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Multi-rate Control Design under Input Constraints

via Fixed-Time Barrier Functions
Kunal Garg, Ryan K. Cosner, Ugo Rosolia, Aaron D. Ames and Dimitra Panagou

Abstract—In this paper, we introduce the notion of periodic
safety, which requires that the system trajectories periodically
visit a subset of a forward-invariant safe set, and utilize it in
a multi-rate framework where a high-level planner generates
a reference trajectory that is tracked by a low-level controller
under input constraints. We introduce the notion of fixed-time
barrier functions which is leveraged by the proposed low-level
controller in a quadratic programming framework. Then, we
design a model predictive control policy for high-level planning
with a bound on the rate of change for the reference trajectory
to guarantee that periodic safety is achieved. We demonstrate the
effectiveness of the proposed strategy on a simulation example,
where the proposed fixed-time stabilizing low-level controller
shows successful satisfaction of control objectives, whereas an
exponentially stabilizing low-level controller fails.

I. INTRODUCTION

Constraints requiring the system trajectories to evolve in

some safe set at all times while visiting some goal set(s) are

common in safety-critical applications. Constraints pertaining

to the convergence of the trajectories to certain sets within a

fixed time often appear in time-critical applications, e.g., when

a task must be completed within a given time interval. Most

popular approaches on the control synthesis under such speci-

fications include quadratic programming techniques, where the

safety requirements are encoded via control barrier functions

(CBFs) and convergence requirements via control Lyapunov

functions (CLFs), see e.g. [1], [2], or via one function that

encodes both the safety and convergence requirements [3], [4].

Quadratic program (QP)-based approaches have gained pop-

ularity for control synthesis [1]–[5] in real-time, since QPs

can be solved efficiently. Most of the prior work, except [3],

[4], deals with asymptotic or exponential convergence of the

system trajectories to the desired goal set. Fixed-time stability

(FxTS) [6] is a stronger notion of stability, where the time

of convergence does not depend on the initial conditions.

The problem of FxTS in the presence of input constraints is

addressed in [5] via characterization of a domain of attraction

for FxTS under input constraints.

As argued in the recent article [7], myopic control synthesis

approaches relying solely on QPs are susceptible to infeasibil-

ity. To circumvent this issue, combining a high-level planner
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with a low-level controller has become a popular approach

[8]–[12]. The underlying idea in these strategies is to design

low-level controllers to track a reference trajectory, which is

computed by a high-level planner using a simplified model.

In [8] the authors presented the FaSTrack framework where

the error bounds are computed using Hamilton-Jacobi (HJ)

reachability analysis. This framework has been extended in [9],

where the authors used Sum-Of-Squares (SOS) to compute the

tracking error bounds. The constraint on the planner and the

tracking error bounds may also be updated using an iterative

procedure as suggested in [10]. A different approach that uses

Model Predictive Controller (MPC) for high-level planning

has been presented in [11] where the tracking controller is

designed using control contraction metrics.

In this work, we introduce the notion of periodic safety

where the system trajectories are required to remain in a

safe set for all times and visit a subset of this safe set

periodically. Inspired from [12], we use a multi-rate control

framework where the low-level controller and the high-level

planner operate at different frequencies. The high-level planner

is used to generate a reference trajectory, and the low-level

controller to track this reference trajectory. The contribution of

this paper is twofold. First, we combine the concepts of FxTS

Lyapunov functions [5] and CBFs [1] to define the notion of

fixed-time barrier functions. We use it in a provably feasible

QP, guaranteeing fixed-time convergence to a neighborhood

of the reference trajectory from a region of attraction under

input constraints. Second, we design the constraints of the

MPC problem to consider this region of attraction of the low-

level controller in the high-level planner. Compared to [12],

we limit the rate of change for the planned trajectory so that

the low-level controller is able to track the resulting reference

trajectory within a predefined error bound. The limitation on

rate change along with the tracking within the chosen error

bound helps the system achieve periodic safety. Furthermore,

we demonstrate that such constraints, which guarantee the

correct operation of the low-level controller, do not jeopardize

the feasibility of the MPC problem. Simulations demonstrate

the fixed-time stabilizing low-level controller successfully sat-

isfying the state constraints while an exponentially stabilizing

controller [1] fails.

