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Abstract We present a lattice study of the SU (4) gauge
theory with two Dirac fermions in the fundamental and two
in the two-index antisymmetric representation, a model close
to a theory of partial compositeness proposed by G. Fer-
retti. Focus of this work are the methodologies behind the
computation of the spectrum and the extrapolation of the
chiral point for a theory with matter in multiple representa-
tions. While being still technical, this study provides impor-
tant steps towards a non-perturbative understanding of the
spectrum of theories of partial compositeness, which present
a richer dynamics compared to single-representation theo-
ries. The multi-representation features are studied first in
perturbation theory, and then non-perturbatively by adopt-
ing a dual outlook on lattice data through a joint analysis of
time-momentum correlation functions and smeared spectral
densities.

1 Introduction

The Standard Model (SM) of particle physics describes the
strong and electro-weak (EW) interactions with remarkable
accuracy, and no clear deviation from its predictions has
been observed. There are however open problems pointing
towards the idea that the SM effectively describes Nature
only up to a cutoff energy scale ΛSM located at least in the
TeV range. One of these issues, known as “Naturalness prob-
lem”, lies in the Higgs sector, where quantum corrections are
expected to push the mass of the Higgs boson towards ΛSM .
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The experimental value [1,2], however, lies well within the
EW range. This value could only be understood within the
SM by relying on fine-tuned cancellations, which are consid-
ered unsatisfactory from a theoretical perspective. The solu-
tions that have been proposed to tackle this fine-tuning issue
have been generating a vast and fertile literature, including
ideas such as supersymmetry and technicolor. Another popu-
lar solution, and focus of this work, is the “composite Higgs”
scenario [3] where the Higgs boson’s mass is explained in
terms of Goldstone dynamics. A gauge theory is postulated to
describe a new strongly-interacting sector and its dynamics.
Depending on the fermionic content of the theory, a global
flavor symmetry is realised: if the fermions condensate, the
spontaneous breaking of such symmetry generates Goldstone
bosons, among which there would be the Higgs doublet, the
lightest state of the new sector.

A number of models are compatible with the composite
scenario. A set of minimal candidate gauge theories have
been identified in Ref. [4]. Such theories exhibit a doublet
compatible with the SM Higgs boson in the low energy the-
ory, together with other interesting phenomenological fea-
tures such as asymptotic freedom and the presence of a cus-
todial symmetry. Remarkably, these theories yield a compos-
ite state with the same SM quantum numbers as the heavy
quarks. This crucial property could clarify the hierarchical
structure of the quark masses: if the composite partner of the
top quark has a large enough anomalous dimension, the mass
hierarchy arises naturally. This idea goes under the name of
partial compositeness [5] and it has been the subject of several
lattice studies in recent years [6–11]. The phenomenology of
theories of partial compositeness is rich and can differ from
Quantum Chromodynamics (QCD) in many aspects. It is
common for these theories to involve fermions transforming
in multiple representations of the gauge group. While QCD

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-023-11363-8&domain=pdf
http://orcid.org/0000-0001-9661-7811
mailto:luigi.del.debbio@ed.ac.uk
mailto:alessandro.lupo@ed.ac.uk
mailto:marco.panero@unito.it
mailto:nazario.tantalo@roma2.infn.it


220 Page 2 of 23 Eur. Phys. J. C (2023) 83 :220

and its fermions in the fundamental representation have been
extensively studied for several decades leading to tremen-
dous improvement in the field, theories with multiple repre-
sentations are still at an earlier stage, despite recent notable
progresses [6–10]. A promising model of partial composite-
ness has been proposed by Ferretti [12]. Its UV completion
is an SU (4) gauge theory featuring three Dirac fermions in
the fundamental (Fund) and antifundamental representation,
and five Majorana fermions in the two-index antisymmetric
(2AS) representation of the gauge group. In this work, fol-
lowing the work presented in Refs. [6–9], we perform a lattice
study of a simplified version of the Ferretti model, containing
two Dirac fermions in the fundamental and antifundamental
and two Dirac fermions in the AS representation of the gauge
group SU (4). This model does not form a bound state com-
patible with the Higgs boson in the low-energy limit, but it is
expected to maintain some of its non-perturbative features,
and it therefore represents a solid starting point towards a
better understanding of this class of theories.

Our investigations focus on the methodologies required
to address theories with matter in multiple representations.
Although lattice simulations provide a flexible framework
which has been well established over many decades, theories
of partial compositeness present challenging features, and a
dedicated study is an important step in order to ultimately
make contact with their phenomenology. We will show that
a richer dynamics, a distinguishing mark of these theories,
complicates tasks such as the computation of the spectrum
or the extrapolation to the chiral limit. For the model under
consideration, we have used numerical simulations and per-
turbative calculations in order to clarify such dynamics. In
particular, we have generalised previous perturbative results
to the case of multi-representation theories in order to pre-
dict the critical mass of Wilson fermions. We have generated
gauge configurations at different fermionic masses, enabling
the analysis of the theory at the chiral point. For the first
time, we performed a comparison of mesonic masses esti-
mated from correlation functions and spectral densities: these
two quantities, related by a Laplace transform, provide a
dual outlook on non-perturbative data obtained on the lattice.
The computation of spectral densities from lattice correlators
has been the subject of several studies leading to interesting
progress in the field [13–19] and it is here performed for the
first time in the context of BSM physics, where the lack of
phenomenological inputs and a more sophisticated dynamics
call for new computational strategies.

The rest of this work is structured as follows: Sect. 2
examines the model introduced by Ferretti and its simplified
version with less matter content. Section 3 contains pertur-
bative results for the critical mass of Wilson fermion, with a
focus on the multi-representation dynamics. The lattice setup
is outlined in Sect. 4, and the observables targeted in our
numerical simulations are described in Sect. 5. In Sect. 6 we

present results for the extrapolations of our data to the chiral
point. Section 7.1 is dedicated to the extraction of spectral
densities from lattice correlators. Section 7.2 contains a dis-
cussion on features of the spectrum of multi-representation
theories. Section 7.3 concludes the discussion with a descrip-
tion of methodology and results of fits of spectral densities,
which are compared with the study of lattice correlators in
the time-momentum representation.

2 Models

2.1 The Ferretti model

We briefly recall the features of the model introduced by
Ferretti in Ref. [12] following the conventions of Ref. [9]. Its
UV completion is described by the gauge group G = SU (4).

The gauge field is coupled to three Dirac fermions that we
express in terms of Weyl doublets χa

m, χ̄a
m respectively in

the fundamental and antifundamental representation of the
gauge group, together with five Majorana fermions ψ I

mn in
the 2AS representation, which is real and dimension 6. The
indices a = 1, 2, 3 and I = 1, . . . 5 are flavor indices,
while m, n = 1, 2, 3, 4 denote the color. This matter con-
tent induces a global symmetry described by the group G

G = SU (5) × SU (3) × SU (3)′ ×U (1)X ×U (1)′. (1)

The charges of the fermions with respect to the flavor group
are described in Table 1.

Neglecting couplings with the SM fermions, G is an exact
symmetry. Spontaneous symmetry breaking happens once
the bilinears for both representations acquire a non-vanishing
expectation value, leaving the unbroken subgroup H. The
quotient group determining the low-energy dynamics is

G

H
= SU (5) × SU (3) × SU (3)′ ×U (1)X ×U (1)′

SO(5) × SU (3)c ×U (1)X
. (2)

This symmetry breaking pattern is interesting for several
reasons. Given that SO(5) ⊃ SU (2) × SU (2), the pat-
tern is compatible with the requirement of custodial sym-
metry H ⊃ Gcust ⊃ GSM, with Gcust = SU (3)c ×
SU (2)L × SU (2)R × U (1)X and GSM being the SM gauge
group SU (3)c × SU (2)L × U (1)Y . The unbroken group
SU (3)c, related to the fundamental sector, is responsible for

Table 1 Flavor charges of the fermions in the Ferretti model

SU (5) SU (3) SU (3)′ U (1)X U (1)′

ψ 5 1 1 0 −1

χ 1 3 1 −1/3 5/3

χ̃ 1 1 3̄ 1/3 5/3
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the strong interaction of QCD once it is gauged. The unbro-
ken group related to the 2AS fermions, SO(5), contains the
EW group SU (2)L × U (1)Y . In fact, SO(5) ⊃ SO(4) �
SU (2)L × SU (2)R . We then define an U (1)R as the sub-
group of SU (2)R generated by the generator of isospin rota-
tion T (3)

R : the correct hypercharges Y are then obtained by

Y = T (3)
R +X, X being the charge underU (1)X . The quotient

SU (5)/SO(5) is therefore the relevant one for EW symme-
try breaking: by writing its 14 Goldstone bosons in terms of
SM charges,

14 → 10 + 2±1/2 + 30 ± 3±1 ≡ (η, h, φ0, φ±), (3)

we identify an SU (2) doublet 2±1/2, h, that is compatible
with the Higgs boson.

Turning to the composite partner for the top quark, this
is introduced as a Dirac fermion Ψ [12] in the low energy
theory that has charges (5, 3)2/3 with respect to the unbroken
subgroup H. States with these quantum numbers, relevant
for partial compositeness, are obtained in this theory by color
singlet combinations of fermions in different representations.
Such baryonic content is therefore typical of theories with
multi-representation matter.

2.2 Two-flavor Ferretti model

In this work we will focus on a simplified version of the
Ferretti model. We will consider two Dirac fermions in the
fundamental and two Dirac fermions in the 2AS representa-
tion of the gauge group SU (4), a model that has been already
studied in [6–9,11]. While retaining the multi-representation
dynamics and some non-perturbative features, this choice
changes the global symmetries of the theory.

