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Abstract 

We present a novel multi-resolution point sample rendering algorithm for keyframe animations. The algorithm 

accepts triangle meshes of arbitrary topology as input which are animated by specifying different sets of vertices 

at keyframe positions. A multi-resolution representation consisting of prefiltered point samples and triangles is 

built to represent the animated mesh at different levels of detail. We introduce a novel sampling and stratification 

algorithm to efficiently generate suitable point sample sets for moving triangle meshes. Experimental results 

demonstrate that the new data structure can be used to render highly complex keyframe animations like crowd 

scenes in real-time.  

Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Picture / Image Generation – Display Algo-

rithms; I.3.6 [Computer Graphics]: Methodology and Techniques – Graphics data structures and data types; G.3 

[Mathematics of Computing]: Probability and Statistics – Probabilistic algorithms. 

 

 

1. Introduction 

Today, computer generated images of highly complex 

scenes of animated objects are found in many movie pro-

ductions. „The Lion King“22 for example features a se-

quence in which a stampede of buffaloes runs through a 

valley. Many recent movie productions like „The Mummy 

Returns“24 or the „Lord of the Rings“23 make heavy use of 

computer generated crowd animations. For many applica-

tions of interactive computer graphics like computer games 

or interactive visualization20 it would also be desirable to 

integrate renderings of large animated data sets. However, 

rendering of highly complex animated models has high 

demands for computational resources so that it is usually 

limited to offline applications. 

A general technique to reduce rendering costs is multi-

resolution modeling: A hierarchy of levels of detail is built 

from the scene description. During rendering, levels of 

detail are chosen for each part of the scene to match the 

display resolution of the projected image. Previous work 

has shown that highly complex scenes can be handled by 

multi-resolution rendering in real-time. However, up to 

now, only a very few multi-resolution algorithms are known 

that can handle animated input data 5, 18. In this paper, we 

present a new multi-resolution rendering algorithm for 

animated scenes that obeys to the point-sample rendering 

paradigm8, 12, 15. Our algorithm takes keyframe animations 

of triangle meshes as input and builds a hierarchy of point 

samples and triangles to represent different resolutions of 

the scene. The major technical problem is to find a set of 

sample points on the moving surfaces that are distributed 

sufficiently uniformly on the surfaces of the objects at any 

time during the animation. We present a novel sampling 

algorithm that consists of a randomized sampling step and a 

stratification step to efficiently calculate point sample sets 

that minimize oversampling. Similar to the surfels rendering 

technique12, prefiltering is applied to reduce the variance of 

the color attributes of the sample sets. As suggested in 

recent work3, 25, triangles which are large in respect to the 

sampling resolution are rasterized as triangles instead of 

points to guarantee that the multi-resolution approach is 

never slower than conventional rasterization and that the 

memory consumption of the point-sample data is limited 

without sacrificing model resolution. The algorithm leads to 

a rendering time that is independent of the complexity of the 

geometric model.  

We apply our multi-resolution data structure to the ren-

dering of large crowds of animated characters. Two differ-

ent techniques are used: Smaller scenes with up to a few 

thousand objects can be controlled by simulating the behav-

ior of each object individually. Larger crowds can be han-

dled with a hierarchical instantiation scheme. It provides 
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less flexibility for the motion of the objects but permits the 

rendering nearly arbitrarily complex scenes. Using a proto-

type implementation of our new technique, we are able to 

render crowd animations consisting of up to some hundred 

million triangles in real-time with high image quality. 

2. Related Work 

In this section, we will summarize related work from multi-

resolution rendering, especially multi-resolution rendering 

of animations. 

Mesh Simplification: Automatic mesh simplification al-

gorithms have been successfully applied to speed up the 

rendering of static scenes, see e.g. Puppo and Scopigno13 

for a survey. There are only a few methods that can handle 

animated data sets. Friedrich et al.5 propose an algorithm for 

the interpolation of keyframe hierarchies based on the Ri-

vara bisection scheme. Shamir et al.18 propose a general 

data structure for the application of mesh decimation algo-

rithms to animated data sets. Mesh simplification algorithms 

can speed up rendering substantially, if applicable. How-

ever, there are many scenes which do not permit sufficient 

simplification. Especially scenes of complex topology, like 

crowd animations with a huge amount of independent ob-

jects, cannot be simplified beyond a certain limit without a 

severe loss of image quality. In such cases, point sample 

rendering techniques as used in this paper are more appro-

priate. 