Notation: The Minkowski sum of two sets X ,Y ⊂ R
n is

denoted as X⊕Y , and the Pontryagin difference as X⊖Y . The

set of positive integers, non-negative integers and non-negative

reals is denoted as N, N0+, and R0+, respectively. The right

and left limits of the function z : R → R
n are given by

z−(t) = limτրt z(τ) and z+(t) = limτցt z(τ) respectively.
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II. PROBLEM FORMULATION

We first introduce the problem under study and then present

some related background material.

System Model: We consider nonlinear control affine system

of the following form:

ẋ = f
(

x
)

+ g
(

x
)

u, (1)

where f : Rnx → R
nx and g : Rnx → R

nx×nu are locally

Lipschitz continuous functions with f(0) = 0, u ∈ R
nu is the

input and x ∈ R
nx is the system state. The control objective

is to design a controller u : R0+×R
nx → U ⊂ R

nu such that

solutions to the closed loop system:

ẋ = fcl(t, x) , f(x) + g(x)u(t, x), t0 = 0, (2)

satisfy the state constraints:

x(t) ∈ X , ∀t ∈ R0+, x(iT ) ∈ XT , ∀i ∈ N0+, (3)

where X ⊂ R
nx and XT ⊂ X⊖D with D = {x | ‖x‖ ≤ d} for

some d > 0. We assume that the input constraint set is given as

U = {u | Auu ≤ bu} for some Au ∈ R
m×nu , bu ∈ R

m. The

time constant T is a user-specified parameter that defines the

update frequency of the planned trajectory, as will be further

clarified in Section III-A. The control objectives as described

in (3) require safety of the system in terms of forward

invariance of the set X , and periodic fixed-time stability of

the set XT , which means that the system trajectories need to

visit this set at each discrete time iT , i ∈ N0+. To capture

these objectives, we introduce the notion of periodic safety.

Definition 1 (Periodic safety). Given the sets XT ,X ⊂ R
nx ,

with XT ⊂ X , and a time period T > 0, the set XT is said to

be periodically safe w.r.t. the safe set X for the closed-loop

system (2) if for all x(0) ∈ XT , the following holds

x(iT ) ∈ XT , x(t) ∈ X , ∀ i ∈ N, ∀t ≥ 0. (4)

Fig. 1. Illustration of periodic safety of the set XT w.r.t. the set X .

Figure 1 illustrates the periodic safety where the system

trajectories visit the set XT periodically, while remaining

inside the safe set X . There are several practical examples

that may require a system to visit a region periodically, e.g.,

an autonomous robot vacuum (e.g., Roomba iRobot) docking

periodically, or a solar-powered spacecraft reorienting itself

periodically when it runs out of charge. Similar requirements

are also commonly encoded via Signal Temporal Logic (STL)

via an "always-eventually" requirement (see e.g., [13]).

In the context of our work, the notion of periodic safety

provides a framework to connect the low-level controller and

the high-level planner where the system requirement is to track

discrete way-points in a certain region. In particular, periodic

stability provides the multi-rate guarantee that the trajectory

x(t) stays inside of the set XT at a low frequency 1/T and

stays within X for all time. Note that this notion is stronger

than that of conditional invariance as defined in [14], where the

set X is called conditionally flow-invariant for the closed-loop

system (2) if for all x(0) ∈ XT ⊂ X , it holds that x(t) ∈ X
for all t ≥ 0. In particular, periodic safety of XT w.r.t. X
implies that X is conditionally flow-invariant. Next, we define

the notion of fixed-time domain of attraction:

Definition 2. Given a set C ⊂ R
nx and a time T > 0, a set

DC ⊂ R
nx with C ⊂ DC is a Fixed-Time Domain of Attraction

(FxT-DoA) of the set C for the closed-loop system (2), if

i) for all x(0) ∈ DC , x(t) ∈ DC for all t ∈ [0, T ), and

iii) there exists 0 ≤ TC ≤ T such that limt→TC
x(t) ∈ C.

The concept of FxT-DoA is important under a constrained

input u ∈ U , as it is not possible to guarantee that fixed-time

convergence can be achieved for arbitrary initial conditions. To

characterize this FxT-DoA, inspired from [4], we introduce a

class of barrier functions termed fixed-time barrier functions.

