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Abstract— Humans have an amazing ability to bootstrap
new knowledge. The concept of structural bootstrapping refers
to mechanisms relying on prior knowledge, sensorimotor ex-
perience, and inference that can be implemented in robotic
systems and employed to speed up learning and problem
solving in new environments. In this context, the interplay
between the symbolic encoding of the sensorimotor information,
prior knowledge, planning, and natural language understanding
plays a significant role. In this paper, we show how the
symbolic descriptions of the world can be generated on the
fly from the continuous robot’s memory. We also introduce a
multi-purpose natural language understanding framework that
processes human spoken utterances and generates planner goals
as well as symbolic descriptions of the world and human actions.
Both components were tested on the humanoid robot ARMAR-
III in a scenario requiring planning and plan recognition based
on human-robot communication.

I. INTRODUCTION

Significant research efforts in humanoid robotics have

been focused on mimicking human cognition. This especially

concerns the autonomous acquisition of knowledge and ap-

plication of this knowledge in previously unseen situations.

The concept of structural bootstrapping was introduced in

the context of the Xperience project [1]. It addresses mecha-

nisms relying on prior knowledge, sensorimotor experience,

and inference that can be implemented in robotic systems

and employed to speed up learning and problem solving

in new environments. Earlier experiments demonstrate how

structural bootstrapping can be applied at different levels of a

robotic architecture including a sensorimotor level, a symbol-

to-signal mediator level, and a planning level [2], [3].

In the context of structural bootstrapping, the interplay

between the symbolic encoding of the sensorimotor infor-

mation, prior knowledge, planning, and natural language

understanding plays a significant role. Available robot skills

and the world state have to be represented in a symbolic

form for a planner to be able to operate with it. In the

previous experiments, the symbolic representations of the

objects in the world and their initial locations were created

manually and hard-coded in the scenario settings, cf. [3]. In

this paper, we show how the comprehensive descriptions of

the world (domain descriptions) can be generated on the fly

from the continuous robot’s memory. Sensor data are mapped
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Fig. 1. System architecture.

to symbolic representations required for linking the senso-

rimotor experience of the robot to language understanding

and planning.

We also introduce a natural language understanding (NLU)

framework that allows us to generate goals for the planner

as well as symbolic descriptions of the world and human

actions given human spoken utterances. The framework is

intended for a flexible multi-purpose human-robot commu-

nication. For example, if a robot’s plan execution is failing

because a required object is missing, we want to be able

to communicate the location of this or an alternative object

through natural language. In addition to the vision-based

action recognition, we want to be able to comment on human

actions using speech.

Natural language (NL) provides an effective tool for

untrained users to interact with robots in an intuitive way,

which is especially important for robots intended to perform

collaborative tasks with people. One of the major challenges

in application of NLU to robotics concerns grounding am-

biguous NL constructions into actions, states, relations, and

objects known to the robot. For example, the commands

Bring the milk from the fridge, Bring the milk. It’s in

the fridge, Take the milk out of the fridge all imply that

the milk is located in the fridge. Similarly, embedding the

sensorimotor experience of the robot is crucial for under-

standing NL utterances. For example, if the robot is holding

a cup, then it should interpret the command Put the cup

down as probably referring to the cup it is holding rather



than any other cup. Another important issue concerns the

functionality of NL. Most of the literature on NLU for

robotics focuses on instruction interpretation. At the same

time, NL in human-robot interaction can also be used for

describing the world, commenting on human actions, giving

feedback, etc. These types of communication are especially

important when performing collaborative tasks and in the

situations when the robot cannot access the world state

by using sensors. The proposed framework treats multiple

types of NL input (commands, descriptions of the world and

human actions) and interacts with related components such

as the robot’s memory, a planner, and a plan recognizer. It

performs grounding of the symbolic representations into the

sensorimotor experience of the robot and supports complex

linguistic phenomena, such as ambiguity, negation, anaphora,

and quantification without requiring training data.

