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Editors: Nada Lavrač, Hiroshi Motoda, Tom Fawcett

Abstract. We focus on the problem of predicting functional properties of the proteins corresponding to genes
in the yeast genome. Our goal is to study the effectiveness of approaches that utilize all data sources that are
available in this problem setting, including relational data, abstracts of research papers, and unlabeled data. We
investigate a propositionalization approach which uses relational gene interaction data. We study the benefit of text
classification and information extraction for utilizing a collection of scientific abstracts. We study transduction
and co-training for using unlabeled data. We report on both, positive and negative results on the investigated
approaches. The studied tasks are KDD Cup tasks of 2001 and 2002. The solutions which we describe achieved
the highest score for task 2 in 2001, the fourth rank for task 3 in 2001, the highest score for one of the two subtasks
and the third place for the overall task 2 in 2002.
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1. Introduction

One of the principal challenges of bioinformatics is to generate models which describe the
relation between genetic information and the corresponding cellular processes. Such models
have to explain—and can be derived from—available experimental data. Available data in
functional genomics include relational information (gene interactions), textual repositories
like MEDLINE, and unlabeled data (e.g., genes with unknown functional properties). The
goal of our work is to study the effectiveness of methods for learning from these types of
data in the application field of functional genomics.

Our empirical studies focus on a set of problems in our application field. We aim at
predicting the high-level function and the localization of the protein corresponding to a
given yeast gene. We furthermore aim at predicting whether a given gene is involved in the
regulation of the aryl hydrocarbon receptor (AhR) signaling pathway. The latter problem
serves as a prototypical problem of building a functional model from data generated by
gene deletion experiments. The data which we use have been provided for the KDD Cups
2001 (Cheng et al., 2002) and 2002 (Craven, 2002).

Propositional machine learning algorithms require the instances to consist of a fixed set of
attribute values. This requirement, however, is not met by intrinsically relational data such as
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gene interactions. Inductive logic programming algorithms address this problem by learning
logic programs (e.g., Džeroski & Lavrač, 2001). Approaches have been developed out of
inductive logic programming which propositionalize relational data—i.e., cast a controlled
amount of relational information into attributes (e.g., Kramer, Lavrač, & Flach, 2001; Krogel
& Wrobel, 2001). The latter approach allows to use efficient and accurate learning algorithms
such as the Support Vector Machine (SVM) after the propositionalization step.

Abstracts of scientific papers that are available in the MEDLINE collection contain
information that can be helpful for model building. Many researchers study algorithms that
extract information from literature (Hirschmann et al., 2002; Leek, 1997; Fukuda et al.,
1998; Craven et al., 2000; Hahn, Romacker, & Schulz, 2002). We will see that even simple
dictionary-based extractors (Fukuda et al., 1998) can effectively support model building in
our application area.

For the focused application area, unlabeled data is usually inexpensive and readily avail-
able. Here, an unlabeled instance is a gene with unknown function or localization, or a gene
whose deletion has an unknown effect, respectively. Approaches to semi-supervised learning
include transduction (Joachims, 1999b) and co-training (Blum & Mitchell, 1998). Recent
results seem to indicate that semi-supervised learning is typically beneficial when the la-
beled sample is small (e.g., Nigam, Lafferty, & McCallum, 1999; Bruce, 2001; Kockelkorn,
Lüneburg, & Scheffer, 2003). We will challenge this hypothesis for the functional genomics
application area.

Our studies contribute several results. We obtain positive results on the effectiveness
of propositionalization for learning in functional genomics, and on using dictionary-based
information extraction to generate attributes which improve the model building step. We
refute the general belief of some researchers, that transduction and co-training improve
learning in all practically relevant cases (at least when few labeled data are available),
and investigate on the reason for the failure of co-training. Finally, we describe a system
which effectively utilizes the available data sources to solve a range of functional genomics
problems. The effectiveness of our solution is assessed by its scores in several tasks of KDD
Cup competitions.

The rest of this paper is organized as follows. In Section 2, we discuss the application
and data set in more detail, and describe the experimental setting. In Section 3, we discuss
the utilization of the relational gene-interaction data. Section 4 focuses on our studies on
using text mining techniques to utilize information in MEDLINE abstracts, while Section 5
presents results on using unlabeled data. A discussion of our competition results is sketched
in Section 6; a discussion of related work and lessons learned is provided in Section 7.

2. Problem description and experimental setting

Our task is to predict properties of the proteins corresponding to a given yeast gene. These
properties are (1) one (or several) of 15 categories of protein functions, (2) the localization
(one of 15 different parts of the cell), and (3) the involvement in the regulation of the AhR
signaling pathway. The AhR is a basic helix-loop-helix transcription factor with the ability
to bind both synthetic chemicals such as dioxins and naturally-occurring phytochemicals,
sterols and heme breakdown products. This receptor plays an important developmental and
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physiological role. Problems (1) and (2) have been addressed in KDD Cup 2001 whereas
problem (3) is one of the tasks of KDD Cup 2002.

The available training data for problem (1) and (2) contain 862 training and 381 test
instances (Cheng et al., 2002). The available training data consist of tables “gene-relation”
and “gene-interaction”. Table “gene-relation” relates the training genes to attributes which
refer to the chromosome on which the genes appear, to whether the gene is essential for
survival, observable characteristics of the phenotype, structural category of the protein, the
existence of characteristic motifs in the amino acid sequence of the protein, and whether the
protein forms larger proteins with others. The relation “gene-interaction” specifies which
genes interact with one another.