Definition 3. A continuously differentiable function h :
R

nx → R is a FxT barrier function for the the set S =
{x | h(x) ≥ 0} with time TS > 0 for the closed-loop system
(2) if there exist parameters δ ∈ R, α > 0, γ1 = 1 + 1

µ
and

γ2 = 1− 1
µ

for some µ > 1, such that the following holds:

ḣ(x) ≥ −δh(x) + αmax{0,−h(x)}γ1 + αmax{0,−h(x)}γ2 , (5)

for all x ∈ DS ⊂ R
nx where TS and DS are functions of δ

2α .

Using (5), it follows from [5, Theorem 1] that the set DS is
a FxT-DoA of the set S with time TS , where

DS =

{

R
nx ; r < 1,

{

x | h(x) ≥ −kµ
(

r −
√
r2 − 1

)µ}

; r ≥ 1,
,

TS =

{

µπ

α
√

1−r2
; r < r,

µk

α(1−k)
; r ≥ r,

,

with r = δ
2α and 0 < r, k < 1. In particular, existence of a

FxT barrier function h implies: 1) forward invariance of the

set DS and 2) convergence to the set S within time TS .

III. MULTI-RATE CONTROL

In this section, we present a hierarchical strategy where

we first design a high-level planner that generates a reference

trajectory z(t), and then, a low-level controller that tracks this

reference trajectory to guarantee that the closed-loop trajectory

x(t) satisfies (3). The control input is defined as

u(t) = ul(t) + um(t), (6)

where ul and um are defined using the policy Π defined as1:

Π :

{

ul(t) = πl

(

x(t), um(t), i
)

, u̇m(t) = 0, t ∈ Ti
u+
l (t) = ul(t), u+

m(t) = πm

(

x+(t)
)

, t/T ∈ N
,

(7)

where Ti = [(i − 1)T, iT ). Here, πm : Rnx → UM ⊂ U is

the control policy from the high-level planner, to be designed

1The closed-loop solutions of a sampled-data system are uniquely deter-
mined under piecewise continuous, bounded control inputs [15, Section 2.2]
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in Section III-A, that generates a reference trajectory using

a Linear Time-Invariant (LTI) model of system (1), and

πl : R
nx × R

nu × N → U is the low-level control policy,

to be designed in Section III-B, that helps track this reference

trajectory. The constraint set UM ⊂ U dictates how much of

the control authority is reserved individually for the high-level

planner and the low-level controller, and is a design parameter.

A. High-level planning

In this section we describe the high-level planning strategy.

Reference Model: We assume that the reference trajectory

z(t) is generated using the following piecewise LTI model:

Σz :

{

ż(t) = Az(t) +Bum(t), t ∈ ∪∞
i=0(iT, (i+ 1)T )

z+(t) = ∆z(x
−(t)), t ∈ ∪∞

i=0{iT}
,

(8)

where T from (3) is specified by the user and the reference

trajectory z(t) ∈ R
n is assumed right continuous. The matrices

(A,B) are known and, in practice, may be computed by

linearizing the system dynamics (1) about the equilibrium

point, i.e., the origin. The reference input um(t) ∈ R
d and

the reset map ∆z , which depend on the state of the nonlinear

system (1), are given by the higher layer as discussed next.

Model Predictive Control: We design a Model Predictive

Controller (MPC) to compute the high-level input um(t) that

defines the evolution of the reference trajectory in (8), and

to define the reset map ∆z for the LTI model (8). The MPC

problem is solved at 1/T Hertz and therefore the reference

high-level input is piecewise constant, i.e., u̇m(t) = 0 ∀t ∈
T where T = ∪∞

i=0(iT, (i + 1)T ). First, we introduce the

following discrete-time linear model:

zdi+1 = Āzdi + B̄vi, (9)

where the transition matrices are Ā = eAT and B̄ =
∫ T

0
eA(T−η)Bdη. Now notice that, as the high-level input

um is piecewise constant, if at time ti = iT the state

z(iT ) = z+(iT ) = zdi and um(iT ) = vi, then at time

ti+1 = (i+ 1)T we have that

z−((i+ 1)T ) = zdi+1. (10)

