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Multi-resolution analysis and fractional quantum Hall
effect: An equivalence result
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In this article we prove that any multi-resolution analysis of L
2(R) produces, for

some values of the filling factor, a single-electron wave function of the lowest

Landau level ~LLL! which, together with its ~magnetic! translation, gives rise to an

orthonormal set in the LLL. We also discuss the inverse construction. Moreover, we

extend this procedure to the higher Landau levels and we discuss the analogies and

the differences between this procedure and the one previously proposed by J.-P.

Antoine and the author. © 2001 American Institute of Physics.

@DOI: 10.1063/1.1407281#

I. INTRODUCTION

The role of wavelets in various applications of mathematics and to some physical problems

like signal analysis is now completely established: the existence of a wide literature on this field

is sufficient to give an idea of the amount of people involved in this and related topics. For a clear

reading on this subject a standard quotation is Ref. 1. Reference 2 is an updated book where other

interesting aspects of wavelets are discussed. What cannot be found in many textbooks, since is

still to be understood, is the relevance of wavelets in quantum mechanics: at this moment, to our

knowledge, very few of the applications proposed in this field ~Ref. 3–8 among the others!.

One of the most useful features of wavelets concerns their localization properties in both

configuration and frequency space. This fact is at the basis of a series of papers3–6 where different

families of orthonormal ~o.n.! bases in L
2(R) are used in the search for the ground state of a

two-dimensional electron gas ~2DEG! in a uniform positive background and subjected to a uni-

form electro-magnetic field. This is the physical system which produces the well-known fractional

quantum Hall effect ~FQHE!. The key fact behind this approach is the existence of an unitary map

between L
2(R) and the lowest Landau level ~LLL!, that is, the subspace of L

2(R
2) corresponding

to the lowest eigenvalue of the free Hamiltonian of the 2DEG. This implies that any o.n. basis in

L
2(R) ~not necessarily a wavelet one!! produces an o.n. basis in the LLL; for this reason the role

of wavelets does not seem so crucial. We will comment again on this approach in Sec. V.

In this articles we establish a deeper connection between wavelets and FQHE. In particular we

will show that any multi-resolution analysis ~MRA! of L
2(R) produces automatically a wave

function in L
2(R) and, as a second step, a wave function in the LLL which turns out to be o.n. to

its own ~magnetic! translation. This procedure, which works for an even value of the inverse

filling factor, is only possible when we start from a MRA, contrary to what happens in Ref. 3, and

can also be inverted: to any o.n. basis in the LLL which is generated by a single wave function via

the action of magnetic translations can be associated a MRA.

The article is organized as follows:

In the next section we quickly review some of the main properties of a MRA and of the

kq-representation,9 which turns out to be a technical tool useful to implement the orthonormality

condition.

a!Electronic mail: bagarell@unipa.it
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In Sec. III we state the problem of orthonormality of the single electron wave functions in

connection with the FQHE.

In Sec. IV we show how, for fillings factors n51/2L , LPN, a MRA produces in a completely

natural way a wave function for the 2DEG with the desired orthonormality requirement. We also

discuss the inverse procedure.

Section V is devoted to the comparison between this approach and the one proposed in Ref. 3.

In particular, the example of the Haar o.n. basis is considered in detail. We also extend our

procedure to higher Landau levels.

Section VI contains the conclusions and the plans for the future.

II. MATHEMATICAL TOOLS

In order to keep the article self-contained we now quickly review, for the reader’s conve-

nience, the main properties of the mathematical tools we will use in the rest of the article.

A. Multi-resolution analysis

The main result in the theory of MRA is the recipe which allows us to construct an orthonor-

mal basis in L
2(R) starting from a single function c and acting on c with dilation and translation

operators, generating the set

$c j ,k~x ![2 j /2c~2 jx2k !, j ,kPZ%. ~2.1!

Such a basis has the good properties of wavelets, including space and frequency localization.

This is the key to their usefulness in many physical and mathematical applications. Let us now

sketch the construction of these o.n. bases of wavelets. The full story may be found, for instance,

in Ref. 1.

A multi-resolution analysis of L2(R) is an increasing sequence of closed subspaces

¯,V22,V21,V0,V1,V2,¯ , ~2.2!

with ø jPZV j dense in L2(R) and ù jPZV j5$0%, and such that

~1! f (x)PV j⇔ f (2x)PV j11 .

~2! There exists a function fPV0 , called a scaling function, such that $f(x2k),kPZ% is an o.n.

basis of V0 .

Combining ~1! and ~2!, one gets an o.n. basis of V j , namely $f j ,k(x)[2 j /2f(2 jx2k),kPZ%. The

role of V j as an approximation space and in the direct decomposition of L(R) is discussed in Ref.

