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Abstract. Identifying physiological and anatomical signatures of disease in signals and images is one of the fundamental

challenges in biomedical engineering. The challenge is most apparent given that such signatures must be identified in spite of

tremendous inter and intra-subject variability and noise. Crucial for uncovering these signatures has been the development of

methods that exploit general statistical properties of natural signals. The signal processing and applied mathematics communities

have developed, in recent years, signal representations which take advantage of Gabor-type and wavelet-type functions that

localize signal energy in a joint time-frequency and/or space-frequency domain. These techniques can be expressed as multi-

resolution transformations, of which perhaps the best known is the wavelet transform. In this paper we review wavelets, and other

related multi-resolution transforms, within the context of identifying signatures for disease. These transforms construct a general

representation of signals which can be used in detection, diagnosis and treatment monitoring. We present several examples

where these transforms are applied to biomedical signal and imaging processing. These include computer-aided diagnosis in

mammography, real-time mosaicking of ophthalmic slit-lamp imagery, characterization of heart disease via ultrasound, predicting

epileptic seizures and signature analysis of the electroencephalogram, and reconstruction of positron emission tomography data.

1. Introduction

It has long been recognized that the localized struc-

ture of natural signals (and images) calls for the devel-

opment of new theoretical and computational tools to

enhance the processing and detection of specific sig-

nal attributes and features – i.e. signatures. This is

no more true than in biomedical image and signal pro-

cessing, where measurement noise and inter and intra-

patient variability obscure physiological and anatom-

ical signatures important for the detection, diagnosis

and monitoring of disease. Computer assisted detec-

tion and diagnosis systems have been, and are currently

being developed to uncover and exploit such signatures.

A major challenge has been to develop an “optimal”

representation of the data so that signatures are easily

uncovered and differentiated.
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Classical representation and processing techniques,

such as the widely used Fourier transform, consider the

global, periodic properties of signals and images. In

contrast, in medical imaging and/or electrophysiolog-

ical measurement, one is looking for small, or short-

lived conspicuous segments of the signal that may in-

dicate diseased tissue or short episodes of dysfunction.

Thus, even if the image of the normal tissue or the signal

of the healthy organ may be considered to a good ap-

proximation to be stationary, (i.e. with statistical prop-

erties that do not vary over time or space) any local-
ized abnormal structure or function induces, by its very

nature, non-stationarity. Such signals and images call

for the development and implementation of “localized”

time (space)-frequency representations.

It is instructive to consider an example of the use

of localized representations in the domain of Telecom-

munications. Communication engineers had already

known in the early part of the 20th century that for

speech, the periodic components of phoneme structure,

known as formants, vary from phoneme to phoneme.

Consequently, an efficient/optimal representation of
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speech calls for the application of a technique, or a

transform, that incorporates both time and frequency.

From such considerations came the development of the

spectrogram and the Gabor transform [1], developed

by Dennis Gabor, who was awarded the Nobel Prize

for his invention of holography. Unlike the original

time domain signal that identifies effectively the time

of production of a sound or, alternatively, the Fourier

transform that indicates its spectral components, the

Gabor transform is “localized” in both time (or space)

and frequency. This representational framework revo-

lutionized the field of Telecommunications and is at the

core of of much of today’s modern image and signal

processing.

In this paper we provide a review of the use of lo-

calized representations, including wavelets, for identi-

fying signatures of disease in biomedical signals and

images. We begin by providing a short tutorial on

the mathematics behind the wavelet and other multi-

resolution transforms. We then consider several clini-

cally significant examples and case studies where such

representations have been successfully applied. We

conclude by discussing the limitations of current ap-

proaches, technical challenges, and opportunities that

lie ahead for using these techniques for improving the

detection, diagnosis and monitoring of disease.

2. A tutorial on multi-resolution representations

and wavelets

There are many comprehensive references on wave-

lets and multi-resolution methods for signal and image

processing. In this article we present only a brief tu-

torial on the subject, with additional details and more

advanced topics deferred to the appendices. Readers

interested in a more thorough and in-depth treatment

of the mathematics and signal processing are referred

to Akansu and Haddad [2], Vetterli and Kovacevic [3]

and Strang and Nguyen [4]. Additional topics and con-

nections with biomedical applications can be found in

the edited works of Akay [5], Aldroubi and Unser [6]

and Petrosian and Meyer [7], as well as the review ar-

ticle by Unser and Aldroubi [8]. Mathematically ori-

ented studies on both Gabor and Wavelet-type repre-

sentations in combined spaces can be found in Zeevi

and Coifman [9].

2.1. Basic properties of wavelets and localized

frequency transforms

A fundamental problem in signal processing and pat-

tern recognition is identifying a signal representation

which is well-matched to some desired task. For exam-

ple, we may wish to identify and remove noise sources,

compress data with minimal perceptual loss, or identify

a signature of a particular disease process. All of these

processing tasks are not necessarily best accomplished

using the traditional signal space (often the time or

space domain). Instead alternative representations of-

ten provide more insight and flexibility for processing.

Wavelets are one such representation.

As with the Fourier transform, the wavelet trans-

form is a linear transformation. Any function can be

represented as a linear combination of wavelet func-

tions. Consider a 1-D time domain signal f(t).1

We can represent f(t) as a weighted sum of wavelet

functions,ψj,k(t),

f(t) =
∑
j∈Z

∑
k∈Z

cj,kψj,k(t), (1)

where the summation is over non-negative integer val-

ues j and k, indicated by Z . The wavelet functions are

constructed via scaling and translation of a template

function, often called a “mother” wavelet function ψ(.)

ψj,k(t) = 2j/2ψ(2jt − k), for j, k ∈ Z, (2)

where j indicates the discrete scaling number and k the

discrete translation number.

One of the important properties of the wavelet func-

tions is that they localize the representation functions of

the signal (e.g. signatures) in both time and frequency. 2

For wavelets to be localized in this joint representation

requires that they be of a finite support, that is short-

lived, and have an oscillatory structure that constrains

their power spectrum to be localized – i.e. 1) ψ ∈ L1,

2)
∫

ψdt = 0 and 3) the Fourier transform of ψ has

its power concentrated in the angular frequency range

of [π, 2π] (and [−2π,−π] by symmetry of the Fourier

transform). Localization of a wavelet function can be

depicted by an appropriate Heisenberg box that indi-

cates within the time-frequency space (also known as

the phase space, shown in Fig. 1), the effective spread

1We present this framework for 1-D temporal signals, nevertheless

it generalizes to multi-dimensional signals and images.
2Note that, unlike the Gabor representation, the explicit variable in

the case of wavelets is scale, with the frequency band being inversely

proportional to the scale.
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Fig. 1. Localization of a signal in the time-frequency plane is limited

by the uncertainty theorem of Heisenberg. The localization of a

signal is defined by a Heisenberg box, with dimensions σω × σt .

of the function. There is a limit on the localization

accuracy that a wavelet function, or any other linear

function, can achieve. This is specified by the Heisen-

berg uncertainty principle (analogous to the limit on

measurement precision of position and momentum that

we know from physics) and is given as,

σωσt >= 1/2 (3)

where σω and σt define the widths of the Heisenberg

box in frequency and time, respectively. Intuitively, the

wavelet and other multi-resolution representations can

be thought of as tiling the combined time-frequency

plane with Heisenberg boxes. The Heisenberg boxes

tile the plane with the effective support of the set of

wavelet functions, obtained through a combination of

translations and dilations of the “mother” wavelet. In

Eq. (2), dilation is indexed by j, and represents the

shrinking or stretching of the wavelet function. In par-

ticular, dilation modifies the frequency concentration

of the wavelet, shrinking or stretching it from [π, 2π]
to [2jπ, 2j+1π]. In Eq. (2), translation is indexed by k,

and can be seen as localizing the signal in time, with

t = 2−jk.

Figure 2 shows 1-D examples of some of the more

popular wavelet families. Note that the shape of the

wavelet can vary dramatically, and it is desirable to

match the shape of the wavelet to the structure of the

signal. Using such wavelets we can completely tile the

time-frequency plane. An example of such a wavelet

tiling is shown in Fig. 3D. Also shown is the original

time domain signal, a Fourier tiling and a windowed

Fourier tiling. It is worth mentioning the windowed

Fourier tiling, also called the Gabor tiling, since it is

widely used in applications such as speech and texture

analysis, as well as being the basis for the spectrogram.