We test the domain description generation and NLU on

the humanoid robot ARMAR-III [4] in a scenario requiring

planning and plan recognition based on human-robot com-

munication.

The paper is structured as follows. After presenting the

general system architecture in Sec. II, we describe the

domain description generation from the robot’s memory

(Sec. III). Sec. IV introduces the natural language under-

standing pipeline. Sec. V briefly presents the planner and the

plan recognizer employed in this study. Sec. VI discusses

how plan execution and monitoring are organized in our

framework. Experiments on the humanoid robot ARMAR-

III are presented in Sec. VII. Related work is discussed in

Sec. VIII. Section IX concludes the paper.

II. SYSTEM ARCHITECTURE

Fig. 1 shows the system architecture realized within the

robot development environment ArmarX [5]. The system

consists of six major building blocks: robot’s memory, do-

main generation, NL understanding, plan recognition, plan-

ning, as well as plan execution and monitoring.

Domain descriptions are generated from the robot’s mem-

ory (Sec. III). The robot’s memory is represented within

MemoryX, one of the main components of ArmarX. The

domain description is used by the NL understanding com-

ponent for grounding and generating the domain knowledge

base (Sec. IV) as well as by the planner (Sec. V). The devel-

oped multi-purpose NLU framework can distinguish between

a) direct commands that can be executed without planning

(Move to the table), b) plan requiring commands that are

converted into planner goals, which are processed by a

planner (Set the table), c) descriptions of human actions that

are used by a plan recognizer that recognizes human plans

and generates corresponding robot goals further processed

by the planner (I’m grasping the knife), d) descriptions of

the world that are added to the robot’s memory and used by

both the plan recognizer and the planner (The cup is on the

table), see Sec. IV. Plan execution is performed by the plan

execution and monitoring component, which also verifies if

the plan is executed correctly (Sec. VI). Each time an NL

utterance is registered and processed by the NLU pipeline,

the planner, and the plan recognizer, the robot’s memory is

updated and the required actions are added to the task stack

to be processed by the plan execution component. Human

comments can thus be used to update the world state in the

robot’s memory before or during action execution and are

considered by the robot to adjust its plan accordingly.

III. GENERATION OF DOMAIN DESCRIPTIONS

FROM ROBOT’S MEMORY

The challenge of mapping sensor data to symbolic repre-

sentations lies in the diversity of each specific mappings, i.e.

each symbol depends on a different combination of sensor

data. We approach this challenge by designing the mapping

procedure in a modular way. First, sensorimotor experi-

ence is processed and turned into continuous sub-symbolic

representations (e.g., coordinates of objects, the robot, and

robot’s hands) that are added to the robot’s memory. These

continuous representations are mapped to object and location

names or predicates. Finally, representations describing the

world state are generated.

A. Memory Structure

The robot development environment employed in the

described study contains a biologically inspired framework

for storing and representing robot’s knowledge [5]. In the

described framework, the memory architecture MemoryX

consists of the prior knowledge, the long-term memory,

and the working memory that provide symbolic entities like

actions, objects, states, and locations. The basic elements

of the memory called memory entities are represented by

name-value maps. The prior knowledge contains persistent

data inserted by the developer that the robot could not

learn by itself like accurate object 3D models [6]. The

long-term memory consists of knowledge that has been

stored persistently, e.g., common object locations that are

learned from the robot’s experience during task execution and

persistently stored as heat maps [7]. The working memory

contains volatile knowledge about the current world state,

e.g., object existence and position or relations between

entities. The working memory is updated by external com-

ponents like the robot self-localization, object localization,

or natural language understanding, whenever they receive

new information. To account for uncertainties in sensor-data,

each memory entity value is accompanied by a probability

distribution. In case of object locations, new data is fused

with the data stored in the memory using a Kalman-filter.

B. Mapping sensorimotor data to symbols

In this work, self-localization, visual object recognition,

and kinematics of the robot where used for mapping senso-

rimotor experience to symbols. For the self-localization, we

use laser-scanners and a representation of the world as a 2D

map. The self-localization is used to navigate on a labelled

2D graph, in which location labels are associated with center

coordinates and a radius. For visual object recognition, we

use RGB stereo vision with texture-based [8] or color-based

[6] algorithms.