1.

Here we only need to know that the theory asserts the existence of a function c, called the

mother of the wavelets, explicitly computable from f, such that $c j ,k(x)[2 j /2c(2 jx2k), j ,k

PZ% constitutes an orthonormal basis of L2(R): these are the orthonormal wavelets.

The construction of c proceeds as follows. First, the inclusion V0,V1 yields the relation

f~x !5& (
n52`

`

hnf~2x2n !, hn5^f1,nuf&. ~2.3!

Taking Fourier transforms, this gives

f̂~v !5mo~v/2!f̂~v/2!, ~2.4!

where

mo~v !5
1

&
(
2`

`

hne2inv ~2.5!
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is a 2p-periodic function. Iterating ~2.4!, one gets the scaling function as the ~convergent!! infinite

product

f̂~v !5~2p !21/2 )
j51

`

mo~22 jv !. ~2.6!

Then one defines the function cPW0,V1 by the relation

ĉ~v !5e iv/2 mo~v/21p ! f̂~v/2!, ~2.7!

or, equivalently,

c~x !5& (
n52`

`

~21 !n21h2n21f~2x2n !, ~2.8!

and proves that the function c indeed generates an o.n. basis with all the required properties.

Actually, this procedure does not produce a unique result. Another possibility, which is the one

we will use in the example given later in this work, gives for the mother wavelet the following

expansion:

c~x !5& (
n52`

`

~21 !nh2n11f~2x2n !. ~2.9!

Various additional conditions may be imposed on the function c ~hence on the basis wave-

lets!: arbitrary regularity, several vanishing moments ~in any case, c has always meant zero!, fast

decrease at infinity, even compact support. For instance, c has compact support if only finitely

many hn differ from zero.

Simple examples of this construction are the Haar basis, which comes from the scaling

function f(x) equal to 1 for 0<x,1 and 0 otherwise, the spline functions,1 and so on.

What is more interesting for our purposes is the role of the coefficients $hn% defining the

two-scale relation ~2.3!. These are complex quantities which, if f(x) is normalized, must satisfy

the following relation:

(
nPZ

uhnu2
51. ~2.10!

Furthermore, it can be proved using the 2p-periodicity of the function mo(v), together with the

orthogonality of the set $f(x2k)% for kPZ, that

umo~v !u2
1umo~v1p !u2

51 ~2.11!

almost everywhere.1 This equation can be written in two equivalent forms where the coefficients

hn explicitly appear:

(
nPZ

hnhn12k5dk ,0 , ;kPZ, ~2.12!

or

(
n ,kPZ

hnhn12ke2,ikv
51, a.e., ~2.13!

or yet, in a more convenient form,
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1

2 (
n ,lPZ

hnh le
i~ l2n !v~11~21 ! l1n!51, a.e. ~2.14!

We end this rapid excursus on MRA with the following remark: the set of coefficients $hn%

can be considered as the main ingredient of a MRA since it generates mo(v), f̂(v) and, finally,

the mother wavelet c(x).

B. kq-representation

The relevance of kq-representation in many-body physics has been established since its first

appearance.9 What was originally a physical tool has become, during the years, also a mathemati-

cal interesting object, widely analyzed in the literature, ~see Refs. 10 and 11, for instance!. We give

here only a few definitions and refer to Refs. 9 and 11–13 for further reading and for applications.

The genesis of the kq-representation consists in the well-known possibility of a simultaneous

diagonalization of any two commuting operators. In Ref. 12 it is shown that the following distri-

butions,

ckq~x !5A2p

a (
nPZ

e iknad~x2q2na !, kP[0,a[, qPF0,
2p

a
F , ~2.15!

are ~generalized! eigenstates of both T(a)5e ipa and t(2p/a)5e ix2p/a. Here a is a positive real

number which plays the role of a lattice spacing.

How it is discussed in Ref. 12, these ckq(x) are Bloch-like functions corresponding to infi-

nitely localized Wannier functions. They also satisfy orthogonality and closure properties. This

implies that, roughly speaking, they can be used to define a new representation of the wave

functions by means of the integral transform Z:L2(R)→L
2(h), where h5@0,a@3@0,2p/a@ ,

defined as follows:

h~k ,q !ª~ZH !~k;q !ªE
R

dvckq~v !H~v !, ~2.16!

for all functions H(v)PL
2(R). The result is a function h(k ,q)PL

2(h).

To be more rigorous, Z should be defined first on the functions of C0
`(R) and then extended to

L
2(R) using its continuity.10 In this way it is possible to give a rigorous meaning to formula

~2.16!.
From now on we will work in the following hypothesis:

a2
52p , ~2.17!

which, also in view of the next section, will correspond to fixing the spacing of the lattice

underlying the 2DEG.