It is important to understand the discrete symmetries of
each sector in order to give the correct interpretation to the
lattice data. Isospin, in particular, is useful in classifying scat-
tering processes. The isospin group in the fundamental sector
is the well known SU (2). The symmetry breaking pattern is
the same as in massless two-flavor QCD, characterised by
the quotient group

SU (2)L × SU (2)R

SU (2)V
, (4)

and does not require to be discussed here. For completeness,
we only mention that the three Goldstone bosons π1, π2, π3

arising from these cosets can be labelled with eigenvalues of
the azimuthal component of the isospin, ±1, 0:

π+ = π1 + iπ2√
2

,

π− = −π1 + iπ2√
2

,

π0 = −π3. (5)

The multiplet (π+, π0, π−) has eigenvalue −1 under the G-
parity defined by combining charge conjugation C with an
SU(2)-isospin rotation,

G = exp (iπτ2) C , (6)

τi being SU (2) generators. In the 2AS sector, instead, the
symmetry breaking pattern yields the cosets

SU (4)

SO(4)
. (7)

The generators Ti of SU (4) can be found in Appendix A.
These cosets are characterised by 9 Goldstone bosons Πi ,

i = 1, . . . 9, that we represent exponentially as

U = exp(i T̂iΠi ), (8)

where T̂i , i = 1, . . . 9 are the broken generators of SU (4).

Under an isospin transformation,

U → hUh†, h = exp(iωn Xn), n = 1, . . . 6, (9)

where Xn are the unbroken generators of SU (4) generating
SO(4), represented as 9 × 9 matrices. We give such a rep-
resentation in Appendix D. The maximum set of commuting
generators here is two, therefore we choose to diagonalise
X1 and X6. The Goldstone bosons in the isospin basis can
be then labelled as Πa1,a6 , where an are eigenvalues of the
generators Xn

Π−1,0 = −iΠ1 + Π2,

Π1,0 = iΠ1 + Π2,

Π− 1
2 ,− 1

2
= −Π3 + iΠ4 + iΠ6 + Π7

2
,

Π 1
2 ,− 1

2
= Π3 + iΠ4 − iΠ6 + Π7

2
,

Π− 1
2 , 1

2
= Π3 − iΠ4 + iΠ6 + Π7

2
,

Π 1
2 , 1

2
= −Π3 − iΠ4 − iΠ6 + Π7

2
,

Π0,−1 = − 1√
2
Π5 − i

√
3

2
Π8 + Π9,

Π0,1 = − 1√
2
Π5 + i

√
3

2
Π8 + Π9,

Π0,0 = √
2Π5 + Π9. (10)

From these expressions it can be shown that the operation
of charge conjugation acts on this multiplet as a transforma-
tion of SO(4). As a consequence, any G-parity is equivalent
to an isospin rotation and does not provide selection rules
for transition amplitudes. Implications of this feature will be
discussed in Sect. 7.2.
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3 Perturbative results

In this work we adopt a Wilson-type discretisation of the
Dirac action with a clover term, the details of which will be
given in Sect. 4. This choice for the action breaks chiral sym-
metry. The critical mass, i.e. the value of the bare mass of a
fermion corresponding to a vanishing renormalised mass can
be first estimated in perturbation theory, suggesting values for
the numerical simulations, and providing first insights on the
multi-representation dynamics. The perturbative expansion
of the Wilson action generates, for each representation, the
same vertices that appear in lattice QCD up to group theoret-
ical factors, making it easy to generalise the existing result.
To this end, we will refer to the calculation of the critical
mass of Wilson fermions at two loops [20] in lattice QCD,
the cactus resummation at one loop [21] and their generalisa-
tion to a generic representation of SU (N ) [22]. These results
will be extended to the case of multiple representations in the
reminder of this section.

3.1 Multiple representations

In this section we analyse the effect of multiple representa-
tions in the computation of the fermionic self-energy. The
motivation is to gain insights about the way a representa-
tion can affect the other. For simplicity we use, for this task,
Wilson-type fermions, delegating the discussion of the clover
term and cactus improvement to the next section where we
estimate critical masses.

For a given representation R, we write the perturbative
expansion of the one particle irreducible two-point function
as

ΣR

(
p, g0,m

R
0

)
= g2

0Σ
(1)
R

(
p,mR

0

)

+g4
0Σ

(2)
R

(
p,mR

0

)
+ O(g6

0). (11)

In evaluating the Feynman diagrams contributing to the ele-
ments of the perturbative expansions, we set the fermion
masses to their tree level values, mR

0 = 0. The one-loop
contribution Σ1

R, for instance, comes from two diagrams, a
tadpole and a sunset. It is useful to parametrise Σ1

R in terms
of powers of the lattice spacing,

Σ
(1)
R (p, 0) = ΣR, a

a
+ i p/ΣR, b. (12)

Imposing the vanishing of the renormalised mass for the
fermion yields an expression for the critical mass at one loop

m(1)
c, R = g2

0Σ
(1)
R (0, 0)

a
= g2

0ΣR, a

a
. (13)

Fig. 1 Two-loop diagrams in which the representation R′ (solid line)
can contribute to the self energy, and therefore the critical mass, of the
fermion in the representation R (double solid line). These diagrams,
apart from group theoretical invariants, depend on factors that have
been computed in Ref. [20]

The same can be done order by order in powers of the cou-
pling g2

0, which is related to the usual lattice coupling by

β = 2N

g2
0

. (14)

The result for Σ
(1)
R can be written in terms of the contribution

of each diagram [20]

Σ
(1)
R (0, 0) = 2C2(R)

[
c(1)

1 + c(1)
2

]
, (15)

where C2(R) is the quadratic Casimir defined in Eq. (A.3),
and

c(1)
1 + c(1)

2 = −0.162857058711(2). (16)

In the following we omit, in the expansion terms of the self
energy, the dependence from p and m0 which are set to zero.
The result of Eq. (15), plugged into Eq. (13), provides the
one-loop estimate of the critical mass. However, it contains
no information about the multi-representation dynamics, for
which we need at least the O(g4

0) result. In Wilson lattice
QCD, Σ(2) takes contribution from 26 diagram [20].

If the theory has fermions in two different representation
R and R′, there are four additional diagrams contributing to
the self-energy of R due to loops of R′. These are shown
in Fig. 1 and their contribution is the same as their single-
representation counterparts [20] up to some group theory
factors. The diagrams I1 and I2 in Fig. 1 must be evaluated
together in order to be infrared finite. Their value is

I R1 + I R2 = n f (R
′)4C2(R)TR′ c(2)

1 , (17)

where c(2)
1 = 0.00079263(8) [21] is representation indepen-

dent, and n f (R) is the number of fermions in the represen-
tation R. Similarly, I3 + I4 gives the infrared-finite result

I R3 + I R4 = n f (R
′)4C2(R)TR′ c(2)

2 , (18)

where c(2)
2 = 0.000393556(7). The two-loop part of the self

energy for the representation R due to the presence of R′ is
then

Σ
(2), multi-rep
R′→R = n f (R

′)4C2(R)TR′ 0.00118619(9). (19)
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We then add to this contribution the 26 single-representation
diagrams Σ

(2), one-rep
R→R [22]

Σ
(2), one-rep
R→R = C2(R)N k1 + 2C2(R)TRn f (R) k2

+ C2(R)C2(Fund) k3 + C2(R)2 k4, (20)

with

k1 = −0.001940(6), k2 = 0.00237236(16),

k3 = −0.081429(8), k4 = 0.01516325(12). (21)

The total two-loop self energy is given by the sum of Eqs. (19)
and (20)

Σ
(2)
R = C2(R)N k1 + 2C2(R)

[
TRn f (R) + TR′n f (R

′)
]
k2

+ C2(R)C2(Fund) k3 + C2(R)2 k4. (22)

Unsurprisingly if R = R′ the extra term is equivalent to the
addition of extra flavor content.

We can now list results for N = 4, n f (Fund) =
n f (2AS) = 2. One loop values,

Σ
(1)
Fund = −0.610713970166(8),

Σ
(1)
2AS = −0.814285293555(10), (23)

and two-loop values,

Σ
(2)
Fund = −0.220826(53),

Σ
(2)
2AS = −0.270743(71). (24)

We are interested, in particular, in the contributions from one
representation to the other. These are

Σ
(2), multi-rep
2AS→Fund = 0.0213512(14),

Σ
(2), multi-rep
Fund→2AS = 0.0355854(24). (25)

The multi-rep contributions alone are small compared to the
rest of the terms, providing about 10–13% of the two-loop
part. Although these results are only perturbative, they will
find a non-perturbative counterpart in Sect. 6.

3.2 Critical mass

A perturbative prediction that compares to our numerical
results can be obtained by including the clover term into the
action, resulting into an additional interaction vertex. The
prediction can be further improved by resumming an infinite
series of a specific type of gauge invariant (cactus) diagrams
[21]. For this analysis, we consider one-loop results.

The critical mass m(1)
c, R of a Wilson fermion can be com-

puted from Eq. (15). Considering the clover term yields new
contributions in powers of cRsw [23],

mc, R = g2
0C2(R)

16π2

(
ε0 + ε1c

R
sw + ε2(c

R
sw)2

)
, (26)

Fig. 2 The solution of Eq. (27) for N = 2, 3, 4 and β = 11, the value
used in the numerical simulations, as will be described in Sect. 4

where the coefficients εi can be read from Table 2 of Ref. [23].
Concerning the Wilson term, the cactus resummation is per-
formed by rescaling the self-energy Σ → Σ/c̃0, where c̃0 is
a function of N and g2

0 but not of the representation. c̃0 can
be found by solving the following equation,

ue−u(N−1)/(2N )

[
N − 1

N
L1
N−1(u) + 2L2

N−2(u)

]

= g2
0(N 2 − 1)

4
, c̃0 ≡ g2

0

4u
, (27)

where Lα
N are generalised Laguerre polynomials of degree

N . The solution for β = 11 and N = 2, 3, 4 is shown in
Fig. 2 as the intersection between the various curves and the
vertical line. For SU (4) we find

c̃0 = 0.731607. (28)

The resummation with the clover improvement term corre-
sponds to also rescale g2

0 → g2
0/c̃0 and cRsw → cRswc̃0 [24].