The Gaborian decomposition can be written as,

f(t) =
∑
m∈Z

∑
n∈Z

am,ngm,n(t), (4)

where gm,n(t) = e−imω0tg(t0−nt0). This essentially

represents the superposition of a complex exponential,

modulated and translated by an envelope function. Ga-

bor showed that by choosing g(x) to be a Gaussian min-

imizes the effective spread of the transform in the phase

space and thus, in some sense, optimally localizes the

signal energy. These functions have been subsequently

termed Gaborian functions (see Appendix 6.2 for addi-

tional details about Gaborian functions).

The Gaborian functions tile the time-frequencyplane

using Heisenberg boxes of equal size, and thus do not

constitute a multi-resolution transform. The multi-

resolution property of wavelets is useful in that it en-

ables one to “zoom in” for capturing signatures in nat-

ural signals. For many types of natural signals, high

frequency components have short correlation times and

low frequency components have long correlation times.

Given that one would like a sparse transform for the

signal (i.e. the signal to be localized to only a few

non-zero coefficients) the wavelet transform is a near

optimal representation.

2.2. Computing the wavelet transform

Given a wavelet family, ψj,k, and a signal, f(t), we

must now consider how to compute the wavelet trans-

form – i.e. how to compute the coefficients. Assume

that we have chosen the wavelet family ψj,k to be or-

thonormal. The coefficients, cj,k are computed as a

scalar product of the signal and wavelets,

ci,j = 〈f, ψj,k〉 =

∫
f(t)ψj,k(t)dt. (5)

With a reasonably large signal (large t) and signifi-

cant number of wavelets, this integration can be com-

putationally expensive. As with the Fourier transform,

there exist fast techniques for computing the wavelet

coefficients. These methods exploit the fact that the

wavelets constitute a multi-resolution analysis. To il-

lustrate this fast transform, we begin first by substitut-

ing Eq. (5) into Eq. (1) and consider constructing an

approximation to f(t), which we call f̂J(t)

f̂J(t) =
∑
j<J

∑
k∈Z

〈f, ψj,k〉ψj,k(t). (6)

The latter is a partial sum up to J scales. The ap-

proximation improves as we increase J ,
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Fig. 2. Examples of “mother” wavelets and scaling functions. (first row) Haar (second row) Daubechie 6 (third row) Biorthogonal 2.8 (fourth

row) Meyer 8.

f̂J+1(t) = f̂J(t)
(7)

+
∑
j<J

∑
k∈Z

〈f, ψj,k〉ψj,k(t)

with the two right-hand side terms being orthogonal.

This begins to hint at a multi-resolution or pyramid

structure for computing the wavelet coefficients, which

we describe in detail below.
In computing the wavelet coefficients, it is often con-

venient to begin with a scaling function, φ, analogous to
Eq. (2), from which the other lowpass scaling functions

are derived,

φj,k(t) = 2j/2φ(2jt − k) , for j, k ∈ Z (8)

Similarly we can also define a scaling coefficient,

sj,k =

∫
f(t)φj,k(t)dt = 〈f, φj,k〉 (9)

Examples of scaling functions are shown in Fig. 2.

The scaling and wavelet coefficients at coarse scale are
computed from the coefficients of the scaling function

at fine scale,

〈f, ψj,k〉 =
∑

n

gn−2k〈f, φj+1,n〉
(10)

〈f, φj,k〉 =
∑

n

hn−2k〈f, φj+1,n〉,

where gn−2k and hn−2k are a set of function (i.e. filters)
that we need to define. Since we began our discussion

by saying that we require the wavelets to be orthogonal,

we will need to set gn−2k and hn−2k to be orthogonal.
One natural choice is to choose them to be high-pass

and low-pass filters, which when normalized properly,
yield

∑
n hn = 0 and

∑
n gn = 1. This provides an

intuitive characterization of the scaling function and
wavelets:

1. The scaling function computes local averages for

capturing the gross structure of the signal at some

level J .

2. Wavelets compute local differences to capture the

detailed structure at some level J .

We would now like to represent f(t) exactly as an

expansion of scaling functions and wavelets. Returning
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Fig. 3. Tilings of the time-frequency plane. (A) Time-domain sam-

pled signal representation, (B) Fourier representation, (C) Short-time

or windowed Fourier tiling (i.e. Gaborian), and (D) Wavelet tiling.

to our partial sums notation, we see that f(t) = f̂(t)+
∆, where ∆ is the difference between our function and
its approximation partial sum. We will require that
difference be captured by our scaling function at the
coarsest resolution (defined as J = 0),

f(t) = f̂(t) + ∆

=

J−1∑
j=0

∑
k∈Z

cj,kψj,k(t) (11)

+
∑
k∈Z

s0,k(t)φ0,k(t).

This is the decomposition or analysis equation for
wavelets. The pyramid-based structure of the decom-
position is depicted in Fig. 4A.

One of the nice properties of the wavelet transform is
that since we require the transform to be orthonormal,
computing the inverse (i.e. putting the signal back
together) is simply done using the transpose,

sj+1,n =
∑

k

[hn−2lsj,l + gn−2lcj,l] (12)

Equation 12 is called the reconstruction or synthesis

equation. It also has a pyramid-based representation,
depicted in Fig. 4(B).

2.3. Beyond simple wavelets

Much research has gone into further developing and
extending the basic theory of wavelets. In this section

we briefly describe some of the extensions which are

most relevant to biomedical image and signal process-

ing.

2.3.1. Biorthogonal wavelets and symmetry

On inspection of the orthogonal Harr and Daubachie

wavelets shown in Fig. 2 it becomes apparent that the

basic wavelets lack symmetry. However symmetry is a

desirable property, particularly when dealing with im-

ages, where there is no preferred direction to the signal.

We can generalize the wavelet transform and incorpo-

rate symmetry if we relax the orthonormality of the

wavelet bases and instead require them to be biorthogo-

nal to another set of synthesis functions. Biorthogonal-

ity can be understood in the context of linear algebra.

For example, another way of writing the decomposition

equation of the wavelet transform is as a linear trans-

formation of a signal f through a basis W to obtain the

wavelet coefficients c,

c = Wf . (13)

The reconstruction equation is written similarly as,

f = Vc. (14)

If we design W to be an orthonormal basis then

V = W
T , since the inverse of an orthogonal matrix

is just its transpose. If W is not an orthogonal basis

we can still construct a basis which has many of the

same properties of an orthogonal wavelet transform

by requiring that the rows of W be orthogonal to the

columns of V,

Wi,.V.,j = δi−j . (15)

In terms of our filter bank representation this implies

that the decomposition filters (H, G) and reconstruction

filters (H, G) are not identical.

2.3.2. Translation invariance and over-complete

bases

The wavelet bases we have discussed thus far have

the problem that they are not invariant under transla-

tion – i.e. a shift in the signal will result in a different

set of wavelet coefficients. One way to see why this is

the case is by considering the downsampling operation,

for example shown in Fig. 4. When we downsample by

a factor of two, such as the case in the dyadic scheme,

we “throw-away” all the odd-number indexed entries

at the next scale. If there is a shift at a higher scale

that forces coefficients into these indices, then the re-

sults after the subsampling will be very different from

when there is not a shift. One obvious way to intro-
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duce translation invariance is not to subsample at every

level. This comes at the cost of the transform being a

redundant or having an over-complete basis – i.e. there

are more coefficients in the transform than the number

of elements in the original signal. With over-complete

bases the process of reconstruction is more involved.

However in many applications, for example in orien-

tation analysis, one is willing to accept redundancy in

order to obtain a representation of the signal which is

best matched to the particular analysis. In addition,

over-complete representations are often more robust.

2.3.3. Wavelet packets and best basis selection

Depending on the characteristics of the signal and

the particular application, one might wish to have ad-

ditional flexibility in the construction of the wavelet

transform. We have represented the wavelet transform

using a tree-based filter-bank construction, as shown in

Fig. 4. In this case the wavelet decomposition always

proceeds down the low-pass branch of the tree. In con-

trast, we can also construct a transform where we de-

compose down the high-pass branch as well, as shown

in Fig. 5. This decomposition, called a wavelet packet,
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results in a more flexible tiling of the time-frequency

plane. Since one is often interested in a sparse repre-

sentation, a wavelet packet decomposition can be use-

ful. Coifman and Wickerhauser [10] have proposed the

technique of best basis selection whereby the sparsest

representation of the signal is chosen from a “library”

of wavelet packet transforms.