Replacing ckq(x) with its explicit expression, formula ~2.16! produces

h~k ,q !5~ZH !~k ,q !ª
1

Aa
(
nPZ

e2iknaH~q1na !, ~2.18!

which can be inverted and gives the x-representation H(v)PL
2(R) of a function h(k ,q)

PL
2(h) as follows:

H~v !5~Z21h !~v !5E
h

dkdqckq~v !h~k ,q !. ~2.19!

Due to ~2.15!, this equation gives
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H~x1na !5
1

Aa
E

0

a

dke iknah~k ,x !, ;xP@0,a@ , ;nPZ. ~2.20!

In all the literature concerning kq-representation, the role of the boundary conditions is widely

discussed, also in connection with the continuity properties of the functions. For instance, in Ref.

14, a function h(k ,q)PL
2(h) is said to be continuous if it is the restriction to the kq-cell of a

function continuous in the extended kq-plane (k ,qPR), and if it satisfies the following boundary

conditions:

h~k1a ,q !5h~k ,q !,

~2.21!
h~k ,q1a !5e ikah~k ,q !,

which are typical of any function in kq-representation and which will always be assumed here.

III. STATING THE PROBLEM

In this section we will discuss a many-body model of the FQHE looking, in particular, for the

single-electron wave function which generates the ground state of the physical system in the way

described next. This system is simply a two-dimensional electron gas, 2DEG ~that is a gas of

electrons constrained in a two-dimensional layer!, in a positive uniform background and subjected

to a uniform magnetic field along z and an electric field along y.

The Hamiltonian of the system can be written as

H ~N !
5H0

~N !
1l~Hc

~N !
1HB

~N !! ~3.1!

where H0
(N) is the sum of N contributions:

H0
~N !

5(
i51

N

H0~ i !. ~3.2!

Here H0(i) describes the minimal coupling of the electrons with the fields:

H05
1

2
„pI 1AI ~r !…2

5
1

2
S px2

y

2
D 2

1
1

2
S py1

x

2
D 2

. ~3.3!

Notice that we are adopting here the symmetric gauge AI 51/2(2y ,x ,0) and the same unit as in

Ref. 15. Hc
(N) is the canonical Coulomb interaction between charged particles:

Hc
~N !

5
1

2 (
iÞ j

N
1

urI i2rI ju
~3.4!

and HB
(N) is the interaction of the charges with the background, whose explicit form can be found

in Ref. 15.

In the following we will consider, as it is usually done in the literature, l(Hc
(N)

1HB
(N)) as a

perturbation of the free Hamiltonian H0
(N) , and we will look for eigenstates of H0

(N) in the form of

Slater determinant built up single electron wave functions. This approach is known to give good

results for low electron ~or hole! densities.15 The easiest way to attack this problem consists in

introducing the new variables

P85px2y /2, Q85py1x/2. ~3.5!

In terms of P8 and Q8 the single electron Hamiltonian, H0 , can be written as
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H05
1
2~Q8

2
1P8

2!. ~3.6!

The transformation ~3.5! can be seen as a part of a canonical map from (x ,y ,px ,py) into

(Q ,P ,Q8,P8) where

P5py2x/2, Q5px1y /2. ~3.7!

These operators satisfy the following commutation relations:

@Q ,P#5@Q8,P8#5i , @Q ,P8#5@Q8,P#5@Q ,Q8#5@P ,P8#50. ~3.8!

It is shown in Refs. 16 and 17 that a wave function in the ~x,y!-space is related to its

PP8-expression by the formula

C~x ,y !5
e ixy /2

2p
E

2`

` E
2`

`

e i~xP81yP1PP8!C~P ,P8! dP dP8. ~3.9!

The usefulness of the PP8-representation stems from the expression ~3.6! of H0 . Indeed, in this

representation, the single electron Schrödinger equation admits eigenvectors C(P ,P8) of H0 of

the form C(P ,P8)5 f (P8)h(P). Thus the ground state of ~3.6! must have the form f 0(P8)h(P),

where

f 0~P8!5p21/4e2P8
2/2, ~3.10!

and the function h(P) is arbitrary, which manifests the degeneracy of the LLL. With f 0 as above,

formula ~3.9! becomes

c~x ,y !5
e ixy /2

&p3/4
E

2`

`

e iyPe2~x1P !2/2h~P ! dP . ~3.11!

It is worthwhile to stress that at this stage the Coulomb interaction has not yet been considered

~and it will not in this article!, but the common belief is that the explicit form of h(P) should be

fixed by this interaction.

Now the problem arises of how to construct the ground state of the free N-electron Hamil-

tonian H0
(N) . We use a suggestion coming from the classical counterpart of this quantum problem.