The prediction for the critical mass is then

m1−loop+cactus
c, R = g2

0

c̃0

C2(R)

16π2

(
ε0 + ε1c

R
swc̃0 + ε2(c

R
sw)2c̃2

0

)
.

(29)

The numerical values for SU (4) with two fundamental and
two antisymmetric fermions are listed in Table 2. We find the
one-loop result with cactus resummation to be the closest one
to non-perturbative results.
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Table 2 Critical masses for different lattice actions and improvements. When not specified, the results are obtained at 1 loop. These values are to
be compared with the non-perturbative results of Sect. 6

Wilson Wilson (2 loop) Wilson clover Wilson + cactus Wilson clover + cactus

am(Fund)
c −0.4442 −0.5609 −0.2762 −0.6063 −0.4524

am(2AS)
c −0.5922 −0.8027 −0.3683 −0.8089 −0.6032

4 Lattice setup

The lattice setup has already been discussed in Ref. [9], and
here we only recall the main ideas. We generate gauge con-
figurations by using the HMC algorithm [25] with a second
order integrator [26]. The integration scheme has two levels,
one updating the gauge force and one updating the fermionic
force. The lattice action can be decomposed into gauge and
fermionic part. The latter is further decomposed into contri-
butions from each representation [27]

S = Sg + Sf , Sf = S(Fund) + S(2AS). (30)

For the gauge part we use the Wilson plaquette action

Sg = β

Nc

∑
x

∑
μ<ν

Re Tr
{
1 − Pμν(x)

}
. (31)

The fermionic action for the representation R is

SR
f =

∑
x

ψ̄ R(x) DR
x,y ψ(x)R, (32)

where, for both representations, we collect the fermionic
degrees of freedom into a doublet of Dirac fermions ψ R .

We adopt a Wilson discretisation for the Dirac action DR in
each representation R, plus a clover improvement term

DR = DR
Wilson + DR

clover. (33)

The Wilson term in position space is

DR
x,y = δx,y − κ R

4∑
μ=1

[(
1 − γμ

)
UR

μ (x)δx+aμ̂,y

+ (1 + γμ

)
UR

μ
†(y)δx−aμ̂,y

]
, (34)

where

UR
μ (x) = exp(i ωa

μ(x) T R
a ), (35)

and κ R is related to the bare mass mR
0 of the fermion in the

representation R

κ R = 1

2(amR
0 + 4)

. (36)

The order a clover improvement term is
(
DR

clover

)
x,y

= ia

2
cRsw(g2

0) κ R
∑
μν

F̃ R
μν(x) σμνδx,y, (37)

where σμν = i
2 [γμ, γν] and

F̃μν(x) = 1

8

[
Qμν(x) − Qνμ(x)

]
, Qμν(x) = Q†

νμ(x),

(38)

Qμν(x) being the clover combination of plaquettes around
the point x [28]. The improvement coefficient cRsw can be
computed in powers of the coupling,

cRsw(g2
0) = 1 + cR (1)

sw g2
0 + O(g4

0). (39)

A discussion on the O(g2
0) coefficient can be found in [29].

In this work, we set the coefficient to its tree level value,
cRsw = 1, for both representations. This choice for the dis-
cretisation action breaks explicitly chiral symmetry, result-
ing in an additive term to the renormalisation of the fermion
masses. Simulations at the chiral point are performed indi-
rectly by extrapolating the value of the critical masses mR

c ,

i.e. the value of the bare masses at which each fermion has a
renormalised vanishing mass

amR = amR
0 − amR

c = 1

2

(
1

κ R
− 1

κ R
c

)
. (40)

Direct simulations at the chiral point are in fact impossible in
our setup due to the spectral properties of the Dirac operator.
The lowest eigenvalue of the Dirac operator approaches zero
in the chiral limit, meaning its inverse becomes increasingly
ill-conditioned. When extrapolating to the critical point (see
Eq. (40)) one needs to care that exceptional configurations
do not occur in the gauge average [30]. These are configu-
rations especially close to the chiral point that can jeopar-
dise the inversion of the fermionic operator. For this reason,
we monitor the gauge distribution of the lowest eigenvalues
of the Wilson-clover operators in both representations as in
Fig. 3, making sure that they remain sufficiently far from the
origin. In order to parametrise the breaking of chiral symme-
try, we compute the PCAC mass, which yields a definition
of the quark mass through the axial Ward identity.

Our starting point is the work done in [9], where the space
of bare parameters for this model has been explored. The
lightest ensemble of that work is present in this analysis under
the name A0. Details about the ensembles generated in this
work are found in Appendix E. We have performed simula-
tions for increasingly lighter masses, allowing the extrapola-
tion of chiral points for both the fermionic representations.
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Fig. 3 Distribution of the lowest eigenvalue of the Wilson-clover oper-
ator for bare parameters am(Fund)

0 = −0.45, β = 11 and differ-

ent masses for the 2AS fermions: am(2AS)
0 = −0.59 on the top and

am(2AS)
0 = −0.60 on the bottom. Both distributions are far enough from

the origin to ensure no exceptional configurations enter the ensemble

We generate gauge configurations at single lattice spacing,
using β = 11, and at a single volume corresponding to a
lattice of dimensions (L/a)3 × T/a = 163 × 32. For the
production of gauge configurations and the measurements of
observables, we use the software Grid [31] and Hadrons [32].

5 Observables

In this section, we give a description of the observables that
are targeted in this work. These include two point functions
that will enable us to compute parameters for the chiral sym-
metry breaking, mesonic masses and smeared spectral den-
sities. We compute correlation functions of the following
interpolators,

OR
P(x) = ψ̄ R

f1(x) γ5 ψ R
f2(x),

OR
A(x) = ψ̄ R

f1(x) γ0γ5 ψ R
f2(x), f1 �= f2. (41)

In the previous equation we use the same notation of Sect. 4,
i.e. ψ R collects the fermionic degrees of freedom of the repre-
sentation R into a flavor doublet of Dirac spinors. The flavor
indices are denoted by f1, f2. In this work we only con-
sider isospin-vector operators, and we build the following
two-point functions

CR
ab(t) = 1

L3

∑
x

〈OR
a (x, t)OR†

b (0)〉, a, b = P, A. (42)

The two-point functions encode information about finite vol-
ume matrix elements and energy levels. This can be seen by
expanding the previous expression on a complete set of states.
Considering for instance the pseudoscalar–pseudoscalar cor-
relator, we obtain

CR
PP (t) =

(
e−tMR

PP + e(−T+t)MR
PP

)

× 〈0|OR
P (0)|MR

PP 〉L〈MR
PP |OR†

P (0)|0〉L
2MR

PP

+ · · · ,

(43)

where the ellipsis denotes terms that do not correspond to
the state

∣∣MR
PP

〉
L and that are exponentially suppressed. The

mass MR
PP can be then obtained by the asymptotic behaviour

in the Euclidean time of the effective mass

aMR
PP(t) = cosh−1

[
CR

PP(t + a) + CR
PP(t − a)

2CR
PP(t)

]
. (44)

Similarly the PCAC mass, defined through the axial Ward
identity, is obtained from the pseudoscalar–pseudoscalar and
axial correlators

amR
PCAC = ∇tC R

AP(t)

2CR
PP

, ∇t f (t) = f (t + a) − f (t − a)

2
,

(45)

which has O(a) effects for our choice of the unimproved
axial operator.

In the chiral limit, the pseudoscalar mass aMR
PP for each

representation vanishes. In our ensembles we generated con-
figurations describing mesons of antisymmetric fermions
being generally heavier: this can be understood from Fig. 4
where we show the gauge distributions of the lowest eigen-
value of the fermionic operator, the fermionic masses and
the pseudoscalar masses for both representations from the
ensemble S0. In this ensemble, differently from the case
shown in Fig. 3, the lowest eigenvalues of the Wilson opera-
tors in the two representations are the same, and the fermionic
masses are also compatible within one σ. Nonetheless, an
unambiguous gap appears in the masses of the mesons. The
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Fig. 4 Probability densities for the lowest eigenvalue of the fermionic
operator (upper panel), the PCAC mass (central panel) and the pseu-
doscalar mass (lower panel) for both representations. These values are
especially interesting since they are based on the ensemble S0, where
we find compatible values for the lowest eigenvalues and, within 1σ,

the PCAC masses. Nonetheless, a difference arises in the pseudoscalar
masses. The distributions of the PCAC and the pseudoscalar masses are
obtained from a resampled set of configurations

Gell-Mann–Oakes–Renner relation predicts this behaviour to
be the result of different chiral condensates and pseudoscalar
decay constants for the two representations.

Ground state energies can be estimated from lattice cor-
relators according to the large time behaviour of Eq. (44).
Other energy levels and matrix elements can be estimated by
fitting sums of exponentials, as in Eq. (43). The extraction
of excited states from these fits is in general hindered by the
increasing number of degrees of freedom that are needed in
order to perform the fit when more excited states are being
targeted, with a given number of data points. This becomes
particularly problematic when dealing with highly correlated
data, which limits the information provided. Moreover, as
the infinite volume limit is approached, the spectrum above
the multi-particle threshold becomes denser and resolving
energy levels becomes exponentially harder. For these rea-
sons, it is desirable to have many correlators in order to
perform simultaneous fits. Alternatively, variational meth-
ods such as the generalised eigenvalue problem (GEVP) are
a well established way to obtain finite volume spectra [33].

Other observables that allow the extraction of finite vol-
ume quantities are spectral densities. These are related to
lattice correlators by a Laplace transform

CR
PP (t) =

∫ ∞

0
dE ρR

PP (E)
(
e−t E + e(−T+t)E

)
, (46)

where we neglect the thermal effects inside ρR
PP (E).1 Spec-

tral densities contain the same information as lattice corre-
lators, with the difference that for the spectral densities the
information is encoded in a function of the energy rather than
Euclidean time. A finite volume spectral density ρL

ab(E) can
in fact be expanded as

ρ
L ,R
PP (E)

=
∑
n

〈0|OR
P (0)|n〉L〈n|OR†

P (0)|0〉L
2En(L)

δ (E − En(L)) .