Fig. 2. Components involved in the domain description generation.

The conversion of continuous sensor data into discrete

symbolic data is done by predicate providers. Each world

state predicate is defined in its own predicate provider

component, which outputs a predicate state (unknown, true,

or false) by evaluating the content of the working mem-

ory or low-level sensorimotor data. In the experiment de-

scribed below, we use the following predicate providers:

grasped represents an object being held by an agent using

a hand; objectAt and agentAt represent object and

robot locations, correspondingly; leftgraspable and

rightgraspable represent the fact that an object at a cer-

tain location can be grasped by the corresponding hand of the

robot. Predicate providers can access other components (e.g.,

the working memory, robot kinematics, long-term memory)

to assess the predicate state. For example, the objectAt

predicate provider uses the distance between the detected

object coordinates and the center coordinates of the location

label.

Only those objects that are required for fulfilling a par-

ticular task are recognized during action execution. High-

level components operating on a symbolic level generate

requests for a particular object to be recognized at a particular

locations. Other objects are not tracked to avoid false positive

object recognition.

C. Domain Description Generation

The information contained in the robot’s memory is used

to generate a symbolic domain description consisting of

static symbol definitions and problem specific definitions,

see Fig. 2. The symbol definitions consist of types, con-

stants, predicate definitions, and action descriptions, while

the problem definitions consist of the symbolic representation

of the current world state defined by predicates. Types

enumerate available agents, hands, locations, and object

classes contained in the prior knowledge. Constants represent

actual instances, on which actions can be performed, and are

therefore generated by using entities in the working memory.

Each constant can have multiple types, such that one is

the actual class of the corresponding entity, and others are

parents of that particular class including transitive parentship.

For example, instances of the type cup are also instances of

graspable and object.

For some objects, the robot might not know yet where

they are located, but their locations need to be defined

for the planner to plan actions on them. In such cases,

the domain generator uses the long-term memory to make

assumptions about possible object locations. The domain

generator derives action representations from the long-term

memory, where they are associated with specific robot skills

represented by statecharts [5].

The generated domain description is used by the NLU

component as well as by the planning component. The NLU

component uses domain descriptions to create a knowledge

base and to ground NL references. The planning component

uses it as the knowledge base for finding plans.

IV. MULTI-PURPOSE NL UNDERSTANDING

We intend to a) ground NL utterances to actions, objects,

and locations stored in the robot’s memory, b) distinguish

between commands, descriptions of the world, and descrip-

tions of human actions, c) generate representations of each

type of the NL input suitable for the downstream compo-

nents (planner, plan recognizer, action execution component).

Our approach is based on the abductive inference, which

can be used for interpreting NL utterances as observations

by linking them to known or assumed facts, cf. [9]. The

NL understanding pipeline shown in Fig. 3 consists of

the following processing modules. The text produced by a

speech recognition component1 is processed by a semantic

parser that outputs a logical representation of the text.

This representation together with observations stored in the

robot’s memory and the lexical and domain knowledge base

constitute an input for an abductive reasoning engine that

produces a mapping to the domain. The mapping is further

classified and post-processed. The pipeline is flexible in the

sense that each component can be replaced by an alternative.

We use the implementation of the abduction-based NLU that

was developed in the context of knowledge-intensive large-

scale text interpretation [11].

Text
blabla 
blabla

a(x) ^ c(x,y) goal#a(x) ^ 
world#b(y)

goal:a(x)
world:b(y)
human:c(z)
command:d(x)

Fig. 3. Natural language understanding pipeline.

A. Logical form

We use logical representations of NL utterances as de-

scribed in [12]. In this framework, a logical form (LF) is a

conjunction of propositions and variable inequalities, which

have argument links showing relationships among phrase

constituents. For example, the following LF corresponds to

the command Bring me the cup from the table:

1In the experiments described in this paper, we used the speech recogni-
tion system presented in [10].