The data for problem (3) has been obtained in experiments with yeast strains using a gene
deletion array (Craven, 2002). Each instance in the data set represents a trial in which a
single gene is “knocked out” and the activity of a target system (AhR signaling) is measured.
We distinguish genes whose deletion affects the target system (class “change”), affects the
entire cell (“control”), or does not have an effect (“no change”). We learn two discriminators:
change vs. control and no change (“narrow positive class” problem) and change and control
vs. no change (“broad positive class”).

The data contain 3,018 training and 1,489 test examples. 2,934 fall into the class no
change, 38 into change and 45 into control. The attributes describe function, localization
and protein class of each gene (hierarchical attributes with four to five levels). Again, a
relation describes gene interactions. A table relates genes to 15,235 relevant abstracts in
the MEDLINE repository. We find many missing values in the tables: for all 6,397 genes
described by the database, we have information about functions for only 3,831, about
localizations for 2,357, about protein classes for 999, interactions for 1,447, and abstracts
for 3,329 cases.

We assess the hypotheses by their area under the ROC curve. The Receiver Operating
Characteristic (ROC) curve (Bradley, 1997; Provost, Fawcett, & Kohavi, 1998) details
the performance of a decision function in terms of the rates of true positives and false
positives that are obtained by comparing the decision function for the positive class against
decreasingly large threshold values. The area under the ROC curve is equal to the probability
that, when we draw one positive and one negative example at random, the decision function
will assign a higher value to the positive example than to the negative. Hence, the area under
the ROC curve (called the AUC performance) is a very natural measure of the ability of
a decision function to separate positive from negative examples. An AUC performance of
0.5 corresponds to random guessing whereas an area of 1 is obtained by a perfect separator.
We estimate the standard deviation of the AUC performance using the Wilcoxon statistics
(Bradley, 1997).

When assessing the benefit of methods, we compare ROC curves of decision functions
for some of the classes. For problems (1) and (2)—KDD Cup 2001—we have to restrict our
comparative studies to the three most frequent class values because the remaining classes
are represented by too few instances to obtain reliable performance estimates. For problem
(3)—KDD Cup 2002—we study the areas under two ROC curves for the “narrow positive
class” (change vs. control and no change) and the “broad positive class” problem (change
and control vs. no change).
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After some initial cross validation experiments on the training data with SVMlight

(Joachims, 1999a) and J48 from the WEKA library (Witten & Frank, 1999), we selected
the Support Vector Machine SVMlight with linear kernel and parameter settings c = 2,
j = |negative examples|

|positive examples| as core machine learning algorithm for all problems. SVMlight re-
quires the training data to consist of (potentially high dimensional) numerical attribute
vectors.

In the following experiments, we study the influence of approaches to creating new
attributes from the available data on the performance of the resulting classifiers. In each
experiment, we add or remove one (or a set of) attributes to or from the attribute configuration
which we used for our competition submissions and compare the resulting classifier to this
competition classifier. We used cross validation on the training data to select the attribute
configuration for our competition submissions; but since the test data is available now, we
use all available data for our retrospective studies.

3. Propositionalization

The gene interaction data contain pairs of names of interacting genes. In order to inte-
grate information about interaction pairs into our solution, we have to generate attributes
from these relations. This situation is rather typical as relational databases usually contain
more than one table with foreign key relationships between them. We use the RELAGGS
algorithm (Krogel & Wrobel, 2001) that implements ideas of extending the usual frame-
work of propositionalization (Kramer, Lavrač, & Flach, 2001) with the application of SQL
aggregation functions.

The RELAGGS algorithm takes as input a set of database tables, with one attribute of
one table being marked as target. The target table is to describe one instance per line.
The algorithm exploits foreign key relationships to compute (user selected) outer joins
that always include the target table. Note that, while in the target table each instance was
represented by a single line, the result of a join will generally contain multiple lines per
instance; the lines representing an instance may differ in several attributes. The algorithm
now summarizes these lines in one single line per instance, collapsing the set of values of
non-unique attributes into one single value by means of aggregation functions.

In order to understand this process, consider the following example. For problem (3), we
have a table Train class with attributes Gene id and the target attribute Class. Furthermore,
we have a table Interaction with Gene id1 and Gene id2 and, slightly simplified, a table
Function with attributes Gene id and Fct. Figure 1, first line, shows an example database
with three genes, G1, G2, and G3.

Our goal is to create a table that summarizes, for each example gene, information about
its functions as well as about the functions of all genes that interact with that example.
We compute two joins, displayed in the second line of figure 1. We join Train class
and Function, resulting in Table Join 1. Now we compute Join 2 which provides infor-
mation about the functions of all genes interacting with a given example gene. Join 2
is based on the SQL statement “select t1.Gene id, t2.Gene id2, t3.Fct from
Train class as t1, Interaction as t2, Function as t3 where t1.Gene id
= t2.Gene id1 and t2.Gene id2 = t3.Gene id”.
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Figure 1. (First line) Excerpt of the original database with artificial entries; arrows indicate foreign key rela-
tionships. (Second line) Results of joins of tables Train class, Interaction and Function. (Third line) Result after
aggregation.

The result may generally contain multiple lines for a single entry of the target table. Here,
this is the case for G1, because it interacts with gene G2 which has multiple functions, and it
also interacts with G3 which has a single function. These several lines for one example have
to be collapsed into one single line. This is achieved in the aggregation step by generating
a column for each possible value of Fct and then counting the number of occurrences of
those values per example from the target relation.