It is very well known that the ground state for a classical 2DEG is a ~triangular! Wigner crystal:

the classical electrons are sharply localized on the sites of a lattice whose lattice spacing is fixed

by the electron density. What we expect, and what was proven in Ref. 15, is that, at least for

certain regions of the filling factor, the quantum ground state should not be very different from this

classical picture. Here we only sketch the procedure which is analyzed in more detail Refs. 15 and

3.

We start introducing the so-called magnetic translation operators T(aW i) defined by

T~aW i![exp~ iPW c•aW i!, i51,2, ~3.12!

where PW c[(Q ,P) and aW i are the lattice basis vectors @aW 15a(1,0), aW 25(a/2)(1,)) for a trian-

gular lattice#.
From now on, for simplicity we will work in a square lattice with unit cell of area 2p:

aW 15a~1,0!, aW 25a~0,1!, a2
52p . ~3.13!

This choice is quite useful to keep the notation simple: moreover, its generalization to lattices of

arbitrary shape is only a technical step.

The above rationality condition on the area has the following useful consequence:
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@T~aW 1!,T~aW 2!#50. ~3.14!

This is not the only commutativity condition satisfied by the magnetic translations. Due to the

commutation relations ~3.8!, we also find

@T~aW 1!,H0#5@T~aW 2!,H0#50. ~3.15!

With the choice ~3.13! of the lattice’s basis the magnetic translations take a simple form

T1ªT~aW 1!5e iaQ, T2ªT~aW 2!5e iaP, ~3.16!

and they act on a generic function f (x ,y)PL
2(R

2) as follows

f m ,n~x ,y !ªT1
mT2

n f ~x ,y !5~21 !mne i~a/2!~my2nx ! f ~x1ma ,y1na !. ~3.17!

We see from this formula that, if for instance f (x ,y) is localized around the origin, then f m ,n(x ,y)

is localized around the lattice site a(2m ,2n).

Now we have all the ingredients to construct the ground state of H0
(N) mimiking the classical

procedure. We simply start from the single electron ground state of H0 given in ~3.11!, c(x ,y).

Then we construct a set of copies cm ,n(x ,y) of c as in ~3.17!, with m ,nPZ. All these functions

still belong to the lowest Landau level for any choice of the function h(P) due to ~3.15!. N of

these wave functions cm ,n(x ,y) are finally used to construct a Slater determinant for the finite

system:

c ~N !~r1 ,r2 , . . . ,rN!5
1

AN!U
cm1 ,n1

~r1! cm1 ,n1
~r2! . . . cm1 ,n1

~rN!

cm2 ,n2
~r1! cm2 ,n2

~r2! . . . cm2 ,n2
~rN!

• • . . . •

• • . . . •

• • . . . •

cmN ,nN
~r1! cmN ,nN

~r2! . . . cmN ,nN
~rN!

U . ~3.18!

It is known15 that in order to get ^c (N),c (N)&51 we need to have

^cm i ,n i
cm j ,n j

&5dm i ,m j
dn in j

. ~3.19!

In fact, if these translated functions were not o.n., then we would get ic (N)i511O(N), which is

obviously divergent for N diverging. It is clear, therefore, that if we want to perform easily the

thermodynamical limit, orthonormality between differently localized single electron wave func-

tions must be required!

In the rest of this section we will discuss how the requirement ~3.19! can be handled and, in

particular, we will show that the use of kq-representation is quite a useful tool since it produces a

very simple constraint. Some of the results we are now going to describe in this section are also

due to G. Morchio and F. Strocchi,18 while the original idea of using kq-representation in connec-

tion with an orthonormality constraint is already contained in Ref. 13 in the proof of completeness

of lattice states proposed by the authors.

Let c(x ,y) be as in ~3.11! and cm ,n(x ,y)5T1
mT2

nc(x ,y)5(21)mne i(a/2)(my2nx)c(x1ma ,y

1na). After few computations and using the rationality condition a2
52p we obtain

cm ,n~x ,y !5
e i~xy /2!1iamy

&p3/4
E

2`

`

dPe i~y1na !P2~x1ma1P !2/2h~P !. ~3.20!
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We are interested now in finding some conditions on h(P) such that condition ~3.19!, or its

equivalent form

Sm ,nª^c0,0 ,cm ,n&5dm ,0dn ,0 , ~3.21!

is satisfied. With the previous definitions we find

Sm ,n5E
2`

`

dpe inap h~p1ma !h~p !, ~3.22!

which restates the problem of the orthonormality of the wave functions in terms of the

PP8-representation. In particular we see that, for m5n50, this equation implies that c in nor-

malized in L
2(R

2) if and only if h(P) is normalized in L
2(R). This reflects the unitarity of the

transformation ~3.9!, which, more in general, implies that any o.n. set in L
2(R) is mapped in an

o.n. set in L
2(R

2).

