
EUROGRAPHICS 2002 / G. Drettakis and H.-P. Seidel Volume 21 (2002), Number 3

(Guest Editors)

 © The Eurographics Association and Blackwell Publishers 2002. Published by Blackwell

Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden,

MA02148, USA.

Multi-Resolution Rendering of

Complex Animated Scenes

M. Wand and W. Straßer

WSI/GRIS, University of Tübingen

Abstract

We present a novel multi-resolution point sample rendering algorithm for keyframe animations. The algorithm

accepts triangle meshes of arbitrary topology as input which are animated by specifying different sets of vertices

at keyframe positions. A multi-resolution representation consisting of prefiltered point samples and triangles is

built to represent the animated mesh at different levels of detail. We introduce a novel sampling and stratification

algorithm to efficiently generate suitable point sample sets for moving triangle meshes. Experimental results

demonstrate that the new data structure can be used to render highly complex keyframe animations like crowd

scenes in real-time.

Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Picture / Image Generation – Display Algo-

rithms; I.3.6 [Computer Graphics]: Methodology and Techniques – Graphics data structures and data types; G.3

[Mathematics of Computing]: Probability and Statistics – Probabilistic algorithms.

1. Introduction

Today, computer generated images of highly complex

scenes of animated objects are found in many movie pro-

ductions. „The Lion King“22 for example features a se-

quence in which a stampede of buffaloes runs through a

valley. Many recent movie productions like „The Mummy

Returns“24 or the „Lord of the Rings“23 make heavy use of

computer generated crowd animations. For many applica-

tions of interactive computer graphics like computer games

or interactive visualization20 it would also be desirable to

integrate renderings of large animated data sets. However,

rendering of highly complex animated models has high

demands for computational resources so that it is usually

limited to offline applications.

A general technique to reduce rendering costs is multi-

resolution modeling: A hierarchy of levels of detail is built

from the scene description. During rendering, levels of

detail are chosen for each part of the scene to match the

display resolution of the projected image. Previous work

has shown that highly complex scenes can be handled by

multi-resolution rendering in real-time. However, up to

now, only a very few multi-resolution algorithms are known

that can handle animated input data 5, 18. In this paper, we

present a new multi-resolution rendering algorithm for

animated scenes that obeys to the point-sample rendering

paradigm8, 12, 15. Our algorithm takes keyframe animations

of triangle meshes as input and builds a hierarchy of point

samples and triangles to represent different resolutions of

the scene. The major technical problem is to find a set of

sample points on the moving surfaces that are distributed

sufficiently uniformly on the surfaces of the objects at any

time during the animation. We present a novel sampling

algorithm that consists of a randomized sampling step and a

stratification step to efficiently calculate point sample sets

that minimize oversampling. Similar to the surfels rendering

technique12, prefiltering is applied to reduce the variance of

the color attributes of the sample sets. As suggested in

recent work3, 25, triangles which are large in respect to the

sampling resolution are rasterized as triangles instead of

points to guarantee that the multi-resolution approach is

never slower than conventional rasterization and that the

memory consumption of the point-sample data is limited

without sacrificing model resolution. The algorithm leads to

a rendering time that is independent of the complexity of the

geometric model.

We apply our multi-resolution data structure to the ren-

dering of large crowds of animated characters. Two differ-

ent techniques are used: Smaller scenes with up to a few

thousand objects can be controlled by simulating the behav-

ior of each object individually. Larger crowds can be han-

dled with a hierarchical instantiation scheme. It provides

 Wand and Straßer / Multi-Resolution Rendering of Complex Animated Scenes

 © The Eurographics Association and Blackwell Publishers 2002.

less flexibility for the motion of the objects but permits the

rendering nearly arbitrarily complex scenes. Using a proto-

type implementation of our new technique, we are able to

render crowd animations consisting of up to some hundred

million triangles in real-time with high image quality.

2. Related Work

In this section, we will summarize related work from multi-

resolution rendering, especially multi-resolution rendering

of animations.

Mesh Simplification: Automatic mesh simplification al-

gorithms have been successfully applied to speed up the

rendering of static scenes, see e.g. Puppo and Scopigno13

for a survey. There are only a few methods that can handle

animated data sets. Friedrich et al.5 propose an algorithm for

the interpolation of keyframe hierarchies based on the Ri-

vara bisection scheme. Shamir et al.18 propose a general

data structure for the application of mesh decimation algo-

rithms to animated data sets. Mesh simplification algorithms

can speed up rendering substantially, if applicable. How-

ever, there are many scenes which do not permit sufficient

simplification. Especially scenes of complex topology, like

crowd animations with a huge amount of independent ob-

jects, cannot be simplified beyond a certain limit without a

severe loss of image quality. In such cases, point sample

rendering techniques as used in this paper are more appro-

priate.