The final result is obtained after joining the aggregates to the target table; it can be
found in the third line of figure 1. Here, attribute names with an extension of “ 1” indicate
functions of the instances themselves, whereas an extension of “ 2” refers to functions of
genes that interact with the example gene described in the current line. For instance, value
“2” in column Fct growth 2 for G1 means here that there are two interaction partners of
G1 of function “growth”; that is, G2 and G3. Value “1” for Fct growth 1 in the same line
indicates that G1 has function “growth” itself, too.

We generally handle set-valued and hierarchical attributes by introducing one attribute
per value on each hierarchy level. We enrich table interaction by making symmetry explicit;
i.e., we introduce an entry (B, A) for every (A, B) in the original table.
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Table 1. AUC performance for problems (1) and (2) with and without relational information.

Class Without With

Function growth 0.872 ± 0.01 0.882 ± 0.014

Function transcription 0.886 ± 0.005 0.899 ± 0.011

Function transport 0.893 ± 0.0099 0.918 ± 0.013

Localization cytoplasm 0.861 ± 0.0078 0.865 ± 0.014

Localization mitochondria 0.909 ± 0.013 0.948 ± 0.0098

Localization nucleus 0.941 ± 0.0054 0.944 ± 0.011

Table 2. AUC performance for problem (3) with and without additional information from gene interactions.

Without First level Second level Third level

Narrow 0.617 ± 0.0592 0.707 ± 0.050 0.685 ± 0.0527 0.6546 ± 0.055

Broad 0.599 ± 0.040 0.598 ± 0.049 0.630 ± 0.039 0.597 ± 0.040

For problems (1) and (2), we compare the decision functions with and without the in-
teraction attributes, generated by the RELAGGS algorithm in Table 1 (using 10-fold cross
validation). The observed AUC performance obtained when using the interaction informa-
tion is in every single case higher; the improvement exceeds two standard deviations in two
cases and one standard deviation in two more cases. These data rule out the null hypothesis
that the interaction information does not improve recognition performance. For problem
(3), we compare the performance without and with attributes that reflect first, second, and
third level interactions in Table 2; an n-th level interaction exists between genes A and
B if we have to traverse n interaction relations to reach B from A. We see that first level
interactions perform best for the narrow, and second level interactions are best for the broad
positive class. A significant improvement is achieved for the narrow class, we see a smaller,
insignificant improvement for the broad class.

4. Text mining

In this section, we study two approaches to utilizing relevant information contained in
more than 15,000 available MEDLINE abstracts. We study two approaches: we use a text
classifier to learn the relation between abstracts that are related to a gene and the effect of
that gene being deleted, and we use an information extractor to identify additional gene
properties in the abstracts.

4.1. Assessing classifiers in the presence of textual background knowledge

In this subsection, we discuss a particular difficulty that occurs with the assessment of
classifiers that use information extracted from a text archive. This problem can lead to
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extremely optimistic performance estimates. It can clearly be observed for problems (1)
and (2) (the 2001 KDD Cup problems) and also applies to a broader range of learning tasks.

When assessing the performance of a classifier empirically, it is necessary to use a
database S of instances (x, y) with already known class values as test set. For regular
classification problems, masking the class values is very simple; instances x drawn from S
with masked class values y are identically distributed to “new” instances that are drawn from
the underlying distribution p(x). Hence, unbiased performance estimates can be obtained.

However, the situation is different when, in addition to S, a document collection DocT is
available that may change over time. DocT (or, when the classifier is started in the future,
Doct with t > T ) now becomes part of the input to the classifier f : (x, DocT ) �→ y.
Drawing hold-out examples from the sample S always yields instances with class labels
that may be mentioned in DocT . When the classifier is started at time t (t > T ), then it may
be applied to instances x whose class labels are not yet disclosed in Doct . Therefore, the
hold-out examples (x, DocT ) are not necessarily identically distributed to new instances
(x, Doct ), whose class labels may not yet be mentioned in Doct .

To illustrate this problem, consider a paper which contains the sentence “APR4 localizes
in the cytoplasm” ∈DocT ; a classifier which predicts protein localization can use these
keywords in DocT to predict class label f (APR4, DocT ) = “cytoplasm” for held-out in-
stance APR4. However, when the same classifier is applied at time t > T by a biological
research scientist to a protein with currently unknown localization then—by the definition
of unknown—no available paper in Doct can contain a similar sentence for that new protein.
A keyword based classifier will inevitably perform worse for truly new instances than for
held-out instances in S.

An unbiased performance estimate could be obtained by training with (x1, Doc1), . . . ,
(xt , Doct ) and testing with (xt+1, Doct+1) (successively for growing values of t), where
Doct contains all documents that have been available when xt has been drawn from p(x).
This procedure is similar to the standard procedure for assessing time series predictors. It
requires each instance in the sample to be marked with the time when its classification was
requested, and each document to possess a time stamp.

For the function and localization prediction problem of the 2001 challenge—problems
(1) and (2)—this problem prevents us from obtaining useful performance estimates. We
can use the function and localization extractor described in Section 4.2 to look up these
known properties in MEDLINE abstracts. Using these extracted attributes, it is trivial to
predict function and localization of proteins. But the resulting classifier would be useless for
predicting function and localization of the approximately 40% yeast genes whose functions
and localizations are yet unknown. For task (3), the problem is less severe. The data have
been generated for a research project on the AhR signaling pathway and we can assume
that the class value (information on whether deleting the gene will have an impact on the
target system) is not to be found in the MEDLINE abstracts.