∃e1, x1, x2, x3, x4 (bring-v(e1, x1, x2, x3) ∧ thing(x1) ∧ per-

son(x2) ∧ cup-n(x3) ∧ table-n(x4) ∧ from-p(x3, x4)),

where variables xi refer to the entities thing, person, cup,

and table, whereas variable e1 refers to the eventuality of

x1 bringing x2 to x3; see [12] for more details. In the

experiments described below, we used the Boxer parser [13].

Alternatively, any dependency parser can be used if it is

accompanied by an LF converter as described in [14].

B. Abductive inference

Abduction is inference to the best explanation. Formally,

logical abduction is defined as follows:

Given: Background knowledge B, observations O, where

both B and O are sets of first-order logical formulas,

Find: A hypothesis H such that H ∪ B |= O,H ∪ B 6|=⊥,

where H is a set of first-order logical formulas.

Abduction can be applied to discourse interpretation [9].

In terms of abduction, logical forms of the NL fragments

represent observations, which need to be explained by the

background knowledge. Where the reasoner is able to prove

parts of the LF, it is anchoring it in what is already known

from the overall context or from the background knowledge.

Where assumptions are necessary, it is gaining new infor-

mation. Suppose the command Bring me the cup from the

table is turned into an observation oc. If the robot’s memory

contains an observation of a particular instance of cup being

located on the table, this observation will be concatenated

with oc and the noun phrase the cup will be grounded to

this instance by the abductive reasoner.

We use a tractable implementation of abduction based

on Integer Linear Programming (ILP) [11]. The reasoning

system converts a problem of abduction into an ILP prob-

lem, and solves the problem by using efficient techniques

developed by the ILP research community. Typically, there

exist several hypotheses explaining an observation. In the

experiments described below, we use the framework of

weighted abduction [9] to rank hypotheses according to

plausibility and select the best hypothesis. This framework

allows us to define assumption costs and axiom weights

that are used to estimate the overall cost of the hypotheses

and rank them. As the result, the framework favors most

economical (shortest) hypotheses as well as hypotheses that

link parts of observations together and support discourse

coherence, which is crucial for language understanding, cf.

[15]. However, any other abductive framework and reasoning

engine can be integrated into the pipeline.

C. Lexical and domain knowledge base

In our framework, the background knowledge B is a set

of first-order logic formulas of the form

Pw1

1
∧ ... ∧ Pwn

n → Q1 ∧ ... ∧Qm,

where Pi, Qj are predicate-argument structures or variable

inequalities and wi are axiom weights.2

2See [14] for a discussion of the weights.

Lexical knowledge used in the experiments described

below was generated automatically from the lexical-semantic

resources WordNet [16] and FrameNet [17]. First, verbs and

nouns were mapped to the synonym classes. For example, the

following axiom maps the verb bring to the class of giving:

action#give(e1, agent, recipient, theme) →
bring-v(e1, agent, theme) ∧ to-p(e1, recipient)

Prepositional phrases were mapped to source, location,

instrument, etc., predicates. Different syntactic realizations

of each predicate for each verb (e.g., from X, in X, out of X)

were derived from syntactic patterns specified in FrameNet

that were linked to the corresponding FrameNet roles. See

[18] for more details on the generation of lexical axioms. A

simple spatial axiom was added to reason about locations,

which states that if an object is located at a part of a location

(corner, top, side, etc.), then it is located at the location.

The synonym classes were further manually axiomatized

in terms of domain types, predicates, constants, and actions.

