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Abstract. Multi-resolution images of histological sections of breast cancer tissue were analyzed using texture features of Haar-

and Daubechies transform wavelets. Tissue samples analyzed were from ductal regions of the breast and included benign ductal

hyperplasia, ductal carcinoma in situ (DCIS), and invasive ductal carcinoma (CA). To assess the correlation between comput-

erized image analysis and visual analysis by a pathologist, we created a two-step classification system based on feature extrac-

tion and classification. In the feature extraction step, we extracted texture features from wavelet-transformed images at 10×

magnification. In the classification step, we applied two types of classifiers to the extracted features, namely a statistics-based

multivariate (discriminant) analysis and a neural network. Using features from second-level Haar transform wavelet images in

combination with discriminant analysis, we obtained classification accuracies of 96.67 and 87.78% for the training and testing

set (90 images each), respectively. We conclude that the best classifier of carcinomas in histological sections of breast tissue are

the texture features from the second-level Haar transform wavelet images used in a discriminant function.
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1. Introduction

Breast cancer is a malignancy that may develop into

metastatic disease. The recent increase in the incidence

of breast cancer among Korean women highlights the

importance of studying breast cancer and its diagnosis

[23]. Image analysis of tissue sections holds promise

for diagnosing cancer and tracking disease progres-

sion. However, because conventional histological clas-

sification is based on subjective evaluations that are

subject to both intra- and inter-observer variability, it is

difficult to accurately reproduce descriptions of tissue

texture [28]. Therefore, we have attempted to create

a more uniform and highly reproducible classification

system.
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Gyungnam, 621-749, Rep. of Korea. Tel.: +82 55 320 3437; Fax:
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An optimal classifier for breast tumors requires the

extraction from images of the relevant features that ac-

curately describe the order/disorder of nuclear varia-

tion. Feature extraction is a particularly important step

in the classification process, because the performance

of the latter depends on the features extracted. Meth-

ods that classify tumors according to the presence of

duct-forming cancer cells, pleomorphism of the nu-

cleus, and mitotic cell division have proven useful for

the post-mortem diagnosis of breast cancer [7,20,23,

32]. In addition, features describing the internal struc-

ture of cells (granularity and regularity of chromatin),

irregularity of size and shape of the nucleus, and the

distance between nuclei, are important for predicting

disease progression [5,19,29].

Histology-based statistical analyses of textural fea-

tures are frequently based on a gray level co-occurrence

matrix (GLCM) [15,27]. Structural analysis methods

describe the properties as well as the position of tex-

ture elements [16]. The spatial analysis of frequency
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Fig. 1. Two-dimensional first-level wavelet decomposition.

information from images is best conducted in Fourier-

transformed images [12], and further transformed by

means of wavelet transforms [1,37].

Discrete wavelet transform is frequently used for

signal processing, pattern recognition, and image pro-

cessing. Wavelet transform is suitable for multi-reso-

lution analysis as its basis is the decomposition of

an image into a series of sub-sampled images of low

resolution [3,8,24,38]. The wavelet transform uses a

base function of translation and scaling that is ap-

plied to a nested set of multi-resolution images. Equa-

tion (1) shows the base function of the Haar trans-

form in which a is a scaling variable, b is a translation

variable, and ψ is the wavelet basis function (mother

wavelet) [3]. Equation (2) shows the base function of

the Daubechies transform in which h is a coefficient

and φ is the scaling function [26].

ψa,b(t) =
1
√

2
ψ

(

t − b

a

)

, (1)

ψ

(

t

2

)

= −h3φ(t + 2) + h2φ(t + 1)

−h1φ(t) + h0φ(t − 1). (2)

To apply a wavelet transform to an image, the one-

dimensional wavelet transform must be extended to

the two-dimensional wavelet transform as illustrated

(Fig. 1). A straightforward manner to achieve this is by

filtering [35]. Specifically, the wavelet transform can

be performed by applying a high-pass and low-pass fil-

ter sequentially along the rows and columns compris-

ing the image.

The Haar transform is a relatively simple wavelet

transform that decomposes a discrete signal into two

sub-signals, each of which is half the extent of the orig-

inal signal [3]. One sub-signal is a running average or

trend, and the other is a running difference or fluctu-

ation [38]. For example, the Haar transform (Fig. 2)

Fig. 2. Multilevel wavelet-transformed images of tissue carcinomas.

Images in (A)–(F) correspond to levels 1–6.

Fig. 3. Haar (A) and Daubechies (B) transform wavelet images (first

level).

can be described using scalar products with scaling and

wavelets.