4.2. Information extraction

The attributes of the original data set for problem (3) contain very many missing values; in
particular, many function and localization values are missing. We therefore want to study
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whether an information extraction algorithm can effectively be used to search for missing
information in the abstracts. We follow a dictionary-based approach (Fukuda et al., 1998).
From the hierarchical text files that contain possible values for the attributes function,
localization, and protein class, we manually define a thesaurus that lists, for each of the
possible values of these attributes, a number of plausible terms that can be used to refer to
this value. These terms have to be so specific that they are not used with different meanings
in the abstracts than those searched for. At the same time, they have to be general enough
to have a chance to occur in the abstracts.

The terms were constructed according to a few principles that proved to be useful ac-
cording to some preliminary investigations into the search results produced.

1. Simple words and word groups as names for functions, localizations, or protein classes
are entered as such into the thesaurus, e.g., “nucleus”.

2. For central singular terms in the thesaurus, we also introduce the plural form, and vice
versa; e.g., “nuclei” for “nucleus”.

3. Multiply occurring words in the hierarchy files are equipped with some descriptive
word derived from the superordinate name before adding it to the thesaurus; e.g., “alpha
adaptin” instead of “alpha”.

4. Long word groups are split at connectives such as “and”, “or”, and only the (possibly
enhanced) splitting results were entered into the thesaurus; e.g., “nitrogen and sulfur
utilization” becomes “nitrogen utilization” and “sulfur utilization”.

5. Short word groups are also given in paraphrased variants to the thesaurus; e.g., in addition
to “DNA replication” we introduce “replication of DNA”.

6. Explanations in brackets are extracted and dealt with according to the previous points;
e.g., for “amino acid degradation (catabolism)”.

We concentrate on abstracts that are related to just one gene according to table gene-
abstracts. Here, we do not have to resolve to which of several proteins that are mentioned in
a paper each property refers. However, we do not consider larger syntactic structures than our
search terms, which imposes the risk of being misled in cases such as “not in the nucleus”.
For every protein, we scan the corresponding abstracts for occurrences of the terms in the
thesaurus. On finding a term, the corresponding database tables are appropriately enriched.

Table 3 shows that the information extractor yields a substantial performance improve-
ment (the base line “without” is an attribute set without the extracted information). Surpris-
ingly, the problem can even be solved to some degree using only the information extracted
from the abstracts (“IE only”).

Table 3. Problem (3), additional information from information extraction.

Without With IE only

Narrow 0.590 ± 0.061 0.685 ± 0.052 0.654 ± 0.055

Broad 0.597 ± 0.040 0.630 ± 0.039 0.610 ± 0.044



TEXT MINING, MULTI-RELATIONAL AND SEMI-SUPERVISED LEARNING 69

Table 4. Problem (3), additional information from text classification.

Without With

Narrow 0.685 ± 0.052 0.657 ± 0.055

Broad 0.630 ± 0.039 0.618 ± 0.039

4.3. Text classification

In this section, we study whether the solution to problem (3) can be enhanced by a text
classifier which uses all abstracts that relate to a given gene in order to classify that
gene.

For each protein that is mentioned in at least one abstract, we first build a bag of abstracts
referring to that protein. Abstracts may occur in more than one bag if they refer to multiple
proteins. Thereby, for both, the narrow and broad positive class problem of task (3), we
construct a new text classification problem and a corresponding training set. Each instance x
is a bag of abstracts, the corresponding class label is the protein’s class label. Note, however,
that only roughly half of the proteins are mentioned in at least one abstract. Therefore, the
training set is smaller and the resulting text classifier can only be applied to proteins that
are mentioned in at least one paper.

In order to train text classifiers from the generated training sets we first tokenize the bags,
apply Porter’s stemming algorithm (Porter, 1980), and infer the TFIDF vector from each
bag. Each component of a TFIDF vector corresponds to a word in the dictionary and counts
how often that word occurs in the document (the term frequency), multiplied by the inverse
document frequency, a logarithmically scaled measure of the rareness of that word. The
TFIDF vectors are normalized. Using the TFIDF vectors as training set, we train an SVM
classifier. The trained classifiers yield a prediction for the hold-out instances that we would
like to utilize. The value of the decision function now serves as an additional attribute to
the top-level SVM that processes the categorical attributes and propositionalized relational
data.

Table 4 compares the performance of the SVM decision function with and without the
additional attribute generated by the text classifier. For both classification problems, we
observe a decrease in accuracy. The differences are not significant, but we do not achieve
an improvement by additionally using the text classification attribute.

5. Utilizing unlabeled data

Several approaches are known that can utilize unlabeled examples available in addition to
labeled positive and negative samples. For the Support Vector Machine, the transduction
approach (Joachims, 1999b) applies. Independent of the learning algorithm used, co-training
(Blum & Mitchell, 1998) can be applied in all cases in which the available attributes can be
split into two independent and compatible attribute subsets.
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5.1. Transduction

The transductive SVM (Joachims, 1999b) uses unlabeled examples to refine the weight
vector that maximizes the margin between separating hyperplane and labeled and unlabeled
examples.