3. Extensions to images

One way to extend the wavelet approach to multi-

dimensional signals, in particular images, is by using

separable wavelets. In this case we can construct a 2D

wavelet representation using the same pyramid-based

filter bank scheme used for 1D signals. We begin with

high and low pass filters and apply them to either the

horizontal or vertical dimensions of the image. For

the 2D case, this means that each level in the pyramid

results in four branches (HH , HL, LH , LL), since this

is the number of combinations in which we can apply

the two filters. Figure 6A shows the pyramid scheme

extended to 2D. Figure 6B is the conventional method

for depicting a wavelet transform for images.

A multi-resolution transform that has played a ma-

jor role in computer vision and image processing, par-

ticularly real-time processing, is the Laplacian Pyra-

mid, developed by Burt and Adelson [11]. The Lapla-

cian Pyramid can be thought of as a predecessor to the

wavelet transform. To understand the Laplacian pyra-

mid it first makes sense to start with an even simpler

transform, the Gaussian pyramid. The Gaussian pyra-

mid, shown in Fig. 7, is constructed by iteratively low-

pass filtering (i.e. convolving with a Gaussian kernel)

and subsampling the image, resulting in a reduced res-

olution self-similar sequence of images. The Laplacian

pyramid can be constructed from the Gaussian pyra-

mid by computing the difference between a Gaussian

pyramid image at level L and the coarser level L + 1,

after it has been expanded (interpolated) to the size of

level L. This construction process is shown in Fig. 7.

The Laplacian pyramid therefore represents differences

between consecutive resolution levels of the Gaussian

pyramid, similar to how the wavelet coefficients repre-

sent differences.

There are two characteristics that differentiate the

Laplacian pyramid from the wavelet transforms we

have focused on thus far. One is that the Laplacian

pyramid is overcomplete in that it has 4/3 as many

coefficients as samples in the image (a critically com-

plete wavelet transform has the same number of coeffi-

cients as samples in the image). This means that there
is redundancy in the representation. In addition, the
Laplacian pyramid localizes signals in space, but not
(oriented) frequency. This is best seen by comparing
the Laplacian pyramid to the wavelet transform in 2D
frequency space, as shown in Fig. 8.

The utility of the multi-scale representation of the
Gaussian and Laplacian pyramids becomes apparent
if we consider the problem of pattern matching. As-
sume we have a signature that we are trying to match
in the image. If the image is N × N pixels, then we
may have to search N 2 points, which if N is large,
can be computationally expensive. However, assuming
that we can identify candidate regions by searching at
low resolution, then the coarse resolution can be used
to constrain the search at subsequently higher resolu-
tions. This coarse-to-fine search strategy can be shown
to dramatically reduce the computational cost of the
search [12]. The coarse-to-fine framework can also be
used for estimation, for example estimating velocities
in image sequences [13]. The complementary fine-to-

coarse processing can also prove useful, for instance
as a method of propagating local information globally
across the scene for surface interpolation [14]. The
Laplacian pyramid has shown particular utility in im-
age processing since it is selective to edges in images,
which tend to be important features, and is invariant to
illumination differences.

There are many extensions and generalizations of
wavelets and the multi-resolution approach which are
outside the scope of this paper. For example ori-
entation analysis, via steerable filters [15] and steer-
able pyramids [16], has been used to compute signa-
tures useful for pattern classification and image reg-
istration. These transforms tend to be over-complete,
sacrificing redundancy for improved representation of
features/structures of interest. Multi-scale represen-
tations, via construction of a scale-space, have also
proven useful in image segmentation (see Appendix 6.3
for a short discussion of scale space).

4. Cases studies and example biomedical

applications

In this section we present several examples and case
studies that implement wavelets and multi-resolution
processing techniques for detecting characteristic sig-
natures of disease in medical images and biomedical
signals. This is by no means a complete set of exam-
ples, given the broad utility of the multi-resolution ap-
proach. Our focus will be primarily the application of
wavelets to medical image analysis.
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Fig. 7. Gaussian and Laplacian pyramids. The Laplacian pyramid can be constructed by computing the difference between the Gaussian pyramid

image at level L and the interpolated or expanded Gaussian pyramid image at a coarser level L + 1.

4.1. Cancer detection in x-ray mammography

One of the most clinically successful applications

of wavelet and multi-resolution techniques has been

Computer-Aided Diagnosis (CAD) systems for mam-

mography. Mammographic CAD can be defined as a

diagnosis made by a radiologist which incorporates the

results of computer analyzes of the mammograms [17].

The goal of CAD is to improve radiologists’ perfor-

mance by indicating the sites of potential abnormalities,

to reduce the number of missed lesions and/or by pro-

viding quantitative analysis of specific regions in an im-

age to improve diagnosis. CAD systems typically oper-

ate as an automated “second-look” or “double-reading”

systems that indicate lesion location and/or type by

detecting signatures of disease. Since individual hu-

man observers overlook different findings, it has been

shown that double reading i.e. (the review of a study by

more than one observer) increases the detection rate of

breast cancers by 5–15% [18–20]. Double reading, if

not done efficiently, can significantly increase the cost

of screening. Methods to provide improved detection

with little increase in costs will have significant impact

on the benefits of screening. Automated CAD systems

are a promising approach for low-cost double-reading.

Several CAD systems have been in development and

the first have been approved by the FDA.

Mammographic CAD systems usually consist of two

distinct subsystems, one designed to detect microcalci-

fications and one to directly detect masses [21]. Micro-

calcifications are indicators of cancerous processes or a

pre-malignant stage in that they represent the metabolic

bi-products of proliferative cellular activity. Features

related to the shape, location, and clustering of micro-

calcifications are often used by radiologist to detect and

diagnose cancer. Masses are the direct manifestation

of a cancerous lesion, though they can also be due to

a benign process, for example a fluid filled cyst. Fea-

tures related to the shape of the mass (i.e. the shape of

its border and the presence/absence of spiculation) are

all cues to whether or not the mass is malignant. The

challenge in CAD is to identify methods for optimally

representing features related to microcalcifications and

masses, and exploiting them so as to maximize detec-

tion and/or diagnostic performance.

Several groups have investigated using multi-resolu-

tion and wavelet approaches for feature extraction in

mammographic mass and microcalcification detection.

Brzakovic and Neskovic [22] use a fuzzy pyramid ap-

proach for detecting masses while Ng and Bischof [23]

apply a template at several scales. One advantage of

these approaches is that performance is independent of

mass size, as further demonstrated by Miller and Ram-

sey [24]. Li et al. [25] use an oriented wavelet transform

to construct features selective to spicules, thereby cre-

ating multi-scale signatures for mass detection. Simi-

larly, Netsch and Peitgen [26] use a Laplacian pyramid

to develop scale-space signatures for detecting individ-
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Fig. 8. (top) Laplacian pyramid in frequency domain. (bottom)

Wavelet decomposition in the frequency domain. The different quad-

rants represent different oriented frequency bands. Note that the
wavelet transform localizes structure in oriented frequency (as in-

dicated by the wedges of the annuli) while the Laplacian transform

does not.

ual microcalcifications. Though these authors show

that the signatures are useful for detecting individual

calcifications, the signatures do not fully exploit the

coarse-scale information that may be indicative of con-

textual relationships, critical for determining clinical

significance (e.g. calcification clustering).

One of the most promising applications of multi-

resolution techniques for CAD has been through the in-

tegration of such representations with neural networks.

In this case, the multi-resolution transformation con-

structs a good feature space in which the neural network

can integrate information for detecting clinically sig-

nificant structures. For example, te Brake and Karsse-

meijer [27] compare several multi-scale feature extrac-

tion methods against a single-scale method for detect-

ing mammographic masses. They use a single neural

network (5 hidden units, trained to minimize the root-

mean-squared (RMS) error using backpropagation), to

simultaneously integrate the multi-scale features. Agh-

dasi [28] uses a neural network to learn the optimal

set of weights for integrating wavelet coefficients as

features for microcalcification detection, an approach

similar to that proposed by Yoshida et al. [29]. In all

cases, integration is done using a single network.