The Daubechies transform (Fig. 3B) is defined in

essentially the same way as the Haar wavelet trans-

form [24,26]. It uses the aforementioned relationships

to construct orthonormal wavelets with compact sup-

port and a maximum number of vanishing moments.

The Daubechies wavelet transform can be extended to

multiple levels as many times as the signal length can

be divided in half.
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. A comparison of the two types of

transform is shown (Fig. 3).

Multilevel wavelet transform has been shown to

have a substantial effect on the accuracy of classifica-

tion of prostate cancer of different grades when using

texture features [18].
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2. Materials and methods

We have evaluated the classification of lesions

in histological sections of breast tissue using fea-

ture extraction, using Haar and Daubechies trans-

form wavelets [24,26], in combination with two types

of classification algorithms, i.e. discriminant analysis

and a back-propagating neural network. Discriminant

analysis is often used for classification purposes. It

is descriptive in nature and facilitates the identifica-

tion of boundaries between data that belong to dif-

ferent groups. When the prerequisites for discriminant

analysis are met, this type of analysis produces lin-

ear combinations of discriminating variables that max-

imize the degree of separation among groups of data.

Discriminant analysis has been used previously to clas-

sify breast carcinomas [31]. The second type of classi-

fier was a back-propagating neural network, which was

‘trained’ to minimize the rate of classification errors

2.1. Tissue samples and image acquisition

Samples of breast tissue were obtained from breast

cancer patients at Busan Paik Hospital, Inje Univer-

sity in Korea in 1999 and 2000. Samples included the

following types of tissue: benign ductal hyperplasia,

ductal carcinoma in situ (DCIS), and invasive ductal

carcinoma (CA). After excision, tissue was fixed in

10% formalin and processed routinely for histology

(Thermoeletron; Shandon, UK) before being embed-

ded in paraffin wax. The embedded tissue was sec-

tioned (4 µm). Tissue sections were deparaffinized, hy-

drated, and stained with hematoxylin and eosin (H&E)

using an Autostainer XL (Leica, UK).

Digital images of the sections were acquired by a

pathologist at a magnification of 10× with a 0.3 NA

objective using a digital camera (Olympus C-3000) at-

tached to a microscope (Olympus BX-51). Image res-

olution was 640 × 480 pixels and 24 bits per pixel.

We collected a total of 180 images from 180 samples,

60 images for each type of tissue subdivided into 30

images for the training set and 30 images for the test

set. A region of interest (ROI) of 256 × 256 pixels

was selected from each digital image for the wavelet

transform by a pathologist. To facilitate image process-

ing red/green/blue (RGB) color images were converted

into 8-bit gray levels using Eq. (3) [6].

Gray = Red · 0.35 + Green · 0.58

+ Blue · 0.07. (3)

Fig. 4. Location of frequency bands in a sub-sampled image; (A) the

second-level wavelet-transformed structure, (B) the applied a ductal

carcinoma in situ.

2.2. Feature extraction

2.2.1. Wavelet transform

In the feature extraction step, we extracted tex-

ture features from Haar and Daubechies wavelet-

transformed images [24,26]. To find a correlation be-

tween the rate of correct classification and wavelet

depth, we applied one to six levels of wavelet trans-

forms to the images and extracted texture features from

the transformed images.

The wavelet transform reduced the image into four

sub-sampled images: one high-pass filtered in both the

horizontal and vertical direction (HH); one high-pass

filtered in the vertical direction and low-pass filtered

in the horizontal direction (HL); one low-pass filtered

in the vertical direction and high-pass filtered in the

horizontal direction (LH); and one low-pass filtered in

both directions (LL) [3,35] (Fig. 4). We have artifi-

cially increased the intensity of the multilevel wavelet-

transformed sub-sampled images, because the original

texture description values are too low pixel intensity to

visualize. The LL image was used as the input for the

next level of the transform.

2.2.2. Extraction of texture features

After the sequential application of the wavelet trans-

forms from one to six levels of images, we constructed

a GLCM of the decomposed images at each level

(depth). A low-resolution image was obtained by it-

eratively blurring the image, e.g., LL2 (Fig. 4), and

all the subsequent level wavelet transform LLi images.

The sub-sampled images could be found the texture

information that was lost during the aforementioned

processes.

From each GLCM, we calculated four texture fea-

tures which were significantly discriminant out of a to-

tal of 21 texture features [25] from which we selected

the significant features, namely entropy, energy, con-

trast, and homogeneity [4,15], as follows.
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Entropy = −
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)−1

PM.