Image Based Rendering: Image based techniques sub-

stitute precomputed images for complex geometry. Several

methods have been proposed for static data 7, 9, 17 but only a

few can handle animated scenes: Tecchia and Chrysanthou21

describe a rendering technique for complex crowd anima-

tions. In a preprocessing step, images from several viewing

directions are rendered into textures for some timesteps of

the character animation. During rendering, the closest time

step and viewing direction is determined and the corre-

sponding texture is rendered. The method leads to very fast

rendering times. However, the discretization of time and

viewing angle causes parallax and continuity errors. This

does not matter for a far field approximation, but the

method cannot be used to simplify single, large animated

objects of high complexity. Aubel et al.1 describe a dynamic

image caching algorithm for crowd animations. The image

of a rendered person is reused as texture over several

frames. The speed-up of this method is limited as coarsen-

ing the time discretization too much will result in jerky

motion.

Point Sample Rendering: Point sample rendering re-

places complex geometry by a cloud of roughly pixel-sized

points. The usage of points as rendering primitives was

already suggested by Levoy and Whitted10 in 1985 and

rediscovered in the late nienties8, 16. Several authors sug-

gested multi-resolution algorithms that adapt the density of

the point cloud locally to the display resolution2, 12, 15, 19, 25.

Cohen et al.4 describe a technique that combines point-

based rendering and mesh simplification. Stamminger and

Drettakis19 describe a simple extension of their point sample

rendering technique to animated scenes: The points are

moved dynamically by a motion function. However, the

sampling density is not adapted to the motion of the object

but it is fixed in advance*. Our algorithm improves on this

by allowing arbitrary motion. Using a dynamic hierarchy

and time dependent stratification, it provides guaranteed

limits for the oversampling.

3. Multi-Resolution Hierarchy

In order to provide a general technique that is not dependent

on a specific application, we need a general model to repre-

sent animated scenes. Our algorithm works on keyframe

animations of triangle meshes. The keyframe animation

consists of a sequence of triangle meshes of arbitrary topol-

ogy and connectivity. For each pair of consecutive key-

frames, correspondences between the vertices of the

triangles must be specified, i.e. every vertex of a keyframe

must be assigned a matching vertex in the other keyframe

(Figure 1). During animation, the position (and all other

vertex attributes, like normal or color) is interpolated line-

arly between the keyframe values. Triangles can be created

or deleted by blending from one vertex position to three

different positions and vice versa. The specification of

vertex correspondences is part of the input to the algorithm,

i.e. they are not established automatically but they must be

specified by the user during modeling.

3.1. Data Structure

We will first describe our multi-resolution hierarchy for the

static case. The extension to the animated case is discussed

in section 3.3. Our algorithm is a generalization of the work

of Pfister et al.12 and Rusinkiewicz and Levoy15, including

ideas from Chen et al.3 and Wand et al.25.

* In their paper, they also describe a fully adaptive sampling tech-

nique for parametric surfaces. However, this method cannot be

applied to general 3d-models.

keyframe #1 keyframe #2 keyframe #3

Figure 1: Keyframe definition with vertex correspondences.

The topology may change at keyframes.

 Wand and Straßer / Multi-Resolution Rendering of Complex Animated Scenes

© The Eurographics Association and Blackwell Publishers 2002.

Our data structure is an octree that partitions the scene

spatially. Each node stores an approximate representation of

its part of the scene with a fixed resolution in respect to the

geometric size of the node. To build the octree, we start

with a cube containing all triangles of the scene. Then the

following algorithm is performed recursively, building the

tree in top-down order: We choose sample points distrib-

uted uniformly on the surface area of the triangles and store

them for the current box. The maximum distance between

these sample points is chosen to be a constant fraction of the

side length of the box. This means that we would obtain a

fixed sampling density if we scaled the boxes to uniform

size. The sampling strategy is detailed further in section 3.4.

After sampling, we count the number of sample points that a

triangle receives. Triangles receiving more than a few (say

1-3) sample points are also stored in the current box. These

triangles are not considered any longer for point sampling in

child boxes because at that sampling density, the point

sample approximation becomes more expensive than con-

ventional rasterization of the triangles. The current cube is

then subdivided recursively into 8 smaller cubes and the

remaining triangles are distributed among the child nodes.

The recursion is performed until a node contains only a

constant amount of triangles (e.g. at most 50 triangles)

which are then stored in the box without sampling.

Distributing triangles among child boxes can lead to

problems if the triangles are relatively large in comparison

to the extents of the box. We adopted the same solution as

Wand et al.25, which works well in practice: A triangle is

moved into that cube which contains its center. We allow

triangles to exceed the boundary of the child-cube by at

most a constant factor (say 10% of the side length of the

cube). If the triangle is larger than that, we store it in the last

inner node for which it does not exceed the tolerance zone.

3.2. Rendering

After this procedure, we obtain a hierarchy of point samples

and triangles. Large triangles are stored near the root of the

hierarchy and smaller ones towards the leafs. The sampling

density increases if we traverse the hierarchy downwards:

The maximum distance between the sample points is re-

duced to the half if we step from one node to its child node.

For each node, the point samples represent all small trian-

gles that have not been found yet on the path down from the

root node.