In order to use now kq-representation it is convenient to split the integral over R into an

infinite sum of integrals restricted to @ra ,(r11)a@ ,rPZ, use the kq-representation, and, then,

write everything in terms of a single integral over the unit cell h. We have, using ~2.20! and the

well-known equality

(
lPZ

e ixl~2p/c !
5c(

lPZ

d~x2cl !, ~3.23!

Sm ,n5 (
rPZ

E
ra

~r11 !a

dpe inaph~p1ma !h~p !

5 (
rPZ

e inra2E
0

a

dpe inaph~p1~r1m !a !h~p1ra !

5 (
rPZ

1

a
E

0

a

dqE
0

a

dkE
0

a

dk8e ir~k2k8!ae inaq2ik8mah~k ,q !h~k8,q !,

so that

Sm ,n5E
h

dkdqe inaq2ikmauh~k ,q !u2. ~3.24!

Due to the completeness of the set $e inaq2ikma,n ,mPZ% in the unit cell h, we conclude that

Sm ,n5dm ,0dn ,0 if and only if h(k ,q) is a phase, so that uh(k ,q)u is independent of k and q. This

result can be considered as a slight generalization of the procedure discussed in Ref. 13 to the

FQHE for filling factor n51.

It is easy to generalize this result to a filling n51/2. The idea is the following:

A filling factor n51 corresponds to all the sites of our square lattice ~of spacing a5A2p!
occupied. A n51/2 2DEG can be seen, on the other hand, as if the same lattice was only partially

occupied: one lattice site is free and the other is occupied. If we require the orthonormality of the

related set of single electron wave functions, it is enough to ask for Sm ,2n5dm ,0dn ,0 . This is

equivalent also to choose a different lattice, with a unit cell twice that before and basis vectors

a(1,0) and 2a(0,1). Of course, we would as well have chosen another lattice with basis vectors

a(0,1) and 2a(1,0), or also any other lattice with unit cell of area 4p. We use the first choice just

to fix ideas. Equation ~3.24! gives

Sm ,2n5E
h

dkdqe i2naq2ikmauh~k ,q !u2
5dm ,0dn ,0 , ~3.25!
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which can be rewritten as

1

2
E

h

dkdqe inaq2ikmaXUhS k ,
q

2
D U2

1UhS k ,
q1a

2
D U2C. ~3.26!

This implies, again using the completeness of the functions e inaq2ikma,n ,mPZ, in h, that

J2~k ,q !ªUhS k ,
q

2
D U2

1UhS k ,
q1a

2
D U2

5
1

p
, almost everywhere for k ,qPh . ~3.27!

The generalization to n51/M is straightforward: we simply require the orthonormality of the

wave functions located at a distance of M sites:

Sm ,Mn5E
h

dkdqe iMnaq2ikmauh~k ,q !u2
5dm ,0dn ,0

and, proceding as above, we deduce that h(k ,q) must satisfy the equality

JM~k ,q !ªUhS k ,
q

M
D U2

1UhS k ,
q1a

M
D U2

1¯1UhS k ,
q1~M21 !a

M
D U2

5
M

2p
, ~3.28!

almost everywhere for k ,qPh .

The extension to a filling n5L/M , with L and M relatively prime, can be performed by

imposing that condition Sm ,n5dm ,0dn ,0 holds only for those ~m,n! corresponding to a square lattice

in which only L among M lattice sites are occupied. We will not consider this extension in this

article.

IV. WHAT WE GET FROM MRA

In this section we will describe how two subjects which are so different, at a first sight, as the

MRA and the orthonormality condition for a 2DEG discussed previously, are indeed very close.

Let us consider a given MRA of L
2(R). We have seen in Sec. II that to this MRA is associated

a certain set of square-summable complex numbers $hn%nPZ satisfying, for instance, condition

~2.12!. This set produces a 2p-periodic function mo(v) and, through this, the scaling function

f̂(v) and the mother wavelet.

Now we use the sequence $hn%nPZ to define the following function, which strongly reminds us

of mo(v):

T2~v !5H 1

Aa
(
lPZ

h le
2ilva, vP@0,a@ ,

0, otherwise.

~4.1!

It is clear that T2(v) is square integrable and is not periodic. In particular, due to the normaliza-

tion condition ~2.10!, we have iT2i2
2
5*RuT2(v)u2 dv51. Therefore the kq-transform of this

function, t2(k ,q)5(ZT2)(k ,q), is well defined in L
2(h).

In particular, using ~2.18! we find

t2~k ,q !5
1

Aa
(
nPZ

e2iknaT2~q1na !. ~4.2!