Image Based Rendering: Image based techniques sub-

stitute precomputed images for complex geometry. Several 

methods have been proposed for static data 7, 9, 17 but only a 

few can handle animated scenes: Tecchia and Chrysanthou21 

describe a rendering technique for complex crowd anima-

tions. In a preprocessing step, images from several viewing 

directions are rendered into textures for some timesteps of 

the character animation. During rendering, the closest time 

step and viewing direction is determined and the corre-

sponding texture is rendered. The method leads to very fast 

rendering times. However, the discretization of time and 

viewing angle causes parallax and continuity errors. This 

does not matter for a far field approximation, but the 

method cannot be used to simplify single, large animated 

objects of high complexity. Aubel et al.1 describe a dynamic 

image caching algorithm for crowd animations. The image 

of a rendered person is reused as texture over several 

frames. The speed-up of this method is limited as coarsen-

ing the time discretization too much will result in jerky 

motion. 

Point Sample Rendering: Point sample rendering re-

places complex geometry by a cloud of roughly pixel-sized 

points. The usage of points as rendering primitives was 

already suggested by Levoy and Whitted10 in 1985 and 

rediscovered in the late nienties8, 16. Several authors sug-

gested multi-resolution algorithms that adapt the density of 

the point cloud locally to the display resolution2, 12, 15, 19, 25.  

Cohen et al.4 describe a technique that combines point-

based rendering and mesh simplification. Stamminger and 

Drettakis19 describe a simple extension of their point sample 

rendering technique to animated scenes: The points are 

moved dynamically by a motion function. However, the 

sampling density is not adapted to the motion of the object 

but it is fixed in advance*. Our algorithm improves on this 

by allowing arbitrary motion. Using a dynamic hierarchy 

and time dependent stratification, it provides guaranteed 

limits for the oversampling. 

3. Multi-Resolution Hierarchy 

In order to provide a general technique that is not dependent 

on a specific application, we need a general model to repre-

sent animated scenes. Our algorithm works on keyframe 

animations of triangle meshes. The keyframe animation 

consists of a sequence of triangle meshes of arbitrary topol-

ogy and connectivity. For each pair of consecutive key-

frames, correspondences between the vertices of the 

triangles must be specified, i.e. every vertex of a keyframe 

must be assigned a matching vertex in the other keyframe 

(Figure 1). During animation, the position (and all other 

vertex attributes, like normal or color) is interpolated line-

arly between the keyframe values. Triangles can be created 

or deleted by blending from one vertex position to three 

different positions and vice versa. The specification of 

vertex correspondences is part of the input to the algorithm, 

i.e. they are not established automatically but they must be 

specified by the user during modeling. 

3.1. Data Structure 

We will first describe our multi-resolution hierarchy for the 

static case. The extension to the animated case is discussed 

in section 3.3. Our algorithm is a generalization of the work 

of Pfister et al.12 and Rusinkiewicz and Levoy15, including 

ideas from Chen et al.3 and Wand et al.25. 

                                                                 
* In their paper, they also describe a fully adaptive sampling tech-

nique for parametric surfaces. However, this method cannot be 

applied to general 3d-models. 

keyframe #1 keyframe #2 keyframe #3  

Figure 1: Keyframe definition with vertex correspondences. 

The topology may change at keyframes. 
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Our data structure is an octree that partitions the scene 

spatially. Each node stores an approximate representation of 

its part of the scene with a fixed resolution in respect to the 

geometric size of the node. To build the octree, we start 

with a cube containing all triangles of the scene. Then the 

following algorithm is performed recursively, building the 

tree in top-down order: We choose sample points distrib-

uted uniformly on the surface area of the triangles and store 

them for the current box. The maximum distance between 

these sample points is chosen to be a constant fraction of the 

side length of the box. This means that we would obtain a 

fixed sampling density if we scaled the boxes to uniform 

size. The sampling strategy is detailed further in section 3.4. 