Given the discrete-time model (9) and the state of the nonlinear

system (1) x(iT ), we solve the following finite-time optimal

control problem at time ti = iT ∈ T c:

min
v
d
i ,z

d
i|i

i+N−1
∑

k=i

(

||zdk|i||Q + ||vk|i||R
)

+ ||zdi+N |i||Qf
(11a)

s.t. zdk+1|i = Āzdk|i + B̄vdk|i (11b)

||zdk+1|i − zdk|i||2 ≤ d− c (11c)

zdk|i ∈ XT ⊖ C, vdk|i ∈ Um (11d)

zdi|i − x(iT ) ∈ C (11e)

zdi+N |i ∈ XF , ∀k = {i, . . . , i+N − 1} (11f)

where ||p||Q = p⊤Qp and C = {x | ‖x‖ ≤ c} for some

0 < c < d such that XT ⊖ C 6= ∅, where C is a set that

bounds the difference between the nominal and true system

trajectories. The constraints (11c)–(11e) are used to shrink

the feasible set and allow us to guarantee that the proposed

strategy meets the design requirements, as discussed in Sec-

tion III-B. Problem (11) computes an initial condition zdi|i and

a sequence of open-loop actions v
d
i = [vdi|i, . . . , v

d
i+N |i] such

that the predicted trajectory steers the system to the terminal

set XF ⊂ XT , while minimizing the cost and satisfying state

and input constraints. Let

v
d,∗
i = [vd,∗

i|i , . . . , v
d,∗
i+N |i], z

d,∗
i = [zd,∗

i|i , . . . , z
d,∗
i+N |i] (12)

be the optimal solution of (11), then the high-level policy is

πm(x(iT )) =

{

um(t) = vd,∗
i|i t = iT ∈ T c

u̇m(t)=0 t ∈ T (13)

Finally, we define the reset map for (8) as follows:

∆z(x(iT )) = zd,∗
i|i . (14)

B. Low-level control synthesis

In this section we design the low-level policy πl. Consider

the system dynamics (1) under the effect of the policy (7):

ẋ(t) = f
(

x(t)
)

+ g
(

x(t)
)(

ul(t) + um(t)
)

. (15)

We define the sets Di and Ci as

Di , z−(iT )⊕D = {x | ‖x− z−(iT )‖ ≤ d}, (16)

Ci , z−(iT )⊕ C = {x | ‖x− z−(iT )‖ ≤ c}. (17)

We show in Section IV that Ci ⊂ Di+1 (guaranteed by bound

on the rate change of the reference trajectory z(t) in (11c))

along with Di ⊂ X and Ci ⊂ XT (guaranteed by (11e))

guarantees that closed-loop trajectories meet the objectives in

(3). Under these considerations, the low-level control objective

for t ∈ Ti = [(i−1)T, iT ) is to design the policy πl such that

the set Di is FxT-DoA for the set Ci. To this end, for the time

interval Ti with i ∈ N0+, consider the candidate FxT barrier

function hi : R
nx → R defined as

hi(x(t)) =
1

2
c2 − 1

2
‖x(t)− z−(iT )‖2, t ∈ Ti. (18)

and define the following QP:

min
ul,δ

1

2
u
2
l +

q

2
δ
2 + qδ (19a)

s.t. Au(ul + um) ≤ bu, (19b)

Lfhi(x) + Lghi(x)(um + ul) ≥ −δhi(x)

+ αmax{0,−hi(x)}γ1

+ αmax{0,−hi(x)}γ2

(19c)

where q > 0 and um = πm(x(i − 1)T ). We denote the

optimal solution of the QP (19) as (u⋆
l (x, um, i), δ⋆(x, um, i))

and define the low-level policy as

πl(x(t), um(t), i) = u⋆
l (x(t), um, i). (20)

The constraint (19b) guarantees that u = ul + um ∈ U . The

parameters µ, α, γ1, γ2 in (19c) are fixed, and are chosen as

α = max
{

µk
(1−k)T ,

µπ

T
√
1−r2

}

, γ1 = 1+ 1
µ

and γ2 = 1− 1
µ

with

µ > 1 and 0 < r, k < 1, so that the closed-loop trajectories

reach the zero super-level set of the FxT barrier function hi

within the time step T .
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IV. CLOSED-LOOP PROPERTIES