To render a scene from this representation, we apply pro-

jective classification and view-frustum culling2, 12, 15, 25: We

traverse the hierarchy downwards from the root recursively:

If the current node is outside the view-frustum, it is ex-

cluded from consideration. Otherwise, the maximum dis-

tance between sample points in the current node is

evaluated and projected on the screen: The projection is

done by dividing the sample distance by the minimum depth

of the bounding box (the minimum z-coordinate of a corner

of the bounding box in camera coordinates) and scaling this

value by the size of the viewport. If it is smaller than a user

defined splat size, all point samples are drawn on the screen

as splats of uniform color and depth. If the projected sample

distance is still larger, the node is subdivided recursively.

All triangles that are found during hierarchy traversal are

drawn on the screen using conventional z-buffer rasteriza-

tion. Previous work has shown that this rendering strategy is

very efficient12, 15, 3 even for highly complex scenes of bil-

lions of primitives25.

3.3. Animation

Up to now, we neglected the fact that the objects of the

scene are moving (with motion defined by a sequence of

keyframes). In order to deal with animated scenes, we use

one separate multi-resolution hierarchy between each pair of

consecutive keyframes (see Figure 2). This reduces the

problem to defining a multi-resolution hierarchy for trian-

gles with vertices that are moving on linear paths with

constant speed (due to the linear keyframe interpolation).

We will now consider one pair of consecutive keyframes

and describe the extensions to our multi-resolution hierar-

chy: We apply the construction algorithm described in

Section 3.1 to the first of the two keyframes. In the resulting

hierarchy, we store the bounding box of the triangles for

both the start and the end keyframe. To calculate the sam-

pling density, we calculate the maximum side length of the

start and the end bounding box and set the maximum sam-

ple distance to a fixed fraction of this maximum side length

(typically 1/8 - 1/16).

keyframe #1

hierarchy #1

keyframe #2 keyframe #3

hierarchy #2

 voxel grid
"bins" on
geometrygeometry

bin

octree cell
voxel

Figure 2: Multi-resolution hierarchies are computed between

consecutive keyframes

Figure 3: Dividing Geometry into bins, each bin

should receive at least one sample point

 Wand and Straßer / Multi-Resolution Rendering of Complex Animated Scenes

 © The Eurographics Association and Blackwell Publishers 2002.

During rendering, we will need a hierarchy for a position

in time between the two keyframes. This is calculated dy-

namically: The bounding box of a node is obtained by linear

interpolation between the start and the end bounding box. It

is easy to see that the interpolated bounding box is always a

correct bounding volume for any position in time between

the two keyframes due to the linear motion of the vertices.

Thus, we use interpolated hierarchies during hierarchy

traversal and interpolated vertex positions and vertex attrib-

utes for the point samples and triangle vertices for rendering

the primitives. Using sampling distances proportional to the

maximum side length ensures that the sampling density will

grow monotonically when descending in the hierarchy, as

assumed by the rendering algorithm.

Of course, interpolated hierarchies rely on temporal co-

herence: If all vertices move to random positions between

two keyframes, the hierarchy will be destroyed if we move

on to time steps beyond the start keyframe, towards the end

keyframe. However, such a situation is rarely found in

applications. In practice, the worst case is that groups of

triangles move in opposite directions, for example parts of

the two legs of a walking human. In this case, the bounding

volume grows if we move forward in time. If it becomes too

large, the sampling density will become too small and the

box will be subdivided during rendering. The spatial subdi-

vision will then (usually in one or at most two steps) divide

the moving parts from each other. Actually, we did not

observe any problems due to hierarchy distortion in our

experiments.

3.4. Choosing Sample Points

Up to now, we described the basic rendering algorithm. The

problem that remains is how to calculate the sample points

for each octree box. We must cover moving surfaces with

point sets with roughly uniform distances between the

points: On the one hand, we must not exceed a maximum

sample point distance on the surfaces of the objects at any-

time between the two keyframes. On the other hand, we

should use as few points as possible in order not to slow

down rendering. We solve this problem by a two step ap-

proach: First, we choose a large set of sample points that

safely covers all moving surfaces. The points are fixed on

the surface and moved when the geometry is animated.

Then we use a stratification algorithm to choose a subset of

this candidate set for discrete time steps that has only a

small oversampling.

3.4.1. Candidate Sets

The problem in choosing suitable sample sets is that the

structure of the triangle motion is not known. A general

technique to deal with problems of complex structure is

randomization. Here, one relies on statistical properties to

guarantee independence of the concrete structure of the

problem. Randomization was already applied successfully

to the generation of surface sample point sets25 for static

scenes and dynamic scenes with small deformations19. We

generalize the technique to arbitrary keyframe animations:

Again, we assume first that our scene is static. We choose

random surface points, uniformly distributed on the surface

of the triangle mesh: We choose a random triangle with

probability proportional to its area and choose a point from

the triangle as a random linear combination of its vertices

with uniform probability. It is obvious that we are able to

cover the surface of the scene with arbitrary density by

repeating this process many times. But how many sample

points are sufficient in order to assure a given sample den-

sity? To analyze this question, we consider a three dimen-

sional grid of cubes in space that contains the geometry

(Figure 3). The grid divides the geometry into bins. We

want that every voxel in the grid that is fully covered by a

piece of surface will receive at least one sample point

(Figure 4, left). If we set the maximum sample distance to

two times the diagonal extents of a voxel and chose an

appropriate projected splat size this will guarantee that

surfaces are reconstructed on the screen without holes.

