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Abstract

Electricity consumption prediction plays a vital role in intelligent energy management sys-

tems, and it is essential for electricity power supply companies to have accurate short and

long-term energy predictions. In this study, a deep-ensembled neural network was used to

anticipate hourly power utilization, providing a clear and effective approach for predicting

power consumption. The dataset comprises of 13 files, each representing a different region,

and ranges from 2004 to 2018, with two columns for the date, time, year and energy expen-

diture. The data was normalized using minmax scalar, and a deep ensembled (long short-

term memory and recurrent neural network) model was used for energy consumption pre-

diction. This proposed model effectively trains long-term dependencies in sequence order

and has been assessed using several statistical metrics, including root mean squared error

(RMSE), relative root mean squared error (rRMSE), mean absolute bias error (MABE), coef-

ficient of determination (R2), mean bias error (MBE), and mean absolute percentage error

(MAPE). Results show that the proposed model performs exceptionally well compared to

existing models, indicating its effectiveness in accurately predicting energy consumption.

Introduction

Energy plays a crucial role in maintaining the social, economic, and environmental sustain-

ability of any nation. Over the last decade, there has been a significant global growth in energy

consumption, making energy management vital for nations seeking better economic growth

and environmental safety [1]. Predictions regarding energy consumption help in the formula-

tion of energy development and design strategies for energy policies [2]. With energy con-

sumption increasing every passing day in emerging and third world countries, and the

anticipated growth in world population to reach 9.5 billion by 2030 [3], there is a prediction of
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a considerable increase in energy demand. This dramatic increase is expected to double energy

demand by 2030, significantly impacting energy consumption [4].

Different machine learning models are being used for the prediction of energy consump-

tion. The method of electric load forecasting involves projection, and in this regard, a Dragon-

fly algorithm-based quantum support vector regression (SVR) with complete ensemble

empirical mode decomposition [4] is utilized. Several hybrid forecasting methods, such as

PEM (periodogram estimation method), LSSVR-CCPSO, and SMTs (ship motion time series)

that combine PEM, LSSVR (least squares support vector regression) models, and CCPSO (cha-

otic cloud particle swarm optimization) algorithms have been studied [5]. However, predicting

electricity consumption poses several challenges, such as lack of general applicability and diffi-

culties in processing complex data. To predict short-term electricity consumption, several

algorithms are combined, and the model’s resilience focuses on the electrical consumption of

data. External factors, such as daily, weekly, and seasonal cycles, can also affect its perfor-

mance. Given that short-term electricity usage data series are nonstationary and nonlinear,

there are various frequencies to consider.

The EMD-Fbprophet-LSTM model is utilized to predict short-term electricity consump-

tion, dealing with the complexity and uncertainty of data. LSTM is responsible for forecasting

short-term power usage, while Fbprophet is a time series model that decomposes electricity

consumption using EMD (Empirical Model Decomposition) for prediction. This new and in-

demand model is capable of handling the fluctuating characteristics of electricity demand

across different time scales and has a better accuracy rate for short-term electricity consump-

tion. Moreover, it addresses weather-related factors and reduces the forecast rate on customer

demand, making it an efficient solution [6].

Load electricity demand forecasting plays a crucial role in intelligent energy management

systems [7], where the short-term and long-term loads are considered for the transmission

and new infrastructure. The demand for load forecasting is increasing daily due to its signifi-

cance. Various research papers focus solely on predicting electricity consumption [8], which

can be impacted by weather-related factors such as temperature, humidity, and rainfall, as well

as socio-economics and population variables [9]. Utilizing general variables can provide better

energy consumption results for alternative prediction models. For example, a city power con-

sumption-based forecasting model was developed using the machine learning model Random

Forest (RF) to predict power consumption in Agartala Tripura, a city located in India [10].

This model’s validation can help to improve power consumption predictions.

In recent years, there has been a growing interest among researchers in forecasting energy

load. Time series data and forecasting models, such as Electrical Power Consumption, have

been preferred in most studies. For instance, Nyoni [11] used ARIMA to predict CO2 emission

in China from 1977 to 2017 and found that ARIMA (1,2,1) is a suitable method for predicting

CO2 emission in China. Similarly, D. E. Rumelhart [12] proposed two models for predicting

electricity consumption at UTHM (University Tun Hossein Onn Malaysia). G. Gross [13] sug-

gested ARIMA (4,2,1) as the ideal model for predicting power usage in agriculture. Other

methods that have been used for forecasting energy consumption include EDM (Energy

Demand Model), ANN (Artificial Neural Network) model, PSO (Particle Swarm Optimiza-

tion) technique, and GM (Grey Model). A. A. El-Keib [14] utilized EDM for predicting energy

consumption in Italian households and industrial states.