In this section we show the properties of the proposed multi-

rate control architecture. Consider the closed-loop system (15)

under the control input (7) with policies πm and πl defined in

(13) and (20), respectively. Below, we explain how we show

that the closed-loop trajectories satisfy (3):

A. First, we show in Lemma 1 that under the low-level

controller ul, the set Di is FxT-DoA for the set Ci;
B. Next, in Theorem 1 we show recursive feasibility of the

MPC so that the closed-loop trajectories satisfy x((i −
1)T ) ∈ Di for all i ∈ N, which along with item A,

implies that the closed-loop trajectories satisfy (3).

A. Fixed Time Domain of Attraction

In this section, we show that under the low-level controller

defined as the optimal solution of the QP (19), the set Di is

a FxT-DoA for the set Ci. To this end, it is essential that the

QP (19) is feasible for all x so that the low-level controller is

well-defined. The slack term δ ensures the feasibility of the

QP (19) for all x /∈ ∂Ci. For the feasibility of the QP (19)

for x ∈ ∂Ci, we make the following assumption, which is a

standard assumption in the literature for guaranteeing forward

invariance (see [16] for more details).

Assumption 1. For all x ∈ ∂Ci, i ∈ Z+, and um ∈ UM , there

exists ul ∈ Ul such that the following holds:

Lfhi(x) + Lghi(x)(um + ul) ≥ 0.

From Definition 3, we know that FxT-DoA depends on the

ratio δ
2α . We make the following assumption on the maximum

value of δ⋆(x) as the solution of the QP (19) so that hi is a

FxT barrier function for Ci and Di is its FxT-DoA.

Assumption 2. For each interval Ti, the solution

(u⋆(x(t), um, i), δ⋆(x(t), um, i)) of the QP (19) is continuous

for all t ∈ Ti and the following holds

sup
t∈Ti

δ⋆(x(t), um, i)

2α
≤ r̄ ,

(d
2−c2

2 )
1

µ

2k
+

k

2(d
2−c2

2 )
1

µ

. (21)

Remark 1. As argued in [5], for given input bounds (dictated

by the set U), the value of the slack term δ in QP (19) depends

on the time of convergence T . Furthermore, the upper-bound

in (21) depends on the parameters c and k, where 0 < c < d
is such that XT ⊖ C is non-empty and 0 < k < 1. Thus, in

practice, numerical simulations can guide the choice of the

parameters c, k, and the time T , so that (21) can be satisfied.

Lemma 1. Suppose that Assumptions 1-2 hold. Then, for each

time interval Ti with i ∈ N, under the control policy (20), it

holds that for all x((i−1)T ) ∈ Di, the closed-loop trajectory

x(t) satisfies x(t) ∈ Di for all t ∈ Ti and x−(iT ) ∈ Ci.
Proof. Under Assumption 1, it follows from [2, Lemma 2]
that the QP (19) is feasible for all x. Denote DCi

as a FxT-
DoA for the set Ci for the time T . Note that by definition,
Ci = {x | hi(x) ≥ 0}. We first compute an expression for
DCi

and then, we show that under Assumption 2, Di ⊆ DCi
.

From [5, Theorem 1], we know that the FxT-DoA DCi
is given

as a function of rM = sup r⋆ = δ⋆

2α , i.e., the maximum value
of the ratio r⋆. We consider the two cases, namely rM < 1 and

rM ≥ 1 separately. For rM < 1, it follows from [5, Theorem
1] that DCi

= R
nx is the FxT-DoA for Ci. Thus, Di is also

a FxT-DoA of the set Ci. For rM ≥ 1, it follows from [5,
Theorem 1] that a FxT-DoA (i.e., the set DCi

) is given as

DCi =

{

x | hi(x) ≥ − inf
t∈Ti

k
µ
(

r
⋆(x(t))−

√

(r⋆(x(t)))2 − 1
)µ

}

.