To guarantee that every bin receives at least one sample

point, we first determine the minimum area of a piece of

surface that fully covers the voxel: This is the side length of

the voxel squared (Figure 4, middle). To obtain an upper

bound for the number of bins, we divide the total area of the

triangle mesh by the minimum area of a bin. Now we know

that we have (at most) n bins. According to the so-called

"coupon-collectors-theorem"11 the expected number of

random points we must draw from the surface is n·ln n. This

result is asymptotically sharp11. Therefore, we can guarantee

that every bin receives a point with very high probability by

enlarging the sample size by a small constant factor (say 3

or 5). These arguments are similar to those in Wand et al.25.

However, they use randomized sampling to generate sample

points dynamically during rendering while we apply it

already in the preprocessing stage.

In order to deal with animated scenes, we calculate for

each triangle the maximum area that it will have between

the two keyframes* and use this value as area value during

* As easy to see, the area of a triangle with linearly interpolated

vertices is a 4th degree polynomial in time. Thus, the time of maxi-

partially
covered

minimum
area

geometry
in voxel

Figure 4: left: part of a closed surface in a voxel,

middle: minimum area created by a closed surface,

right: voxel is only partially covered by the surface

 Wand and Straßer / Multi-Resolution Rendering of Complex Animated Scenes

© The Eurographics Association and Blackwell Publishers 2002.

randomized sampling. The key observation is now that our

sampling process does not assume anything about the con-

crete structure of our scene. The bins are only abstract

amounts of surface area, not fixed regions in space. Thus, if

we assume maximum area values for all triangles, our cov-

erage arguments apply for any time step between the two

keyframes. Due to the randomization, our sample set is

universal, suitable for arbitrary deformations of the underly-

ing geometry. This is the main argument for the randomized

technique. We could of coarse use a deterministic sampling

pattern to sample the triangles. However, the structure of

the motion of the triangle mesh is difficult to analyze by the

sampling algorithm. Therefore, we could obtain a nearly

random sample set even if the sample sets for each triangle

or even for a whole keyframe are chosen deterministically.

The randomized construction allows us to ignore the struc-

ture of the input data. However, this has some costs: The

oversampling due to the randomization is ln n. In practice,

this is a value between 5 and 10. Additionally, the triangles

may change their area value between the keyframes. It is

easy to see that the triangle area may be a 4th degree poly-

nomial over time. So we obtain a worst-case overestimation

of area of:

a)constant some(for 5=

1

0

4

1

0

∫∫ dtatdta

This means that the worst-case oversampling of the purely

randomized sampling technique is in the range of 25-50.

This value is too large for rendering in real-time, therefore

we need an additional stratification step.

3.4.2. Stratification

In static scenes, a fixed voxel grid in space is often used for

stratification of surface sample points12, 25: Space is divided

into a regular grid of voxels and in every voxel one sample

point is chosen. Usually, the point is also quantized to lay in

the middle of the voxel. To analyze the oversampling, we

assume that a flat, 2-dimensional surface with a high density

candidate set is the input to the stratification step. The ratio

between the minimum and the maximum sample point

distance is the ratio between the diagonal and the side

length of a voxel and this is 3 . The maximum oversam-

pling for a planar surface is this ratio squared. Thus, we

mum area can be calculated by solving the derivative which is a 3rd

degree polynomial.

obtain a worst-case oversampling of 3, which is better than

that of the randomized technique. However, this technique

cannot be generalized easily to animated scenes because the

objects can move arbitrarily while the grid is static. We

would need new sample sets every few time steps.

To avoid these problems, we use a criterion without a

fixed spatial grid. Let us once again first assume that the

scene is not animated. The idea of the criterion is fairly

simple: We can remove sample points from the candidate

sets as long as all points are still covered by splats from the

remaining points in screen space. Let r be the maximum

distance between sample points allowed and assume that we

have given a high density candidate set with maximum

sample distance no larger than r. Then we can remove

points as long as all points still have a neighboring point

within a radius of r/2 that has not been deleted yet (Figure

5a). Our stratification algorithm is a simple greedy algo-

rithm: It takes all points in random order and tries to delete

the point. A point can be removed if it is already covered by

a sphere of radius r/2 around another point and if it is not

the only point to cover one of the previously deleted points

within a radius of r/2. The second part of this condition is

important: If we just delete any point with at least one

neighbor within r/2 this can lead to cascaded deletion,

deleting all sample points until only one is left (see Figure

5b). The criterion is similar to Poisson-disk sampling6.