The transition from shallow learning to deep learning has been observed in machine learn-

ing algorithms. J. Wang [15] proposed a method that uses learning representation with error

back-propagation to train an Artificial Neural Network (ANN). In addition, the commonly

used machine learning models, such as Decision Tree (DT) and Support Vector Machine

(SVM), were used to obtain optimal solutions. With the increase in computing power and
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improved data accumulation, deep learning algorithms have made complex training easier. In

modern times, both deep and shallow learning models have their roles in various fields. The

selection of the best machine-learning algorithm for future analysis depends on factors such as

data categories, sample size, and model properties. Statistical prediction methods are used for

time series forecasting. The prediction of future loads and predictor variables using historical

observations is done using load signal and other forecasting tools. Several studies have worked

on short-term prediction models, which are for an hour or less and may last up to a week,

using linear regression models, multiple regression models, smoothing, and weighted least

squares [16, 17].

Additionally, machine learning models such as SVM, ANN, and FIS have also been used

for predicting electricity consumption in buildings. SVM has been used to predict the electric-

ity consumption of office buildings based on weather data and historical consumption data

[18]. ANN has been used to predict electricity consumption in residential buildings using data

such as weather, occupancy, and time of day [19]. FIS has been used to predict the energy con-

sumption of a building based on various factors such as temperature, humidity, and occupancy

patterns [17]. These models have shown promising results in accurately predicting electricity

consumption in buildings, which can help in optimizing energy usage and reducing energy

costs.

J. F. Torres and his team used innovative metering technologies to gather multiple time

series datasets and developed a multiple forecasting methodology that utilized RNN with

LSTM [20]. Their aim was to achieve a day-ahead prediction of electricity consumption in

individual households and industries. They used MSE and MAE performance metrics to evalu-

ate the LSTM model’s performance in predicting time series data on energy consumption. By

using LSTM instead of typical univariate and classical methods, they were able to consume a

smaller number of computational resources while still achieving accurate predictions.

In [21], Z. Zhang proposed a technique entitled LSTM and CNN to forecast electricity con-

sumption and ensure the smart grid’s suitable operational activities and efficient management.

The represented method involves two variates of a sequence, and to obtain the electricity

demand forecast, LSTM and ANNS are used to connect a pair of crucial values linked to con-

textual information, which is then utilized to produce sets. The authors compared the perfor-

mance of (c,1) LSTM with ARIMA and with sequence to sequence (S2S) LSTM and found that

their method offered better accuracy in terms of MAPE and RPSE performance metrics.

M.-W. Li [22] sheds light on the partial electricity demands of the country, keeping an eye

on the horizon of 2025 and predicting industrial electricity demand. The authors used a model

to predict the electricity demand from 1966 to 2016 and added the following information to

make a prediction: the original cost of explanatory variables, the cost of power, its industrial

value, and the population of working age. The model shows that the demand for industrial

electricity has relatively low long-run elasticities (0.1 and within 0.2-0.3, respectively) for both

price and income.

Z.A. khan [23] introduced an efficient method for short-term electricity load forecasting,

which is essential for effective energy management. The authors propose a hybrid model that

combines the advantages of the autoregressive integrated moving average (ARIMA) and sup-

port vector regression (SVR) models. The proposed model is tested using real-world electricity

load data obtained from the Pakistan Energy Management Company (PEMCO). The results

show that the hybrid model outperforms both the ARIMA and SVR models individually in

terms of forecasting accuracy.

In [24], an efficient and effective hybrid model is developed for power generation and con-

sumption forecasting, contributing to energy harvesting by providing valuable prediction data

to the concerned renewable energy analysts. The model integrates a convolutional neural
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network with an echo state network to extract meaningful patterns from historical data and

learn temporal features for robust renewable energy generation and consumption forecasting.

The output spatiotemporal feature vector is then fed to fully connected layers for final

forecasting.

In [25], the proposed ESNCNN model combines an Echo State Network (ESN) and a Con-

volutional Neural Network (CNN) to learn the nonlinear mapping relationship and extract

spatial information from renewable energy data. The authors also use residual connections to

avoid the vanishing gradient problem and fully connected layers to enhance and select the

optimal features for predicting future energy production.

In [26], the proposed framework combines convolutional neural networks (CNN) with a

long short-term memory autoencoder (LSTM-AE) to extract both spatial and temporal fea-

tures from the electricity consumption data. The CNN is used to extract the spatial informa-

tion, while the LSTM-AE is used to capture the temporal dependencies. The output of the

LSTM-AE is fed into fully connected layers for final forecasting. The proposed framework is

evaluated on three real-world datasets and compared with state-of-the-art models using vari-

ous evaluation metrics.