(47)

In order to cope with the distributional nature of the spectral
density, we smear it [13] with a Gaussian function, Δσ (E) =
exp (−E2/2σ 2)/

√
2πσ

ρ
L ,R
σ,PP (E) =

∫ ∞

0
dE ′ Δσ (E − E ′) ρ

L ,R
PP (E ′), (48)

so that the smeared spectral density ρ
L , R
σ,ab (E) is a continuous

function even at finite L .

In this work, we will focus on the extraction of the finite
volume energies and matrix elements from smeared spectral
densities. This task does not require us to take the infinite
volume limit, neither to remove the regularisation by extrap-
olating at zero smearing radius σ. By rewriting Eq. (47) for

1 In Sec. 3 of Ref. [16] is shown that Eq. (46) is valid up to thermal
effects in ρR

PP (E) that are exponentially suppressed, and that we neglect
in our discussion.
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the smeared spectral density,

ρ
L ,R
σ,PP (E)

=
∑
n

〈0|OR
P (0)|n〉L〈n|OR†

P (0)|0〉L
2En(L)

Δσ (E − En(L)) ,

(49)

it is clear that this function can be fitted against sums of Gaus-
sians in order to obtain the energies and the overlaps, simi-
larly to how Eq. (43) is commonly used to extract the same
quantities by fitting sums of exponentials. This offers a dual
picture with quite different features that will be described in
the next sections.

6 Chiral limit

At the chiral point, both pseudoscalar mesons become mass-
less. The discretisation of the lattice action that we adopt
breaks chiral symmetry explicitly. We therefore compute the
PCAC masses from the axial Ward identity in order to quan-
tify the breaking of chiral symmetry, and we scan the space
of bare parameters until we are able to locate the bare masses
for which the PCAC masses vanish. Around the chiral point
we also expect the Gell-Man–Oakes–Renner relation to be
valid, with the pseudoscalar mass squared (MR

PP)2 scaling as
mR

PCAC for the representation R. The correlation functions
of fermions in the fundamental representation that we use
to extract the masses are more affected by autocorrelation,
which translates into usually larger statistical errors for the
masses of the mesons related to that representation.

The measurements of the PCAC masses are listed in
Tables 6 and 7 of Appendix F. In order to perform a lin-
ear extrapolation for the vanishing of the PCAC mass in a
given representation, the bare mass of the other must be kept
fixed. Figure 5 shows three of these extrapolations. In the top
panel, we extrapolate the chiral point for the fundamental
fermions by fixing am(2AS)

0 = −0.45. In the bottom panel,
the two lines represent different extrapolations for the 2AS
chiral point taken at different values of the bare fundamental
mass, am(Fund)

0 = −0.45 and am(Fund)
0 = −0.47. The chi-

ral point of antisymmetric fermions does not show a strong
response to the shift in the bare mass of the fundamental
fermions. This is in line with the perturbative prediction at
two loops of Sect. 3, where we have found the critical mass to
only mildly depend on the other representation. The critical
masses for β = 11.0 are

am(Fund)
c

∣∣∣∣
am(2AS)

0 =−0.45
= −0.486(3)

am(2AS)
c

∣∣∣∣
am(Fund)

0 =−0.45
= −0.637(3)

Fig. 5 Three chiral extrapolations, one on the top for fundamental
fermions and two on the bottom for antisymmetric fermions. The bands
correspond to linear fits. The heavier point in the plot on the top was
also present in [9]. In the top panel, the fit has χ2/d.o. f. = 0.23.

In the bottom panel, χ2/d.o. f. = 2.22 for am(Fund)
0 = −0.45 and

χ2/d.o. f. = 0.48 for am(Fund)
0 = −0.47

am(2AS)
c

∣∣∣∣
am(Fund)

0 =−0.47
= −0.630(4). (50)

Comparing these values to the perturbative results in
Table 2, we see that the prediction improved by resumming
cactus diagrams is the closest to the non-perturbative val-
ues. We can also observe from Tables 6 and 7 that taking
a fermion in the representation R towards the chiral point
pushes the fermion in the representation R′ to be also lighter.
Figure 6 shows the dependence of the pseudoscalar masses
MR

PP with respect to the quark masses. For both representa-
tions R the scaling is compatible with the one predicted by
the chiral Lagrangians, (MR

PP)2 ∼ mR
PCAC, with the pseu-

doscalar mesons becoming massless in the chiral limit. The
pseudoscalar masses, reported in Table 8, are obtained by fit-

123



220 Page 10 of 23 Eur. Phys. J. C (2023) 83 :220

Fig. 6 Scaling predicted by the Gell-Man–Oakes–Renner relation,
with the squared mass of the pseudoscalar Goldstone boson scaling lin-
early with the quark mass, here estimated from the PCAC relation. The
extrapolation is compatible with the Goldstone bosons becoming mass-
less at the chiral point. In the top panel, the fit has χ2/d.o. f. = 1.68,

while in the bottom panel χ2/d.o. f. = 1.50

ting the effective masses of the pseudoscalar–pseudoscalar
correlators.

7 Smeared spectral densities from lattice correlators

The non-perturbative calculation of spectral densities has
been receiving increasing attention [13–19]. In this work we
will analyse spectral densities obtained from lattice correla-
tors, for the first time to our knowledge, in the context of
BSM and multi-representation theories. In order to facilitate
the discussion, it is useful to recall the computational details
of the calculation, aiming to a self-contained discussion.

7.1 The numerical procedure

Since we are interested in finite volume quantities we will
omit, in this section, the dependence on the spatial volume L
that we will assume to be finite. Computing the spectral den-
sity ρR

PP (E) from the Euclidean correlator CR
PP (t) involves

an inverse Laplace transform,

CR
PP (t) =

∫ ∞

Emin

dE
(
e−t E + e(−T+t)E

)
ρR
PP (E), (51)

where Emin can range between zero and the energy of the
ground state, since ρR

PP vanishes in that interval. The inver-
sion of Eq. (51) is numerically an ill-posed problem which
needs to be regularised. Recalling from Sect. 5 that we are
interested in the smeared version of ρR

PP (E), it is espe-
cially convenient to approach the inverse problem using the
Backus–Gilbert type regularisation [34] introduced in [14],
which yields spectral densities smeared with a chosen smear-
ing function f (E),

ρR
PP [ f ] =

∫ ∞

0
dE f (E) ρR

PP (E). (52)

An important observation is that a fixed smearing kernel is
crucial in order to perform fits and extrapolations of the
results. The idea of the algorithm is to generate the target
smearing kernel, the Gaussian Δσ (E) of Eq. (48), as a lin-
ear combination of the same exponentials appearing in the
Laplace transform of Eq. (51),

Δσ (E − E ′) =
∞∑

τ=1

gτ

(
e−τaE + e(−T+aτ)E

)
, (53)

where t = τa, a being the lattice spacing. Once the coeffi-
cients gτ ≡ gτ (σ, E ′) are known one can simply obtain an
estimator for the smeared spectral density,

ρR
PP, σ (E ′) =

∞∑
τ=1

gτ C
R
PP (aτ). (54)

On the lattice the correlators CR
PP are available for a finite

number of times, therefore the sum in Eqs. (53) and (54)
must be truncated at the appropriate cutoff τmax. Since our
lattices have temporal length T and periodic boundaries, we
have aτmax = T/2. The reconstructed smearing kernel,

f (E, g) =
τmax∑
τ=1

gτ

(
e−τaE + e(−T+aτ)E

)
, (55)

will necessarily differ from the Gaussian Δσ (E) at finite
τmax, inducing a systematic error on the final result. The
computation of the coefficients g is achieved through the
minimisation of the functional Wα[g]

Wα[g] = Aα[g]
Aα[0] + λ B[g], (56)
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where λ is a trade-off input parameter that we will discuss
later in this section. The functional Aα[g], introduced in [14],
measures the difference between the exact smearing kernel
and the one we can reconstruct with the available data

Aα[g] =
∫ ∞

Emin

dE eαaE
∣∣ f (E, g) − Δσ (E − E ′)

∣∣2 . (57)

The parameter α < 2 enables the selection between a class
of norms in order to measure the distance between the target
and the exact function. Choosing larger values of α allows
for the integrand to decay faster at high energies. The func-
tional B[g] is needed to regularise the problem [34], making
it numerically stable. We define B[g] to be dimensionless,
namely

B[g] = E2

CR
PP (a)2

τmax∑
τ,τ ′=1

gτ Covττ ′ gτ ′, (58)

where Cov is the covariance matrix of the correlator C(aτ)

estimated over N bins (see Appendix C),

C(aτ) = 1

N

N−1∑
n=0

Cn(aτ),

Covττ ′ [C] = 1

N − 1

N−1∑
n=0

[Cn(aτ) − C(aτ)]

× [Cn(aτ ′) − C(aτ ′)
]
. (59)

The algorithmic parameters can be gathered to simplify the
notation

p = (α, λ, Emin, τmax). (60)

The minimisation of Wα[g] corresponds to solving the fol-
lowing linear problem,

δWα[g]
δgτ

∣∣∣∣
g=g p

= 0, (61)

which has to be performed at each energy and smearing radius
for which we want to estimate ρR

PP, σ (E ′). The nature of
the functionals appearing in these definitions is intimately
related to the uncertainties on the estimator ρR

PP, σ (E ′). The
statistical error is in fact estimated by

Δstat(E
′, g p) = CR

ab(1)

E ′
√
B[g p]. (62)

The systematic error, unavoidable at finite τmax , is estimated
by monitoring the quantity

d(g p) =
√

A0[g p]
A0[0] , (63)

as we now describe. Regions where d(g p) is small are dom-
inated by the statistical uncertainty; on the other hand, the
reconstructed smearing function of Eq. (53) will be as close

as possible to the exact one. For these reasons, it is not sur-
prising that where d(g p) is small, the results for ρR