However, for the generation of surface sample points, we

must guarantee a maximum sample point distance rather

than a minimum distance.

How efficient is the suggested stratification technique?

This obviously depends on the candidate set and on the

order, in which the deletion operations are performed. We

perform the deletion in random order on a random candidate

set. Thus, we can only analyze the worst case. In the analy-

sis, we assume again that a flat, 2-dimensional surface is the

input to the sampling algorithm because this is a good

model for a typical case when surface models are simpli-

fied*. The worst case, i.e. the largest sample set from which

no more samples can be deleted, is a tightest packing of

spheres of radius r/2 - ε (for arbitrarily small ε) in the plane

* Of course, the algorithm will work in any case, i.e. on arbitrary

volumes of sample points.

A B C

r/2 r/2

r

(a) Point B can be deleted.

A B C

(b) After point C has been

deleted, point B must not be

deleted anymore.

Figure 5: Stratification, avoiding cascaded deletion.

Figure 6: The worst-case

sample distribution is a

tightest packing of circles.

Figure 7: comparison of

sampling patterns. Left:

random, Right: stratified.

 Wand and Straßer / Multi-Resolution Rendering of Complex Animated Scenes

 © The Eurographics Association and Blackwell Publishers 2002.

(Figure 6). The largest distance between two points may be

as large as r. Therefore, we must use splats with a radius of

at least r/2. Thus, the worst-case sampling density is

((r/2)²·sin 60°)
-1 while the splatting renderer must assume a

density of r-2. Therefore, the worst-case oversampling is

4·sin-1 60° ≈ 4.6. However, this is only a worst-case value.

If we apply our implementation of the algorithm to a flat,

thin plate we obtain an empirical average value of 2.6. The

deviation from this value is very small (we measured a

standard deviation of 3%).

Now we can apply this stratification technique to ani-

mated scenes with little modification: We divide the time

between two keyframes in discrete time intervals (say 3 or

4). In each time interval, we determine which points are

fully covered by spheres of radius r/2 around the other

points. Then we apply the stratification algorithm to this

coverage data and store different point sets for each time

interval. The coverage information can be calculated effi-

ciently by using a spatial data structure. We use a regular

grid with the sphere radius as cell spacing. A separate data

structure at the start and the end of each time interval is

used to determine which points are overlapping at the be-

ginning and the end of the time interval. If two points cover

each other at both the start and the end time, they must

cover each other throughout the whole interval because the

distance between two linearly moving points can have only

one local minimum and no local maximum.

This stratification technique is slower than simple grid-

quantization. We need about 20-25 seconds to build a hier-

archy of stratified sample points with one time interval

between two keyframes of a 30.000 triangles model of a

walking character. The complete animation of 9 keyframes

takes about 3-4 minutes.

3.5. Attribute Filtering

The stratification algorithm calculates some representative

points R which safely cover the underlying surface. Now we

must assign surface attributes to the points. We first calcu-

late a larger set of sample points F which cover the same

triangles that are represented by the stratified points. Typi-

cally, the sampling density of F is ten times higher than that

of the candidate set for R. For performance reasons, F is not

stratified. Then, we place a three dimensional radial Gaus-

sian function around each representative point of R and

calculate the weighted average of the attributes found in the

neighboring points of F. As the support of the Gaussian

filter kernel is relatively small, we can use again a spatial

grid to accelerate the neighborhood query. We calculate

filtered attributes for the start and the end time of each point

sample and blend linearly in time to avoid popping artifacts.

3.6. Hierarchical Instantiation

A typical application area of our algorithm is the rendering

of large animated crowds of characters. For a limited num-

ber of characters in the crowd (say no more than some

thousands), it is possible to place each object individually in

space, maybe according to some behavioral rules. If we

want to animate larger crowds, we can apply hierarchical

instantiation: We construct multi-resolution hierarchies out

of a set of multi-resolution sub-hierarchies. The sub-

hierarchies may represent different animated models of

single objects and the super-hierarchy represents a whole

crowd of objects. Usually, both the motion of the sub-

hierarchies and the super-hierarchy are periodical, but the

super hierarchy may have a larger periodicity (i.e. a larger

number of keyframes).

A generalization of our data structure to hierarchical in-

stantiation is straightforward: We allow not only triangles to

be inserted in the data structure but also sample points.

Then we can perform the same sampling, stratification and

filtering operations as before just by mixing “new” point

samples from triangles and “old” point samples from in-

stances. To assure a correct sampling and filtering, each

sample point is assigned a weight proportional to the area it

represents after sampling. The weight is calculated by divid-

ing the area of the original model (triangles or instance) by

the amount of sample points (random points or stratified

points from the instance).

4. Implementation

We implemented the algorithm in C++ using OpenGL for

rendering points and triangles. The interpolation of triangle

vertex attributes and point sample vertex attributes is per-

formed using the NV_VERTEX_PROGRAM extension: For each

vertex the start and end position and the corresponding

color attributes are specified. The vertex program interpo-

lates the vertices linearly according to the time between two

keyframes and then performs a perspective transformation.