After sampling, we count the number of sample points that a 

triangle receives. Triangles receiving more than a few (say 

1-3) sample points are also stored in the current box. These 

triangles are not considered any longer for point sampling in 

child boxes because at that sampling density, the point 

sample approximation becomes more expensive than con-

ventional rasterization of the triangles. The current cube is 

then subdivided recursively into 8 smaller cubes and the 

remaining triangles are distributed among the child nodes. 

The recursion is performed until a node contains only a 

constant amount of triangles (e.g. at most 50 triangles) 

which are then stored in the box without sampling. 

Distributing triangles among child boxes can lead to 

problems if the triangles are relatively large in comparison 

to the extents of the box. We adopted the same solution as 

Wand et al.25, which works well in practice: A triangle is 

moved into that cube which contains its center. We allow 

triangles to exceed the boundary of the child-cube by at 

most a constant factor (say 10% of the side length of the 

cube). If the triangle is larger than that, we store it in the last 

inner node for which it does not exceed the tolerance zone. 

3.2. Rendering 

After this procedure, we obtain a hierarchy of point samples 

and triangles. Large triangles are stored near the root of the 

hierarchy and smaller ones towards the leafs. The sampling 

density increases if we traverse the hierarchy downwards: 

The maximum distance between the sample points is re-

duced to the half if we step from one node to its child node. 

For each node, the point samples represent all small trian-

gles that have not been found yet on the path down from the 

root node. 

To render a scene from this representation, we apply pro-

jective classification and view-frustum culling2, 12, 15, 25: We 

traverse the hierarchy downwards from the root recursively: 

If the current node is outside the view-frustum, it is ex-

cluded from consideration. Otherwise, the maximum dis-

tance between sample points in the current node is 

evaluated and projected on the screen: The projection is 

done by dividing the sample distance by the minimum depth 

of the bounding box (the minimum z-coordinate of a corner 

of the bounding box in camera coordinates) and scaling this 

value by the size of the viewport. If it is smaller than a user 

defined splat size, all point samples are drawn on the screen 

as splats of uniform color and depth. If the projected sample 

distance is still larger, the node is subdivided recursively. 

All triangles that are found during hierarchy traversal are 

drawn on the screen using conventional z-buffer rasteriza-

tion. Previous work has shown that this rendering strategy is 

very efficient12, 15, 3 even for highly complex scenes of bil-

lions of primitives25. 

3.3.  Animation 

Up to now, we neglected the fact that the objects of the 

scene are moving (with motion defined by a sequence of 

keyframes). In order to deal with animated scenes, we use 

one separate multi-resolution hierarchy between each pair of 

consecutive keyframes (see Figure 2). This reduces the 

problem to defining a multi-resolution hierarchy for trian-

gles with vertices that are moving on linear paths with 

constant speed (due to the linear keyframe interpolation). 

We will now consider one pair of consecutive keyframes 

and describe the extensions to our multi-resolution hierar-

chy: We apply the construction algorithm described in 

Section 3.1 to the first of the two keyframes. In the resulting 

hierarchy, we store the bounding box of the triangles for 

both the start and the end keyframe. To calculate the sam-

pling density, we calculate the maximum side length of the 

start and the end bounding box and set the maximum sam-

ple distance to a fixed fraction of this maximum side length 

(typically 1/8 - 1/16). 

 

keyframe #1

hierarchy #1

keyframe #2 keyframe #3

hierarchy #2

 voxel grid
"bins" on
geometrygeometry

bin

octree cell
voxel

 

Figure 2: Multi-resolution hierarchies are computed between 

consecutive keyframes 

Figure 3: Dividing Geometry into bins, each bin 

should receive at least one sample point 
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During rendering, we will need a hierarchy for a position 

in time between the two keyframes. This is calculated dy-

namically: The bounding box of a node is obtained by linear 

interpolation between the start and the end bounding box. It 

is easy to see that the interpolated bounding box is always a 

correct bounding volume for any position in time between 

the two keyframes due to the linear motion of the vertices. 

Thus, we use interpolated hierarchies during hierarchy 

traversal and interpolated vertex positions and vertex attrib-

utes for the point samples and triangle vertices for rendering 

the primitives. Using sampling distances proportional to the 

maximum side length ensures that the sampling density will 

grow monotonically when descending in the hierarchy, as 

assumed by the rendering algorithm. 