Note that

inf
t∈Ti

r⋆(x(t))−
√

(r⋆(x(t)))2 − 1 = rM −
√

r2M − 1 (22)

where the equality follows from the fact that
(

r −
√
r2 − 1

)

is a monotonically decreasing function for r ≥ 1. Thus, it

follows that DCi
=

{

x | hi(x) ≥ −kµ
(

rM −
√

r2M − 1
)µ}

.

With the FxT barrier function hi(x) in (18), we have

DCi =

{

x | 1
2
‖x− z

−(iT )‖2 ≤ k
µ

(

rM −
√

r2M − 1

)µ

+
1

2
c
2
.

}

(23)

Now, under Assumption 2, it holds that rM ≤ ( d2−c2

2
)
1

µ

2k +
k

2( d2−c2

2
)
1

µ

. By re-arranging this inequality, we obtain that

under Assumption 2, it holds that

1

2
d2 ≤ kµ

(

rM −
√

r2M − 1

)µ

+
1

2
c2. (24)

Now, for any x((i− 1)T ) ∈ Di, it holds that ‖x((i− 1)T )−
z−(iT )‖ ≤ d. Thus, it follows from (24) that

1

2
‖x((i−1)T )− z−(iT )‖2 ≤ kµ

(

rM −
√

r2M − 1

)µ

+
1

2
c2,

for all x((i − 1)T ) ∈ Di. Using this, and (23), it fol-

lows that Di = DCi
. Hence, we have that Di is a FxT-

DoA of the set Ci. Thus, from [5, Theorem 1], it follows

that the closed-loop trajectories of (2) will reach the set

Ci for any x((i − 1)T ) ∈ Di within a fixed time T1

that satisfies T1 ≤ max{ µk
α(1−k) ,

µπ

α
√
1−r2

}. For the choice

of α = max{ µk
(1−k)T ,

µπ

T
√
1−r2

}, it follows that T1 ≤ T .

Thus, the system trajectories reach the set Ci on or before

t = (i− 1)T + T = iT .

Finally, we show that the closed-loop trajectories remain

in the set Ci till t = iT , i.e., the set Ci is forward invariant

for the closed-loop trajectories of (2). Let t = ti , (i −
1)T + T1 denote the first time instant when the closed-loop

trajectories of (2) reach the boundary of the set Ci, i.e.,

hi(x(ti)) = 0. From the analysis in the first part of the

lemma, it holds that ti ≤ iT . From (19c), it follows that

ḣi(x) ≥ −δ⋆(x, um, i)hi(x) ≥ −δMhi(x) for all x ∈ Ci,
where δM = supt∈Ti

δ⋆(x(t), um, i). The proof can be com-

pleted using [1, Proposition 1].

Thus, satisfaction of (19c) implies that system trajectories

reach the set Ci on or before t = iT , and stay there till t = iT .

Now, in order for the closed-loop trajectories to reach the set

Ci+1 on or before t = (i + 1)T , it is required that x(iT ) ∈
Di+1, which is shown in the following lemma.

Lemma 2. If the MPC problem (11) is feasible at time ti =
iT , then x(iT ) ∈ Di+1.
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Proof. Since the MPC problem (11) is feasible at time ti =
iT , consider the optimal MPC solution (12) at time ti = iT .

By definition, we have that x(iT ) − z∗,d
i|i ∈ C, which implies

that ||x(iT ) − z∗,d
i|i || ≤ c. Furthermore, by feasibility of the

optimal MPC solution (12) for problem (11), we have that

||z∗,d
i+1|i − z∗,d

i|i || ≤ d− c. This implies that

||x(iT )− z∗,d
i+1|i|| = ||x(iT )− z∗,d

i|i + z∗,d
i|i − z∗,d

i+1|i||
≤ ||x(iT )− z∗,d

i|i ||+ ||z∗,d
i|i − z∗,d

i+1|i|| ≤ d

Finally, from (10) we have that z∗,d
i+1|i = z−((i+ 1)T ). Thus,

from the above equation we conclude that ||x(iT )− z−((i+
1)T )|| ≤ d, which implies that x(iT ) ∈ Di+1.