All vertex attributes are stored in vertex arrays. All bench-

marks were performed on a 2 Ghz Pentium 4 with 1 GB of

ram and a GeForce3 graphics board.

5. Results

5.1. Parameters

There are some parameters in our algorithm which should

be determined experimentally.

Sampling density per box: An important parameter is

the maximum spacing of sample points used in the sampling

and stratification step. We write this parameter as fraction of

the side length of the octree box for which the sampling is

done. If we choose a large sample distance, only a few

 Wand and Straßer / Multi-Resolution Rendering of Complex Animated Scenes

© The Eurographics Association and Blackwell Publishers 2002.

points are found in every box and we have a lot of traversal

efforts in the rendering algorithm. If we use larger blocks

we have less traversal costs but the approximation of the

ideal sampling density is less exact. Additionally, the pre-

processing costs are higher because more sample points

have to be processed per octree node. Figure 8 and Figure 9

show the experimental results for a typical test scene

(Figure 11d). The overhead for small boxes is rather high

while the approximation error introduced by larger boxes is

not a severe problem. We found a sample distance of 1/8 -

1/16 of the maximum side length of the octree box to be a

good compromise in practice. Using larger sampling densi-

ties does not lead to a significant reduction of the rendering

cost but to unnecessarily high preprocessing costs.

Time discretization: In the stratification step we have

the option to do the stratification multiple times for several

time intervals between each pair of keyframes. This should

reduce the rendering costs for models with strongly varying

triangle areas. We varied this parameter for two different

models. The first scene is an artificial scene of a sphere

shrinking to 1/100 of its original area. The second is an

animated poser character. For such a scene we anticipate

only minimal improvements as the triangle area shows only

minimal variation between two keyframes while the first

scene should profit from multiple stratification steps in

time.

The experimental results agree with this (Figure 10): For

the "shrinking-sphere" scene, The number of sample points

can be reduced to about 40% by using a fine granular dis-

cretization. A good choice for the number of intervals is a

value between 3 and 5 as this already provides most of the

reduction of the rendering time. For animated characters,

time discretization is not necessary. The reduction of ren-

dering time is below 5% in the best case.

5.2. Applications

We applied our algorithm to two different example scenes,

representing different application scenarios. Table 1 sum-

marizes the results. Table 2 shows the number of primitives

used for rendering. Snapshots from the animation are shown

in Figure 11 and in the color section.

Simulation: The scene in Figure 11b shows a herd of

horses running through a landscape. We implemented a

simple simulator to control 2500 instances of an animated

horse model. Our behavioral model is a simplified version

of the boids model14. The objects are controlled by local

force fields around each object and each obstacle. A spatial

grid data structure is used to efficiently retrieve the local

neighbors of each object to integrate the forces. The scene

has a total complexity of about 50 million triangles. We

were able to render the scene with up to 5 frames per sec-

ond, depending on the splat size. The simulator took about

10% of the rendering time of the fastest rendering settings.

Hierarchical instantiation: If we want to create scenes

with a larger number of objects, the efforts for placing the

object instances become dominant. To allow larger crowds

of objects, we can use hierarchical instantiation. We applied

this technique to an artificial scene that consists of a replica-

tion of four different animated characters (Figure 11a) on a

Parameter: Sample Distance

0

100

200

300

400

500

600

700

800

0 4 8 12 16

Points [Pts / Box Side Length]

R
u

n
n

in
g

T
im

e
[m

se
c
]

rendering

traversal

Preprocessing Time

0

200

400

600

800

1000

1200

1400

1600

0 8 16 24 32

Points [Pts/Box Side Length]

T
im

e
[s

e
c]

Time Discretization

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20

Time Intervals

S
a

m
p

le
 P

o
in

ts

Shrinking Sphere

Poser Walking Man

Figure 8: Rendering time for different

sampling densities per octree box

Figure 9: Preprocessing time for

different sampling densities

Figure 10: Time discretization during

stratification for different models

rendering time for splat size [sec]
scene

complexity

[triangles]
keyframes

preprocess-

ing time [sec]

data structure

size [MB] 1 × 1 2 × 2 3 × 3

4 poser characters 25 584 9 573 97 0.018 0.016 0.013

simulation (horses) 58 million 15 251 208 0.738 0.319 0.202

football stadium 105 million 15 1315 302 1.036 0.373 0.188

grid replication 576 million 9 708 123 0.861 0.294 0.135

Table 1: Running times for application examples, see also Figure 11 and color section

 Wand and Straßer / Multi-Resolution Rendering of Complex Animated Scenes

 © The Eurographics Association and Blackwell Publishers 2002.

300 × 300 grid resulting in a scene complexity of 576 mil-

lion triangles (Figure 11d). A 640 × 480 rendering of the

scene took between 0.14 and 0.86 seconds, depending on

the splat size (see Table 1). The hierarchical instantiation

technique can also be applied to real world scenes: Figure

11c shows a football stadium with 16 416 football fans. The

scene consists of 105 million triangles and can be rendered

with up to 5 frames per second.