The optimization problem which the SVM learning procedure solves is to find w and b
such that yi (wxi + b) + ξi ≥ 1 for all examples (all instances lie on the “correct” side of
the plane), and |w| be minimized (i.e., the margin is maximized). The SVMlight software
package (Joachims, 1999a) implements an efficient optimization algorithm which solves
optimization problem 1.

Optimization Problem 1. Given data ((x1, y1), . . . , (xm, ym)); over all w, b, minimize
|w|2 + ∑

i ξi , subject to constraints ∀m
i=1 yi (wxi + b) + ξi ≥ 1 and ∀m

i=1ξi ≥ 0.

The transductive Support Vector Machine (TSVM; Joachims, 1999b) furthermore con-
siders unlabeled data. This unlabeled data can (but need not) be a holdout set which the
SVM is to classify. In transductive support vector learning, the optimization problem is
reformulated such that the margin between all (labeled and unlabeled) examples and hy-
perplane is maximized. However, only for the labeled examples we know on which side of
the hyperplane the instances have to lie.

Optimization Problem 2. Given labeled data ((x1, y1), . . . , (xm, ym)) and unlabeled data
(x∗

1 , . . . , x∗
k ); over all w, b, (y∗

1 , . . . , y∗
k ), minimize |w|2 + ∑

i ξi , subject to the constraints
∀m

i=1 yi (wxi + b) + ξi ≥ 1, ∀m
i=1 y∗

i (wx∗
i + b) + ξi ≥ 1, and ∀m

i=1ξi ≥ 0.

The TSVM algorithm starts by learning parameters from the labeled data and labels the
unlabeled data using these parameters. It iterates a training step and switches the labels of
the unlabeled data such that optimization criterion 2 is maximized. The influence of the
unlabeled data is increased incrementally.

We compare the “vanilla” Support Vector Machine (using the attributes which gave so
far the best experimental results) to the transductive SVM (using identical attributes) which
utilizes the test instances (with removed class labels) for training. Training and test instances
are equal for both runs of the SVM.

For problems (1) and (2), Table 5 compares 10-fold cross validation results of the “vanilla”
SVM to the TSVM, using the most frequent class value for each of the two classification
problems. In both cases, transduction significantly deteriorates performance although it has
additional information (the unlabeled hold-out instances) available. Given these negative
results and our previous positive experiences with TSVM for text classification problems
as well as results by Joachims (1999a), we hypothesized that transduction is only beneficial
if only few labeled data are available. In order to validate this hypothesis, we averaged 10
iterations in which we drew only 5 labeled positive examples (and 12 and 20 negatives,
respectively) and used all remaining instances as unlabeled data. Table 5 shows that trans-
duction still dramatically decreases classifier performance and thus refutes our hypothesis.
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Table 5. Transduction results for problems (1) and (2).

SVM TSVM

Function growth, 150 positives 0.839 ± 0.0055 0.817 ± 0.0081

Location cytoplasm, all data 0.833 ± 0.0095 0.695 ± 0.016

Function growth, 5 positives 0.665 ± 0.005 0.546 ± 0.0068

Location cytoplasm, 5 positives 0.616 ± 0.00651 0.554 ± 0.011

For problem (3), the transductive SVM decreased the AUC for the broad class from 0.063
(±0.039) to 0.60 (±0.04) and increased AUC for the narrow class from 0.685 (±0.052) to
0.695 (±0.05). Both differences are well below the standard deviations and are therefore in-
significant. This result is disappointing; in particular, as the transductive SVM dramatically
increases computation time.

5.2. Co-training

Blum and Mitchell (1998) have proposed the co-training algorithm which splits the available
attributes V into two disjoint subsets V1 and V2. A labeled example (x, a) is then viewed as
(x1, x2, a) where x1 contains the values of the attributes in V1 and x2 the values of attributes
in V2.

The idea of co-training is to learn two classifiers f 1(x1) and f 2(x2) which bootstrap each
other by providing each other with labels for the unlabeled data. Co-training is applicable
when either attribute set suffices to learn the target f —i.e., there are classifiers f 1 and f 2

such that for all x : f 1(x1) = f 2(x2) = f (x) (the compatibility assumption). When the views
are furthermore independent given the class labels—P(x1 | f (x), x2) = P(x1 | f (x))—then
the co-training algorithm labels unlabeled examples in a way that is essentially equivalent
to drawing labeled data at random (Blum & Mitchell, 1998). Empirical studies (Muslea,
Kloblock, & Minton, 2002a; Kiritchenko & Matwin, 2002) show that co-training can im-
prove classifier performance even when the assumptions are violated to some extent.

Let, for instance, V1 be the items of the database and V2 the words occurring in the
abstracts that relate to a protein. f 1(x1) and f 2(x2) are trained from the same positive
and negative examples. Now f 1 selects two examples from the unlabeled data that it most
confidently rates positive and negative, respectively, and adds them to the labeled examples
for f 2. If the representations in the two views are truly independent, then the new examples
are randomly drawn positive and negative examples for f 2. Now f 2 selects two unlabeled
examples for f 1, the two hypotheses are retrained, and the process recurs. The algorithm
is presented in Table 6.

Our goal in this set of experiments is to validate whether co-training can effectively
utilize the information contained in the unlabeled data and thereby increase the quality of
the resulting decision function.

For problems (1) and (2), there is no “natural” split of the attributes that seems likely
to lead to independence between the subsets. We therefore split the available attributes at
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Table 6. Co-training algorithm.

