power transmitted pulses offer significant
advantages in terms of detection probabilities and background-suppression capabilities at the receiver.
However, the generation of high peak powers is ultimately limited by breakdown in materials and coatings,
especially where erbidium-doped fiber amplifiers are employed—the optical field in these fiber amplifiers
often reaches intensities so great that catastrophic damage occurs. Therefore, operation with a peak-
power constraint below the damage threshold is required, and, hence, modulation formats capable of
delivering high information throughput under a peak-power constraint are highly desirable in deep-space
applications.

1. The Case of Equal Bandwidths. Requiring that all three schemes have equal bandwidths is
equivalent to requiring that they have identical slot durations, i.e., τ (A) = τ (B) = τ (C), or, since the
symbol time is fixed, the equivalent relation, M (A) = M (B) = M (C) = M . Combining this with the
peak-power constraint given above is tantamount to setting K

(A)
s = K

(B)
s = K

(C)
s

�= Ks. Also, since the
background radiation intensity is fixed at λb, then we also have K

(A)
b = K

(B)
b = K

(C)
b

�= Kb. A pictorial
representation of the modulations for this case is given in Fig. 1 for M = 16, which depicts conventional
single-pulse PPM, compound-2 single-pulse PPM formed from two single-pulse PPM symbols each of
dimension M/2 = 8, and a typical two-pulse PPM symbol all chosen from constellations using a total
of 16 equal-duration slots. The symbol-error probability of the three schemes is plotted in Fig. 2 versus
Ks = λsτ (peak power normalized by the slot time or, equivalently, the energy per pulse) for M = 16
and Kb = 0, 0.1, and 0.5. Solid curves refer to dual-pulse PPM, dotted–dashed curves to conventional
single-pulse PPM, and dashed curves to the corresponding compound symbol formed from the pair of
single-pulse PPM symbols of half the dimension. The expressions used to arrive at these plots are given
by Eqs. (19) through (21) for Kb = 0 and Eqs. (11), (21), and (33) for Kb �= 0. We observe that, consistent
with the previous discussion in Section IV, dual-pulse and compound-2 pulse PPM both perform worse
than conventional single-pulse PPM, dual-pulse being the more inferior (approximately a factor of two
in symbol-error probability). Again the reader is reminded of the fact that, with an equal bandwidth
constraint, even for M equal only to 16, the information throughput of dual-pulse PPM is still somewhat
higher than that of conventional or even compound-2 PPM. In particular, the numbers of bits per symbol
for the three cases are log2

( 16
2

)
= 6.907, log2(16/2)2 = 6, and log2 16 = 4, which represents a valuable

trade-off against the relatively small penalty in symbol probability performance.
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CONVENTIONAL
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CONVENTIONAL
8-PPM

λs

λs

τ

τ

λs

τ

(a)

(b)

(c)

Fig. 1.  An illustration of three different PPM modulation schemes with equal band-
widths and peak power levels, M = 16:  (a) dual 16-PPM, (b) compound-2 16-PPM,
and (c) conventional 16-PPM.

An alternative way of characterizing the performance for this case, which also takes into account the
difference in information throughputs of the three schemes, is to consider a plot of bit-error probability
versus peak power (normalized by the slot time) per bit, i.e., λsτ/N where, as before, N denotes the
bits/symbol for each scheme as given in Section II. The conversion of the y-axis (ordinate) of Fig. 2 from
symbol- to bit-error probability is, in principle, dependent on the modulation scheme. Since conventional
single-pulse PPM is truly an orthogonal modulation scheme, then one can apply the well-known relation
between symbol- and bit-error probability for such a scheme, namely, [8, Chapter 4, Eq. (4.96)]:

Pb (E) =
1
2

(
M (C)

M (C) − 1

)
Ps (E) (36)

Although compound-2 single-pulse PPM and dual-pulse PPM are not truly orthogonal modulation
schemes, for large M the number of symbols that are not orthogonal to a given member of the sig-
nal constellation becomes quite small relative to the number that are indeed orthogonal. Thus, to a
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DUAL-PULSE 16-PPM (A)