In [27], the authors proposed a deep feed-forward neural network approach to estimate

power usage. They utilized the Apache Spark platform for distributed computing and the H2O

data analysis framework. Although different electricity consumption prediction studies are

useful depending on specific needs, they are limited by time frames and prediction metrics. In

this paper, we propose a deep ensemble neural network for the problem of electric consump-

tion prediction. Our method is compared to various baseline methods that use machine learn-

ing algorithms and a multi-sequence LSTM model. Thus, the paper has the following

contributions to existing literature:

• Highlighting the importance of electricity consumption prediction in intelligent energy

management systems

• Describing the use of a deep-ensembled neural network for predicting power consumption

• Outlining the statistical metrics used to assess the performance of the proposed model,

including RMSE, rRMSE, MABE, R2, MBE, and MAPE

• Demonstrating the effectiveness of the proposed model in accurately predicting energy con-

sumption, with results showing superior performance compared to existing models

The rest of the paper is organized as follows: Section 2 presents the materials and methods

of the proposed work, Section 3 displays the findings of the proposed algorithm on the dataset,

Section 4 discusses the purpose and findings of our work, and finally, the paper is concluded

in Section 5.

Materials and methods

Dataset details

The dataset contains thirteen files and their graphical representations are presented in Figs 1

and 2. The information mentioned in the files shows per hour utilization of energy. There are

two columns in each file. The first column represents the date, time, and year while the second

column represents energy expenditure in Megawatts (MW). The first file exhibits the energy

consumption rate of the American Electric Power (AEP) region, in which 12,1274 entries in

this file show per hour of energy depletion. This file covers the energy dissipation of 14 years.

The time series starts on 31st December 2004 at 1:00 A.M showing the energy utilization as

PLOS ONE Energy forecasting

PLOS ONE | https://doi.org/10.1371/journal.pone.0285456 May 18, 2023 4 / 23

https://doi.org/10.1371/journal.pone.0285456


Fig 1. Twelfth regions electricity consumption in Mega Watt.

https://doi.org/10.1371/journal.pone.0285456.g001
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13478 in this particular hour, and ends on 2nd January 2018 at 12:00 A.M, exhibiting the

energy consumption rate as 19993.

The second file exhibit the energy consumption of the Commonwealth Edison (ComEd)

region. Sixty-six thousand four hundred ninety-eight entries in this file show per hours utiliza-

tion of energy. This file covers the energy consumption of 7 years. The time series of energy

consumption initialized from 31st December 2011 at 1:00 A.M shows the energy utilization as

9970 at this hour. It ends on 2nd January 2018 at 12:00 A.M, exhibiting the energy consump-

tion rate as 12816. The third file exhibit the energy consumption rate of the Dayton Power and

Light Company (DAYTON) region. There are 121276 entries in this file that shows per hours

depletion of energy. Similar to the AEP region, this file covers the energy dissipation of 15

years. The time series starts on 31st December 2004 at 10:00 A.M showing the energy utiliza-

tion as 1596 in this hour and it ends on 2nd January 2018 at 12:00 A.M exhibiting the energy

consumption rate as 2552. The fourth file exhibit the energy consumption rate of the Duke

Energy Ohio/Kentucky (DEOK) region. There are 57740 entries in this file that shows per

hours depletion of energy. This file covers the energy dissipation of 6 years. The time series

starts on 31st December 2012 at 10:00 A.M showing the energy utilization as 2945 in this hour

and it ends on 2nd January 2018 at 12:00 A.M exhibiting the energy consumption rate as 4100.

The fifth file exhibit the energy consumption rate of the Dominion Virginia Power (DOM)

region. There are 116190 entries in this file that show per hours depletion of energy. This file

covers the energy dissipation of 13 years. The time series starts on 31st December 2005 at

10:00 A.M showing the energy utilization as 9389 in this hour and it ends on 2nd January 2018

at 12:00 A.M exhibiting the energy consumption rate as 17428. The sixth file exhibit the energy

consumption rate of the Duquesne Light Co. (DUQ) region. There are 119069 entries in this

file that show per hours depletion of energy. This file covers the energy dissipation of 13 years.

The time series starts on 31st December 2005 at 10:00 A.M showing the energy utilization as

1458 in this hour and it ends on 2nd January 2018 at 12:00 A.M exhibiting the energy con-

sumption rate as 1721. The seventh file exhibit the energy consumption rate of the East Ken-

tucky Power Cooperative (EKPC) region. There are 45335 entries in this file that shows per

hours depletion of energy. This file covers the energy dissipation of 5 years. the time series

starts on 31st December 2013 at 10:00 A.M showing the energy utilization as 1861 at this hour

and it ends on 2nd January 2018 at 12:00 A.M exhibiting the energy consumption rate as 2846.

The eighth file exhibit the energy consumption rate of the FirstEnergy (FE) region. There

are 62875 entries in this file that show per hours depletion of energy. This file covers the energy

Fig 2. Najran region electricity consumption in Mega Watt.

https://doi.org/10.1371/journal.pone.0285456.g002
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dissipation of 7 years. the time series starts on 31st December 2011 at 10:00 A.M showing the

energy utilization as 6222 at this hour and it ends on 2nd January 2018 at 12:00 A.M exhibiting

the energy consumption rate as 8393. The ninth file exhibit the energy consumption rate of the

Northern Illinois Hub (NI) region. There are 58451 entries in this file that show per hours

depletion of energy. This file covers the energy dissipation of 6 years. The time series starts on

31st December 2004 at 10:00 A.M showing the energy utilization as 9810 in this hour and it

ends on 2nd January 2010 at 12:00 A.M exhibiting the energy consumption rate as 12223.