The boundary conditions ~2.21! are obviously satisfied: t2(k1a ,q)5t2(k ,q) and t2(k ,q1a)

5e ikat2(k ,q). It is easy to check that t2(k ,q) satisfies also the orthonormality conditions ~3.27!.
In fact, since we are interested to the value of t2(k ,q) only in h, and since T2(v) is different from

zero only for vP@0,a[, we conclude that, for (k ,q)Ph ,
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J2~k ,q !5
1

a
XUTS q

2
D U2

1UTS q1a

2
D U2C5 1

a2 (
l ,s

h lhse
i~s2l !qa/2„11~21 ! l1s…,

which is equal to 1/p a.e. in k ,qPh , due to ~2.14!. This implies that t2(k ,q) gives rise to a family

of functions cm ,n(x ,y) in the LLL mutually orthonormal and corresponding to n5
1
2. We will find

the explicit form of these cm ,n(x ,y) in the next section, where we will also compare these results

with the ones obtained in Ref. 3.

The above-mentioned procedure can be easily extended to fillings n51/2L . The extension to

odd denumerator is not so straightforward and will be given elsewhere.

The starting point is again the set $hn%nPZ , producing a MRA of L
2(R), satisfying condition

~2.12!. Now we define

T2L~v !5H 1

Aa
(
lPZ

h le
2ilvLa, vP@0,a@ ,

0, otherwise.

~4.3!

Again, this is a square-integrable function satisfying iT2Li2
51. Defining t2L(k ,q)5(ZT2L)

3(k ,q) we have, for k ,qPh , t2L(k ,q)5(1/Aa)T2L(q)5(1/a)( lPZh le
2ilqLa. We also stress that

t2L(k ,q) satisfies the correct boundary conditions. With these definitions, using the rationality

conditions a2
52p and collecting contributions of the form ut2L(k ,q/2L)u2, ut2L(k ,(q

12a)/2L)u2, . . . , and the ‘‘odd ones,’’ ut2L(k ,(q1a)/2L)u2,ut2L(k ,(q13a)/2L)u2, . . . , we obtain

J2L~k ,q !ªUt2LS k ,
q

2L
D U2

1Ut2LS k ,
q1a

2L
D U2

1¯1Ut2LS k ,
q1~2L21 !a

2L
D U2

5LXUt2LS k ,
q

2L
D U2

1Ut2LS k ,
q1a

2L
D U2C

5

L

a2 (
l ,s

h lhse
i~s2l !qa/2„11~21 ! l1s…, ~4.4!

which is again independent of k and q since it is equal to L/p a.e. in h, due to condition ~2.14!.
Finally, Eq. ~3.28! is a consequence of the equality n21

5M52L . We conclude that t2L(k ,q)

produces, in the configuration space, a set of mutually orthonormal wave functions spanning the

LLL for n51/2L .

This result, which is in a certain sense rather unexpected because it relates two distant fields

as MRA and FQHE, is only half of the surprise. In fact, in the rest of this section, we will also

show that this relation works in the opposite direction. More in detail, we will show how to

construct, starting from a function h(k ,q) which produces an o.n. set of translated functions in the

LLL, a set of coefficients $hn% satisfying condition ~2.14!, and, therefore, generating a MRA.

The recipe is rather simple and requires only few lines: let us suppose to have a function

h(k ,q) belonging to L
2(h) satisfying the boundary conditions h(k1a ,q)5h(k ,q) and h(k ,q

1a)5e ikah(k ,q) and such that

uh~k ,q/2!u2
1uh(k ,~q1a !/2)u2

5
1

p
a.e. in h . ~4.5!

This means that in the configuration space the related set $cm ,n(x ,y)% is an o.n. set. Let us now

define

hn~k !5E
0

a

dqe inaqh~k ,q !, kP@0,a@ . ~4.6!
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Even if hn(k) is, in general, a function of k, it is straightforward to check that if we take h(k ,q)

coinciding with t2(k ,q) in ~4.2!, then hn(k)5hn for all nPZ. This means that the dependence on

k may disappear in some relevant situation. It is not so surprising, therefore, to check that

(nPZhn(k)hn12l(k) does not depend on k for any choice of h(k ,q), if the equality ~4.5! is

satisfied. In fact, using equality ~3.23! and condition ~4.5!, we find

(
nPZ

hn~k !hn12l~k !5aE
0

a

dquh~k ,q !u2e22ilaq

5
a

2
E

0

a

dqe2ilaq(uh~k ,q/2!u2
1uh~k ,~q1a !/2!u2)

5
a

2p
E

0

a

dqe2ilaq
5d l ,0 . ~4.7!