Of course, interpolated hierarchies rely on temporal co-

herence: If all vertices move to random positions between 

two keyframes, the hierarchy will be destroyed if we move 

on to time steps beyond the start keyframe, towards the end 

keyframe. However, such a situation is rarely found in 

applications. In practice, the worst case is that groups of 

triangles move in opposite directions, for example parts of 

the two legs of a walking human. In this case, the bounding 

volume grows if we move forward in time. If it becomes too 

large, the sampling density will become too small and the 

box will be subdivided during rendering. The spatial subdi-

vision will then (usually in one or at most two steps) divide 

the moving parts from each other. Actually, we did not 

observe any problems due to hierarchy distortion in our 

experiments. 

3.4. Choosing Sample Points 

Up to now, we described the basic rendering algorithm. The 

problem that remains is how to calculate the sample points 

for each octree box. We must cover moving surfaces with 

point sets with roughly uniform distances between the 

points: On the one hand, we must not exceed a maximum 

sample point distance on the surfaces of the objects at any-

time between the two keyframes. On the other hand, we 

should use as few points as possible in order not to slow 

down rendering. We solve this problem by a two step ap-

proach: First, we choose a large set of sample points that 

safely covers all moving surfaces. The points are fixed on 

the surface and moved when the geometry is animated. 

Then we use a stratification algorithm to choose a subset of 

this candidate set for discrete time steps that has only a 

small oversampling. 

3.4.1. Candidate Sets 

The problem in choosing suitable sample sets is that the 

structure of the triangle motion is not known. A general 

technique to deal with problems of complex structure is 

randomization. Here, one relies on statistical properties to 

guarantee independence of the concrete structure of the 

problem. Randomization was already applied successfully 

to the generation of surface sample point sets25 for static 

scenes and dynamic scenes with small deformations19. We 

generalize the technique to arbitrary keyframe animations: 

Again, we assume first that our scene is static. We choose 

random surface points, uniformly distributed on the surface 

of the triangle mesh: We choose a random triangle with 

probability proportional to its area and choose a point from 

the triangle as a random linear combination of its vertices 

with uniform probability. It is obvious that we are able to 

cover the surface of the scene with arbitrary density by 

repeating this process many times. But how many sample 

points are sufficient in order to assure a given sample den-

sity? To analyze this question, we consider a three dimen-

sional grid of cubes in space that contains the geometry 

(Figure 3). The grid divides the geometry into bins. We 

want that every voxel in the grid that is fully covered by a 

piece of surface will receive at least one sample point 

(Figure 4, left). If we set the maximum sample distance to 

two times the diagonal extents of a voxel and chose an 

appropriate projected splat size this will guarantee that 

surfaces are reconstructed on the screen without holes. 

To guarantee that every bin receives at least one sample 

point, we first determine the minimum area of a piece of 

surface that fully covers the voxel: This is the side length of 

the voxel squared (Figure 4, middle). To obtain an upper 

bound for the number of bins, we divide the total area of the 

triangle mesh by the minimum area of a bin. Now we know 

that we have (at most) n bins. According to the so-called 

"coupon-collectors-theorem"11 the expected number of 

random points we must draw from the surface is n·ln n. This 

result is asymptotically sharp11. Therefore, we can guarantee 

that every bin receives a point with very high probability by 

enlarging the sample size by a small constant factor (say 3 

or 5). These arguments are similar to those in Wand et al.25. 

However, they use randomized sampling to generate sample 

points dynamically during rendering while we apply it 

already in the preprocessing stage. 

In order to deal with animated scenes, we calculate for 

each triangle the maximum area that it will have between 

the two keyframes* and use this value as area value during 

                                                                 
* As easy to see, the area of a triangle with linearly interpolated 

vertices is a 4th degree polynomial in time. Thus, the time of maxi-

partially
covered

minimum
area

geometry
in voxel  

Figure 4: left: part of a closed surface in a voxel, 

middle: minimum area created by a closed surface, 

right: voxel is only partially covered by the surface 
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randomized sampling. The key observation is now that our 

sampling process does not assume anything about the con-

crete structure of our scene. The bins are only abstract 

amounts of surface area, not fixed regions in space. Thus, if 

we assume maximum area values for all triangles, our cov-

erage arguments apply for any time step between the two 

keyframes. Due to the randomization, our sample set is 

universal, suitable for arbitrary deformations of the underly-

ing geometry. This is the main argument for the randomized 

technique. We could of coarse use a deterministic sampling 

pattern to sample the triangles. However, the structure of 

the motion of the triangle mesh is difficult to analyze by the 

sampling algorithm. Therefore, we could obtain a nearly 

random sample set even if the sample sets for each triangle 

or even for a whole keyframe are chosen deterministically. 