Input: Labeled examples Dl in views V1 and V2; unlabeled data Du ; number of iterations T ; “step size”
n p and nn .

1. Train f 1
0 and f 2

0 on Dl using attribute sets V1 and V2, respectively.

2. For i = 1 . . . T until Du = ∅:

a) For v=1 . . . 2: Remove n p elements with greatest f v
i−1(x∗

j ), from Du and add (x∗
j , +1) to Dl .

b) For v=1 . . . 2: Remove nn elements with smallest f v
i−1(x∗

j ), from Du , add (x∗
j , −1) to Dl .

c) Train f 1
i and f 2

i on Dl using attribute sets V1 and V2, respectively.

3. Return the combined classifier f (x) = f 1
T (x1) + f 2

T (x2).

random. In each experiment, we average ten co-training curves for distinct attribute splits.
Figure 4 (left hand side) shows that the performance of the decision functions decreases
with the co-training iterations, depending on the labeled sample size (“157+340” indicates
157 positive and 340 negative labeled examples).

For problem (3), we try to minimize the dependence between the two attribute sets by
choosing the information extracted from the abstracts together with relational attributes
extracted from the protein interaction tables as the first set, and all other attributes as the
second set of attributes (referred to as the “natural” attribute split in the following). As
control strategy, we randomly partition the attributes into two subsets.

Figure 2 (left) shows how the AUC develops over 200 iterations of co-training using
the “natural” attribute split. Unfortunately, the performance does not improve over the co-
training iterations; the standard deviations are around 0.05, the differences between initial
and final AUC are insignificant. Furthermore, the combined decision function (which is the
average of two decision functions based on the two distinct attribute sets) is significantly
worse than one single decision function which can base its decision on all attributes (this
baseline classifier achieves 0.63±0.04 for the broad and 0.685±0.05 for the narrow class)!
In case of randomly partitioned attribute sets (figure 2, right hand side, shows the average
AUC over six random splits), the average AUC decreases significantly over the co-training
iterations for the broad and seems to decrease (but not significantly) for the narrow class.

Figure 2. Co-training results for problem (3), yeast gene deletion.
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Figure 3. Compatibility of views for function growth and localization cytoplasm.

Like for transduction, our hypothesis was that co-training should at least not deteriorate
classifier performance, and should improve performance when only few labeled training
data are available. These hypotheses are refuted for the studied problems.

Why does co-training fail to improve classification results in this application domain?
We investigate the degree to which the compatibility and independence assumptions are
satisfied; we focus our investigations on recognizing the functional class “growth” and
the localization class “cytoplasm” because, for these classes, sufficiently many labeled
data are available to obtain reliable AUC estimates. Co-training depends on the existence
of accurate decision functions using either attribute subset. Figure 3 compares the AUC
performance of a decision function that uses all available attributes (depending on the
labeled sample size) to the decision function that uses a randomly drawn 50% of the available
attributes, averaged over 10 different randomly drawn attribute subsets. If the compatibility
assumption was satisfied, then both learning curves would converge to an AUC performance
of one. We observe a modest violation of the compatibility assumption: all attributes yield
an asymptotic AUC performance of about 0.9 for both problems whereas 50% of the
attributes allow for an asymptotic performance of roughly 0.85 for “growth” and 0.8 for
“cytoplasm”.

In each iteration, co-training can only improve the performance if at least one classifier
labels at least one unlabeled instance correctly for which the other classifier currently errs.
When both classifiers agree on every single unlabeled instance, then labeling them does not
create new information for the peer classifier. Let E1 and E2 be binary random variables
that indicate whether either classifier errs for a randomly drawn unlabeled instance. We
use the �2 statistics to measure whether E1 and E2 are independent. When E1 and E2 are
independent, then P(E1, E2) = P(E1)P(E1). Otherwise, �2 (Eq. (1)), a natural measure
of the dependency of the two classifiers, becomes positive.

�2 =
1∑

i=0

1∑

j=0

(P(E1 = i, E1 = j) − P(E1 = i)P(E2 = j))2

P(E1 = i)P(E2 = j)
(1)

When E1 is always equal to E2, then �2 = 1; when E1 and E2 are independent, then
�2 = 0. Note that X2 = m�2 is governed by the χ2 distribution. The larger �2 and the
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Figure 4. Co-training performance and dependency (�2) for function and localization.

sample size m, the less likely are E1 and E2 to be independent. We focus on �2 instead of
X2 because its dimension is independent of the sample size.

Figure 4 shows the dependency, �2, over the co-training iterations and for various labeled
sample sizes for problems (1) and (2). We see that, for both classification problems, the
dependency is very strong for very small sample sizes. No clear trend in the development
of �2 over the co-training iterations can be observed. Our interpretation of this finding is
that, for very small samples, the separator is dominated by the inductive bias of the Support
Vector Machine. For larger samples, �2 converges to a value that is dictated by the (lack
of) independence of the attributes.

In order to identify the range of compatibility levels and �2 values for which co-training
works, we conduct experiments with a semi-artificial control problem. We use an exper-
imental setting described in detail by Muslea, Kloblock, and Minton (2002a)—here, we
sketch it only briefly: starting from the 20 newsgroups data set, we use the messages of four
classes as positive (negative) examples in view V1, of four distinct classes as positive (nega-
tive) examples of view V2. We generate instances of the resulting classification problem by
concatenating positive (negative) examples in V1 with randomly drawn positive (negative)
examples in view V2. This random combination assures that the independence assumption
is perfectly satisfied.