Sajda et al. [30–32] have developed a multi-

resolution neural network called the Hierarchical Pyra-

mid Neural Network (HPNN). The HPNN typically is

applied in one of two architectures, shown in Fig. 9,

which are characterized as coarse-to-fine and fine-to-

coarse. The architectures are designed to automatically

learn and exploit contextual information through inte-

gration of signatures across scale and space. In mam-

mographic image analysis context is exploited by ra-

diologists and mammographers for detecting and iden-

tifying breast abnormalities. The clustering of calcifi-

cations, their proximity to ductal tissue, the architec-

tural distortion surrounding potential lesions, are all

contextual cues used by radiologists and mammogra-

phers [33]. The predictive value, as determined by radi-

ologists, of both local and contextual (global) features

for calcification and mass detection has been previously

reported [34]. Contextual relationships can be inte-

grated into mammographic CAD systems, being made

explicit, given known pathology, through incorporation

of preset rules and/or feature detectors tuned to capture

the context. Alternatively, contextual relationships can

be learned from the data, allowing for more compli-

cated and less obvious contextual cues to be uncovered

by the pattern recognition system.

The HPNN integrates contextual information through

multi-scale decomposition of an image, via pyramid

transforms [12,35] and the subsequent integration of

multi-scale image features by a hierarchy of neural net-

works. These two architectures detect signatures by

exploiting coarse-scale (low resolution) and fine-scale

(high-resolution) information associated with the sig-

nature. For example, in the coarse-to-fine HPNN, net-
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Fig. 9. Coarse-to-fine (left) and fine-to-coarse (right) HPNN architectures. Large arrow on left shows the direction of training and processing.

works operating at low resolution learn contextual fea-

tures that are passed to networks operating at high reso-

lution and integrated to detect the object of interest (i.e.

the contextual inputs condition the probability of target

present). For the fine-to-coarse HPNN architecture net-

works extract detail structure at fine resolutions of the

image and then pass this detail information to networks

operating at coarser scales (see Fig. 9 right). For many

types of signatures, information about the fine detail

structure is important for discrimination between dif-

ferent classes, i.e., fine resolution structure occurring

within the context of the coarse resolution structure is

indicative of an object class.

A key issue in CAD is to minimize false positives,

generated by the computer, while maintaining high sen-

sitivity. Results on several test datasets indicate that

the HPNN is able to reduce the false positive rate of the

computer by approximately 50%, for both microcalci-

fication and mass detection, while still maintaining a

100% sensitivity on the test data. This significant re-

duction can be attributed to the integration of the multi-

resolution features. Figure 10 shows the representa-

tion of hidden units from neural networks operating at

coarse and fine scales. The hidden unit representations

can be thought of as complex, scale dependent, features

constructed via the multi-resolution input and network

hierarchy. Figure 10B shows a hidden unit represen-

tation for a network operating at high resolution and

Fig. 10C a network at low resolution. Note that the

high resolution hidden units represent structures that

appear to resemble microcalcifications. However, the

low resolution units represent structure with fundamen-

tally different characteristics. When correlated with the

original mammogram, it is clear that the structure cap-

tured by the hidden unit at this scale is consistent with

anatomical features such as vascular and the ductual

networks. It is well-known that breast cancers begin

in the mammillary ductal system and tend to be highly

vacularized – i.e. those both can serve as contextual

signatures for the presence of disease. The HPNN is

not given explicit information of these contextual sig-

natures. Instead, through its multi-resolution architec-

ture, it is able to learn relationships and/or associations

between structure at various scales, which maximize

the probability of correctly detecting disease. Further

evidence of the HPNN’s ability to learn contextual cues

is shown in Fig. 11. In this case, analysis was done

on the false positives generated by the University of

Chicago (UofC) CAD system which were eliminated

by the HPNN. One characteristic of these false posi-

tives is that they contained significant linear structure,

which when examined as a 1-D cross section, had the

appearance of a “mountain range”. The peaks of this

signature were detected as microcalcifications by the

UofC CAD system. The HPNN, on the other hand,

could presumably integrate these peaks with the coarse-

scale linear structure, so as to determine the region

of interest was a false positive. The combined UofC

and HPNN system has been tested in a clinical reader

study, with results showing significant improvement in

mammographer sensitivity when using the system [32].

Another class of mammographic CAD is based on

selective image enhancement. Such techniques have

been widely used in the field of radiology, where the

subjective quality of images is important for human

interpretation of signatures/features indicative of dis-

ease (e.g. border roughness, homogeneity of enhance-

ment, etc.). Contrast is an important factor in any sub-

jective evaluation of image quality. Many algorithms

for accomplishing contrast enhancement have been de-
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A B C

Fig. 10. (A) Original mammogram, (B) hidden unit representation for networks operating at high resolution. (C) hidden unit representations for

networks operating at low-resolutions. Radiologists have noted that some of the structure in C appears to correlate with specific anatomy in the

breast (ducts and/or blood vessels) indicating that these hidden units may represent contextual information.

ROI

Peaks

Linear context

Fig. 11. Typical negative ROI that was eliminated by the coarse-to-fine HPNN. The HPNN learns to associate the fine-scale intensity peaks, which

in isolation are interpreted as microcalcifications, with the coarse-scale linear structure, the result being that such false positives are eliminated.

veloped and applied to problems in medical imaging.
A comprehensive survey of several methods has been
published by Wang et al. [36]. Among the various tech-
niques published, histogram modification and edge en-
hancement techniques have been most commonly used
along with traditional methods of image processing.
Histogram modification techniques [37,38] are attrac-
tive due to their simplicity and speed, and have achieved
acceptable results for some applications. The transfor-
mation used is derived from a desired histogram and
the histogram of an input image. In general, the trans-
formation function is nonlinear. For continuous func-
tions, a lossless transformation may be achieved. How-
ever, for digital images with a finite number of gray lev-
els, such a transformation results in information loss,
due to quantization. For example, a subtle edge may
be merged with its neighboring pixels and disappear.
Attempts to incorporate local context into the trans-
formation process have achieved limited success. For
example, simple adaptive histogram equalization [39]
supported by fixed contextual regions cannot adapt to
features of different size.

Most edge enhancement algorithms implicitly share
a common strategy – detection followed by local “edge

sharpening”. The technique of unsharp masking is

significant in that it has become a popular enhance-

ment algorithm to assist radiologist in diagnosis [40,

41]. Unsharp masking sharpens edges by subtracting

a portion of a filtered component from an original im-

age. Theoretically, this technique was justified as an

approximation of a deblurring process by Rosenfield

and Kak [42]. Loo et al. [43] studied an extension

of this technique in the context of digital radiographs.

Another refinement based on Laplacian filtering was

proposed by Neycenssac [44]. However, techniques

of unsharp masking remain limited by their linear and

single-scale properties, and are less effective for im-

ages containing a wide range of salient features as typ-

ically found in digital mammography. In an attempt

to overcome these limitations, a local contrast measure

and nonlinear transform functions were introduced in

Gordon and Rangayyan, and later refined by Beghdadi

and Negrate [45]. Unfortunately, limitations remained

in these nonlinear methods as well: (1) no explicit noise

suppression stage was included (in fact noise could be

amplified), and (2) ad-hoc nonlinear transform func-

tions were introduced without a rigorous mathemati-
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cal analysis of their enhancement mechanisms or the

possible introduction of artifacts.

Recent advancement of wavelet theory has sparked

researchers’ interest in the application of image con-

trast enhancement [46–52]. Wavelet-based feature en-

hancement traditionally proceeds along the following

steps,

1. Construct the forward wavelet decomposition of

the image.

2. Linearly or nonlinearly transform: thresholding,

scaling or adaptively weight the wavelet coeffi-

cients.

3. Reconstructing the image using the modified

wavelet coefficients.

Laine [43] achieves a scale-dependent enhancement

of mammograms by selectively weighting and scal-

ing the details computed using a first derivative of a

Gaussian wavelet. In later work [44] a dyadic wavelet

transform method was shown to be equivalent to un-

sharp masking at multiple scales. A continuous scale

representation [53] provides more flexibility on multi-

scale analysis over dyadic wavelets. Lu et al. [45]

use a multi-scale edge representation to achieve the

contrast enhancement. Other wavelets also have been

used in related research, such as Complex Daubechies

wavelets [46], and wavelet packets [47]. An example

of using wavelets for global enhancement of a mam-

mogram is shown in Fig. 12. Notice that the borders

of the lesion are more clearly visible and thus are more

easily assessed in terms of potential malignancy.