B. MPC Recursive Feasibility and Constraint Satisfaction

So far, we have shown that feasibility of the MPC guaran-

tees that x(iT ) ∈ Di+1, which, under the low-level control

policy (20), guarantees that x((i + 1)T ) ∈ Ci+1. Thus, what

is remaining to be shown is that the MPC (11) is recursively

feasible, i.e., if (11) is feasible at t = 0T , then it is feasible

at t = iT for all i ∈ N. This would guarantee that x(iT ) ∈ Ci
(and hence, x(iT ) ∈ XT ) for all i ∈ N. We make the

following assumption for the high-level planner that would

help guarantee recursive feasibility of the MPC (11).

Assumption 3. For all i ∈ N, the set XF is invariant for the

autonomous discrete time model zd((i+1)T ) = Āzd(iT ) and

it holds that ||zd(iT )− Āzd(iT )|| ≤ d− c.

Remark 2. The above assumption is standard in the MPC

literature [17], [18] and it allows us to guarantee that the

MPC problem is feasible at all time instances. In practice, the

set XF can be chosen as a small neighborhood of the origin.

We are ready to state our result showing that the hierarchical

control strategy in Section III leads to satisfaction of (3).

Theorem 1. Let Assumptions 1-3 hold and consider the

closed-loop system (15) under the control policy (7), where

πm is defined in (13) and πl is defined in (20). If at time t = 0
problem (11) is feasible, then the closed-loop trajectories

under the control policy (7) satisfy (3), i.e., the set XT is

periodically safe w.r.t. the set X with period T .

Proof. The proof proceeds by induction. Let

[zd,∗
i|i , z

d,∗
i+1|i, . . . , z

d,∗
i+N |i] and [ud,∗

i|i , . . . , u
d,∗
i+N−1|i] be the

optimal state input sequence to the MPC problem (11) at time

ti = iT . Then from the feasibility of the MPC problem and

Proposition 2 we have that x(iT ) ∈ Di+1, which together

with Lemma 1 implies that x((i + 1)T ) ∈ Ci+1. From (10)

we have z∗,d
i+1|i = z−((i + 1)T ), which in turn implies that

x((i+ 1)T )− zd,∗
i+1|i = x((i+ 1)T )− z−((i+ 1)T ) ∈ C, and

therefore, by Assumption 3, the following sequences of states

and inputs

[zd,∗
i+1|i, . . . , z

d,∗
i+N |i, Āz

d,∗
i+N |i], [u

d,∗
i+1|i, . . . , u

d,∗
i+N−1|i, 0] (25)

are feasible at time ti+1 = (i+1)T for the MPC problem (11).

We have shown that if the MPC problem (11) is feasible

at time ti = iT , then the MPC problem is feasible at time

ti+1 = (i+1)T . Per assumption of the theorem, problem (11)

is feasible at time t0 = 0, and hence, we conclude by induction

that (11) is feasible for all ti = iT and for all i ∈ N0+.

Next, we show that the state and input constraints are

satisfied for the closed-loop system. Notice that by definition

um(t) = v∗i|i ∈ Um for all t ∈ [iT, (i+1)T ) and from Lemma

1, we have the low-level controller returns a feasible control

action ul(t), therefore we have that

u(t) = ul(t) + um(t) ∈ U , ∀t ∈ R0+. (26)

Finally, from the feasibility of the state-input sequences in (25)

for the MPC problem (11), we have that

xd,∗
i|i ∈ XT ⊖ C and x(iT )− xd,∗

i|i ∈ C, ∀i ∈ N0+. (27)

From the above equation we conclude that x(iT ) ∈ XT for

all i ∈ N0+. Note that since z−(iT ) ∈ XT ⊖ C, C ⊂ D, and

XT = X ⊖ D, it follows that Di = {z−(iT )} ⊕ D ⊂ X
for all i ∈ N. From [5, Theorem 1], the set Di is forward-

invariant for the closed-loop trajectories x(t), i.e., x(t) ∈ Di

for t ∈ [(i − 1)T, iT ) for all i ∈ N. Hence, it follows that

x(t) ∈ X for all t ≥ 0. Thus, the closed-loop trajectories

under the control policy (7) satisfy (3), i.e., the set XT is

periodically safe w.r.t. the set X with period T .