PP, σ are

stable2 in response to variations of the algorithmical, unphys-
ical parameters p, within statistical error. If we define the
coefficients g� as

Aα[g�]/Aα[0] = k B[g�], (64)

we find, with the given normalisations of the functionals and
with the quality of our data, that in the range 0.1 < k < 5
and α = 1 the outcome of the reconstruction is in a region of
algorithmical stability: d(g p) is small, and systematic fluc-
tuations are well within the statistical uncertainty. When this
is not realised, the systematic error is estimated as

Δsys(E
′) = |ρR

PP, σ (E ′, g�) − ρR
PP, σ (E ′, g��)|, (65)

where g�� is defined through Eq. (64) at a different value of
k that allows us to account for the systematic fluctuations. In
this work, we find that a definition of g�� at k/10 provides
a conservative estimate of Δsys(E ′) for a reconstruction per-
formed with g� at the value k. Figure 7 shows an example, for
a specific energy E�, of a stability regime where the spectral
reconstruction for different values of λ (black points) does
not fluctuate outside the statistical error (black bars). Three
points on the plot are highlighted: the ones corresponding
to the choices of k = 0.1, k = 2.5 and k = 1 in Eq. (64),
showing that indeed no systematic component affects the
uncertainty on the result. The value corresponding to k = 1
is associated to the value of λ at which one achieves the opti-
mal balance Aα[g�]/Aα[0] = B[g�], in agreement with the
prescription from Refs. [14,16].

7.2 Excited states in the antisymmetric sector

The excited states created by hadronic interpolators have a
big impact on the extraction of the effective masses, since it
can be hard to distinguish them from the ground state. In the-
ories with multiple representations (or even just more flavors
of a single representation) this effect is amplified when all
the fermions are approaching the chiral limit. An interpolator
can now create states containing particles from both repre-
sentations. Since we simulate lighter fundamental fermions,
we can expect this feature to be more visible in the 2AS sec-
tors rather the in the fundamental one. Moreover, the 2AS
sector does not have G-parity selection rules preventing cer-
tain states to mix, and we thus expect this channel to have a
richer dynamics. In order to go into more details, it is use-
ful to set the notation for the pseudoscalar interpolators of
Eq. (41)

π̂(x) = ψ̄
(Fund)
f1

(x)γ5 ψ
(Fund)
f2

(x),

2 Reference [14] shows that, with the value of τmax used in this work,
we can expect a well reconstructed smearing kernel, at vanishing λ.
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Fig. 7 Example of region of algorithmical stability at a given energy
E�. Different values of λ, which translate into different values of d(g p)

on the x-axis, produce predictions for the smeared spectral density
ρR
PP, σ (E�) that are compatible within statistical error (black bars). In

this case, R = 2AS, σ = 0.21/a and E� � M (2AS)
PP . The green and

orange points correspond, according to Eq. (64), to values of k = 0.1
and k = 2.5 respectively. The red point, extended in the horizontal
band, is obtained at k = 1 and it corresponds to the value of λ at which
one achieves the optimal balance Aα[g�]/Aα[0] = B[g�]

Π̂(x) = ψ̄
(2AS)
f1

(x)γ5 ψ
(2AS)
f2

(x), f1 �= f2, (66)

and the correlation functions

C (Fund)
PP (t) = 1

L3

∑
x

〈π̂(x, t)π̂†(0), 〉

C (2AS)
PP (t) = 1

L3

∑
x

〈Π̂(x, t)Π̂†(0).〉 (67)

The importance of both identifying and controlling the
excited states can be appreciated by looking at the smeared
spectral density, for instance, in the pseudoscalar channel

ρ
L ,R
σ,PP (E) =

∑
n

〈0|OR
P (0)|n〉L〈n|OR†

P (0)|0〉L
2En(L)

×Δσ (E − En(L)) . (68)

The magnitude of each matrix element 〈n|Ō R
P (0)|0〉L deter-

mines the weight of each Gaussian Δσ located at the energy
En(L). If these energies are too close, or the matrix elements
are too large, resolving different states can become labo-
rious. With this motivation, in order to control the excited
states we build correlation functions including two differ-
ent types of fermionic field: local, point-like operators and
Gaussian-smeared ones.3 Operator smearing allows working
with interpolating operators that have a weaker overlap with
excited states. Details concerning the measurements of the

3 Operator smearing is not to be confused with the smearing of spectral
densities.

correlation functions and operator smearing can be found in
Appendix C.

The states created by each operator can be identified, as
we have seen, by means of its symmetries. In the fundamental
sector, at zero angular momentum, a pseudoscalar meson can
induce the following transitions from the vacuum

〈0|π̂ |π, 〉 〈0|π̂ |πππ, 〉 〈0|π̂ |πΠΠ, 〉 . . . (69)

that will enter in our analysis through Eq. (68). Since in our
simulations M (2AS)

PP > M (Fund)
PP this phenomenology is rem-

iniscent, up to E3π , of QCD, and one can expect compu-
tational aspects to be also similar. Conversely, due to the
triviality of its G-parity, the 2AS sector has a multi-particle
threshold located at E2Π. In addition, since the other repre-
sentation has lighter particles, states containing pseudoscalar
mesons from the fundamental sector are not guaranteed to
have energies far from the ground state. Possible overlaps
with a pseudoscalar meson are in fact

〈0|Π̂ |Π, 〉 〈0|Π̂ |Π Π, 〉 〈0|Π̂ |Πππ, 〉
〈0|Π̂ |Πππππ, 〉 . . . (70)

The aforementioned features complicate the extraction of
M (2AS)

PP , as it can be understood from Fig. 8 where we show
two different types of signal from a correlator built with local,
unsmeared operators. The excited states contaminate the sig-
nal for the ground state resulting, in the left panel, in an effec-
tive mass that does not reach a clear plateau. The problem
is also manifest in the energy picture, as it is shown in the
right panel of the same figure, where the smeared spectral
density ρ̂

(2AS)
PP, σ does not exhibit the expected Gaussian peak

around the mass of the pseudoscalar meson, but it rather
grows monotonically. Indeed, by decreasing the smearing
radius σ of Eq. (48) one should be able to resolve such peak,
but this cannot be realised with the current quality of the
data. While the temporal length of the lattice poses an intrin-
sic obstacle to the thermalisation of the effective mass, the
spectral reconstruction in principle allows obtaining smaller
smearing radii also by increasing the number of configura-
tions, since the systematic and the statistical error are related
by Eq. (56).

Having established that the excited states present a chal-
lenge in the 2AS sector, it is natural to look at correla-
tion functions of smeared operators defined in Appendix C,
which have suppressed overlap with the excited states. Fig-
ure 9 shows the effective mass and the spectral reconstruction
from the correlation function of such operators. On the left
panel, the plateau in the effective mass shows an improve-
ment compared to the corresponding result in Fig. 8. The
effective mass is independent of time, within its statistical
errors, for t/a > 10. The smeared spectral density, shown
in the right panel, demonstrates again the suppression of the
excited states, with contributions from higher-energy states
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Fig. 8 Results from a two point function of pseudoscalar operators
built with point-like antisymmetric fermionic fields. The correlator is
estimated from the ensemble B1. The left panel exhibits the effective
mass as a function of time. Due to the nature of the excited states in
the 2AS sector, the mass does not reach a plateau in the available time.
The dominance of the excited states can also be understood from the
smeared spectral density in the right panel. The overlap between the
interpolator and the excited states it creates is too large: the spectral
density smeared according to Eq. (48) is dominated by contributions
above the multi-particle threshold, preventing the identification of the
ground state

becoming smaller. As a result, a single peak is clearly vis-
ible at E � 2M (2AS)

PP . The observed smeared spectral den-
sity is the result of two contributions coming mainly from
the energy levels M (2AS)

PP and EΠΠ � 2M (2AS)
PP , which can-

not be resolved because the smearing radius is too large,
σ � M (2AS)

PP . These energies can be nonetheless estimated
by fitting the spectral density to a sum of Gaussians. This
idea will be expanded in the next section.

7.3 Fits of spectral densities

In this section we describe fit strategies for spectral densities.
A parallel discussion on fits of correlators will highlight the
differences between the two methodologies and will lead to
a quantitative comparison between predictions for the pseu-
doscalar masses obtained from the two approaches, which is
presented in detail at the end of the section. The model func-
tions used in the fits are g(k)(t) for correlators and f (k)

σ (t)
for the smeared spectral densities

g(k)(t) =
k∑

n=1

an
(
e−t En + e(−T+t)En

)
,

f (k)
σ (E) =

k∑
n=1

bne
−(E−Ek )

2/ 2σ 2
, (71)

where σ is the smearing radius defined by Eq. (48). The inte-
ger k encodes how many states are included in our model

Fig. 9 Results from Fig. 8, this time using Gaussian-smeared inter-
polators according to Appendix C. These operators are tuned to have
smaller overlaps with the excited states. Consequently, the effective
mass plot on the left reaches a plateau, providing an estimate for
aM (2AS)

PP . The right panel similarly shows how suppressed excited states
allow for a clear peak to emerge in the spectral reconstruction smeared
with σ = M (2AS)

PP according to Eq. (48). The peak includes contributions
from mainly MΠ and EΠΠ

function. En, an and bn are the fit parameters which relate to
finite volume energies and matrix elements. These are esti-
mated by minimising appropriate χ2 functions

χ2
g(k) =

∑
t,r

(
g(k)(t) − C(t)

)
Cov−1

tr [C]
(
g(k)(r) − C(r)

)
,

(72)

χ2
f (k)
σ

=
∑
E,E ′

(
f (k)
σ (E) − ρσ (E)

)

×Cov−1
EE ′ [ρσ ]

(
f (k)
σ (E ′) − ρσ (E ′)

)
, (73)

where covariance matrices are estimated as in Eq. (59) both
for correlators and spectral densities.