The tenth file exhibit the energy consumption rate of the PJM East Region: 2001-2018

(PJME) region. There are 145367 entries in this file that show per hours depletion of energy.

This file covers the energy dissipation of 16 years. the time series starts on 31st December 2002

at 10:00 A.M showing the energy utilization as 26498 in this hour and it ends on 2nd January

2018 at 12:00 A.M exhibiting the energy consumption rate as 38608. The eleventh file exhibit

the energy consumption rate of the PJM West Region: 2001-2018 (PJMW) region. There are

143207 entries in this file that show per hours depletion of energy. This file covers the energy

dissipation of 14 years. The time series starts on 31st December 2002 at 1:00 A.M showing the

energy utilization as 5077 in this hour and it ends on 2nd January 2010 at 12:00 A.M exhibiting

the energy consumption rate as 7691.

The twelfth file exhibit the energy consumption rate of the PJM Load Combined: 1998-

2001 (PJM_Load) Load region. There are 32897 entries in this file that show per hours deple-

tion of energy. This file covers the energy dissipation for 3 years. The time series starts on 31st

December 1998 at 10:00 A.M showing the energy utilization as 28309 in this hour and it ends

on 2nd January 2001 at 12:00 A.M exhibiting the energy consumption rate as 29506. Najran is

also added to the list for prediction of energy consumption as shown in Fig 2. Najran dataset

consists of the following sectors: Governmental, agricultural, residential, commercial, indus-

trial, and others. The dataset availability was year-wise from 2005 to 2018. Energy consump-

tion of different sectors in 2005 have been shown in Table 1.

The data shows that total energy consumption in 2005 was 11009989 MW. Similarly, the

energy consumption in 2018 was 28679063 MW and the sum of energy consumption in 14

years (i.e., 2005-2018) was 283895206 MW. The total sum is divided over the period of 14

years to get hour-based energy consumption values. There are 112516 entries in this file that

show per hours depletion of energy. The time series starts on 1st January 2005 at 00:00 A.M

showing the energy utilization as 2096 MW in this hour and it ends on 31st December 2018 at

23:00 P.M, exhibiting the energy consumption rate as 3052 MW. The hourly consumption val-

ues are being used in the neural network model for the prediction of energy utilization.

System architecture

The proposed methodology is depicted in Fig 3. It begins by choosing the time series data to

be normalized. The network parameters are then selected. The network parameters serve as

Table 1. Energy consumption of Najran region in 2005.

Sector Energy Consumption (MW)

Governmental 122164

Agricultural 52674

Residential 8320650

Commercial 867081

Industrial 105349

Others 442594

https://doi.org/10.1371/journal.pone.0285456.t001
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the foundation for the ensemble model. Next, training for the ensemble model is initialized.

The error’s occurrence is then examined. The ensemble training would be over if the error

happened. Additionally, the procedure will be repeated if no errors have occurred. When the

statistical measurements are examined in the third phase, feature fusion takes place. The

ensemble model is developed and evaluated against previous research. The process will be fin-

ished if the findings are satisfactory; the normalization step will be repeated again. Further-

more, the detailed description of the system architecure has been explained in the following

Fig 3. Flow chart of proposed methodology.

https://doi.org/10.1371/journal.pone.0285456.g003
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sections: Dataset Preprocessing, Proposed Deep Ensemble Learning, Recurrent Neural Net-

work and Long Short Term Memory.

Dataset preprocessing. The performance of machine learning algorithms tends to

increase with the scaling of numerical input to a standard range. Two types of algorithms are

included. The first one is used to measure the distance such as KNN (K-nearest neighbor) and

the second one is helpful for weighting sum of the input such as linear regression. Normaliza-

tion and standardization are the two most widely used methods for the scaling of numeric data

before modeling. Each variable is scaled separately to a scope of 0-1, which is the breaking

point for movable information where most exactness is in Standardization.

Accordingly, for every variable, the size and measure of data removed from the area might

contrast. It’s feasible for input factors to have unmistakable scales due to their various units

(like feet, kilometers, and hours). The intricacy of the test being demonstrated might be exac-

erbated by contrasts in scales across input factors. A model might learn huge weight values

because of having enormous info values, like a scattering of tens or many units. Enormous

weight values show that the model is temperamental, and that implies that it might perform

inadequately during learning and be delicate to enter values, prompting a higher speculation

error. Scikit library helps in achieving both data normalization and standardization. By rescal-

ing the data from the previous range to a new range between 0 and 1, normalization brings all

values into the new range. one must be aware of or be able to precisely calculate the maximum

and minimum observable values in order to perform normalization. This is how a value is nor-

malized:

y ¼
max � min
max � min

ð1Þ

Here, output data is scaled in form of Y. Data input by X. column’s minimal value is shown

as min. a column’s maximum value is shown as max. If there are local variables in the dataset,