V. SIMULATIONS

In this section, we present a simulation case study where

we use the proposed strategy to steer a Segway to the origin2.

The state of the system are the position p, the velocity v, the

rod angle θ and the angular velocity ω (see Figure 2). The

control action is the voltage commanded to the motor and

the equations of motion used to simulate the system can be

found in [19, Section IV.B]. In this simulation, we run the

high-level MPC planner at 5Hz and the low-level controller at

10kHz with parameters d = 0.6 and c = 0.005. We choose

the set XT = {x = [p, v, θ, ω]T | |p| ≤ 10, |v| ≤ 5, |θ| ≤
0.3, |ω| ≤ 10π},XF = {0}, input bounds ‖u‖ ≤ 25 with

‖um‖ ≤ 15. In the first scenario, the initial conditions are

[−1.0 0 0.1 0.3]T and T = 0.2. Figure 2 shows the evolution

of the FxT barrier functions hi and the control input u. It can

be seen that the input constraints are always satisfied, and the

FxT barrier functions reach zero at each time step T , leading

to periodic safety of the underlying set X .

Fig. 2. Plots that depict the system and the values of the barrier
function hi and total input um + ul.

Periodic safety is also evident from the left figure in Figure

3, where the closed-loop trajectories are shown to converge

to the set Ci by end of each interval Ti. The middle plot in

Figure 3 shows the projection of the closed-loop trajectories

2Code available at github.com/kunalgarg42/fxts_multi_rate
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Fig. 3. Simulation results demonstrating the proposed method. (Left) The trajectory x(t) projected onto p − θ − t axes. In each interval
[iT, (i+ 1)T ), FxT-DoA Di is depicted as the colored region which decays to the set Ci by the end of the interval. (Middle) Projection of
the closed-loop trajectory on the p − θ plane. The trajectory leaves and enters the set XT after t = 2T and before t = 3T , respectively.
(Right) Illustration of a scenario where the trajectory x̄(t) generated using an exponentially stabilizing CLF fails to enter C1, leading to
infeasibility of the MPC at t = 1T , whereas the trajectory x(t) generated by the proposed method enters C1 before t = 1T .

on the p− θ plane. It can be seen from the inset plot that the

closed-loop trajectory leaves the set XT in the interval T3 and

returns to the set before the next time step. It can be observed

(as discussed in Section III) that the sets Ci,Di satisfy Ci ⊂
XT and Di ⊂ X , respectively, guaranteeing x(iT ) ∈ XT and

x(t) ∈ X , i.e., periodic safety of the set XT w.r.t. the set X .

To compare the performance of the fixed-time stabilizing

controller with an exponentially stabilizing one at the low

level, we performed a simulation with initial conditions very

close to the boundary of the set XT . We chose XT = {x =
[p, v, θ, ω]T | |p| ≤ 10, |v| ≤ 5, |θ| ≤ 0.5, |ω| ≤ 10π} and

initialized the system with θ(0) = 0.495. In this case, the

parameters are chosen as d = 1, c = 0.04 and T = 0.25. The

right plot on Figure 3 shows the trajectory x(t) generated by

the proposed controller, and the trajectory x̄(t) generated by

an exponentially stabilizing controller [1] with c3 = α. The

inset plot on the right plot of Figure 3 shows that both x(t)
and x̄(t) leave the set XT . The closed-loop trajectory x(t)
returns back to the set XT before t = 1T , while x̄(t) fails

to do so, leading to infeasibility of the MPC at t = 1T . This

demonstrates the efficacy of the proposed framework over the

existing methods that use exponentially stabilizing controllers.

VI. CONCLUSIONS

In this paper, we introduced the notion of periodic safety

requiring system trajectories to visit a subset of a safe set pe-

riodically. We defined the notion of fixed-time barrier function

and used it in a multi-rate control framework, with MPC as

a high-level planner, for control synthesis. We demonstrated

that the proposed framework is capable of solving corner

cases where exponentially stabilizing controllers might fail.

Future work includes studying the robustness properties of the

proposed framework by considering model uncertainties.

In future, in the light of Remark 1, the authors would

like to study (numerically, using state-space sampling, or

analytically) the effect of the parameters c, k and period T
so that Assumption 2 holds for a given problem setup.
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