COMPOUND-2 16-PPM (B)

SINGLE-PULSE 16-PPM (C)

lo
g 1

0 
P

s 
(E

 )

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

pulse energy = λsτ

0 2 4 6 8

λbτ = 0 0.1

0.5

Fig. 2.  Average symbol-error probability versus normalized peak power for conven-
tional single, compound single, and dual-pulse PPM with normalized background
power as a parameter; equal bandwidths.

first-order approximation, one can apply the same relation to these two modulation forms, accepting as
well the fact that the number of bits per symbol may not always be integer. Thus, for compound-2
single-pulse PPM, we have

Pb(E) ∼= 1
2

[
(M (B)/2)2

(M (B)/2)2 − 1

]
Ps(E) (37)

whereas for dual-pulse PPM we have

Pb(E) ∼= 1
2

[
M (A)

(
M (A) − 1

)
/2

M (A)
(
M (A) − 1

)
/2 − 1

]
Ps(E) (38)

For the case at hand, M (A) = M (B) = M (C) = 16, and thus these conversions become Pb(E) =
(8/15)Ps(E) for conventional single-pulse PPM, Pb(E) ∼= (32/63)Ps(E) for compound-2 single-pulse
PPM, and Pb(E) ∼= (60/119)Ps(E) for dual-pulse PPM, all of which are close to Pb(E) = (1/2)Ps(E).
The resulting plot is provided in Fig. 3. Here we see that dual-pulse PPM is the best performer of the
three, particularly when compared to conventional single-pulse M -PPM. Note that the bit-error proba-
bility of compound-2 M -PPM is identical to that of conventional single-pulse (M/2)-PPM as explained
in Footnote 4, and thus the exact expression for this probability could be obtained from Eq. (11) with
M replaced by M/2 combined with Eq. (36).

2. The Case of Equal Information Throughputs per Symbol. Suppose now that we compare
the three schemes based on equal information throughputs as characterized by Eq. (11) but still maintain
the same peak-power constraint. Then, if the symbol time is fixed, by necessity the bandwidths of the
three schemes will be different. In particular, relative to the slot width of single-pulse conventional PPM,
τ (C), we have
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DUAL-PULSE 16-PPM (A)

COMPOUND-2 16-PPM (B),
SINGLE-PULSE 8-PPM

SINGLE-PULSE 16-PPM (C)
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Fig. 3.  Average bit-error probability versus normalized peak power per bit for con-
ventional single, compound single, and dual-pulse PPM with normalized back-
ground power as a parameter; equal bandwidths.

1.00.80.60.40.20.0

τ (A) = τ (C)

(
M (C)

M (A)

)
= τ (C)

(
M (A) − 1

2

)

τ (B) = τ (C)

(
M (C)

M (B)

)
= τ (C)

(
M (B)

4

)




(39)

or, equivalently, in terms of the normalized average signal energy of the single-pulse PPM scheme, K
(C)
s =

λsτ
(C),

K(A)
s = K(C)

s

(
M (A) − 1

2

)

K(B)
s = K(C)

s

(
M (B)

4

)




(40)

that is, the probability distributions characterizing the signal photon counts of the three different modu-
lations schemes now have different Poisson parameters. Similarly, because of the unequal slot widths, we
also have

K
(A)
b = K

(C)
b

(
M (A) − 1

2

)

K
(B)
b = K

(C)
b

(
M (B)

4

)




(41)
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A comparison of the symbol-error probability performances of the three different cases under a peak-
power constraint and equal information throughputs is illustrated in Fig. 4 for dual-pulse PPM with
M (A) = 16, which, from the relation in Eq. (11), results in M (B) ∼= 22 for compound-2 single-pulse
PPM and M (C) = 120 for conventional single-pulse PPM. The curves in the plot depict average symbol-
error probability versus K

(C)
s = λsτ

(C) (the energy per pulse of conventional single-pulse PPM) with
K

(C)
b = λbτ

(C) as a parameter. From the results in this figure, we see the dramatic improvement in
error-probability performance achieved by dual-pulse PPM as compared with the other two schemes over
and above the bandwidth advantage described by Eq. (39).