The randomized construction allows us to ignore the struc-

ture of the input data. However, this has some costs: The 

oversampling due to the randomization is ln n. In practice, 

this is a value between 5 and 10. Additionally, the triangles 

may change their area value between the keyframes. It is 

easy to see that the triangle area may be a 4th degree poly-

nomial over time. So we obtain a worst-case overestimation 

of area of: 

a)constant  some(for   5=

1

0

4

1

0

∫∫ dtatdta  

This means that the worst-case oversampling of the purely 

randomized sampling technique is in the range of 25-50. 

This value is too large for rendering in real-time, therefore 

we need an additional stratification step. 

3.4.2. Stratification 

In static scenes, a fixed voxel grid in space is often used for 

stratification of surface sample points12, 25: Space is divided 

into a regular grid of voxels and in every voxel one sample 

point is chosen. Usually, the point is also quantized to lay in 

the middle of the voxel. To analyze the oversampling, we 

assume that a flat, 2-dimensional surface with a high density 

candidate set is the input to the stratification step. The ratio 

between the minimum and the maximum sample point 

distance is the ratio between the diagonal and the side 

length of a voxel and this is 3 . The maximum oversam-

pling for a planar surface is this ratio squared. Thus, we 

                                                                                                 
mum area can be calculated by solving the derivative which is a 3rd 

degree polynomial. 

obtain a worst-case oversampling of 3, which is better than 

that of the randomized technique. However, this technique 

cannot be generalized easily to animated scenes because the 

objects can move arbitrarily while the grid is static. We 

would need new sample sets every few time steps. 

To avoid these problems, we use a criterion without a 

fixed spatial grid. Let us once again first assume that the 

scene is not animated. The idea of the criterion is fairly 

simple: We can remove sample points from the candidate 

sets as long as all points are still covered by splats from the 

remaining points in screen space. Let r be the maximum 

distance between sample points allowed and assume that we 

have given a high density candidate set with maximum 

sample distance no larger than r. Then we can remove 

points as long as all points still have a neighboring point 

within a radius of r/2 that has not been deleted yet (Figure 

5a). Our stratification algorithm is a simple greedy algo-

rithm: It takes all points in random order and tries to delete 

the point. A point can be removed if it is already covered by 

a sphere of radius r/2 around another point and if it is not 

the only point to cover one of the previously deleted points 

within a radius of r/2. The second part of this condition is 

important: If we just delete any point with at least one 

neighbor within r/2 this can lead to cascaded deletion, 

deleting all sample points until only one is left (see Figure 

5b). The criterion is similar to Poisson-disk sampling6. 

However, for the generation of surface sample points, we 

must guarantee a maximum sample point distance rather 

than a minimum distance. 

How efficient is the suggested stratification technique? 

This obviously depends on the candidate set and on the 

order, in which the deletion operations are performed. We 

perform the deletion in random order on a random candidate 

set. Thus, we can only analyze the worst case. In the analy-

sis, we assume again that a flat, 2-dimensional surface is the 

input to the sampling algorithm because this is a good 

model for a typical case when surface models are simpli-

fied*. The worst case, i.e. the largest sample set from which 

no more samples can be deleted, is a tightest packing of 

spheres of radius r/2 - ε  (for arbitrarily small ε ) in the plane 

                                                                 
* Of course, the algorithm will work in any case, i.e. on arbitrary 

volumes of sample points. 

A B C

r/2 r/2

r  

(a) Point B can be deleted. 

A B C
 

(b) After point C has been 

deleted, point B must not be 

deleted anymore. 

Figure 5: Stratification, avoiding cascaded deletion. 
  

Figure 6: The worst-case 

sample distribution is a 

tightest packing of circles. 