For example, the axiom below is used to process construc-

tions like bring me X from Y:

goal#inHandOf (theme,Human) ∧
world#objectAt(theme, loc) →
action#give(e1, Robot, recipient, theme) ∧
location#source(e1, loc),

which represents the fact that the command evokes the goal

of the given object being in the hand of the human and

the indicated source is used to describe the location of the

object in the world. The prefixes goal# and world# indicate

the type of information conveyed by the corresponding lin-

guistic structures. The framework can also handle numerals,

negation, quantifiers represented by separate predicates in the

axioms (e.g., not, repeat). The repetition, negation, and quan-

tification predicates are further treated by the post-processing

component. The hierarchy axioms (red cup→cup) and

inconsistency axioms (red cup xor green cup) were

generated automatically from the domain descriptions.

D. Object grounding

If objects are described uniquely, then they can be directly

mapped to the constants in the domain. For example, the

red cup in the utterance Give me the red cup can be

mapped to the constant red cup if there is only one red

cup in the domain. However, redundant information that

can be recovered from the context is often omitted in the

NL communication, cf. [19]. In our approach, grounding

of underspecified references is naturally performed by the

abductive reasoner interpreting observations by linking their

parts together, cf. Sec. IV-B. For example, given the text

fragment The red cup is on the table. Give it to me, the

pronoun it in the second sentence will be linked to red

cup in the first sentence and grounded to red cup. To

link underspecified references to earlier object mentions in a

robot-human interaction session, we keep all mentions and

concatenate them with each new input LF to be interpreted.

Predicates describing the world from the robot’s memory



are also concatenated with LFs to enable grounding. Given

Bring me the cup from the table, the reference the cup from

the table will be grounded to an instance of cup observed

as being located on an instance of table.

If some arguments of an action remain underspecified or

not specified, then the first instance or the corresponding type

will be derived from the domain description. For example,

the execution of the action of putting things down requires a

hand to be specified. In the NL commands this argument

is often omitted (Put the cup on the table), because for

humans it does not matter, which hand the robot will use.

The structure putdown(cup,table,hand) is generated

by the NLU pipeline for the first command above. The

grounding function then selects the first available instance

of the underspecified predicate. In future, we consider using

a clarification dialogue, as proposed, for example, in [20].

E. Classifier

The classifier takes into account prefixes assigned to the

inferred predicates. For example, the abductive reasoner

returned the following mapping for the command Bring me

the cup from the table:

action#give(e1, x1, x2, x3) ∧ location#source(e1, x4) ∧ x1 =
Robot ∧ x2 = Human ∧ goal#inHandOf (x3, Human) ∧
world#objectAt(x3, x4)

The classifier extracts predicates with prefixes and predi-

cates related to the corresponding arguments. The following

structures will be produced for the mapping above:

[goal: inHandOf(cup,Human),

world: objectAt(cup,table)]

Actions that do not evoke goals or world descriptions

are interpreted by the classifier as direct commands or

human action descriptions depending on the agent. For

example, action#grasp(Human,cup) (I’m grasping the cup)

will be interpreted as a human action description, while ac-

tion#grasp(Robot,cup) (Grasp the cup) is a direct command.

The classifier can also handle nested predicates. For exam-

ple, the utterances 1) Help me to move the table, 2) I will help

you to move the table, 3) I will help you by moving the table

will be assigned the following structures, correspondingly:

1) [direct command: helpRequest:[requester:

Human, action: move(Robot,table)]

2) [human action: help:[helpInAction:

move(Robot,table)]

3) [human action: help:[helpByAction:

move(Human,table)]

F. Post-processing

The post-processing component converts the extracted

data into the format required by the downstream modules.

The direct commands are immediately processed by the

Plan Execution Monitor. Goals extracted from utterances are

converted into a planner goal format, so that not predicate

is turned into the corresponding negation symbol, predicates

that need multiplication (indicated by the repeat predicate)

are multiplied, and quantification predicates are turned into

Plan Execution Monitor

Fig. 4. Plan generation, execution, and monitoring.

quantifiers. For example, the commands 1) Put two cups on

the table and 2) Put all cups on the table can be converted

into the following goal representations in the PKS syntax

[21], correspondingly:

1) (existsK(?x1: cup, ?x2: table)

K(objectAt(?x1,?x2)) & (existsK(?x3:

cup) K(objectAt(?x3,?x2)) & K(?x1 !=

?x3)))

2) (forallK(?x1: cup) (existsK(?x2: table)

K(objectAt(?x1,?x2))))

Similarly, human action descriptions are converted into the

format required by the plan recognizer.