B. Average-Power Constraint

For the second set of comparisons, we impose an average-power constraint on the signal. Unlike the
peak-power constraint examined above, an average-power constraint usually is not imposed artificially
to avoid damage, but rather is a natural consequence of the limited power resources available on the
spacecraft. Therefore, the average-power constraint is a fundamental limit related to the conservation
of energy and imposes a bound on the number of photons the transmitter can deliver per unit time.
As before, modulation formats capable of maintaining high data throughput at the receiver under an
average-power constraint, and at the required fidelity, are highly desirable.

1. The Case of Equal Bandwidths. If we require that all three schemes have equal bandwidths,
i.e., equal slot durations, then, because compound-2 single-pulse and dual-pulse PPM schemes each
have two slots filled per symbol, whereas the signals in conventional single-pulse PPM occupy only a
single slot per symbol, in this case we have K

(A)
s = K

(B)
s = K

(C)
s /2, or, equivalently, λ

(A)
s = λ

(B)
s =

λ
(C)
s /2. Thus, for an average-power constraint and equal transmission bandwidths, conventional single-

pulse PPM requires twice the peak power of the other two schemes. Figure 5 is the analogous plot to
Fig. 2 for the average-power-constraint case, where the abscissa now corresponds to the average energy per
symbol, Es

(
= 2λ

(A)
s τ = 2λ

(B)
s τ = λ

(C)
s τ

)
, or, equivalently, the average power normalized (multiplied) by

Ts. Since the Poisson distribution depends only on the average photon count parameter, Ks, we observe,
as expected, that now conventional single-pulse PPM has a greater advantage than before, at the expense,
however, of a doubled peak power.

Once again to take into account the difference in information throughputs of the three schemes, we
proceed analogously to Fig. 3 and consider a plot of bit-error probability versus average energy per bit
Eb = Es/N . The relations between bit- and symbol-error probabilities are still given by Eqs. (36) through
(38) but now, as was the case in Fig. 5, the effective Ks for the Poisson distribution of each of the two-
pulse schemes is half that of the conventional single-pulse PPM scheme. The results are illustrated in
Fig. 6. Here we see that dual-pulse PPM once again outperforms compound-2 single-pulse PPM but
is still inferior to conventional single-pulse PPM. We reiterate the fact that the bit-error probability
of compound-2 M -PPM is identical to that of conventional single-pulse (M/2)-PPM as explained in
Footnote 4.

2. The Case of Equal Information Throughputs per Symbol. Once again we now compare the
three schemes based on equal information throughputs as characterized by Eq. (5) [which in the previous
section was shown to imply Eq. (39)] but still maintain the average-power constraint. In addition, in view
of the peak-power inequality between single- and dual-pulse schemes, instead of Eq. (40) we now have

K(A)
s = K(B)

s =
1
2
K(C)

s (42)

Since the background radiation level is not affected by the nature (peak or average) of the power constraint
imposed on the signal, the relation in Eq. (41) still applies here. Figure 7 is the analogous plot to Fig. 4
for the average-power-constraint case. Here we see that, despite the bandwidth advantage of the two-pulse
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Fig. 4.  Average symbol-error probability versus normalized peak power for conven-
tional single, compound single, and dual-pulse PPM with normalized background
power as a parameter; equal information throughputs.
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Fig. 5.  Average symbol-error probability versus average energy per symbol for
dual-pulse PPM with normalized background power as a parameter; equal
bandwidths.
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DUAL-PULSE 16-PPM (A)

COMPOUND-2 16-PPM (B),
SINGLE-PULSE 8-PPM
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Fig. 6.  Average bit-error probability versus normalized average power per bit for
conventional single, compound single, and dual-pulse PPM with normalized back-
ground power as a parameter; equal bandwidths.
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Fig. 7.  Average symbol-error probability versus average energy per symbol for con-
ventional single, compound single, and dual-pulse PPM with normalized back-
ground power as a parameter; equal information throughputs.
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PPM schemes compared to that of conventional single-pulse PPM, the loss of 3 dB in the average signal
photon count for the former compared to the latter, as predicted by Eq. (42), dominates the differences
in their relative performance.