Figure 7: comparison of 

sampling patterns. Left: 

random, Right: stratified. 
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(Figure 6). The largest distance between two points may be 

as large as r. Therefore, we must use splats with a radius of 

at least r/2. Thus, the worst-case sampling density is 

((r/2)²·sin 60°) 
-1 while the splatting renderer must assume a 

density of r-2. Therefore, the worst-case oversampling is 

4·sin-1 60° ≈ 4.6. However, this is only a worst-case value. 

If we apply our implementation of the algorithm to a flat, 

thin plate we obtain an empirical average value of 2.6. The 

deviation from this value is very small (we measured a 

standard deviation of 3%). 

Now we can apply this stratification technique to ani-

mated scenes with little modification: We divide the time 

between two keyframes in discrete time intervals (say 3 or 

4). In each time interval, we determine which points are 

fully covered by spheres of radius r/2 around the other 

points. Then we apply the stratification algorithm to this 

coverage data and store different point sets for each time 

interval. The coverage information can be calculated effi-

ciently by using a spatial data structure. We use a regular 

grid with the sphere radius as cell spacing. A separate data 

structure at the start and the end of each time interval is 

used to determine which points are overlapping at the be-

ginning and the end of the time interval. If two points cover 

each other at both the start and the end time, they must 

cover each other throughout the whole interval because the 

distance between two linearly moving points can have only 

one local minimum and no local maximum. 

This stratification technique is slower than simple grid-

quantization. We need about 20-25 seconds to build a hier-

archy of stratified sample points with one time interval 

between two keyframes of a 30.000 triangles model of a 

walking character. The complete animation of 9 keyframes 

takes about 3-4 minutes. 

3.5. Attribute Filtering 

The stratification algorithm calculates some representative 

points R which safely cover the underlying surface. Now we 

must assign surface attributes to the points. We first calcu-

late a larger set of sample points F which cover the same 

triangles that are represented by the stratified points. Typi-

cally, the sampling density of F is ten times higher than that 

of the candidate set for R. For performance reasons, F is not 

stratified. Then, we place a three dimensional radial Gaus-

sian function around each representative point of R and 

calculate the weighted average of the attributes found in the 

neighboring points of F. As the support of the Gaussian 

filter kernel is relatively small, we can use again a spatial 

grid to accelerate the neighborhood query. We calculate 

filtered attributes for the start and the end time of each point 

sample and blend linearly in time to avoid popping artifacts. 

3.6. Hierarchical Instantiation 

A typical application area of our algorithm is the rendering 

of large animated crowds of characters. For a limited num-

ber of characters in the crowd (say no more than some 

thousands), it is possible to place each object individually in 

space, maybe according to some behavioral rules. If we 

want to animate larger crowds, we can apply hierarchical 

instantiation: We construct multi-resolution hierarchies out 

of a set of multi-resolution sub-hierarchies. The sub-

hierarchies may represent different animated models of 

single objects and the super-hierarchy represents a whole 

crowd of objects. Usually, both the motion of the sub-

hierarchies and the super-hierarchy are periodical, but the 

super hierarchy may have a larger periodicity (i.e. a larger 

number of keyframes). 

A generalization of our data structure to hierarchical in-

stantiation is straightforward: We allow not only triangles to 

be inserted in the data structure but also sample points. 

Then we can perform the same sampling, stratification and 

filtering operations as before just by mixing “new” point 

samples from triangles and “old” point samples from in-

stances. To assure a correct sampling and filtering, each 

sample point is assigned a weight proportional to the area it 

represents after sampling. The weight is calculated by divid-

ing the area of the original model (triangles or instance) by 

the amount of sample points (random points or stratified 

points from the instance). 

4. Implementation 

We implemented the algorithm in C++ using OpenGL for 

rendering points and triangles. The interpolation of triangle 

vertex attributes and point sample vertex attributes is per-

formed using the NV_VERTEX_PROGRAM extension: For each 

vertex the start and end position and the corresponding 

color attributes are specified. The vertex program interpo-

lates the vertices linearly according to the time between two 

keyframes and then performs a perspective transformation. 

All vertex attributes are stored in vertex arrays. All bench-

marks were performed on a 2 Ghz Pentium 4 with 1 GB of 

ram and a GeForce3 graphics board. 

5. Results 

5.1. Parameters 

There are some parameters in our algorithm which should 

be determined experimentally. 