MinMax Scaler scales all of the observed data in the range [-1, 1] otherwise. All of the succes-

sive thing sets in the limited reach [0, 0.005] are packed by this scaling. Because of the effect of

the irregularities during the calculation of actual mean and standard deviation, Standard Scaler

doesn’t guarantee adjusted highlight scales in that frame of mind of exceptions. The range of

the characteristic qualities consequently decreases. The following are some best practices for

using the MinMax Scaler and other scaling techniques: 1. Adapt the scaler by using the classifi-

cation model provided. Regarding normalization, this means that minimal and maximum

accessible supervised learning will be used to calculate values. To do this, use the fit() function.

2. The scale can be applied to the normalization of data. This elaborates that you can train

your algorithm using normalized data. Calling the transform() method accomplishes this. 3.

The scale can also be used for forwarding data. This implies that you can prepare fresh data in

the future for your predictions.

Proposed deep ensemble learning. Different algorithms are used to predict the future

energy consumption. However, a single model accuracy may not be considered adequate for

the given dataset because every algorithm has limitations, and it is not easy to cope with chal-

lenges with just one choice. For this reason, different algorithms are combined to boost the

results. Gathering strategies is a machine learning procedure that unites a couple of base mod-

els to make one ideal best model. Ensemble learning is a general way to deal with machine

learning that looks for better prescient execution by consolidating the prediction from differ-

ent models.

Although there are an apparently limitless number of ensembles that can be produced for

the prescient displaying issue, three strategies dominate the field of ensemble learning. The

three principal classes of ensemble learning strategies are boosting, stacking, and bagging. It is
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essential to both have a detailed comprehension of every technique and to think of them as on

predictive displaying project. The objective of any ML issue is to determine solitary methods

that will foresee the needed result. Instead of making one model and trusting this model is an

excellent precise indicator, we can make ensemble models consider a bunch of methods and

normalize those models to deliver one last mode.

Recurrent neural network. A specific type of neural network is recurrent neural networks

(RNNs) where the calculations at each step are informed by the outcomes of the previous

stage. Inputs and outputs are present in conventional neural networks that are independent of

one another. The hidden layer saves data about a succession, and it is the essential and gener-

ally critical quality of RNNs as shown in Fig 4. To prepare the dataset utilizing RNN, the info is

given to the organization in a solitary time step. The framework’s present status is then

resolved utilizing the arrangement of current information and the past state. The ongoing time

becomes time-1 for the ensuing time step. One can make as many time strides in the past as

needs be and blend the information from every one of the old states, contingent upon the

Fig 4. RNN architecture in proposed work.

https://doi.org/10.1371/journal.pone.0285456.g004
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issue. After each time step has finished, the result is determined utilizing the last present status.

When the result is diverged from the objective result, which is the genuine result, the error is

then delivered. To refresh the loads, the network (RNN) is prepared after the error is backpro-

pagated to it [28].

Using sequences to learn, RNN is a deep learning model. The past output is added to the

current input by RNN in a recursive manner. RNN’s current output uses the past output to

learn from the previous sequence. The sequence is given to the current input as second input.

As a result, the previous sequences would have an impact on the current output. The past

sequences combine to continue the past outcomes. Each data point at time t occurs in refer-

ence to the past data in a dataset that flows sequentially. RNN has been used in machine learn-

ing to extract the fundamental pattern and meaning from such consecutive information [29].

In specific, a solitary information is applied to a tapped-delay-line memory of s units in an

engineering of info yield repetitive model in view of the MLP, and a solitary result is taken care

of once more into the information by means of one more tapped-delay-line memory of t units.

This two-tapped delay-line memory provides data to the MLP’s input layer. In other words,

the output precedes the input by one temporal unit. u (n) stands for the current value of the

model info, and y (n+1) represents the equivalent value of the model result. To reflect exoge-

nous information sources that came from outside the network, the sign vector provided to the

information layer of the MLP hence comprises of an information window comprised of over a

wide span of time upsides of the plant inputs. This is because of the way that the model results

are relapsed on their postponed values. The nonlinear auto backward with exogenous informa-

tion sources (NARX) model is the name of this repetitive network [30].

Long short term memory. Predictive modeling challenges involving time series predic-

tion are complex. Time series, in contrast to regression predictive modeling, also increases

complexity by introducing a relationship between the input variables’ sequences. Recurrent

neural networks are a potent class of neural networks built to manage sequence dependence.

Because very large designs may be taught, the Long Short-Term Memory network, also

referred to as the LSTM network, is a type of RNN used in machine learning. Using backpro-

pagation across time, it was trained. As a result, it is used to build substantial recurrent net-

works, which can then be utilized to tackle challenging sequence issues in machine learning

and produce cutting-edge outcomes. Memory blocks in LSTM networks are connected by lay-

ers as opposed to neurons [31].