In the equations above, the co-occurrence probability

matrix (PM) is constructed from the image by estimat-

ing the pairwise statistics of pixel intensity. Each ele-

ment (i, j) of the matrix represents an estimate of the

probability that two pixels with a distance have grey

levels i and j. The distance, in this case, is specified by

a displacement, d and an angle Θ. Therefore, the vari-

ance of the texture features due to image rotation was

invariant. Each texture feature was extracted from each

sub-sampled image.

2.3. Discriminant analysis

For the discriminant analysis of texture features of

the transformed wavelet images, we used the discrim-

inant analysis function available in the SAS software

package (SAS Institute, NC, USA) [33]; cases were

assumed to be independent. The texture feature data

formed multivariate normal distributions within groups

(e.g., for benign hyperplasia, DCIS, and CA tissue),

and sometimes across groups [13].

2.4. Neural network

We used a standard back-propagation neural net-

work algorithm that has been used previously [11,17,

30]. Our neural network was based on an unsupervised

and error-correcting algorithm. The back-propagation

algorithm used a multilayer perceptron and the gen-

eralized delta learning rule proposed by McClelland

[21]. The multilayer perceptron network (MLP) was

used to overcome the limitations of the perceptron. It

comprised an input and an output layer, and at least

one hidden layer. The back-propagation network was

fully connected at each node for both feed-forward

and backward propagation. The activation of the net-

work proceeded in a single direction; specifically, acti-

vation proceeded from the input layer through the hid-

den layer to the output layer.

The back-propagation algorithm comprised two

main steps: a feed-forward step in which the output

of the nodes was computed, and a back-propagation

step in which the weights were updated in an attempt

to optimize agreement between the observed and de-

sired output. The feed-forward step began at the input

layer and worked forward to the output layer; the back-

propagation step began at the output layer and worked

backward to the input layer. In the present study, we

cut off the minimal error level (<10−5) for network

training of the final matrix. The activation function for

the hidden layer was the sigmoid function. Once train-

ing had been completed, the matrix was tested and val-

idated. We used 16 (first level with 4 sub-samples),

28 (second level with 7 sub-samples), 40 (third level

with 10 sub-samples), 52 (fourth level with 13 sub-

samples), 64 (fifth level with 16 sub-samples), and 76

(sixth level with 19 sub-samples) input layer nodes.

The four texture features in each sub-sample were cal-

culated. There were 12 (first level), 19 (second level),

27 (third level), 35 (fourth level), 43 (fifth level), and

51 (sixth level) nodes in the hidden layer. The output

layer always had three nodes. Each training set was

presented to the network 100 times, which provided

acceptable convergence.

3. Results

Representative images of tissue sections of the be-

nign, DCIS, and CA tissue used in the current study are

shown (Fig. 5). The color images in Fig. 5, part A, C

and E are converted to 8-bit gray levels using Eq. (3).

The texture features that we extracted were entropy,

energy, contrast, and homogeneity from 1–6 levels

of the Haar and Daubechies wavelet-transformed im-

ages. For example, the Haar transform (Fig. 2) can

be described using scalar products with scaling and

wavelets. Figure 2, part A is applied the first level of

the Haar transformed image and part F is applied the

sixth level. Figure 3 is shown a comparison of the two

types of transform, i.e., Harr and Daubechies trans-

form. This transformed images visualized the imple-

mentation with Visual C++.

3.1. Classification of wavelets of levels 1 to 6

Classifiers were created from the texture features of

the transformed wavelet images. In the training set that
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Fig. 5. Representative images of histological sections of breast tis-

sue used in the present study (×10). (A,B) Benign hyperplasia.

(C,D) Ductal carcinoma in situ (DCIS). (E,F) Invasive ductal carci-

noma (CA). Images in (B), (D), and (F) correspond to randomly se-

lected regions of interest (ROI) from (A), (C), and (E), respectively.

was used to train the network, we used 90 images (30

images of each type of tissue) to create two classi-

fiers: the discriminant function statistic and the trained

neural network. To find a correlation between the cor-

rect classification (i.e., the classification made by a

pathologist) and the classifier for the various wavelet

depths, we used 1 to 6 levels of wavelet-transformed

images even though the wavelet transform is usually

applied to only two or three levels. Image resolution

was 256×256 pixels and 8 bits per pixel. The first-level

wavelet transform was applied to the image which was

divided into four sub-images (HH1, HL1, LH1, LL1) of

128 × 128 pixels each. The second-level sub-image of

LL1 was divided into four 64×64 pixel images, and so

on until the sixth’s-level sub-image (LL6) which was

divided into four 4 × 4 pixel images. 4 × 4 pixels is

the minimum size used in GLCM. Finally, the image

was subjected to the 6-level wavelet transform. The re-

sults of the classification based on the use of discrim-

inant analysis and the neural network are presented in

Tables 1 and 2, respectively.