This result shows that any o.n. basis in the LLL for a filling factor n51/2 produces a set of

coefficients satisfying the summation rule ~2.12! and, therefore, the basic condition giving rise to

a MRA of L
2(R) ~which, in general, will depend on an external parameter kP@0,a@!. The exten-

sion to a filling n51/2L , LPN, is straightforward.

V. EXTENSION TO HIGHER LANDAU LEVELS AND FURTHER REMARKS

In the first part of this section we analyze the relation between the approach we have discussed

here with the one originally proposed in Ref. 3 and further developed in Refs. 4 and 5. In those

papers we used wavelet analysis in connection with the FQHE as we have done here. In Ref. 5, in

particular, we discussed a toy model suggesting the relevance of single electron wave functions

arising from wavelet theory in the construction of a Slater-like ground state for a 2DEG. This

construction was carried out in detail for the FQHE in Refs. 3 and 4 using the canonical transfor-

mation ~3.11! and the PP8-representation to generate an o.n. basis of functions in the LLL starting

from an o.n. set of wavelets in L
2(R). This procedure is only apparently close to the one proposed

in this article. The first difference is related to the possibility of extending the approach in Ref. 3

to any o.n. basis of L
2(R), a possibility which does not exist here since the procedure proposed in

this article only works for an o.n. basis generated by a MRA. The second difference concerns the

nature of the operators acting on the mother function which generates the o.n. set in the LLL: in

Refs. 3 and 4 these operators are dilation and translation operators. Here, on the other hand, we

use the magnetic translations defined in ~3.12!.
Since, however, these two procedures have something in common, we expect that the resulting

wave functions should not be very different. And, in fact, this is the outcome of this section, where

we will explore the details of the easiest example: the Haar wavelet. For this choice the set

$hn%nPZ reduces to h05h151/& , and all the other coefficients are zero. We have shown in Ref.

3 that this choice produces a function in the LLL localized around the origin which looks like

H00~x ,y !5
e2ixy /2e2y2/2

2p1/4 H 2fS x2iy11/2

&
D 2fS x2iy

&
D 2fS x2iy11

&
D J , ~5.1!

where f(z)ª(2/Ap)*0
z e2t2

dt is the error function.19 The whole set Hmn(x ,y) is discussed in

Ref. 3, where its asymptotic behavior is also discussed in connection with the localization of the

electrons. Here we only state the result which will be compared with the one resulting by the

approach proposed here. We have

H00~x ,y !.
e ixy /2e2x2/2

2p1/4 A2

p
S 1

x2iy
1

e21/22x1iy

x2iy11
22

e21/82~x2iy !/2

x2iy11/2
D , ~5.2!

which displays the Gaussian localization of the wave function in the variable x and shows the

rather poor localization in y.
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Let us now proceed in a different way. For a filling n51/2 and a generic MRA, the function

T2 which produces an o.n. set of translates in the LLL is given in ~4.1!. Using the transformation

rule ~3.11! we obtain

T2~x ,y !5
e ixy /2

&p3/4
E

2`

`

e iyQ2~x1Q !2/2T2~Q !5

Aae ixy /2

2p3/4 (
lPZ

h lE
0

a

e iQ~y2la !2~x1Q !2/2,

which, for the above choice of coefficients corresponding to the Haar wavelet, gives

T2~x ,y !5

Aae ixy /2

23/2p5/4 E
0

a

e iQy2~x1Q !2/2~11e2iQa! dQ . ~5.3!

Here T2 can be written in terms of error function f(z) as follows:

T2~x ,y !5

Aae2ixy /22y2/2

4p3/4 XfS x1a2iy

&
D 1fS x1a2i~y2a !

&
D 2fS x2iy

&
D

2fS x2i~y2a !

&
D C, ~5.4!

whose asymptotic behavior can be found with the help of Ref. 19:

T2~x ,y !.
Aae1ixy /22x2/2

23/2p5/4 S 1

x2iy
1

ep2ia~x2iy !

x2i~y2a !
2

e2p2a~x2iy !

x1~a2iy !
2

e2a~x2iy !~11i !

x1a2i~y2a !
D . ~5.5!

This formula shows that, even if the two procedures produce different results, the asymptotic

behaviors, that is, the localization features of the electrons, coincide for H00 and T2 . This result

can be considered as a consequence of the Balian–Low theorem applied to the present situation

~see Refs. 1 and 6! and of the Battle theorem for our previous proposal ~see Refs. 3, 20, and 6!.
Both these theorems give severe constraints on the localization properties of a wave function when

orthonormality requirements of a different kind are imposed. We refer to Ref. 6 for a rather

complete review of the localization problem in a generic Landau level.