To take into account the differences in the bandwidth of the three schemes, we modify the comparison
to allow for equal average symbol energy per slot time duration, Ks/τ , which is tantamount to assuming
λ

(A)
s = λ

(B)
s = (1/2)λ(C)

s . Equivalently, the relationship among the average photon counts results in a
combination of Eqs. (40) and (42), namely,

K(A)
s =

1
2
K(C)

s

(
M (A) − 1

2

)

K(B)
s =

1
2
K(C)

s

(
M (B)

4

)




(43)

Once again the average photon count for the background noise in the three cases satisfies Eq. (41). Based
on the above, we consider a plot of average symbol-error probability versus average symbol energy per
slot time duration, where for convenience we fix the slot time of the conventional single-pulse PPM case,
τ (C). Such a comparison is illustrated in Fig. 8, where Ps (E) is plotted versus K

(C)
s /τ (C) = λ

(C)
s for a

typical value of τ (C) = 10−9. Here we see the superior performance of dual-pulse PPM over the other
two schemes, brought about by the bandwidth saving.

As before, one could alternatively characterize the performance in terms of a plot of bit-error prob-
ability versus average energy (photons) per bit. Since, in the equal throughput case, the number of
bits/symbol is the same for all three modulation schemes, e.g., log2 M (C), then the x-axis (abscissa) would
merely scale by this factor. The conversion of the y-axis (ordinate) from symbol- to bit-error probability
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Fig. 8.  Average symbol-error probability versus average symbol energy per slot
time for conventional single, compound single, and dual-pulse PPM with normalized
background power as a parameter; equal information throughputs.
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would follow the relations in Eqs. (36) through (38). For M (A) = 16, as is the case in Fig. 8, these conver-
sions become Pb(E) = (120/238)Ps(E) for conventional single-pulse PPM, Pb(E) ∼= (121/240)Ps(E) for
compound-2 single-pulse PPM, and Pb(E) ∼= (120/238)Ps(E) for dual-pulse PPM all of which are very
close to Pb(E) = (1/2)Ps(E). Thus, in conclusion, a plot of bit-error probability versus average energy
per slot time per bit would resemble Fig. 8 where the x-axis would be scaled (divided) by a factor of
log2 120 and the y-axis by approximately a factor of 1/2.

VI. Conclusions

Higher-order PPM signaling has been examined and evaluated in terms of information throughput,
bandwidth requirements, and error performance, under both peak- and average-power constraints. It was
demonstrated that higher-order PPM, where multiple pulses are used per channel symbol, is a viable
solution to bandwidth- and power-constrained optical communications, enabling higher data rates at a
given bandwidth, without sacrificing bit-error-rate performance. Maximum-likelihood decision strategies
were developed, and exact performance expressions for two-pulse PPM were derived. Two different forms
of multi-pulse PPM signals were examined, one that is a direct extension of conventional single-pulse
PPM, and which therefore could be substituted directly into existing single-pulse systems to enhance
performance without the need for extensive redesign, and a more general form that employs a new
detection strategy that is somewhat more complicated, but not prohibitively so. Both of these multi-
pulse signaling formats, when operating with equal throughput/symbol and equal symbol rates, were
shown to outperform conventional single-pulse PPM when operating under a peak-power constraint, by
requiring up to 10 dB less transmitted signal peak power to attain comparable bit-error performance.
This investigation has led to a promising new approach in signal design wherein communications system
performance of more general modulation formats can be evaluated exactly in terms of fundamental system
parameters, contributing to our understanding of the problem and thus enabling further modifications as
needed, without relying entirely on complicated and costly computer simulations to evaluate each new
point design.
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