It is easy to understand the temporal relation between sequences with the LSTM functional-

ity as depicted in Fig 5. Exploding and vanishing gradient issues are resolved by its internal

memory unit and gate mechanism, which are issues with typical RNN training. Input gate,

output gate, forget gate, and cell status are the four significant units that make up the LSTM

model’s internal structure. These three gates are responsible for the Maintenance and updating

of information in cell status. Following Eqs (2)–(7) show the computational process

qt ¼ sðpq½pt � 1; yt� þ bqÞ ð2Þ

rt ¼ sðpw½pt � 1; yt� þ brÞ ð3Þ

st ¼ sðpe½pt � 1; yt� þ bsÞ ð4Þ

wt ¼ tanhðpr½pt � 1; yt� þ bwÞ ð5Þ

ut ¼ ft ∗ ut � 1þ rt ∗wt ð6Þ
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vt ¼ ot ∗ tanhðutÞ ð7Þ

σ is called the sigmoid activation function. The forget, input, and output gates values are

denoted by the notations qt, rt, and st, respectively. The memory cell is referred to as ut and

updating and activating the present cell status is at. The output vector result at time t is repre-

sented by vectors vt and yt, respectively. pq,r,w,s and bq,r,w,s are the bias vectors and the

weights matrices, respectively [32, 33]. Network Parameters of LSTM: Trainable weights also

known as trainable parameters are used to identify the complexity of the network. The layers

of the network such as input layer, output layer and hidden layer exemplify the trainable

Fig 5. LSTM architecture in proposed work.

https://doi.org/10.1371/journal.pone.0285456.g005
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weights into the structure and internal connections of LSTM. The total number of tranable

weights can be calculated as:

TWS ¼ 4iLþ 4LLþ 4Lþ oLþ o ð8Þ

Where, TWS = Number of trainable weights, i = inputs, o = output, L = LSTM cells in the hid-

den layers. The difference between the poor and good performance means the selection of fin-

est parameters for the neural network architecture.

Results

This paper proposed a method to predict energy consumption of thirteen regions. The method

utilized the publicly available dataset of twelve region on Kaggle and one region (Najran) data

from https://data.gov.sa/Data/en/dataset. Following libraries have been used for energy predic-

tion: Numpy array, pandas, tensorflow, matplotlib, sequential model, from keras layers: dense,

RNN, LSTM, and dropout.

Model evaluation

The following Regression Metrics: root mean squared error (RMSE), relative root mean

squared error (RMSE), mean absolute bias error (MABE), coefficient of determination (R2),

mean bias error (MBE) and mean absolute percentage error (MAPE) help in evaluating

machine Learning models. Statistical equations of the regression metrics have been shown in

Eqs (9)–(14) where uw represents the acutal value, nw is the predicted value, and K represent

number of observations.

MBE ¼
1

k

Xk

w¼1

ðuw � nwÞ
2

ð9Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k

Xk

w¼1

ðuw � nwÞ
2

s

ð10Þ

MABE ¼
1

k

Xk

w¼1

juw � nwj ð11Þ

R2 ¼ 1 �

Pk
w¼1
ðuw � nwÞ

2

Pk
w¼1
ðuw � �nwÞ

2
ð12Þ

MAPE ¼
1

k

Xk

w¼1

�
�
�
�
uw � nw

uw

�
�
�
� ð13Þ

rRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMSE
Pk

w¼1
n2
w

∗100

s

ð14Þ
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Energy prediction of proposed model

Figs 6–18 represent the proposed model’s absolute and predicted values on thirteen regions’

energy consumption. In the figures, the solid red line shows the actual value of all regions. In

contrast, the dotted line (different colors for each region) exhibits the predicted value of the

proposed model. The X-axis holds several testing hours (TH) while the Y-axis sets out the nor-

malized value of hourly energy consumption of all regions. Fig 6 shows the energy consump-

tion of the NI region, where 10,000 hours are used as a testing unit to predict the performance

of the proposed model. Fig 7 represents the energy expenditure of the AEP region in which

25,000 hours are tested to analyze the regression metrics of the proposed model. Fig 8 exhibits

the power utilization of the DAYTON region, having 20,000 testing hours for the validation of

predicted results. Fig 9 displays the electricity consumption of the EKPC region where 8000

testing hours are mapped on the predicted value of the proposed model.

Fig 10 explains the energy consumption of the FE region in which 10,000 hours have been

used to verify obtained results. Fig 11 discusses the energy consumption for the PJME region.