4.2. Identification of retinal disease in slit-lamp

fundus imagery

A general problem in medical image analysis is im-

age registration. To detect clinically significant signa-

tures in imagery, clinicians are often forced to fuse or

register multiple images in their “minds-eye”. For ex-

ample, in mammography, serial or temporal change de-

tection (i.e. change between mammograms taken sev-

eral months or years apart) is a common method for de-

tecting breast cancer [33]. Radiologists will often look

at both sets of mammograms and determine, through it-

erative examination of each set, whether there has been

clinically significant change. This requires the radiol-

ogist to identify similar features in each mammogram

in order to determine a common coordinate system for

comparing the structure. A similar problem exists if

a physician wants to fuse multiple data types, for ex-

ample computed tomography (CT), positron emission

tomography (PET) and/or magnetic resonance imaging

(MRI). In this case, the image types may be very dif-

ferent and therefore the features that are common to

each may be sparse and difficult to identify. Wavelets

and multi-resolution approaches have proven valuable

techniques for image registration, in that they can ex-

ploit structure at multi-scales as well as a coarse-to-fine

search strategy [12] for aligning images and volumes.

A promising, and relatively new, clinical application

area for exploiting multi-resolution image registration

methods is real-time ophthalmology [54,55]. As with

other clinical disciplines, change detection and feature

identification are fundamental strategies used by oph-

thalmologists for detection, diagnosis and monitoring

of retinal disease. For example, detection and moni-

toring of drusen, small patches of abnormal metabolic

build-up on the fundus, is critical for early detection

and differential diagnosis of age-related macular de-

generation (AMD) [56].

Imaging plays an important role in opthalmology,

with the workhorse being the slit-lamp biomicroscope.

Slit-lamp biomicroscopes are used at the earliest stages

of examination and are the imaging modality for

opthalmic screening. Slit-lamp images, examples of

hich are shown in Fig. 13A, have a narrow field of view

(NFOV) because of the need to limit light intensity

impinging on the retina. Ophthalmologists typically

sweep the field of view across the fundus to construct

a wide field of view (WFOV) image in their “minds-

eye”. If warranted, a fundus photograph can be taken,

which will provide a WFOV. Such photographs can be

used to examine the features of the fundus in a broad

context, as well as be compared to other types of im-

agery, for example fluorescein angiograms. However a

disadvantage of a fundus photograph is that it requires

a special camera and photographer and it often must be

taken in another location. It is therefore rarely used at

the screening stage.

One approach for providing a WFOV image at the

screening stage is to mosaic slit-lamp images collected

via a video CCD camera. The challenge is to accu-

rately register the individual video frames and seam-

lessly blend the individual images. A particularly suc-

cessful approach has been to use a multi-resolution

coarse-to-fine search strategy for estimating the regis-

tration parameters [57]. Figure 14 shows the procedure

for coarse-to-fine parameter estimation. Frames are

first aligned at at low resolution, and rough estimates

of the registration parameters are computed. These es-

timates are used to seed the estimation process at the

next higher resolution, where the alignment is further
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Fig. 12. (left) Original mammogram, (right) wavelet enhanced.

improved. This iterative method proceeds until the

highest resolution where the images are registered, of-
ten with sub-pixel accuracy [12]. After registration, a

Laplacian pyramid can be used to blend the individual

frames to eliminate edge artifacts. An example of a

resultant image is shown in Fig. 13B. The image pro-
vides the same basic type of information as might be

provided by a fundus photograph, however without the

additional expense and time required for specialized

equipment and personnel.

4.3. Analysis of EEG and MEG

Many research efforts have focused on the appli-

cation of wavelets for detecting signatures of clin-
ical significance in time-domain biomedical signals.

For example, wavelets have been used as a means

to detect heart rate variability/fluctuation [58–63]. A

time-domain biomedical signal that is well-suited to
wavelet analysis is the EEG, given that it is highly

non-stationary. For example, great advances have been

made in epileptic seizure prediction through multi-

scale and wavelet-type analysis. Predicting the onset
of epileptic seizures can have tremendous clinical util-

ity, given evidence that temporally and spatially precise

electrical stimulation preceding a seizure can reduce its

severity and/or stop its occurrence [64]. Important has
been the observation that discrete signatures, at multi-

ple time scales, precede a seizure event [65]. These sig-

natures can be seen in surface EEG, but they are most

clear in the electrocortigram (ECoG). In the ECoG, for
example, one can see chirp-like activity, localized in

frequency and time.

An important property of the epileptic signature is

that the signal is non-stationary. It is therefore advan-
tageous to track the signal in time-frequency space and

watch for the onset of a epileptic signature. These char-

acteristic properties of the seizure precursor have led to

several wavelet based methods for signature detection.

Fig. 13. Real-time mosaicking of slit-lamp biomicroscope im-

ages using a multi-resolution framework. (A) Several frames taken

from a video sequence. (B) Mosaicked image constructed using

a multi-resolution decomposition to align and blend the slit-lamp

frames.

For example, Franaszczuk et al. [66] use the matched

pursuit methods developed by Mallat and Zhang [67]

to track the changing time-frequency signature seen in

a epileptic seizure. Benedetto and Pfander [68] use a
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Fig. 14. Coarse-to-fine estimation of registration parameters using a multi-resolution framework. Sets of images are aligned beginning at lowest

resolution. This rough alignment is used to subsequently initialize the estimation process at higher resolutions. The framework allows for
extremely accurate sub-pixel resolution registration, with applications including change detection, image fusion and mosaicking.

generalized Haar wavelet to capture the time and scale

periodicity seen in the wavelet transform – a sharp

transition in the signal characteristics indeed calls for

the application of Harr wavelets rather than smooth

wavelets. Cranstoun et al. [69] use smooth localized

exponential functions (SLEX) to detect signatures of

epileptic seizure hours prior to the actual seizure event.

These fast, real-time methods have led to the develop-

ment of “brain pacemakers” [70], implantable devices

aimed at predicting, in real-time and on-line, seizure

onset in order to prevent a seizure through delivery of

appropriate electrical stimulation to the cortex.

Wavelet techniques also have been used in the analy-

sis of evoked potentials in the EEG. Advances in imag-

ing techniques and processing of the acquired data have

had a particularly important impact on analysis of brain

function and dysfunction. The application of modali-

ties such as PET and fMRI provide outstanding means

to observe the brain “at work”, in a completely non-

invasive manner, with reasonably good spatial resolu-

tion. The temporal resolution of these technologies is,

however, less satisfactory and does not come close to

that of electrical and magnetic imaging methods, i.e.

EEG and MEG, which can potentially reveal the dy-

namics of sensory and/or higher brain functions.

Consider, as an example, the application of wavelet-

type sparse representations for extracting single-trial

evoked responses from MEG multichannel data [71].

One can formulate the extraction of the evoked response

as a problem of Blind Source Separation (BSS) [72],

where an n-channel observed signal,x(t) (in this exam-

ple case 122-channel MEG data) reflects the mixtures

of a source s(t), embedded in an n-channel background

signal ξ(t),

x(t) = a · s(t) + ξ(t), (16)

where a is an unknown n-dimensional vector of

weights. It is reasonable to assume that a rough tem-

plate of the event-related evoked response is known a

priori. Such a template can be obtained by averaging

techniques.

BSS-type problems often have been approached us-

ing Independent Component Analysis (ICA), where

the underlying assumption is linear independence [73,

74]. However, as Zibulevsky et al. have recently

stressed [75,71] an alternative assumption, in the case

of natural signals, is sparsity. Whereas some natural

sources are sparse in their native signal domain, most

natural signals and images must be projected onto a

proper space to construct a sparse representation. Such

sparse BSS techniques often yield better results than

those obtained by traditional ICA approaches. As men-

tioned earlier, a sparse representation of a given sig-

nal s(t) refers to the fact that only a small number of

the decomposition coefficients, ck, corresponding to

the set of representation functions ψk differs signifi-

cantly from zero. The source signal can be therefore

approximated by a linear combination of this subset of

K functions,

s(t) =

K∑
k=1

ckψk(t). (17)

Indeed, it is a well-known fact that wavelet-type

transformations, such as those obtained by wavelet
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Fig. 15. (A) Subset of MEG channels with embedded evoked response. (B) Recovery of evoked response source using wavelet-based sparsity.