V. PLANNING AND PLAN RECOGNITION

We define a plan as a sequence of actions P = 〈a1, .., an〉
with respect to the initial state s0 and the goal G such that

〈s0, P 〉 |= G. In the experiments described in Sec. VII, we

used the PKS planner [21], which takes a domain description

(Sec. III) and a goal (Sec. IV) represented in the PKS syntax

as input and returns sequences of grounded actions with their

pre- and post-conditions.

In the described experiments, we employed the probabilis-

tic plan recognizer ELEXIR [22] that takes grounded human

actions and domain descriptions in the ELEXIR syntax as

input and computes the conditional probability of a particular

human goal given the set of the human actions Pr(g|obs).
We use the plan recognizer for recognizing human plans

given observed human actions obtained by employing visual

action recognition or NL understanding (when actions are

commented). The recognized human plan triggers a scenario

such that it is mapped to the tasks that the robot can perform

to help the human to achieve their goal. Thus, the recognized

human plan is mapped to a possible robot goal that is further

transferred to the planner for generating a robot plan.

VI. PLAN EXECUTION AND MONITORING

The components described in the previous sections are

employed by the Plan Execution Monitor component. The

Plan Execution Monitor (PEM) is the central coordination

unit for the execution of commands. A simplified control

flow for execution of a planning task is shown in Fig. 4. To

trigger PEM, a new task is sent from an external component

(e.g., NLU component). Different types of tasks are accepted.

For each type of task, PEM has an implementation of an

ControlMode interface, which knows how to execute this task

type. Currently, a task can be a single command or a list of



Fig. 5. Visualization of the robot’s working memory during action
execution and the current camera image.

goals that should be achieved. Here, we are focusing on the

goal task type, which requires the planner to achieve the goal.

After a new task was received, PEM calls DomainGenerator

to generate a new domain description based on the current

world state (Sec. III). This domain together with the received

goal are then passed to the planner. If a plan could not be

found, PEM synthesizes a feedback indicating the failure. A

successful plan consists of a sequence of actions with bound

variables passed back to PEM. These actions are executed

one by one. Each action is associated with an ArmarX

statechart [5], which controls the action execution. Action

execution might fail because of uncertainties in perception

and execution or changes in the environment. To account for

the changes, preconditions of an action before the execution

and its effects after the execution are verified by PEM.

The world state is continuously updated. Fig. 5 shows the

visualization of the robot working memory and the current

camera image as seen by the robot. The world state observer

component is queried for the current world state after each

action. If any mismatches between a planned world state and

a perceived world state are detected, the plan execution is

considered to have failed and re-planning is triggered based

on the current world state. Additionally, the statecharts report

if they succeeded or failed; failing leads to re-planning. If an

action was successfully executed, the next action is selected

and executed. After the task completion the robot goes idle

and waits for the next task.

VII. EXPERIMENTS

We tested our approach on the humanoid robot ARMAR-

III [4] in a kitchen environment. In these experiments, robot

skills were restricted to three primitive actions: moving,

grasping, and placing. As shown in the accompanying video3,

the human agent asks the robot to help him to set the table for

two people. The execution of the uttered command requires

generation of a multi-step plan. The robot is supposed to

generate a plan resulting in putting two cups on the table,

while the human agent puts forks, knifes, and plates on

the table. The task description is provided by the NLU

component. The domain description is generated from the

3http://youtu.be/87cbivmjfe8

Output type
Baseline NLU pipeline

C P I A C P I A

Planner goal 48 18 44 .66 56 25 19 .81
Human actions 43 24 33 .67 57 29 14 .86

World state 61 1 38 .62 88 1 11 .89
Total 152 43 115 .65 201 55 44 .85

TABLE I

NLU EVALUATION RESULTS.