Thirty thousand testing hours are taken to check the performance of the proposed model. The

Fig 6. Energy consumption prediction of NI.

https://doi.org/10.1371/journal.pone.0285456.g006

Fig 7. Energy consumption prediction of AEP.

https://doi.org/10.1371/journal.pone.0285456.g007
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Fig 8. Energy consumption prediction of DAYTON.

https://doi.org/10.1371/journal.pone.0285456.g008

Fig 9. Energy consumption prediction of EKPC.

https://doi.org/10.1371/journal.pone.0285456.g009

Fig 10. Energy consumption prediction of FE.

https://doi.org/10.1371/journal.pone.0285456.g010
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Fig 11. Energy consumption prediction of PJME.

https://doi.org/10.1371/journal.pone.0285456.g011

Fig 12. Energy consumption prediction of PJMW.

https://doi.org/10.1371/journal.pone.0285456.g012

Fig 13. Energy consumption prediction of COMED.

https://doi.org/10.1371/journal.pone.0285456.g013
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Fig 14. Energy consumption prediction of DEOK.

https://doi.org/10.1371/journal.pone.0285456.g014

Fig 15. Energy consumption prediction of DUQ.

https://doi.org/10.1371/journal.pone.0285456.g015

Fig 16. Energy consumption prediction of DOM.

https://doi.org/10.1371/journal.pone.0285456.g016
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energy consumption for the PJMW region is shown in Fig 12, in which 30,000 testing hours

are captured to validate the proposed model’s performance. Fig 13 discusses the energy con-

sumption for the COMED region that addresses the prediction of 14,000 testing hours. The

energy consumption for the DEOK region is shown in Fig 14, where the projection of actual

and predicted values of 14,000 hours are displayed. The energy usage for the DUQ region is

covered in Fig 15. For DUQ, 14,000 hours are used for testing the proposed model. Fig 16 dis-

plays the DOM region’s energy usage. It depicts the consumption of 22,000 hours to verify the

accuracy of the proposed model. Fig 17 shows how much energy is used in the PJML area. In

this region, 6000 testing hours are considered for analyzing system performance. In Fig 18, the

finding for the Najran region is displayed. For Najran, 20,000 testing hours are utilized to ana-

lyze the proposed model’s prediction accuracy.

In terms of R2 values, the proposed model achieves higher in the PJME region and lower in

the PJM_Load region. In the case of MAPE values, the proposed model reaches a higher error

value in PJM_Load and lower in the DAYTON region. In terms of MBE values, the proposed

model attains higher in the EKPC region and lower in the PJME region. Regarding RMSE val-

ues, the proposed model is secured higher in the EKPC region and lower in the COMED

Fig 17. Energy consumption prediction of PJM_Load.

https://doi.org/10.1371/journal.pone.0285456.g017

Fig 18. Energy consumption prediction of Najran.

https://doi.org/10.1371/journal.pone.0285456.g018
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region. Regarding rRMSE values, the proposed model obtains higher in PJM_Load region and

lower in the PJME region. In terms of MABE values, the proposed model gains higher in

PJME_Load region and lower in the PJME region.

The proposed study analyzes the data of 13 regions and exhibits the values of R2, MAPE,

MBE, RMSE, rRMSE, and MABE as shown in Table 2. RNN and LSTM models were

ensembled to get the results of these values. The average accuracy rate for R2 is 0.9731. while

MAPE gives an average of 1.9238, MBE offers 0.0281, RMSE gives 0.1658, rRMSE exhibits

0.0326, and MABE gives a value of 0.1809. A comparison experiment is designed between

existing research studies and proposed work, showing that the accuracy rate is higher for a

given energy consumption dataset. The main focus is to come by an improved outcome at the

results. As Table 3 shows [34], has excellent accuracy rates, but it only offers the potential gains

of MAPE and RMSE.

Similarly, in [35], inspects the potential gains of MAPE. It‘s values help to get accuracy

rates, yet it gives no direction about other indispensable factors. In [36], shows the potential

gains of R2 and RMSE [37], looks at R2, MAPE, and RMSE, while [38] shows MAPE and

RMSE. This vast number of studies has proposed a savvy thought for deciding power use for

the future, yet the fundamental drawback is the shortfall of critical components and recipes.

Discussion

The review proposed an ensemble model for gauging power utilization in the hourly time

frame. The proposed model plans to convey the best outcomes in forecasting energy

Table 3. Comparison of regression analysis.

References R2 MAPE MBE RMSE rRMSE MABE

[34] - 14.6 - 444.5071 - -

[35] - 35.53 - - - -

[36] 0.3806 - - 0.6328 - -

[37] 0.985 2.889 - 4.127 -

[38] - 43.97 - 0.5558 - -

Proposed Model 0.9731 1.9238 0.0281 0.1658 0.0326 0.1809

https://doi.org/10.1371/journal.pone.0285456.t003

Table 2. Regression analysis of proposed models.