(C) Recovery of evoked response source using correlation with a template. Actual embedded evoked response is shown as dashed curve.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Am
pl

itu
de

time [sec]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

A
m

p
lit

u
d
e

time [sec]

A B

Fig. 16. Estimation with the KL (A) and the local KL (LKL) (B) transforms applied to simulated (synthetic) EP signal. The noise-free, noisy

(with white Gaussian noise; SNR = 0 dB) and estimated signals are denoted by dashed, dotted and continuous lines, respectively.

packets [76,72], or Gabor-type transforms [77], when

applied to natural signals, result in sparse representa-

tions. Quantitatively, the sparsity of the representation

depends on the characteristics of the transformation and

on its matching to the properties of the signal.

In [71] the authors combine prior knowledge about

the sparsity of a source representation with the in-

formation regarding the relevant template, into one

optimization criterion. Simulations with a synthetic

evoked response, superimposed on 122-channel MEG

data (Fig. 15), result in good recovery of the desired

source (see Fig. 15B). These results are considerably

better than those obtained using maximum correlation

with a template (Fig. 15C). The template of the source

simulated in this example is relatively smooth. This

indicates that a wavelet basis generated by a smooth

mother-wavelet is most appropriate.

It should be noted that the number of samples used in

this example is much smaller (512) than the number of

free parameters associated with the separation of a 122

× 122 matrix (i.e. 122 channels). Consequently, tra-

ditional ICA cannot provide a meaningful separation.

Indeed, estimation using a traditional ICA technique

does not lead to meaningful results.

In another study of processing of evoked potentials

(EP), a local Karhunen-Loeve (KL) transform was used

in the decomposition of an EEG signal space into com-

plementary subspaces: one for the evoked potentials

and the other for the background EEG interference-

and-noise [78]. The local KL (LKL) basis was derived

from the local autocorrelation of the EEG signals.



354 P. Sajda et al. / Multi-resolution and wavelet representations for identifying signatures of disease

Fig. 17. Qualitative comparison of denoising and enhancement performance on real-time clinical echocardiography data. Denoising/enhancement

results are presented for four long-axis and four short-axis views from a single clinical data set. (row 1) Original data, (row 2) denoising

with Wiener filtering adapted to Rayleigh speckle noise model, (row 3) denoising with 3-D brushlet analysis, and (row 4) denoising with 4-D

(3-D+Time) brushlet analysis.

The KL transform is known to provide the most ef-

ficient coordinate system for signal representation, ac-

cording to the minimum mean-squared error (MMSE)

and minimum entropy criteria. Nevertheless, features

localized in the combined time-frequency space, as is

the case with short-lived EPs, are not well represented

by the KL, due to the global nature of its eigenfunc-

tions. This is indeed what one is looking for in lo-

calized wavelet-type or Gabor-type functions. An al-

ternative approach is to derive a LKL transform [78].

Examples of simulations with synthetic EP signals are

shown in Fig. 16. The results indicate that the LKL can

indeed recover the fine structure of a single-event EP,

lost in the case of processing with global KL, without

resorting to averaging.

4.4. Analysis of the 4D (3D + time) Echocardiogram

A diversity of modalities, such as CT, tagged MRI,

SPECT and ultrasound, allow for the acquisition of dy-

namic sequences of cardiac volumes. Echocardiogra-

phy is the fastest, least expensive, and least invasive

method for imaging the heart. The simplest and most

useful clinical parameter used to assess cardiac func-

tion is ejection fraction (EF), calculated as the differ-

ence between end diastolic and end systolic left ventric-

ular volumes. However, accurate calculations of ven-

tricular volume from standard echocardiographic data

are tedious and costly to employ clinically. This is be-

cause existing methods require time to digitize endo-

cardial borders on a series of two-dimensional images,

then register the image set and reconstruct each cavity

volume. Real-time acquisition via three-dimensional

ultrasound obviates the need for slice registration and

reconstruction, leaving segmentation as the remaining

barrier to an automated, rapid, and therefore clinically

applicable calculation of accurate left ventricular cav-

ity volumes and ejection fraction. Because it provides

such a rich description of the temporal and spatial envi-

ronment of any area of interest, three-dimensional ul-

trasound also offers the potential for increased sensitiv-

ity in detecting subtle wall motion abnormality indica-

tive of ischemia (for example during an exercise stress

test), compared to fast MRI techniques.

The majority of the volume extraction methods

which are used to estimate EF are based on prior mod-

els of the entire heart or of the left ventricle only.

The parametrization of the model generally uses Finite

Element models where the volume is constructed af-

ter deformation of the model following physics based

constraints for equilibrium. Movement of the car-

diac wall extracted from temporal data requires some

parametrization of the model. Duncan et al. used

contour shape descriptors in [79], Ayache, Cohen et

al. [80] have used superquadratics. The nature of

the constraints varies between models and can take a
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wide range of properties, including differential con-

straints [81], displacement and velocity constraints [82]

as well as other constraints allowing for non-rigid

movements.

The 4D ultrasound image is dominated by speckle

noise. This is problematic in that most of the model

fitting procedures described above are very sensitive to

noise in the data. Important therefore are methods for

denoising the spatiotemporal ultrasound data so that

one can obtain an accurate estimate of EF. Angelini et

al. [83] describe a multi-resolution technique that relies

on the expansion of temporal volume data on a family

of multi-resolution basis functions called “brushlets”,

introduced by Meyer and Coifman [84]. These basis

functions offer a decomposition of a signal into distinct

patterns of oriented texture. In 2D, depending on the

tiling chosen prior to analysis, the projected coefficients

are associated with distinct “brush strokes” of a par-

ticular size (width) and orientation (direction). Final

denoising is achieved with the construction of gradient

maps, thresholding of selected coefficients and recon-

struction of an “enhanced/denoised” volume. The re-

constructed data serves as an initial guess for volume

extraction and EF estimation. Figure 17 illustrates the

improved image quality after denoising with brushlets,

with comparisons to traditional denoising methods such

as Wiener filtering.

4.5. Using the wavelet transform for maximum

likelihood reconstruction of PET data

Positron Emission Tomography (PET) imaging

quantifies the distribution of a radioactive marker that

is injected into the body and interacts with pathological

tissue. The radioactive tracers emit photons that are de-

tected by pairs of detectors corresponding to bins. The

projections of the tracer distribution are estimated by

counting the number of photons detected in the various

bins.

A classical technique for reconstruction of two- and

three-dimensional PET images from a set of projections

is based on the maximum likelihood approach [85,86].

Exploiting the properties of the Poisson process of pho-

ton emission, leads to the Expectation Maximization

(EM) algorithm for emission tomography [86].

With the imaged tissue divided into pixels (i.e. im-

age elements, in the 2D case) or voxels (i.e. volumetric

elements in the 3D case), the number of photons gener-

ated by the radioactive tracer within each voxel is given

by n(v). Let y(b) be the number of photons detected in

each bin b = 1, 2, . . . , B, where B is the total number

of bins. A Poisson process for the generation of pho-

tons in each voxel, v, is characterized by the expected

value of the photons, λ(v), that depends on the tracer

distribution and, in turn, on the tissue properties. Fur-

ther, y(b) are independent variables of a Poisson distri-

bution with expected value λ(b). Accordingly, the log-

likelihood function of the measurements y(b) is given

by

L(λ) =
∑

v

λ(v)p(v)

(18)
+

∑
b

y(b) log
∑

v

λ(v)p(v, b),

where λ = {λ(v), v = 1, . . . , V }, with V being the

total number of voxels. λ is the set of V unknown

Poisson parameters, p(v, b) denotes the probability of

an event associated with a photon emitted from voxel v
being detected in bin b, and p(v) is the probability that

an emission from v is being detected and is given by,

p(v) =
∑

b

p(v, b) (19)

The EM algorithm leads to an iterative approxima-

tion of λ(v) that maximizes L(λ).
In cases where there is some prior information re-

garding possible pathology, utilization of such infor-

mation lends itself to the development of new, more

powerful, algorithms. Such localized structural infor-

mation on smoothness and/or edge distribution can be

obtained, for example, from another modality or from

prior knowledge about specific organ metabolism (i.e.

prior knowledge regarding the photon emission means

λ). This leads to a new iterative algorithm that incor-

porate the local and multi-resolution properties of the

wavelet transform into the structure of the EM algo-

rithm.