robot’s memory. The task and domain descriptions constitute

the input for the PKS planner, which generates a plan. The

execution of the plan is monitored by the Plan Execution

Monitor. The same set of actions can be triggered using plan

recognition. The human agent starts setting the table and

comments his actions (I’m putting a fork on the table). The

robot recognizes the plan of the human agent and generates

its own plan to help set the table, which involves putting the

cups on the table. Finally, the human agent asks the robot

to put a juice on the table. Given its memory, the robot has

an assumption about the location of the juice. The planner

generates a corresponding plan. The plan execution fails,

because the juice cannot be found at the assumed location.

The human agent suggests another location by saying: The

juice is at the dishwasher. The robot updates its memory,

re-plans, and executes the new plan. The video demonstrates

a human-robot collaboration scenario. The robot not only

generates and executes a plan given a human command, but

adjusts it’s plan during execution given new descriptions of

the world and human actions.

In order to check, if our NLU framework can successfully

handle the variability of natural language, we ran three

experiments using the Amazon Mechanical Turk platform.4

In the first experiment, subjects were presented with an

image of a table set for two people and the following

task description: Imagine you want to have a dinner with

a friend. Write a short command you would say to the

robot to obtain the result shown in the image. In the second

experiment, subjects were presented with a video showing a

person putting a fork and a knife on the table and the task

description: Imagine it’s you performing the actions shown

in the video. Describe the actions using the personal pronoun

”I”. In the third experiment, subjects were presented with a

video showing a robot not finding a cup, which was located

on the table, and the task description: The robot in the video

cannot find the green cup. Tell the robot where the cup is

located. 100 subjects were employed for each task.

Each of the 300 obtained utterances was processed by

our NLU pipeline. We aimed at evaluating the correctness

of the extracted goals, human action descriptions, and state

of the world descriptions. We estimated the accuracy as

the percentage of the correct and partially correct outputs.

The results presented in Table I show the number of cor-

rect (C), partially correct (P), or incorrect outputs (I) as

well as the accuracy (A) of a baseline method and the

presented approach. As a baseline method, we extracted

4https://www.mturk.com



tuples 〈verb, agent, object, location, number〉 from parsed

utterances, such that agent is the subject of verb, object is

its direct object, location is the noun related to verb by a

location preposition, and number is a numeral modifying

object or related to verb by the preposition for. The tuples

were mapped to goals, human action, and world state repre-

sentations using a lookup table.

The overall baseline accuracy is .65, while the accuracy

of the proposed approach is .85. The baseline method was

unable to ground underspecified references, e.g., it in Get

the green cup! It is on the table, which the abduction-

based method was able to do, cf. Sec. IV-D. The domain

and spatial axioms lacking in the baseline method also gave

advantages to the abduction-based approach. Most of the

errors of the abduction-based method resulted from a wrong

parse. Processing of some of the utterances required deeper

knowledge to make a correct inference. For example, our

system did not recognize that the utterance Robot, tonight I

will dine with a friend, please set the table implies that the

table should be set for two. For human action descriptions,

the errors were related to spatial inference. For example,

given I place the knife on the table. I place the fork to

the left of the knife, our system did not recognize that the

knife is being placed on the table. For world descriptions,

the errors were related to deictic expressions, e.g. The cup

is very straight to you, come forward.

VIII. RELATED WORK

a) Grounding NL: Approaches to grounding NL into

actions, relations, and objects known to the robot can be

roughly subdivided into symbolic and statistical. Symbolic

approaches rely on sets of rules to map linguistic construc-

tions into pre-specified action spaces and sets of environ-

mental features. In [23], simple rules are used to map NL

instructions having a pre-defined structure to robot skills and

task hierarchies. In [24], NL instructions are processed with

a dependency parser and background axioms are used to

make assumptions and fill the gaps in the NL input. In [25],

background knowledge about robot actions is axiomatized

using Markov Logic Networks. In [26], a knowledge base of

known actions, objects, and locations is used for a Bayes-

based grounding model. Symbolic approaches work well

for small pre-defined domains, but most of them employ

manually written rules, which limits their coverage and

scalability. In order to increase the linguistic coverage, some

of the systems use lexical-semantic resources like WordNet,

FrameNet, and VerbNet [27], [25]. In this study, we follow

this approach and generate our lexical axioms from Wordnet

and FrameNet.