6. Conclusions and Future Work

We presented a new multi-resolution rendering technique

for animated scenes based on point-sample rendering. The

algorithm works on linearly interpolated triangle meshes of

arbitrary topology. The algorithm uses a precomputed hier-

archy of triangles and sample points. Thus, the rendering

time is independent of the complexity of the input meshes.

Experiments show that the algorithm can be used to animate

large crowds of individually moving objects. Hierarchical

instantiation can be applied to animate even larger scenes of

some hundred million primitives. To our knowledge, this is

the first multi-resolution rendering algorithm in this gener-

ality providing real-time performance.

There are several directions for future work. First, we

would like to implement a better anti-aliasing technique that

can also handle partially transparent point samples. A very

interesting approach is surface splatting26 although it cur-

rently still requires a software rendering pipeline. A second,

important topic would be the integration of an occlusion

culling algorithm to reduce the dependency of the rendering

time on the projected area. We are also interested in a gen-

eralization of the animation model. It should be easy to

generalize the algorithm to higher order interpolation

schemes. The convex hull property of many spline tech-

niques could be used to calculate an interpolated hierarchy

and vertex shaders could also be used to interpolate point

samples on higher order curves efficiently.

Acknowledgements

The authors wish to thank Stefan Gumhold and Matthias

Fischer for valuable discussion, Amalinda Oertel and Mar-

tin Frisch for modeling the test scenes, Matthias Mueller for

implementing the Poser import filter, and Tobias Hütt-

ner/EgiSys for providing the Poser Animation Software.

References

1. Aubel, A., Boulic, R., Thalmann, D.: Real-time Dis-

play of Virtual Humans: Levels of Detail and Impos-

tors. In: IEEE Transactions on Circuits and Systems

for Video Technology, 2000.

2. Chamberlain, B., DeRose, T., Lischinski, D., Salesin,

D., Snyder, J.: Fast Rendering of Complex Environ-

ments Using a Spatial Hierarchy. In: Proc. Graphics

Interface ’96, 132-141, 1996.

3. Chen, B., Nguyen, M.X.: POP: A Hybrid Point and

Polygon Rendering System for Large Data. In: Pro-

ceedings of IEEE Visualization '2001, 2001.

4. Cohen, J.D., Aliaga, D.G., Zhang, W.: Hybrid Simpli-

fication: Combining Multi-resolution Polygon and

Point Rendering. In: Proceedings of IEEE Visualiza-

tion '2001, 2001.

5. Friedrich, A., Polthier, K., Schmies, M.: Interpolation

of Triangle Hierarchies. In: Proceedings of IEEE

Visualization '98, 1998

6. Glassner, A.S.: Principles of Digital Image Synthesis.

Morgen Kaufmann, 1995.

7. Gortler, S. J., Grzeszczuk, R., Szeliski, R., Cohen, M.

F.: The Lumigraph. In: SIGGRAPH 96 Proceedings,

Annual Conference Series, 43-54, 1996.

8. Grossman, J. P., Dally, W.: Point Sample Rendering.

In: Rendering Techniques’98, 181–192, Springer,

1998.

9. Levoy, M., Hanrahan, P.: Light Field Rendering. In:

SIGGRAPH 96 Proceedings, Annual Conference

Series, 31-42, 1996.

10. Levoy, M., Whitted, T.: The Use of Points as a Dis-

play Primitive. Technical report, University of Norh

Carolina at Chapel Hill, 1985.

11. Motwani, R., Raghavan, P.: Randomized Algorithms.

Cambridge University Press, 1995.

12. Pfister, H., Zwicker, M., van Baar, J., Gross, M.:

Surfels: Surface Elements as Rendering Primitives. In:

SIGGRAPH 2000 Proceedings, Annual Conference

Series, 335-342, 2000.

13. Puppo, E., Scopigno, R.: Simplification, LOD and

Multiresolution Principals and Applications. In:

EUROGRAPHICS 97 Tutorial Notes, 1997.

14. Reynolds, C. W.: Flocks, Herds, and Schools: A Dis-

tributed Behavioral Model, In: SIGGRAPH 87 Pro-

ceedings, Annual Conference Series, 25-34, 1987.

15. Rusinkiewicz, S., Levoy, M.: Qsplat: A Multiresolu-

tion Point Rendering System for Large Meshes. In:

SIGGRAPH 2000 Proceedings, Annual Conference

Series, 343-352, 2000.

16. Shade, J., Gortler, S., He, L., Szeliski, R.: Layered

Depth Images. In: SIGGRAPH 98 Proceedings, An-

nual Conference Series, 231-242, 1998.

scene 1 × 1 2 × 2 3 × 3

horses simulation 1 608 / 715 645 / 195 316 / 95

football stadium 2 667 / 860 1 030 / 298 527 / 137

grid replication 2 552 / 398 850 / 84 379 / 24

Table 2: Simplification of the example scenes (see Figure

11): points / triangles used for rendering [in thousands]

for different splat sizes

 Wand and Straßer / Multi-Resolution Rendering of Complex Animated Scenes

© The Eurographics Association and Blackwell Publishers 2002.