Let {hm}, m = 1, . . . , M, be an orthonormal

wavelet basis of an M -dimensional space, and let the

discrete image λ(v), belonging to this space, be repre-

sented by this wavelet basis as follows,

λ(v) =

M∑
m=1

cmψm(v). (20)

Estimating the values of λ’s from y’s is equivalent to

estimating cm’s from y’s. One can therefore transform

the log-likelihood function into the wavelet transform

domain and obtain an expression similar to the one

in the original domain, but with representation coeffi-

cients cm’s instead of the λ’s. Since the transformed

function is analogous and similar in structure to the
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original one, the optimal cm coefficients can be ob-

tained via a wavelet domain iterative formula, similar

to the one used in the image space. Since both the log-

likelihood functions and the iterative algorithm are sim-

ilar in both domains, what are the advantages of operat-

ing in the wavelet transform domain? Here we reiterate

the fundamental empirical fact that for natural images

there exists a wavelet-type transform that projects the

image onto a sparse representation [72]. This approach

can be further refined in the context of PET imaging,

by designing sets of wavelet functions that are better

matched to the structure of the PET signal.

PET data are very noisy due to their short acquisition

time and scatter effects. In solving the optimization

problem associated with the log-likelihood function,

“penalty” functions reflecting, for example, smooth-

ness of the noise-free image or, as mentioned, other

prior information are incorporated into the optimization

process. Such regularization is common practice in

computer vision and image processing. In the context

of the PET reconstruction problem, the log-likelihood

function thus becomes,

Lπ(λ) = L(λ) + µΠ(λ), (21)

where Π(λ) is a so-called penalty function, and µ is

its weighting coefficient that is determined empirically

to achieve a desired signal-to-noise ratio. Under the

assumption that we wish to construct a sparse represen-

tation, the sum of the absolute values of the coefficients

provides a reasonably good choice for a penalty func-

tion. Since edges “live” in the high resolution subspace

of the wavelet representation, the penalty function can

be more effective if only the high resolution subset of

the coefficients is incorporated [87]. This type of re-

finement can be carried one step further by considering

a more PET-image-specific wavelet packet representa-

tion, where it is possible to penalize only a subset (or

subsets) of the high resolution coefficients [72].

Kisilev et al. [87] implemented their wavelet

transform-based regularization algorithm using the

Shepp-Logan phantom [86]. Experiments such as those

depicted in Fig. 18 illustrate that the wavelet transform

based regularization can improve the signal-to-noise

ratio and contrast of the reconstruction. The same ap-

proach can be incorporated into other modalities, given

knowledge of the specific priors.

Kalifa et al. [88] have developed a new fam-

ily of regularization methods for PET reconstruction,

based on a thresholding procedure using wavelet and

wavelet packet decompositions. This approach is based

on the fact that the decompositions provide a near-

diagonalization of the inverse Radon transform and of

prior information in medical images. A wavelet packet

decomposition is adaptively chosen for the specific im-

age to be restored. Corresponding algorithms have

been developed for both 2-D and full 3-D reconstruc-

tion. These procedures are fast, non-iterative, flexible

and outperform, for example, Filtered Back-Projection

(see Fig. 19).

5. Discussion and conclusions

As discussed in this paper, progress has been made

applying wavelet and multi-resolution techniques,orig-

inally developed for other signal and image process-

ing domains, to specific problems in biomedical signal

and image analysis. However, by many standards, the

development and adoption of techniques by the med-

ical community has been slow. This is in part due to

the complexities and clinical requirements for dealing

with medical data. As mentioned, one faces a tremen-

dous intra and inter-subject variability in data related to

physiological measurements and imaging, which can

be a challenge for application of the basic wavelet tech-

niques. Expertise in both the clinical domain and signal

processing is therefore required to tune and refine the

techniques to match the properties of the biomedical

signals of interest. Further, due to the physics of acqui-

sition systems and medical standards, one must be very

cautious with preprocessing, filtering and approximat-

ing medical data. As an example of cooperation that

is starting to be seen between the clinical and signal

processing communities, we have discussed in this re-

view Computer-Aided Diagnostic (CAD) approaches,

where the system provides a ’second look’. Indeed,

such CAD systems have already been introduced into

clinical service.3

Of the various signal and image processing tech-

niques that have emerged in recent years, we have

attempted to convince readers, who are concerned

with the outstanding problem of identifying markers

of disease, that wavelet-type and Gabor-type multi-

resolution analysis techniques have tremendous poten-

tial. The examples presented in this review are by no

means exhaustive, nor do they claim to be the best. We

have selected several examples that represent a wide

spectrum of applications with which we are most fa-

3R2 Technology M1000 Image Checker, CADx Medical Second-

Look, and Intelligent Systems Software MammoReader.
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Fig. 18. Comparison of EM and wavelet transform-regularized-EM reconstruction for a Shepp-Logan phantom data. The discrete data of the

phantom (A) was Radon-transformed and subjected to a Poisson noise process. The resultant data was then reconstructed using either a standard

EM (B) or a wavelet transform regularized-EM procedure (C).

miliar. These and other published examples demon-

strate that the proposed techniques are at least as suit-

able for the analysis of medical data, as they have been

successful in other applications.

This short review cannot do justice to the broad range

of examples previously reported in the literature, nor

to the broad range of derivatives of these generic ap-

proaches for representing signals and images. The ex-

tension of the one-dimensional approach to two dimen-

sions and higher, as is required in dealing with im-

ages and volumetric data, has been dealt with in most

cases by extending the one-dimensional case to higher

dimensions – in the simplest way by taking a tensor

product of one-dimensional wavelet functions. The

resulting scheme is characterized in this case by the

splitting of the low-pass image into oriented subbands

(as was illustrated in Fig. 6). It is often assumed that

this is the only approach for constructing higher di-

mensional representations. However, as we have men-

tioned, two-dimensional non-separable wavelets are

available, where many more degrees of freedom exist.

This subject is, however, more technically involved and

we have refrained from delving into it in depth, other

than providing references and a few comments in the

Appendices. Fine tuning of a scheme for a specific

medical application, including markers of disease, jus-

tifies the extra effort of moving into the much richer

space of non-separable wavelets.

One research area that has received significant at-

tention in recent years is the use of wavelets as a rep-

resentation or “feature space” for building generative

probabilistic models of natural signals. The advantage

of a generative probabilistic approach is that it offers

a general framework for image analysis (e.g. classifi-

cation, segmentation, fusion, compression, etc.) and a

principled approach for including prior information and

estimating “uncertainty”. For example, Crouse et. al.

developed the Hidden Markov Tree (HMT) model [89]
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Fig. 19. (A) A reference image of a 256-by-256 Brain Phantom. (B) Sinograms simulated with 192 angular positions and 192 detectors, as in

standard PET devices. (C) Image reconstructed with an optimized regularized filtered backprojection (RFBP) ( signal to noise ratio (SNR) after

reconstruction = 27 db). (D) Image reconstructed with a wavelet packet thresholding (SNR = 29.1 db).

for signals and images. A primary motivation of this

model is to capture the tendency for wavelet coeffi-

cients to group into two classes, one with large and the

other with small coefficient magnitudes. These mod-

els have been successfully applied to several problems,

especially image enhancement and texture segmenta-

tion [90,91]. Cheng and Bouman [92] have applied a

similar model for segmentation. Sajda et al. [93,94]

have developed an extension of the basic HMT, which

they term a hierarchical image probability (HIP) model.

The HIP model allows for the construction of a gener-

ative probabilistic model over a wavelet packet repre-

sentation, and has a more flexible architecture for cap-

turing complex and structured dependencies between

the transform coefficients. The HIP model has been

evaluated for mammographic CAD as well as medical

image compression, and has been shown to yield su-

perior results compared to alternative state-of-the-art

approaches (e.g. neural networks for CAD and JPEG

and JPEG-2000 for image compression).

As often is the case in engineering solutions, the

“devil is in the details” of implementation and design.