Statistical approaches rely on annotated corpora to learn

mappings between linguistic structures and grounded predi-

cates representing the external world. In [28], reinforcement

learning is applied to interpret NL directions in terms of

landmarks on a map. In [29], machine translation is used

to translate from NL route instructions to a map of an

environment built by a robot. In [30], Generalized Grounding

Graphs are presented that define a probabilistic graphical

model dynamically according to linguistic parse structures.

In [19], a verb-environment-instruction library is used to

learn the relations between the language, environment states,

and robotic instructions in a machine learning framework.

Statistical approaches are generally better at handling NL

variability. An obvious drawback of these approaches is

that they generate noise and require a significant amount of

annotated training data, which can be difficult to obtain for

each new application domain and set of action primitives.

Some recent work focuses on building joint models ex-

plicitly considering perception at the same time as parsing

[31], [32]. The framework presented in this paper is in line

with this approach, because abductive inference considers

both the linguistic and perceptual input as an observation to

be interpreted given the background knowledge.

b) Planning: With respect to the action execution, the

existing approaches can be classified into those directly

mapping NL instructions into action sequences [33], [34],

[25] and those employing a planner [35], [27], [24], [36].

We employ a planner, because it allows us to account for

the dynamically changing environment, which is essential for

the human-robot collaboration. Similar to [36], we translate

a NL command into a goal description.

c) Type of NL input: Although most of the NLU

systems in robotics focus direct on instruction interpreta-

tions, there are a few systems detecting world descriptions

implicitly contained in human commands [24], [37], [26].

These descriptions are further used in the planning context,

as it is done in our approach. In addition, we detect world

descriptions not embedded into the context of an instruction

and process human action descriptions.

d) Linking planning, NL, and sensorimotor experience:

Interaction between NL instructions, resulting symbolic

plans, and sensorimotor experience during plan execution has

been previously explored in the literature. In [33], symbolic

representations of objects, object locations, and robot actions,

are mapped on the fly to the sensorimotor information.

During the execution of the predefined plans, the plan

execution monitoring component evaluates the outcome of

each robot’s action as success or failure. In [24], the planner

knowledge base is updated each time a NL instruction related

to the current world state is provided and the planner re-

plans taking into consideration the new information. In [35],

symbolic planning is employed to plan a sequence of motion

primitives for executing a predefined baking primitive given

the current world state. In line with these studies, plan

execution monitoring is a part of our system.

IX. CONCLUSIONS AND FUTURE WORK

We presented a symbolic framework for integrating sen-

sorimotor experience, natural language understanding, and

planning in a robotic architecture. We showed how domain

descriptions can be generated from the robot memory and

introduced an abduction-based NLU pipeline processing dif-

ferent types of linguistic input and interacting with related

components such as the robot’s memory, a planner, and a

plan recognizer. The experimental results suggest that the



developed framework is flexible enough to process the input

of untrained users and that the interaction with the human in

the scenario setting allows the robot to successfully perform

the task.

The main limitation of the proposed NLU framework

concerns the need to define the domain mapping rules

manually (Sec. IV-C). We plan to approach this limitation by

employing bootstrapping from unannotated corpora to learn

command-goal relations that are represented by the causation

relations in texts, e.g. setting the table causes cups being on

the table, cf. [38].

Concerning the domain description generation, the future

work includes incorporating more information into predicate

providers like, for example, object shapes or tactile sensor

feedback. Another future improvement concerns switching

from static predicate providers to dynamic ones that could

access action outcomes and learn from successful and failed

actions. Both these extensions can potentially to improve

robustness and precision of the sensor-to-symbol mapping.
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