17. Shade, J., Lischinski, D., Salesin, D. H., DeRose, T.,

Snyder, J.: Hierarchical Image Caching for Acceler-

ated Walkthroughs of Complex Environments. In:

SIGGRAPH 96 Proceedings, Annual Conference

Series, 75-82, 1996.

18. Shamir, A., Valerio, P., Chandrajit, B.: Multi-

Resolution Dynamic Meshes with Arbitrary Deforma-

tions. In: Proceedings of IEEE Visualization 2000.

19. Stamminger, M., Drettakis, G.: Interactive Sampling

and Rendering for Complex and Procedural Geometry.

In: Rendering Techniques 2001.

20. Stoev, S.L., Straßer, W.: A Case Study on Interactive

Exploration and Guidance Aids for Visualizing His-

torical Data. In: Proceedings of IEEE Visualization

2001.

21. Tecchia, F., Chrysanthou, Y.: Real-Time Rendering of

Densely Populated Urban Environments. In: Render-

ing Techniques 2001.

22. The Lion King, Disney Pictures, 1994.

23. The Lord of the Rings, New Line Productions, 2001.

24. The Mummy Returns, Universal Pictures, 2001.

25. Wand, M., Fischer, M. Peter, I., Meyer auf der Heide,

F., Straßer, W.: The Randomized z-Buffer Algorithm:

Interactive Rendering of Highly Complex Scenes. In:

SIGGRAPH 2001 Proceedings, Annual Conference

Series, 361-370, 2001.

26. Zwicker, M., Pfister, H., van Baar, J., Gross, M.:

Surface Splatting. In: SIGGRAPH 2001 Proceedings,

Annual Conference Series, 371-378, 2001.

(a) 4 animated poser characters, 25 584 triangles,

rendering time 18 msec (splat size 1 × 1)

(b) 2 500 horses (“boids” simulation), 58 million triangles,

rendering time 319 msec (splat size 2 × 2)

(c) football stadium, 16 416 objects, 105 million triangles,

rendering time 373 msec (splat size 2 × 2)

(d) replicated poser models, 90 000 objects, 575 million

triangles, rendering time 294 msec (splat size 2 × 2)

Figure 11: Application examples. Resolution 640 × 480 pixel.

2 500 horses (�boids� simulation), 58 million triangles,

rendering time 319 msec (splat size 2 × 2)

simulation scene, close-up, rendering time 410 msec

(splat size 2 × 2)

football stadium, 16 416 objects, 105 million triangles,

rendering time 373 msec (splat size 2 × 2)

football stadium, close-up, rendering time 579 msec

(splat size 2 × 2)

replicated poser models, 90 000 objects, 575 million triangles,

rendering time 294 msec (splat size 2 × 2)

replicated poser models, close-up, rendering time 308 msec

(splat size 2 × 2)

Figure: Wand/Straßer: Multi-Resolution Rendering of Complex Animated Scenes. The left column shows snapshots from the

animations discussed in the paper (see Table 1 and Table 2 for details). The right column shows additional close-ups.

Some Corrections:

The original paper has been to pessimistic concerning the efficiency of the
novel stratification technique. Due to a bug in the implementation, the
sampling distance of the neighborhood-based point removal stratification
strategy has been too small by a factor of sqrt(3), leading to a higher
measured average oversampling. Additionally, the worst case for the
(standard) grid stratification technique is not a plane parallel to the coordinate
axes; a skew plane can intersect more grid cells, leading to a much larger
oversampling. Therefore, both the average and the worst-case oversampling
of the proposed novel stratification technique are indeed better than the
traditional grid based technique, not slightly worst, as stated in the paper.

A second minor bug is in the area estimated for moving triangles: The area of
a triangle with vertices moving on linear paths over time is not a 4th degree
polynomial but the squared area is a forth degree polynomial (page 4). This
does not affect the determination of the maximum area (to determine the
maximum, we search for the maximum in the squared area, which is
equivalent). However, for the case of a triangle growing to maximum size, we
do not obtain O(t4) growth but only O(t2), leading to an oversampling factor of
3 not 5 (page 5). Again, the original estimate has been too pessimistic.

The results of the paper still hold; only the theoretical analysis for comparison
with traditional stratification techniques has been to pessimistic.

Additional Remark:

Meanwhile, we have implemented an optimized rendering backend using
DirectX 9. The football stadium scene animations shown in the paper can be
rendered at framerates of 10-20Hz with 1 pixel reconstruction resolution on a
1.5Ghz Pentium-M with GeForce FX Go 5650 graphics. This is considerably
faster than the original implementation.

Details:

Details on these topics can be found in my PhD-thesis, which is available at
http://www.gris.uni-tuebingen.de/areas/pbr/phd/index.html.