On the lattice, the temporal length T constrains the maxi-
mum number of data points and hence degrees of freedom for
fitting a correlator CR

PP(t). The effect of correlation between
times t and t ′ is taken into account by the covariance matrix
appearing in χ2

g(k) . The smeared spectral density ρR
PP, σ (E)

depends on the correlator at all lattice times t, and it can be
in principle evaluated for any energy E . Not all points in
energy, however, provide independent information. Indeed,
the information contained in ρR

PP,σ (E) and ρR
PP,σ (E ′) for

|E − E ′| � σ is essentially the same, from both the phys-
ical and the statistical viewpoint. With this motivation, it is
interesting to study the number of degrees of freedom we
can exploit in each correlated fit. While the correlators can
only be evaluated at integers 0 ≤ t < T, we have freedom
to choose the energies in a given interval at which we evalu-
ate the spectral densities. Our criterion is to select those that
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minimise the condition number of Cov[ρσ ] in order to max-
imise the information that is passed to the χ2. We observe
that correlated data in time does not necessarily translate into
correlated data in energy space, as shown in Fig. 10, where
we compare covariance matrices forC (2AS)

PP (t) and ρ
(2AS)
PP, σ (E)

from the ensemble B3 with a smearing radius σ = 0.2/a.

In both cases, the numbers of data points are enough to
fit at least two states. The matrix Cov−1

t t ′ [C], in particular,
is evaluated from correlators measured from t/a = 8 to
t/a = 16 with an interval of two. Regardless of the thin-
ning in time, adjacent points shows a very high correla-
tion. If the covariance matrix of the correlator Cov[C] is ill-
conditioned, it needs to be regularised by applying a cutoff
on its smaller eigenvalues before χ2

gk
is evaluated, a problem

that is not faced when fitting spectral densities, whose covari-
ance matrix is easier to invert. Indeed, one has to invert the
covariance of the correlators in order to compute the spectral
density, but only in the combination defined by Eq. (56): the
matrices obtained from the functionals Aα[g] and B[g], if
both ill conditioned, regularise each other for suitable values
of λ. The choice of a cutoff for the covariance matrix Cov[C]
is therefore absorbed into the choice of the parameter λ.

Figure 11 shows two examples of correlated fits of the
smeared spectral densities. On the top panel, the correla-
tor used to extract ρ

(2AS)
PP, σ is built with smeared interpolat-

ing fields. The model function is f (3)
σ from Eq. (71). The

plot shows the explicit breakdown of each Gaussian, which
correspond to the contribution of different energy levels: as
each of them becomes decreasingly important, we clearly
see the excited state suppression achieved by the choice of
smeared operators in the correlation function. At low ener-
gies, the spectral density is almost entirely dominated by the
first energy level, therefore the corresponding fit parameter
is mainly constrained by energies near the origin. Cancella-
tions between the three correlated contributions combine in
an error on the fit result that is generally smaller than the
one on the single Gaussians. We identify the first peak as the
value of aM (2AS)

PP and the second with aEΠΠ. The bottom
panel of Fig. 11 is instead obtained from local interpolators,
which have a larger overlap with excited states. As shown in
Fig. 8, the effective mass of Eq. (44) does not reach a clear
plateau in this case, yet the fit of the spectral density is able
to isolate the ground state. The error on the fit, however, is
at best one order of magnitude larger than the correspond-
ing one obtained in the top panel. The choice of smeared
operators is therefore preferred.

We now turn to the comparison of the fit results. As
described in Sect. 7.2, the extraction of the ground state
presents challenges in the antisymmetric sector, which there-
fore provides an interesting testbed to compare the two frame-
works. We use for the comparison the ensembles B1–B4,
where both representations are fairly light. We begin by dis-

Fig. 10 Covariance matrices for the lattice correlator C (2AS)
PP (t) at five

time slices (top) and the smeared spectral density ρ
(2AS)
PP, σ (E) evaluated

at six energies (bottom) fromC (2AS)
PP (t). The points at which the spectral

density is evaluated are chosen in order to minimise the condition num-
ber of its covariance matrix. Due to this freedom, we obtain a matrix
for the spectral density that is better conditioned than the one for the
correlator

cussing the estimate of aM (2AS)
PP from lattice correlators. In

some cases, the covariance matrix of the two point function
had to be regularised by introducing a cutoff on its lower
eigenvalues, in order to invert it in the χ2. The choice of
this cutoff can translate into fluctuations in the estimate of
the pseudoscalar mass outside the statistical error, that have
been accounted for by adding a systematic component to the
uncertainty. This problem does not appear while fitting spec-
tral densities, because the covariance of the spectral density
is better conditioned. We have also ensured that no contami-
nation was present in the estimate for the pseudoscalar mass
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Fig. 11 Examples of fits of spectral densities, showing the breakdown
of the contribution of each Gaussian. On the top panel, a three Gaussian
fit of a smeared spectral density extracted from a correlator that uses
smeared, non-local fields. Due to this choice for the interpolator, the
Gaussians in the plot contribute less as we go higher in the energy
range. On the bottom panel, we show a similar plot obtained from local
interpolators: the two Gaussian fit is still able to isolate the ground state
even if the effective mass does not plateau. Both plots correspond to
the pseudoscalar 2AS channel. The top panel is obtained within the
ensemble B3 and the spectral density has smearing radius σ = 0.24/a.

The bottom panel is derived from the ensemble B2 and the smearing
radius of the spectral density is σ = 0.3/a

by comparing fits of one and more exponentials. The values
of the pseudoscalar mass obtained with this approach can
be found in Table 8. In this framework the smearing of the
interpolators has been crucial, as it is clear from Fig. 8 where
the effective mass of Eq. (44) does not plateau due to the
short temporal extent of the lattice. The spectral density, on
the other hand, does not rely on any large time behaviour. Its
limit lies in the high energy range, where its error becomes
large. In order to perform the reconstruction, the algorithmic
inputs are chosen in the region of stability as described in

Fig. 12 The plot updates Fig. 7, which shows that the reconstruction
(red band) does not change outside the statistical error (black bars) for
different choices of the unphysical parameter λ, in the given range of
d(g p) (cf. Equation (63)). The blue band is the fit result of the smeared
spectral density to a sum of Gaussians at the point E�. Encouragingly,
the fit is compatible with all points in the scan, showing that stability in
the reconstruction translates into stability for the fits

Sect. 7. Figure 12 updates the plot from Fig. 7 showing that
stability for the reconstruction translates into stability for the
fits: the blue band, which is the fit result for the smeared spec-
tral density at the energy E�, is compatible with all the values
generated by different choices for the unphysical parameter
λ.

The choice of the smearing radius is dictated by the quality
of the data. In this work, we managed to obtain values ranging
from σ = 0.18/a to 0.33/a. Since the separation between
finite volume energies should be roughly 2π/L � 0.4, these
values can be considered acceptable. For each ensemble, we
have performed the fit at a fixed value of σ, obtaining a predic-
tion for the pseudoscalar mass aM (2AS)

PP, σ . We then performed
a scan over different smearing radii to check for systematic
effects. As shown in the example of Fig. 13, the smearing radii
adopted were found to be small enough to identify the ground
state; in most cases, still, we have observed fluctuations for
aM (2AS)

PP, σ as σ varies. When they occurred, we added half the
spread of these fluctuations as a systematic error. Figure 13
also shows a comparison between fits that include two and
three states: the results are in good agreement, signalling that
no contamination from excited states is affecting the estimate
of the mass.

The comparison between fits of spectral densities and cor-
relators is shown in Fig. 14. The predictions are always com-
patible, and the errors lie in the same order of magnitude, but
the uncertainty on the correlator is generally smaller, up to a
factor of approximately two.

The numerical values used in this comparison are listed in
Table 3. It should be noticed that the outcome of this com-
parison holds with the given amount of statistics and time
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Fig. 13 Fit results for aM (2AS)
PP from the ensemble B3, obtained from

two (green) and three (red) Gaussian fits of smeared spectral densities at
different smearing radiiσ.Fluctuation at different values of the smearing
radius translate into a systematic component of the uncertainty. This is
summed in quadrature to the statistical error in the gray, horizontal band,
the estimate for the pseudoscalar mass aM (2AS)

PP = 0.3550(31)

Table 3 Predictions for the pseudoscalar mass in the 2AS sector from
different ensembles. The values are depicted in Fig. 14

Ensemble aM (2AS)
PP from C (2AS)

PP (t) aM (2AS)
PP,σ from ρ

(2AS)
PP, σ (E)

B1 0.4638(33) 0.4607(71)

B2 0.4035(24) 0.3996(88)

B3 0.3600(38) 0.3550(31)

B4 0.3407(48) 0.3420(71)

extent of the lattice. These quantities, in fact, heavily influ-
ence the analysis both on the side of the correlators and the
spectral density, yet the way in which the two methodologies
are affected can be different.

8 Conclusions

The model studied in this work allows us to understand the
dynamics of partial compositeness better, by extending the
effort started in Ref. [9] at a reasonable computational cost.
In order to make contact with the phenomenology of these
theories from a lattice perspective, the systematics related
to the computation of the spectrum and to the extrapolation
to the chiral limit need to be under control. Our analysis
has been developed in this context. We have explored the
perturbative structure of the theory, extending previous com-
putations of the critical mass [20–24] to the case of multi-
ple fermionic representations. We have computed the self-
energy of a fermion in a given representation, focusing on
the dynamical effects due to the presence of more fermionic

Fig. 14 Graphical comparison between the two predictions for
aM (2AS)

PP for the ensembles B1–B4
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fields in a different representation of the gauge group. While
leaving a clear footprint, the second representation has only
a minor numerical impact on the value of the critical mass.
This result, while perturbative, found a counterpart at the non-
perturbative level in the outcome of our simulations, as it is
shown in Tables 6, 7 and 8. By approaching the chiral limit in
a given representation, in fact, we found a weak dependence
on the bare parameters of the other one. The extrapolation
to the chiral limit was based on several ensembles that were
generated for this study. This task was hindered by a strong
autocorrelation affecting observables built from the fermion
fields in the fundamental representation, the lightest in terms
of pseudoscalar masses. A great portion of this work focused
on the extraction of the spectrum, a crucial task in order to
understand if these models are realistic from a phenomeno-
logical perspective. We have shown that the 2AS sector is
characterised by complicated dynamics, due to the interplay
between different representations, and the lack of selection
rules dictated by discrete symmetries. We have found oper-
ator smearing to be essential, in this context, to provide a
reliable analysis of the lattice data. In our analysis, we have
taken advantage of recent progresses [14,16] in the numerical
solution of the inverse problem that allow precise reconstruc-
tions of smeared spectral densities. Our approach, introduced
in Ref. [14], yields spectral densities smeared with a chosen
function and with controlled systematics. Due to these fea-
tures it was possible, for the first time, to explore in this
work the extraction of finite volume energies from fits of
spectral densities. Our results, compared to other established
approaches, provide complementary insights and fully com-
patible results.