The function T2 can be used to construct a Slater determinant for the N-electron system as

sketched above: we start considering its ~magnetic! translated as in ~3.17!,

~T2!m ,n~x ,y !5

Aae2ixy /22ianx2~y1na !2/2

4p3/4 H fS x1~m11 !a2i~y1na !

&
D2fS x1ma2i~y1na !

&
D

1fS x1~m11 !a2i~y1~n21 !a !

&
D2fS x1ma2i~y1~n21 !a !

&
D J .

These are the functions used to build up the antisymmetric wave function

T ~N !~r1 ,r2 , . . . ,rN!5
1

AN!U
~T2!m1 ,n1

~r1! ~T2!m1 ,n1
~r2! . . . ~T2!m1 ,n1

~rN!

~T2!m2 ,n2
~r1! ~T2!m2 ,n2

~r2! . . . ~T2!m2 ,n2
~rN!

• • . . . •

• • . . . •

• • . . . •

~T2!mN ,nN
~r1! ~T2!mN ,nN

~r2! . . . ~T2!mN ,nN
~rN!

U ,

where (m i ,n i) are those indexes compatible with an electron density n51/2.
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It is evident that our procedure produces many possible N-electron wave functions in the LLL,

one for each different MRA of L
2(R). Among all these possibilities, the one physically relevant is

that choice which minimizes the Coulomb energy. Of course, before comparing these results with

those obtained using the Laughlin wave function, we first need to generalize our procedure to a

triangular lattice. The details of this extension will be considered in a future work.

In the last part of this section we extend the orthonormality constraint ~3.21! to levels higher

than the lowest.

We begin this analysis with a general remark, which already suggests the final result: ortho-

normality is required on a set of functions obtained by a single wave function via the action of the

magnetic translations T i . On the other hand, the passage from a Landau level to the other is

obtained with the action of the raising and lowering operators A8
† and A8 defined by

A85
Q81iP8

&
, ~5.6!

where Q8 and P8 are given in ~3.5!. We have already remarked that the translations T i commute

with Q8 and P8, and with A8 and A8
† as a consequence, so that it is reasonable to expect that the

orthonormality constraint does not change very much moving from the lowest to some higher

Landau level. This is exactly what happens, as we will now show explicitly for the first excited

level.

All the wave functions of the first Landau level, ILL, are given by formula ~3.9! with

C(P ,P8)5 f 1(P8)h(P). Here f 1(P8)5(&/p1/4)P8e2P8
2/2 is the first excited function of the

harmonic oscillator. Performing the integration in P8 we obtain

c~x ,y !5
ie2ixy /2

p3/4 E
2`

`

e iyPe2P2/2Ph~P2x ! dP . ~5.7!

Acting on c(x ,y) with T i as in ~3.17! and defining Sm ,n as in ~3.21! we obtain

Sm ,n5
1

p3/2 E d2rE
2`

`

dpE
2`

`

dp8e2ianx2iyp1i~y1na !p82~p2
1p8

2!/2pp8h~p2x !h~p82x2ma !

5
2

Ap
E

2`

`

dxE
2`

`

dqe inaqh~q !h~q2ma !~q1x !2e2~q1x !2

5E
2`

`

dpe inaph~p1ma !h~p !,

which coincides with the result obtained for the LLL. This means that, when passing to the

kq-representation, the wave function originating the o.n. set in the ILL is exactly the same function

originating the o.n. set in the LLL. Needless to say, this does not imply that in the configuration

space the two different o.n. sets coincide, because they are generated by different c(P ,P8),

belonging to different Landau levels.

Even if the above-mentioned result has been obtained only for the ILL, it gives a strong

indication that the orthonormality condition in terms of h(P) takes exactly the same form for all

the Landau levels. This also follows form our original remark on the commutativity among T i and

A8
†.

VI. OUTCOME

In this article we have proven a deep connection between a MRA of L
2(R) and the FQHE. In

particular we have shown how a single electron wave function, which, together with its magnetic

translates, produces an o.n. set in the LLL, can be constructed starting from a MRA. This proce-
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dure works for n51/2L ,LPN. We have also shown that this procedure can be essentially inverted

since to any o.n. basis of translated functions of the LLL ~corresponding to n51/2L! corresponds

a set of coefficients satisfying the main condition of a MRA of L
2(R). Moreover, we have

compared this approach with a similar one, Ref. 3, which is close for the final result but is very

different for the philosophy. We have finally extended this procedure to other Landau levels.

What is still to be done is a computation of the energy of the 2DEG for such a basis, in order

to see if this procedure can give some hints about the ground state for the FQHE. We also plan to

extend this procedure to filling n of the form n51/(2L11) and, more generally, n5L/L8, with L

and L8 relatively prime natural numbers.
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