Regions TH R2 MAPE MBE RMSE rRMSE MABE

AEP 25000 0.9742 1.8641 0.024 0.155 0.0253 0.0986

COMED 14000 0.9761 2.187 0.0224 0.1497 0.0337 0.0943

DAYTON 20000 0.975 1.6523 0.0246 0.1568 0.0283 0.0985

DEOK 14000 0.9722 2.4265 0.0297 0.1723 0.034 0.1118

DOM 22000 0.9731 1.7218 0.029 0.1704 0.0266 0.1045

DUQ 14000 0.9792 1.8522 0.0227 0.1506 0.0242 0.0993

EKPC 8000 0.9474 1.8535 0.0587 0.2424 0.0517 0.1485

FE 10000 0.9762 1.8157 0.0229 0.1512 0.0397 0.997

NI 10000 0.9791 1.953 0.0228 0.1509 0.0372 0.0957

PJME 30000 0.9814 1.8231 0.0191 0.1383 0.0211 0.0874

PJMW 30000 0.9746 1.6844 0.0281 0.1677 0.0225 0.1066

PJM_LOAD 6000 0.9689 2.4515 0.0356 0.1888 0.0512 0.1289

NAJRAN 20000 0.973117 1.940425 0.027969 0.166175 0.03295833 0.180925

https://doi.org/10.1371/journal.pone.0285456.t002
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consumption. The ensemble approach utilized in this research makes the precision rate higher.

A solitary calculation can be utilized to foresee the exact pace of the given dataset, yet it isn’t

dependable in some cases. Gathering at least two models can offer far and away superior out-

comes and increment the general accuracy rate. The study makes a grouping of algorithms

(RNN and LSTM), the initial load might vary however the plan for these models is kept some-

thing very similar.

The methodology is applied to the given dataset to make veritable determining. The field of

group learning is generally around mulled over and there are various minor takeoffs from this

direct point. RNN is utilized in this concentrate because of its outperformance in estimating

the utilization of energy. RNN is the most ideal decision for dealing with a gathering of compa-

rable data. RNNs apply loads to the current and the previous data. Moreover, a tedious neural

network will similarly change the heaps for both the tendency to dive and backpropagation

through time. The given dataset contains the previous data of quite a while (various periods of

time for every region). This data is useful for RNN to make predictions about the impending

years. Alongside RNN, LSTM is utilized in this research to make the outcomes more depend-

able and bona fide.

The mix of LSTM and RNN guarantees a higher exactness rate for gauging future utiliza-

tion. LSTM is a momentous sort of RNN, which shows excellent execution on a tremendous

assortment of issues. LSTM networks track down significant applications in the going with

areas: Language showing, Machine translation, penmanship affirmation, Picture captioning,

Picture age using thought models, and Question tending. It is different RNNs that are great for

learning extended-length conditions, particularly in get-together deciding issues. LSTM has

discussion affiliations, i.e., it is ready for dealing with the whole movement of data, other than

single server farms like pictures.

A correlation exploration is held between existing research and proposed work which

clearly shows the precision rate is higher for a given dataset of power consumption. The

research analyzes precision pace of R2, MAPE, MBE, RMSE, rRmse, and MABE. The inspira-

tion is to get a better result at the outcomes. As the table shows [34], has impressive precision

rates yet it just offers the upsides of MAPE and RMSE. Anticipating the precision of one more

significant calculation in its research is troublesome.

Likewise, in [35] authors examine the upsides of MAPE only. MAPE values are useful to get

precision rates, yet it provides no guidance about other vital variables. Some other studies are

likewise audited for a similar reason, for example [36], shows the upsides of R2 and RMSE

[37], examines R2, MAPE, and RMSE, while [38] shows MAPE and RMSE. This large number

of studies have proposed a smart thought for determining power utilization for the future, yet

the main disadvantage is the absence of significant elements and recipes. This prompts the

point that the results show that both LSTM and RNN offer the best results with higher accu-

racy and the blunder rate is extremely low. Moreover, LSTM and RNN furthermore assisted in

choosing most minor blunders conversely, with various models, for instance, ARIMA and

SARIMA which didn’t offer satisfactory results.

Conclusion

This study uses LSTM and RNN because of their capacity to manage the consecutive informa-

tion and extraordinary attributes of keeping up with transient connections in long haul. The

proposed model aides in deciding different forecasting models for energy consumption. A

comparison experiment is held between previously existing studies and proposed work which

obviously shows the accuracy rate is higher for given dataset of power consumption. The data-

set is partitioned into 13 distinct regions and every locale shows the hourly energy
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consumption for a particular time frame length. The model is prepared to manage the dataset

in time series grouping. When the model is prepared and optimal values are determined, the

best LSTM and RNN network is applied to the information to foresee hourly utilization of

energy. The forecasting is made for the next years in the dataset. The outcomes show that

ensembled LSTM and RNN offer the best outcomes with higher precision and the error rate is

very low. Besides, LSTM and RNN additionally helped in deciding most minor errors as con-

trast with different models, for example, ARIMA and SARIMA which didn’t offer fulfilled

results. The future motivation is to create hybrid models with much higher precision and

higher paces. The work can be additionally improved by adding records of a few other helpful

variables to cover more urgent perspectives. The proposed stud provides a clear guidance to

forecasting energy consumption by outflanking different models and can be utilized as a most

ideal decision for future expectations.
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