Encouraged by these conclusions, we plan to explore the
possibility of extending this computational setup to the study
of baryonic operators, as well as to other theories of compos-
ite Higgs. Our choices, both in terms of software [31,32] and
computational framework, are general and easy to adapt for
the study of other theories, whether they contain different
number of colors, fermionic content or gauge groups. More-
over, our work clarified technical aspects of the partial com-
positeness dynamics: this important step will allow moving
towards studies of more phenomenological relevance. The-
ories of partial compositeness provide a rich set of new par-
ticles, from pseudo Goldstone bosons to heavy-quark part-
ners, that are charged under the Standard Model and could
be important for direct and indirect search of new physics.
The extraction of spectral densities, validated in this context
by our work, can be used not only to extract energy levels but
also to directly compute inclusive cross-sections [13,35], a
possibility that we leave for future studies. The knowledge of
inclusive processes can be important for the indirect search
of new physics, with particles from the new sector leaving
footprints in observables precisely measured both at present
and future colliders.
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Appendix A: Group-theoretical conventions

We denote the generators of SU (N ), the special unitary
group of degree N , as T a, with 1 ≤ a ≤ N 2 − 1. They
are traceless Hermitian matrices satisfying the algebra

[
T a, T b

]
= i

N2−1∑
c=1

f abcT c, (A.1)

where f abc are the structure constants of the su(N ) Lie alge-
bra, which are antisymmetric under permutations of every
pair of indices, and are the same in all representations. The
generators in an irreducible representation R, denoted as T a

R ,

satisfy

Tr
(
T a
RT

b
R

)
= λRδab, (A.2)

where λR is the Dynkin index of the representation R. In our
normalisations, the Dynkin index of the fundamental repre-
sentation is λ(Fund) = 1

2 . Another interesting group-theoretical
invariant is the sum of the squares of the generators, which
is the quadratic Casimir operator, and is proportional to the
identity matrix in every representation; we denote the corre-
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Table 4 Group-theoretical factors used in this work

R dim(R) λR C2(R)

Fund N 1
2

N2−1
2N

2AS N (N−1)
2

N−2
2 C2(Fund)

2(N−2)
N−1

sponding eigenvalue in the representation R as C2(R):

N2−1∑
a=1

T a
RT

a
R = C2(R)1. (A.3)

Comparing Eqs. (A.2) and (A.3) one obtains

λR = dim(R)

N 2 − 1
C2(R), (A.4)

dim(R) being the dimension of the representation R. With
these conventions, the values of these invariants for the fun-
damental and 2AS representation are listed in Table 4.

The explicit form of the generators that were used in this
work is as follows. For the fundamental representation, the
N − 1 Cartan generators are defined as

T k
(Fund) = 1√

2k(k + 1)
diag(1, . . . , 1︸ ︷︷ ︸

k terms

,−k, 0, . . . , 0︸ ︷︷ ︸
N−k−1 terms

), (A.5)

for 1 ≤ k ≤ N − 1, whereas the remaining N 2 − N non-
diagonal generators are defined as
(
T (i, j;1)

(Fund)

)
a,b

= 1

2

(
δa,iδb, j + δa, jδb,i

)
, (A.6)

(
T (i, j;2)

(Fund)

)
a,b

= 1

2i

(
δa,iδb, j − δa, jδb,i

)
, (A.7)

for 1 ≤ i < j ≤ N . Note that, with these conventions,
for N = 2 the generators in the fundamental representation
reduce to 1

2σ a (σ a denoting a Pauli matrix), while for N =
3 the generators in the fundamental representation are 1

2λa

(where λa denotes a Gell-Mann matrix).
Given a generic element u of the SU (N ) group in the fun-

damental representation, the same group element in the 2AS
representation is a complex-valued matrix of size (N (N −
1)/2)× (N (N − 1)/2) whose entries (which can be labelled
by pairs of indices (i, j), with 1 ≤ i < j ≤ N ) are defined
as

U(i, j)(k,l) = −2 Tr
(
T (i, j;2) T

(Fund) u T (k,l;2)
(Fund) uT

)
. (A.8)

Interpreting Eq. (A.8) as a map R from the group elements
in the fundamental representation to group elements in the
two-index antisymmetric representation, the generators in the
latter representation can then be obtained from the pushfor-
ward R� of the generators in the fundamental representation.
Equivalently, if one considers group elements of the form
u = 1N + iεT a

(Fund) + O(ε2), the corresponding generator in

the 2AS representation can be obtained as

lim
ε→0

(−i/ε)
(
U − 1N (N−1)/2

)
. (A.9)

Explicitly, with these conventions the SU (4) generators
in the fundamental representation take the form:

T 1
(Fund) = 1

2

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , T 2

(Fund) = 1

2

⎛
⎜⎜⎝

0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

T 3
(Fund) = 1

2

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , T 4

(Fund) = 1

2

⎛
⎜⎜⎝

0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

T 5
(Fund) = 1

2

⎛
⎜⎜⎝

0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , T 6

(Fund) = 1

2

⎛
⎜⎜⎝

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

T 7
(Fund) = 1

2

⎛
⎜⎜⎝

0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

⎞
⎟⎟⎠ , T 8

(Fund) = 1

2
√

3

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 0

⎞
⎟⎟⎠ ,

T 9
(Fund) = 1

2

⎛
⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎟⎠ , T 10

(Fund) = 1

2

⎛
⎜⎜⎝

0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0

⎞
⎟⎟⎠ ,

T 11
(Fund) = 1

2

⎛
⎜⎜⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

⎞
⎟⎟⎠ , T 12

(Fund) = 1

2

⎛
⎜⎜⎝

0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0

⎞
⎟⎟⎠ ,

T 13
(Fund) = 1

2

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ , T 14

(Fund) = 1

2

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

⎞
⎟⎟⎠ ,

T 15
(Fund) = 1

2
√

6

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3

⎞
⎟⎟⎠ , (A.10)

while the SU (4) generators in the two-index antisymmetric
representation read:

T 1
(2AS) = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, T 2
(2AS) = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 −i 0 0 0
0 i 0 0 0 0
0 0 0 0 −i 0
0 0 0 i 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A.11)

T 3
(2AS) = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, T 4
(2AS) = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 −1 0 0 0
0 0 0 0 0 0

−1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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T 5
(2AS) = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 i 0 0 0
0 0 0 0 0 0
−i 0 0 0 0 0
0 0 0 0 0 −i
0 0 0 0 0 0
0 0 0 i 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, T 6
(2AS) = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

T 7
(2AS) = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −i 0 0 0 0
i 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −i
0 0 0 0 i 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, T 8
(2AS) = 1√

12

⎛
⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 −2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

T 9
(2AS) = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −1 0
0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0

−1 0 0 0 0 0
0 −1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, T 10
(2AS) = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 i 0
0 0 0 0 0 i
0 0 0 0 0 0
0 0 0 0 0 0
−i 0 0 0 0 0
0 −i 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

T 11
(2AS) = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 −1
1 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, T 12
(2AS) = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 −i 0 0
0 0 0 0 0 0
0 0 0 0 0 i
i 0 0 0 0 0
0 0 0 0 0 0
0 0 −i 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

T 13
(2AS) = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, T 14
(2AS) = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 −i 0 0
0 0 0 0 −i 0
0 i 0 0 0 0
0 0 i 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

T 15
(2AS) = 1√

6

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A.12)

Appendix B: Autocorrelation times

In an HMC algorithm, gauge configurations are generated
through a Markov chain process. As a consequence, sub-
sequent configurations can be correlated. Accounting for
autocorrelation is essential in the estimation of observables
through the Monte Carlo average. Consider a succession ai
of measurements of an observable A. We estimate the inte-
grated autocorrelation time τint of the observable A as

τint = 1

2
+

W∑
t=1

Γ (t)

Γ (0)
, (B.1)

where t is the Monte Carlo time,W is the summation window,
and Γ (t) is our approximation of the autocorrelation function
of the series:

Γ (t) � 1

Ncf g − t

Ncf g−t∑
n=1

(an − 〈a−〉) (an+t − 〈a+〉),

0 ≤ t < Ncf g. (B.2)

Fig. 15 Top panel: Autocorrelation function Γ (t)/Γ (0) computed for
the two point function of two pseudoscalar mesons with fermions in the
fundamental representation. Different colors represent different inter-
vals in lattice time between the source and the sink. Bottom panel:
Integrated autocorrelation time as a function of the summation window,
computed for the same correlator on the top at several times. The two
point function is obtained from the ensemble A0

〈a−〉 and 〈a+〉 are the averages over Ncf g − t measure-
ments, respectively the first and the last ones (see Section 4
of Ref. [36] for more details). In order to choose a summation
window W of Eq. (B.1), we check at which Monte Carlo time
t the function Γ (t)/Γ (0) is smaller than twice its variance,
which is estimated within the Madras Sokal approximation
[36,37].