The data in Tables 1 and 2 were used to construct

the graphs depicted in Figs 6 and 7, respectively, to fa-

cilitate an evaluation of the two types of wavelet algo-

Fig. 6. Classification for levels 1–6 of 90 images of Haar (H) and

Daubechies (D) transform wavelet images using discriminant analy-

sis (X-axis: level; Y-axis: accuracy (%)).

Fig. 7. Classification for levels 1–6 of 90 images of Haar (H) and

Daubechies (D) transform wavelet images using a neural network

(X-axis: level; Y-axis: accuracy (%)).

rithms. Based on these graphs and the data in Tables 1

and 2, it was apparent that Haar wavelet features were

relatively more stable than the Daubechies wavelet fea-

tures.

3.2. The second-level Haar wavelet

The best classifier had a classification accuracy of

96.67% for the statistical multivariate classification us-

ing the second-level Haar transform wavelet image tex-

ture features in the training dataset, based on the test

results. The confusion matrix for this classification re-

sult is shown in Table 3. The classifier thus identi-

fied was evaluated by applying it to the test set of 90

images, which resulted in a classification accuracy of

87.78%. The confusion matrix for this classification is

presented in Table 4.

4. Discussion

Our results suggest that the combination of texture

feature extraction and discriminant analysis produces

the most accurate classification of breast carcinomas

in histological tissue sections. In the present study, we
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Table 1

Classification using discriminant analysis based on wavelet image features from

level 1 to 6 of the wavelet transforms

Wavelet Level

1 2 3 4 5 6

Haar

Train 93.33 96.67 96.67 100.0 100.0 100.0

Test 80.00 87.78 72.22 65.56 68.89 68.89

Daube chies

Train 90.00 94.44 97.78 98.89 100.0 100.0

Test 81.11 83.33 74.44 73.33 64.44 43.33

Table 2

Classification using a back-propagation neural network on wavelet image fea-

tures from level 1 to 6 of the wavelet transforms

Wavelet Level

1 2 3 4 5 6

Haar

Train 95.56 95.56 94.44 94.44 86.67 93.33

Test 84.44 76.67 68.89 57.78 67.78 80.00

Daube chies

Train 95.56 95.56 95.56 94.44 85.56 98.89

Test 81.11 75.56 68.89 68.89 70.00 52.22

Table 3

Most accurate classification using extracted texture features from the

second-level Haar transform wavelet images for the 90 training set

images

Comp. Subj. Total (%)

Benign DCIS∗ CA∗∗

Benign 29 0 1 30 (96.67)

DCIS 1 28 1 30 (93.33)

CA 0 0 30 30 (100.0)

Total 30 28 32 90 (96.67)

∗Ductal carcinoma in situ.
∗∗Invasive ductal carcinoma.

Table 4

Most accurate classification using extracted texture features from

the second-level Haar transform wavelet images for the 90 test set

images

Comp. Subj. Total (%)

Benign DCIS∗ CA∗∗

Benign 27 2 1 30 (90.00)

DCIS 6 23 1 30 (76.67)

CA 1 0 29 30 (96.67)

Total 34 25 31 90 (87.78)

∗Texture features were: entropy, energy, contrast, and homogeneity.
∗∗Columns: computer-based classification.
∗∗∗Rows: subjective classification by a pathologist.

obtained a classification accuracy of 96.67 and 87.78%
for the training set and the test set, respectively. The
best classifier of histological sections of cancerous
breast tissue were the texture features from the second-
level Haar transform wavelet images collected at 10×
magnification.

For feature extraction, all of the wavelet trans-
formed sub-images were used (i.e., the image was
not segmented). To evaluate the significance of the
extracted features, we applied the multivariate analy-
sis (MANOVA) using the SAS program package.
MANOVA is the statistical analysis method that is used
to assess whether datasets from different groups have
different characteristics. For each MANOVA test, the
P -value (<0.001) is found. Using discriminant analy-
sis, we found that as the number of wavelet levels
(depths) in the training set increased, the rate of cor-
rect classifications in the test set decreased, except for
the second level. The results obtained by the use of
a neural network in the present study suggest that the
best classifier is the one based on texture features from
the first-level Haar transform wavelet images; the re-
maining levels (up to level 6) produced poorer classifi-
cation rates. It is worth noting that Wiltgen et al. [36]
were able to satisfactorily use features based on the
spectral properties of fourth-level Daubechies wavelet-
transformed images to discriminate between common
nevi and malignant melanomas in tissue sections.
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Some researches have used whole-slide scanning

images. Diamond et al. [9] presented the discrimina-

tion between stroma and prostate adenocarcinomas us-

ing the sum of variance texture features and a morpho-

logic approach that had been applied to the classifica-

tion of normal tissue and glandular tissue. Hamilton

et al. [14] also used the co-occurrence matrix of col-

orectal mucosa for the calculation of texture features.