For example, applying wavelets to the problem of blind

source separation of signals, one can achieve good re-

sults using the basic wavelets we have described. How-

ever the efficiency of the approach depends on the

proper choice of wavelets. Indeed, the signatures of

disease must be taken into account as well as the phys-

ical characteristics of sensing modality, in order to best

match the multi-scale representations. In ultrasound,

for example, the structure of the texture, as well struc-

tures within a lump (in the case of a cyst) are indicative

of possible malignant tissue, whereas in PET, radioac-

tive markers must be detected in the smallest possi-

ble quantities (minimal dose) by using optimal detec-

tion and estimation techniques. As discussed in this

review, and as has been true in other applications, the

performance of wavelet-based systems can be further

improved by introducing tissue-specific and modality-

specific prior information into the analysis and synthe-

sis algorithms.

In conclusion, we submit that the potential remains

for the development of more sophisticated analysis

methods. For example, fruitful would be the devel-



P. Sajda et al. / Multi-resolution and wavelet representations for identifying signatures of disease 359

opment of adaptive non-separable wavelet represen-

tations, which integrate more detailed and physically

meaningful priori information, including specifics of

tissue properties, function and modality. This task will

challenge the next generation of medical imaging sci-

entists, requiring a multi-disciplinary effort. We would

expect the result to be more powerful diagnostic tools

enabling minimally invasive identification of signatures

of disease.

6. Appendices

6.1. Wavelet families

The generation of a family of orthogonal functions by

dilations and translations traces back to the turn of the

20th century, when the Hungarian Mathematician Al-

fred Haar proposed a theory for a system of orthogonal

functions [95]. The set of orthogonal Haar functions are

identical in structure to the set of dyadic wavelets, but

they are discontinuous – i.e. the mother wavelet (and

so the entire set of wavelets) is constructed of unitary

positive and negative pulses. The Haar set of functions

is therefore ill-suited for the representation and analy-

sis of medical signals and images and indeed for most

natural signals. For many years it was not clear whether

one could generate a sequence of smooth, scaled and

translated orthogonal functions having finite support.

This is, in fact, the important contribution of Ingrid

Daubachies [96], who showed that one can generate

such wavelets, where the degree of smoothness can be

determined by the number of vanishing moments. Yet,

it is often desirable to have additional properties that

cannot be accomplished by one-dimensional orthogo-

nal wavelets. For example, linear phase, a simple linear

relationship between phase delay and frequency,cannot

be achieved in the case of dyadic wavelets, except for

the case of Haar wavelets that, as noted, are discontin-

uous. However, linear phase and other properties can

be incorporated into a two-dimensional representation

by using non-separable two-dimensional wavelets [97–

99].

6.2. Gaborian transforms

Gabor [1] showed that the choice of a Gaussian for

g(t) (Eq. (4)) minimizes the effective spread in the

combined time (position)-frequency plane, compared

with the so-called “joint entropy” achieved by any other

window function. This result has been extended in

a straightforward manner to two-dimensional signals

(e.g. images) that are projected into a four-dimensional

combined position-frequency space [100]. Note, how-

ever, that even in the case of a one-dimensional signal

there is a degree of freedom in choosing the width of

the Gaussian window, since there is, according to the

uncertainty principle, a trade-off between the spread in

time (or space) and in frequency. In fact, the effective

spread of one of these canonical variables is inversely

proportional to the other. Further, there is also an addi-

tional degree of freedom in the tessellation of the com-

bined space. In order to span the representation space,

i.e. the space of signals or images to be represented, the

set of elementary functions must be complete (or over-

complete). This implies that at least a critical sampling

density must be accomplished. The requirement of

critical sampling density permits, however, a decrease

in sampling rate along the time (position) coordinate

as long as it is compensated by the corresponding in-

crease in the sampling rate along the complementary

frequency axis [77]. However, one must pay attention

to the important issue of stability, which is beyond the

scope of this paper. Note also that the Gaborian func-

tions are not orthogonal. This necessitates the genera-

tion of a complementary,bi-orthogonal, set of functions

that are required for obtaining the inverse.

The Gaborian approach to image representation in a

combined spatial and spectral four-dimensional space

is in fact very suitable for dealing with the complex

textures of medical images, since the oriented Gaborian

elementary functions are most suitable for the represen-

tation of textures [100,101]. Any localized pathology

is then identified by deviation from the localized peri-

odic structure of the texture. As such, it has been ap-

plied in the analysis of ultrasound images and in a com-

puter vision approach to mass screening of melanoma

lesions.

In the case of the original Gaborian approach to sig-

nal and image representation, the Gaussian window is

fixed in its width, and all the localized functions are of

the same (effective) finite support. It has been realized,

however, that a large number of classes of natural im-

ages (as well as one-dimensional signals), have a pe-

culiar property of self-similarity across scales. Man-

delbrot [102] was the first to highlight the fact that

this phenomenon is encountered everywhere in nature.

This observation has motivated the development of the

Laplacian [11] and Gaborian [100] pyramidal repre-

sentations, and subsequently development of wavelet

multi-resolution approach to signal and image analy-

sis [103,104]. Alternatively, the scale can be incorpo-
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rated into the Gaborain set of representaion function by

using a scaled set of multiwindows [77]. Each subset
of the Gaborian functions having a fixed frequency de-

picts in this case the properties of wavelet functions,
i.e. a set of localized scaled and translated functions.

The specific set of scaled multiwindow Gaborian func-
tions therefore constitutes a wavelet-type representa-

tion. In fact, since it incorporates the properties of both
wavelets and Gabor representations, it provides a rich

set of representation functions suitable for the analysis
of medical and other data.

6.3. Diffusion processes in scale-space

Another concept closely related to multi-resolution
processing and the continuous wavelet transform is the
scale-space [105–107]. This concept is directly related

to the application of diffusion-type partial differential
equations (PDE) in image processing.

We have already mentioned the Laplacian pyramid
of Burt and Adelson, and how, in fact, it generates

scaled and translated (non-orthogonal) wavelets. The
application of a linear diffusion process as an opera-

tor acting on an image I0(x, y), results in a dynamic
evolution of a low-pass filtered image, I(x, y, t), that

is a spatio-temporal solution of the partial differential
equation:

It = c∇2I. (22)

I0 is the initial condition of the process, c is the diffu-
sion coefficient that determines the rate of the filtering

process, It denotes the partial derivative of the image
with respect to time, and ∇2 denotes the Laplacian (i.e.

the sum of the second partial derivatives with respect
to the two spatial independent variables x and y).

A slice in time of the resultant three-dimensional (i.e.
two spatial and one temporal axes) data cube depicts a

Gaussian filtered (smoothed) image. In fact, the result
of the action of the diffusion process on the image

can be obtained at any given time by the convolution
of the image with the fundamental Gaussian solution,

g(x, y, t), of the normalized (i.e. c = 1) diffusion
equation,

g(x, y, t) =
1√
4πt

exp
−x2

4t
. (23)

Clearly, the longer the processing time the smoother

the image, since the Gaussian kernel of the diffusion
equation is characterized by an effective width, i.e.

standard deviation σ =
√

2t. This simple linear im-
age evolution process of low-pass filtering generates a

Gaussian scale-space.

While the action of the linear diffusion low-pass fil-

ters the noise, it also degrades the edges. Thus non-
linear adaptive diffusion must be applied in order to
resolve the conflicting requirements of denoising, i.e.

low-pass filtering, and edge enhancement. This can
be done effectively by the application of a nonlinear

adaptive diffusion equation where the diffusion coeffi-
cient is a function of the local gradient. By decreasing
the value of the diffusion coefficient to zero at posi-

tions of large gradients, edges can be preserved while
noise is filtered out over relatively smooth areas [108].
Edges may be enhanced by adapting the value of the

diffusion coefficient at points of large gradients. Al-
though such combined “forward-and-backward” diffu-
sion is ill-posed, one can show that it is stable enough

to be applied (with care) to images, and results in en-
hancement of edges [109]. Obviously, this is important

in many cases where the task of demarcating a small
lump that may depict a tumor cannot be accomplished
by simple linear processing techniques because of low

signal-to-noise ratio (SNR). The scale-space approach
to image processing has been shown to be very effec-
tive in segmentation of images [107] and, in particular,

medical images.
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