Typical plots that we obtain for these quantities are
shown in Fig. 15 for the pseudoscalar–pseudoscalar corre-
lator of fundamental fermions at different lattice times. In
the top panel, our estimation of the autocorrelation function
Γ (t)/Γ (0) is plotted as a function of Monte Carlo time,
showing the typical decaying behaviour. The bottom panel
shows the integrated autocorrelation time τint of Eq. (B.1) for
an increasing summation window W. The error is computed
in the Madras Sokal approximation,
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〈δτ 2
int �〉4W + 2

Ncf g
τ 2
int . (B.3)

In both panels, the correlation functions are computed for
operators at different lattice times in order to monitor both
the short and long distance behaviour.

By knowing the correlation of an observable between tra-
jectories in the HMC, we can establish how many of them
have to be skipped performing the measurement. This is our
strategy for the computation of the correlators on our ensem-
bles. Alternatively, the naive estimate for the statistical error
σ0 of a given observable can be corrected to be σ 2 = 2τintσ

2
0 .

Accounting for autocorrelation has been essential in the
following analysis, especially for those quantities computed
in the proximity of the chiral limit, where the autocorrelation
was more significant.

Appendix C: Measurements of correlation functions

In this section we discuss the details behind the measurement
of correlation functions CR

ab(t) ≡ CR
ab(t, 0)

CR
ab(t, 0) = 1

L3

∑
x

〈OR
a (x, t)OR†

b (0, ti ), 〉 a, b = P, A,

(C.16)

where R denotes the representation of the fermionic fields.
For each gauge configuration n = 1, . . . Ncf g we average
measurements performed every 4 source-times ti , resulting
in the correlator CR

ab, n(t),

CR
ab, n(t) = 8

T

T/2∑
ti=0,4,...

CR
ab, n(t, ti ). (C.17)

The gauge averageCR
PP (t) and its variance δCR

ab(t)
2 are then

estimated from a new set of N correlators, CR
ab, n′, resampled

with a bootstrap procedure from CR
ab, n . In this step, trajecto-

ries are discarded in order to account for the autocorrelation
that is monitored across observables and ensembles accord-
ing to Appendix B.

CR
ab(t) = 1

N ′
N ′−1∑
n′=0

CR
ab, n′,

δCR
ab(t)

2 = 1

N ′
N ′−1∑
n′=0

[
CR
ab, n′ − CR

ab(t)
]2

(C.18)

In order to suppress the excited states created by the hadronic
operator in Eq. (C.16), we compute the two point functions
by using different types of smearing on the fermionic fields.
The procedure is not gauge invariant and requires working
at fixed gauge. In particular, we adopt local (ψ R(x)) and

smeared (ψ̃ R(x)) fields

ψ R(x)cα =
∫

dy δ(x − y)δαα′δcc′ ψ R(y)c
′

α′ ;

ψ̃ R
g (x)cα =

∫
dy

e−(x−y)2/2g2

√
2πg

δαα′δcc′ψ R(y)c
′

α′ , (C.19)

where c, c′ are color indices, α, α′ are Dirac indices and a
sum is intended over α′, c′. The parameter g can is tuned
according to Sect. 7.2 in order to suppress the excited states in
the spectral reconstruction. By combining local and smeared
operators, we obtain three types of correlators: local–local,
smeared–smeared, local–smeared. In the latter, the opera-
tors at the source and the sink are different, and this can
produce negative contributions to the spectral density. As
demonstrated in the Appendix of [14], such terms do not
jeopardise the extraction of the spectral density from the cor-
relators.

Appendix D: Isospin generators

The isospin group of the 2AS sector in the 2-flavor Fer-
retti model is SO(4). The Goldstone bosons arising from
the SU (4)/SO(4) cosets transform in a 9-dimensional rep-
resentation of the isospin, whose generators Xn, n = 1, . . . 6
are listed in this appendix. These are obtained according to
the convention of [9] regarding the generators and the struc-
ture constants of SU (4).

X1 = − i

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −2 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D.20)

X2 = − i

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 −1 0 0 −√

3 0 0 0 0
−1 0 0 0 0 0 0 0 0
0 0

√
3 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D.21)

X3 = − i

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0

−1 0 0 0 0 0 0 0 0
0 1 0 0 −√

3 0 0 0 0
0 0 0

√
3 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D.22)
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X4 = − i

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1/

√
3 0 0 0

0 −1 0 0 −1/
√

3 0 0 0 −2
√

2/3
−1 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 0 0 2

√
2/3 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D.23)

X5 = − i

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1/

√
3 0 0

−1 0 0 0 0 0 0 0 0
0 1 0 0 −1/

√
3 0 0 0 −2

√
2/3

0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 2

√
2/3 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D.24)

X6 = − i

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 −2/

√
3 0

0 0 −1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 2/

√
3 0 0 0 −2

√
2/3

0 0 0 0 0 0 0 2
√

2/3 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(D.25)

Appendix E: Ensembles

See Table 5.

Table 5 Ensembles used to
extrapolate the chiral limit of the
SU (4) gauge theory with two
fundamental and two two-index
antisymmetric fermions. The
coupling is β = 11, and the
volume of the lattice is 163 × 32

amF
0 am(2AS)

0 〈P〉 Ncf g amF
PCAC am(2AS)

PCAC

A0 −0.45 −0.45 0.60893(2) 216 0.0468(23) 0.2327(37)

A1 −0.455 −0.45 0.60896(3) 99 0.0386(17) 0.2311(13)

A2 −0.46 −0.45 0.61392(2) 694 0.0332(26) 0.2290(30)

A3 −0.465 −0.45 0.60917(4) 82 0.0262(14) 0.2280(19)

A4 −0.47 −0.45 0.60942(1) 446 0.0209(29) 0.2277(35)

B0 −0.45 −0.54 0.61181(4) 65 0.0321(78) 0.1200(53)

B1 −0.45 −0.56 0.61259(2) 232 0.0338(94) 0.0988(40)

B2 −0.45 −0.58 0.61344(4) 243 0.0313(16) 0.0691(35)

B3 −0.45 −0.59 0.61392(2) 180 0.0306(36) 0.0544(19)

B3 −0.45 −0.60 0.61427(2) 176 0.0480(17) 0.0292(12)

C0 −0.47 −0.48 0.61011(3) 116 0.0205(34) 0.1962(54)

C1 −0.47 −0.52 0.61148(3) 78 0.0170(67) 0.1415(41)

C2 −0.47 −0.53 0.61203(3) 90 0.0143(56) 0.1279(39)

C3 −0.47 −0.54 0.61248(3) 92 0.0114(45) 0.1126(32)

C4 −0.47 −0.58 0.61398(6) 53 0.0068(15) 0.0651(27)

S0 −0.44 −0.60 0.61403(5) 43 0.0454(10) 0.0495(20)
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Appendix F: Masses

See Tables 6, 7, 8 and 9.

Table 6 PCAC masses for the
fundamental representation used
in the chiral extrapolation. The
bare mass of the antisymmetric
fermions is fixed at
am(2AS)

0 = −0.45. They
correspond to the ensembles
A0–A4

am(Fund)
0 am(Fund)

PCAC am(2AS)
PCAC

−0.45 0.0468(23) 0.2327(37)

−0.455 0.0386(17) 0.2311(13)

−0.46 0.0332(26) 0.2290(30)

−0.465 0.0262(14) 0.2280(19)

−0.47 0.0209(29) 0.2277(35)

Table 7 PCAC masses for the
antisymmetric representation
used in the chiral extrapolation.
The values on the left are
obtained with
am(Fund)

0 = −0.45 (ensembles
B0–B4), the ones on the right
with am(Fund)

0 = −0.47
(ensembles C0–C4)

am(2AS)
0 am(2AS)

PCAC am(Fund)
PCAC am(2AS)

0 am(2AS)
PCAC am(Fund)

PCAC

−0.54 0.1200(53) 0.0321(78) −0.48 0.1962(54) 0.0205(34)

−0.56 0.0988(40) 0.0338(94) −0.52 0.1415(41) 0.0170(67)

−0.58 0.0691(35) 0.0313(16) −0.53 0.1279(39) 0.0143(56)

−0.59 0.0544(19) 0.0306(36) −0.54 0.1126(32) 0.0114(45)

−0.60 0.0480(17) 0.0292(12) −0.58 0.0651(27) 0.0068(15)

Table 8 Masses of the
pseudoscalar mesons. On the
left, we vary the bare
fundamental mass while keeping
am(2AS)

0 = −0.45 (ensembles
A0–A4). Conversely, on the
right the fundamental bare mass
is fixed at am(Fund)

0 = −0.45
(ensembles B0–B4)

am(Fund)
0 aM (Fund)

PP aM (2AS)
PP am(2AS)

0 aM (2AS)
PP aM (Fund)

PP

−0.45 0.3555(38) 0.8037(14) −0.54 0.5426(22) 0.375(36)

−0.455 0.290(60) 0.7701(31) −0.56 0.4638(33) 0.3114(69)

−0.46 0.280(16) 0.7640(28) −0.58 0.4035(24) 0.3147(40)

−0.465 0.254(16) 0.7635(29) −0.59 0.3600(38) 0.3038(67)

−0.47 0.255(10) 0.7634(20) −0.60 0.3407(48) 0.321(13)

Table 9 Fit results for aM (2AS)
PP

from smeared spectral densities
for different smearing radii σ

and different number of states n.

These values appear in Fig. 13

aσ aM (2AS)
PP χ2

f (n)
σ

/d.o.f n

0.18 0.3558(30) 0.61 2

0.19 0.3505(33) 0.75 2

0.2 0.3550(23) 1.36 2

0.21 0.3554(22) 0.81 2

0.22 0.3523(26) 1.18 2

0.23 0.3580(22) 2.13 2

0.24 0.3557(24) 1.58 2

0.19 0.3498(37) 0.71 3

0.2 0.3516(32) 0.96 3

0.21 0.3534(29) 1.80 3

0.22 0.3505(33) 1.38 3

0.23 0.3592(25) 2.04 3
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