Muslea, Kloblock, and Minton (2002a) introduce a lack of independence by decomposing
positive and negative examples into two or four “clumps” (corresponding to the classes of
the original multi-class problem) and concatenating examples from V1 only with examples
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Figure 5. Compatibility for semi-artificial co-training problem.

of a corresponding clump in V2. We found that this procedure does not introduce suffi-
ciently strong dependencies to substantially deteriorate the performance of co-training. We
therefore use a different mechanism: Each attribute in view V2 is assigned a “peer attribute”
in V1 (V1 and V2 have equally many attributes). With probability pdep, each attribute of
V2 assumes the value of its peer attribute in V1; it assumes its own value with probability
1 − pdep. We obtain perfect independence for pdep = 0 and complete dependence (each
attribute in V2 mirrors its peer from V1) for pdep = 1. We introduce a lack of compatibility
by randomly flipping class labels.

Figure 5 displays the compatibility of the views, depending on the amount of introduced
noise. Figure 6 shows how the effectiveness of co-training deteriorates when we increase
the level of incompatibility (i.e., noise) and the dependencies between the view (“50%
dependency” corresponds to pdep = 0.5). Every curve of figure 6 is an average over 10
trials with different randomly drawn labeled samples.

We see that co-training performs extremely well when the compatibility and independence
assumptions are met, its performance deteriorates as incompatibility and dependencies
between the attribute sets are increased. We see that dependencies between the views lead
to higher dependencies (higher values of �2) between the classifiers. Figure 7 summarizes
the relation between the �2 value of the initial classifiers and the benefit of co-training
(measured in terms of the difference between the AUC performance in the last iteration and
the AUC performance of the initial decision function). Every point in figure 7 corresponds
to one of the co-training curves of figure 6 (for the newsgroups problem) or figure 4 (for
gene function and localization; problems 1 and 2).

We can clearly see a negative correlation between the AUC improvement obtained by
co-training and the value of �2; Figure 7 also shows the result of a linear regression over all
data points. Co-training tends to improve the performance when the dependence between
the initial decision function �2 is below 50%; in our experiments, co-training is always
beneficial for �2 < 10% and always detrimental for �2 > 60%. For problems (1) and (2),
the initial machines have dependencies �2 of between roughly 0.2 and 0.85, causing co-
training to deteriorate the performance.

These observations indicate that the dependence �2 of the initial decision functions is
a crucial parameter that determines whether co-training is able to improve the decision
functions. Note, however, that in order to measure �2 a labeled hold-out set is required.
This requirement constrains the applicability of �2 as a criterion for deciding whether
co-training should be applied in a given situation.
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Figure 6. Co-training performance and classifier dependency (�2) for the semi-artificial newsgroup problem.

Figure 7. Relationship between �2 (classifier dependency) and the performance improvement obtained by
co-training.
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6. Competitive evaluation

In this section, we discuss our competition results and review other winning solutions for
the KDD Cup 2002.

For problems (1) and (2) (KDD Cup 2001 tasks 2 and 3, prediction of gene function and
localization), Mark Krogel submitted classification results of a Support Vector Machine
that used the interaction attributes generated by RELAGGS. Since the gene names were
anonymized, we could not use text mining results; we did not use transduction or co-
training either. The gene interaction attributes generated by RELAGGS made the essential
contribution to the highest score achieved for function prediction, and the fourth highest
score for localization prediction (Cheng et al., 2002).

For problem (3) (KDD Cup 2002 task 2), Krogel et al. (2003a) handed in an ordered list
of gene identifiers that was produced by SVMlight for the narrow positive class problem.
The data used here contained gene name information, information about interacting genes
over two levels, and entries generated by information extraction. We did not include the
text classification attribute and did not use transduction or co-training.

Like for all other teams, the tight competition schedule was a limiting factor for us. We
only generated the classifier for the narrow class problem (we obtained the highest score of
0.68 among the participants), and used this classifier for both, the narrow and broad positive
class. Using the narrow classifier for the broad class, we obtained an AUC performance
of 0.62 which was still enough for a third rank for the overall task. Figure 8 depicts a
comparison of the solutions handed in by all participants, provided by Craven (2002). Each
dot corresponds to a participant; only the winning and honorably mentioned participants are
named. Retrospectively, we can now obtain AUC performances of 0.707 for the narrow and
0.63 for the broad class using two different decision functions.—which sums up to more
than any team could achieve within the competition time frame.

Figure 8. Results of KDD Cup 2002 participants on task 2 (graphics provided by Mark Craven).



78 M.-A. KROGEL AND T. SCHEFFER

The winning solution for KDD Cup 2002 (here, problem 3) used the function and local-
ization attributes, a subset of the words occurring in the relevant abstracts, and one attribute
for each gene that a given gene interacts with (Kowalczyk and Raskutti, 2002). Hence,
this solution uses somewhat less relational information (no explicit information about at-
tributes of interacting genes is represented) and uses a different approach to utilizing the
abstracts. This winning solution obtains an AUC performance that is only slightly lower
than the performance of the solution described here. Similarly, Perera et al. (2002) included
attributes representing hand-selected words in the abstracts and one interaction attribute for
each gene, a value of one expressing an interaction.