Sampling density per box: An important parameter is 

the maximum spacing of sample points used in the sampling 

and stratification step. We write this parameter as fraction of 

the side length of the octree box for which the sampling is 

done. If we choose a large sample distance, only a few 
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points are found in every box and we have a lot of traversal 

efforts in the rendering algorithm. If we use larger blocks 

we have less traversal costs but the approximation of the 

ideal sampling density is less exact. Additionally, the pre-

processing costs are higher because more sample points 

have to be processed per octree node. Figure 8 and Figure 9 

show the experimental results for a typical test scene 

(Figure 11d). The overhead for small boxes is rather high 

while the approximation error introduced by larger boxes is 

not a severe problem. We found a sample distance of 1/8 - 

1/16 of the maximum side length of the octree box to be a 

good compromise in practice. Using larger sampling densi-

ties does not lead to a significant reduction of the rendering 

cost but to unnecessarily high preprocessing costs. 

Time discretization: In the stratification step we have 

the option to do the stratification multiple times for several 

time intervals between each pair of keyframes. This should 

reduce the rendering costs for models with strongly varying 

triangle areas. We varied this parameter for two different 

models. The first scene is an artificial scene of a sphere 

shrinking to 1/100 of its original area. The second is an 

animated poser character. For such a scene we anticipate 

only minimal improvements as the triangle area shows only 

minimal variation between two keyframes while the first 

scene should profit from multiple stratification steps in 

time. 

The experimental results agree with this (Figure 10): For 

the "shrinking-sphere" scene, The number of sample points 

can be reduced to about 40% by using a fine granular dis-

cretization. A good choice for the number of intervals is a 

value between 3 and 5 as this already provides most of the 

reduction of the rendering time. For animated characters, 

time discretization is not necessary. The reduction of ren-

dering time is below 5% in the best case. 

5.2. Applications 

We applied our algorithm to two different example scenes, 

representing different application scenarios. Table 1 sum-

marizes the results. Table 2 shows the number of primitives 

used for rendering. Snapshots from the animation are shown 

in Figure 11 and in the color section. 

Simulation: The scene in Figure 11b shows a herd of 

horses running through a landscape. We implemented a 

simple simulator to control 2500 instances of an animated 

horse model. Our behavioral model is a simplified version 

of the boids model14. The objects are controlled by local 

force fields around each object and each obstacle. A spatial 

grid data structure is used to efficiently retrieve the local 

neighbors of each object to integrate the forces. The scene 

has a total complexity of about 50 million triangles. We 

were able to render the scene with up to 5 frames per sec-

ond, depending on the splat size. The simulator took about 

10% of the rendering time of the fastest rendering settings. 

Hierarchical instantiation: If we want to create scenes 

with a larger number of objects, the efforts for placing the 

object instances become dominant. To allow larger crowds 

of objects, we can use hierarchical instantiation. We applied 

this technique to an artificial scene that consists of a replica-

tion of four different animated characters (Figure 11a) on a 
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Figure 8: Rendering time for different 

sampling densities per octree box 

Figure 9: Preprocessing time for 

different sampling densities 

Figure 10: Time discretization during 

stratification for different models 

rendering time for splat size [sec] 
scene 

complexity 

[triangles] 
# keyframes

preprocess-

ing time [sec]

data structure 

size [MB] 1 × 1 2 × 2 3 × 3 

4 poser characters 25 584 9 573 97 0.018 0.016 0.013

simulation (horses) 58 million 15 251 208 0.738 0.319 0.202

football stadium 105 million 15 1315 302 1.036 0.373 0.188

grid replication 576 million 9 708 123 0.861 0.294 0.135

Table 1: Running times for application examples, see also Figure 11 and color section 
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300 × 300 grid resulting in a scene complexity of 576 mil-

lion triangles (Figure 11d). A 640 × 480 rendering of the 

scene took between 0.14 and 0.86 seconds, depending on 

the splat size (see Table 1). The hierarchical instantiation 

technique can also be applied to real world scenes:  Figure 

11c shows a football stadium with 16 416 football fans. The 

scene consists of 105 million triangles and can be rendered 

with up to 5 frames per second. 

6. Conclusions and Future Work 

We presented a new multi-resolution rendering technique 

for animated scenes based on point-sample rendering. The 

algorithm works on linearly interpolated triangle meshes of 

arbitrary topology. The algorithm uses a precomputed hier-

archy of triangles and sample points. Thus, the rendering 

time is independent of the complexity of the input meshes. 