Vogel and Axelrod (2002) used function and localization attributes, information extracted
from the gene name, the occurrence of 23 manually selected words in the abstracts that
correspond to the given gene, and variables that indicate whether a gene interacts with certain
groups of genes. Forman (2002), finally, also used function and localization attributes,
the number of genes that a given gene interacts with, and text classification attributes.
These results support our findings that the interaction information and information from the
abstracts are of prominent importance for an accurate prediction.

All winning and “honorably mentioned” solutions of the KDD Cup 2002 generate at-
tributes from both, the gene interaction information and MEDLINE abstracts. Our winning
solution for the KDD Cup 2001 (where textual information could not be utilized as the
genes were anonymized) generates attributes from the gene interaction relation. This pro-
vides strong evidence that these data sources provide most relevant information for a range
of functional genomics problem and shows that propositionalization is an effective and
scalable approach to utilizing this information.

7. Related results and lessons learned

One key element of a good solution to the focused problems lies in effective utilization of
the gene interaction data. Since inductive logic programming involves several computation-
ally hard problems (e.g., Scheffer, Herbrich, & Wysotzki, 1996), we have focused on the
transformation-based RELAGGS algorithm (Krogel & Wrobel, 2001). It follows pioneering
ILP approaches to transformation-based learning (Lavrac, Džeroski, & Grobelnik, 1991)
and succeeding work (Kramer, Lavrač, & Flach, 2001) and combines propositionalization
with SQL aggregation functions (Krogel & Wrobel, 2001; Knobbe, de Haas, & Siebes,
2001). In contrast to traditional ILP algorithms, the propositionalization approach allows
us to use the Support Vector Machine as final classifier. For a discussion and comparison
of propositionalization algorithms, see Krogel et al. (2003b).

The problem of extracting information from MEDLINE abstracts—or even full papers—
is receiving considerable attention. The first problem that one naturally encounters when
extracting attributes of genes from text is the named entity recognition problem (we did
in fact not encounter this problem because a table that related genes to corresponding
abstracts was provided for KDD Cup 2002). Currently, a wide range of biological named
entity recognition systems is being evaluated in the BioCreative competition (Hirschman
et al., 2003). In order to extract attributes, we follow a dictionary-based approach (Fukuda
et al., 1998). Many other approaches (e.g., Hirschmann et al., 2002; Hahn, Romacker, &
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Schulz, 2002; Blaschke & Valencia, 2002), including hidden Markov models (Leek, 1997)
and rule learning (Craven et al., 2000), have been explored. We see more sophisticated
approaches for information extraction from MEDLINE as a promising research direction.

Many positive results on semi-supervised learning have been obtained—e.g., by Cooper
and Friedman (1970) and Collins and Singer (1999) and, for co-training, by Kiritchenko
and Matwin (2002) and Mladenic (2002). Other recent results (e.g., Nigam, Lafferty, &
McCallum, 1999; Bruce, 2001; Kockelkorn, Lüneburg, & Scheffer, 2003) indicate that most
often no benefit is observed when the labeled sample is large. This may be linked to invalid
model assumptions (Cozman, Cohen, & Cirelo, 2003) and, for co-training, to dependent
and incompatible views (Muslea, Kloblock, & Minton, 2002b). Our experiments show
that transduction fails to improve the recognition rate for the studied functional genomics
problems even when only few labeled data are available. We obtained negative results with
co-training whenever the dependence �2 of the initial decision function exceeds 60%.

From our experience in the KDD Cup competition and retrospective studies, we draw a
number of lessons learned.

1. Our winning solution for the KDD Cup 2001 as well as all “honorably mentioned” so-
lutions to the 2002 Cup aggregated attributes from the interaction relation. Our studies
show that the performance of classifiers for all studied functional genomics problems de-
teriorate without these attributes. This supports our first lesson learned. The interactions
between genes play a crucial role for functional genomics problems. Propositionalizing
the relational data by first computing joins of the tables, and then collapsing the joins
by aggregation functions is an effective and scalable approach.

2. All winning and “honorably mentioned” solutions for the KDD Cup 2002 generated
additional attributes from MEDLINE abstracts. Our studies showed a decrease in clas-
sifier accuracy when these attributes are left out. This leads us to conclude that, even
in addition to available attributes in databases, MEDLINE papers contain information
that is relevant for predicting properties of genes. Even fairly simple dictionary-based
extractors generate attributes that improve such predictions substantially. We believe
that more sophisticated extractors will further improve biological models.

3. A caveat for utilizing knowledge in document archives: background document archives
may contain the class labels that a classifier is to predict. If this is the case, then the
class labels of held-out instances will “leak” into the training process. The resulting
performance estimates will be extremely optimistic. The resulting classifiers will perform
substantially worse for new instances, the class labels of which are not yet disclosed in
available abstracts. An evaluation methodology is required to obtain useful performance
estimates for knowledge discovery methods that utilize document archives.

4. Previously obtained empirical results have led to a faith of some researchers that
transduction—or even semi-supervised learning in general—is not harmful for prac-
tically relevant problems and improves performance at least when the labeled sample
is small. Our negative results on all studied genomics problems refute this hypothesis.
Positive experiences with co-training have given rise to the hypothesis that co-training is
generally beneficial in practice, when the labeled sample is small and the attributes can
be split into subset with little dependencies. Our results indicate that the dependence
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between the initial decision functions measured by the �2 statistics is crucial to the
benefit of co-training. Co-training is most beneficial when �2 < 10%; it is detrimental
when �2 > 60%. When �2 < 50%, co-training tends to improve the performance on
average.
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