Experiments show that the algorithm can be used to animate 

large crowds of individually moving objects. Hierarchical 

instantiation can be applied to animate even larger scenes of 

some hundred million primitives. To our knowledge, this is 

the first multi-resolution rendering algorithm in this gener-

ality providing real-time performance. 

There are several directions for future work. First, we 

would like to implement a better anti-aliasing technique that 

can also handle partially transparent point samples. A very 

interesting approach is surface splatting26 although it cur-

rently still requires a software rendering pipeline. A second, 

important topic would be the integration of an occlusion 

culling algorithm to reduce the dependency of the rendering 

time on the projected area. We are also interested in a gen-

eralization of the animation model. It should be easy to 

generalize the algorithm to higher order interpolation 

schemes. The convex hull property of many spline tech-

niques could be used to calculate an interpolated hierarchy 

and vertex shaders could also be used to interpolate point 

samples on higher order curves efficiently. 
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(a) 4 animated poser characters, 25 584 triangles, 

rendering time 18 msec (splat size 1 × 1) 

 

(b) 2 500 horses (“boids” simulation), 58 million triangles, 

rendering time 319 msec (splat size 2 × 2) 

 

(c) football stadium, 16 416 objects, 105 million triangles, 

rendering time 373 msec (splat size 2 × 2) 

 

(d) replicated poser models, 90 000 objects, 575 million 

triangles, rendering time 294 msec (splat size 2 × 2) 

Figure 11: Application examples. Resolution 640 × 480 pixel. 



 

2 500 horses (�boids� simulation), 58 million triangles, 

rendering time 319 msec (splat size 2 × 2) 

 

simulation scene, close-up, rendering time 410 msec 

(splat size 2 × 2) 

 

football stadium, 16 416 objects, 105 million triangles, 

rendering time 373 msec (splat size 2 × 2) 

 

football stadium, close-up, rendering time 579 msec 

(splat size 2 × 2) 

 

replicated poser models, 90 000 objects, 575 million triangles, 

rendering time 294 msec (splat size 2 × 2) 

 

replicated poser models, close-up, rendering time 308 msec 

(splat size 2 × 2) 

Figure: Wand/Straßer: Multi-Resolution Rendering of Complex Animated Scenes. The left column shows snapshots from the 

animations discussed in the paper (see Table 1 and Table 2 for details). The right column shows additional close-ups. 



Some Corrections: 

The original paper has been to pessimistic concerning the efficiency of the 
novel stratification technique. Due to a bug in the implementation, the 
sampling distance of the neighborhood-based point removal stratification 
strategy has been too small by a factor of sqrt(3), leading to a higher 
measured average oversampling. Additionally, the worst case for the 
(standard) grid stratification technique is not a plane parallel to the coordinate 
axes; a skew plane can intersect more grid cells, leading to a much larger 
oversampling. Therefore, both the average and the worst-case oversampling 
of the proposed novel stratification technique are indeed better than the 
traditional grid based technique, not slightly worst, as stated in the paper. 

A second minor bug is in the area estimated for moving triangles: The area of 
a triangle with vertices moving on linear paths over time is not a 4th degree 
polynomial but the squared area is a forth degree polynomial (page 4). This 
does not affect the determination of the maximum area (to determine the 
maximum, we search for the maximum in the squared area, which is 
equivalent). However, for the case of a triangle growing to maximum size, we 
do not obtain O(t4) growth but only O(t2), leading to an oversampling factor of 
3 not 5 (page 5). Again, the original estimate has been too pessimistic. 

The results of the paper still hold; only the theoretical analysis for comparison 
with traditional stratification techniques has been to pessimistic. 

Additional Remark: 

Meanwhile, we have implemented an optimized rendering backend using 
DirectX 9. The football stadium scene animations shown in the paper can be 
rendered at framerates of 10-20Hz with 1 pixel reconstruction resolution on a 
1.5Ghz Pentium-M with GeForce FX Go 5650 graphics. This is considerably 
faster than the original implementation. 

  

Details: 

Details on these topics can be found in my PhD-thesis, which is available at 
http://www.gris.uni-tuebingen.de/areas/pbr/phd/index.html. 

 