The most powerful feature was the number of density

pixels. However, they did not use any wavelet trans-

form and their scans took a long time to process. Their

processing time was around 5.5 hours and their method

resulted in a lower correct classification rate than the

one used in our study.

It should be emphasized that the neural network-

based system used in our study required a substantial

amount of time for processing of the training dataset.

An additional factor that should be considered is that

texture features are very sensitive to focus, even to the

extent that some researchers have used the extraction

of texture features as a criterion for focusing [10,22,

27]. It is difficult to envision how a standardized clas-

sification system might be established, given the sub-

stantial variability in (a) the methods that are used to

stain tissue sections, (b) the techniques that are used

for image acquisition, (c) the features of different types

of normal tissue and cancer tissue, and (d) the subjec-

tivity of evaluations associated with intra- and inter-

observer variability [4]. Tinacci et al. [34] evaluated

inter-observer reproducibility by comparing the degree

of agreement between evaluations of cytological fea-

tures in unprocessed tissue sections and digital images

of the same sections.

In our study, discriminant analysis produced a bet-

ter outcome than the neural network. A neural network

is very sensitive which means that in some cases very

good results are obtained. However, in other cases un-

desirable results are obtained. In general, neural net-

works are good at interpolation, but not so good at ex-

trapolation as our results show [2].

In future studies, we will concentrate on developing

novel texture features and finding an optimal wavelet

filter for histological images. We believe that the pro-

posed histopathological method of classification is use-

ful as a diagnostic tool to identify breast tumors.

Acknowledgements

The authors gratefully acknowledge the support of

the Medical Image Technology Laboratory (MITL)

staff, in particular Dr. Won-Yong Chong for technical

assistance with the wavelet transform method, as well

as the Department of Pathology at Inje University Hos-

pital. This study was supported by a grant from the Ko-

rea Health 21 R&D Project, Ministry of Health & Wel-

fare, Republic of Korea (02-PJ1-PG3-20601-0003).

References

[1] A. Aldroubi and M. Unser, Wavelets in Medicine and Biology,

CRC Press, 1996.

[2] R. Beale and T. Jackson, Neural Computing an Introduction,

JW Arrowsmith Ltd., 1992.

[3] C.S. Burrus, R.A. Gopinath and H. Guo, Introduction to

Wavelets and Wavelet Transforms: A Primer, Prentice-Hall,

Inc., 1998.

[4] H.J. Choi and H.K. Choi, Classification of bladder carcinoma

cell tissue sections by image analysis, in: Proc. 5th Korea–

Germany Joint Workshop Adv. Med. Image Process, 2001,

pp. 187–196.

[5] H.K. Choi, J. Vasko, E. Bengtsson, T. Jarkrans, P. Malmstrom,

K. Wester and C. Busch, Grading of transitional cell bladder

carcinoma by texture analysis of histological section, Anal.

Cell. Pathol. 6 (1994), 327–343.

[6] H.K. Choi, Segmentation of immunohistochemical breast car-

cinoma images using ML classification, J. Korea Multimedia

Soc. 4(2) (2001), 108–115.

[7] L.W. Dalton, D.L. Page and W.D. Dupont, Histological grad-

ing of breast carcinoma: A reproducibility study, Cancer 73

(1994), 2765–2770.

[8] A.P. Dhawan, Y. Chitre, C. Kaiser-Bonasso and M. Moskowitz,

Analysis of mammographic microcalcificaions using gray-

level image structure features, IEEE Trans. Bio-Med. Eng.

15(3) (1996), 246–259.

[9] J. Diamond, N.H. Anderson, P.H. Bartels, R. Montironi and

P.W. Hamilton, The use of morphological characteristics and

texture analysis in the identification of tissue composition in

prostatic neoplasia, Hum. Pathol. 35(9) (2004), 1121–1131.

[10] M.M. Galloway, Texture analysis using gray level run lengths,

Comput. Graph. Image Process. 4 (1975), 172–179.

[11] E. Gose, R. Rohnsonbaugh and S. Jost, Pattern Recognition

and Image Analysis, Prentice-Hall, 1996.

[12] G.H. Granlund and H. Knutsson, Signal Processing for Com-

puter Vision, Kluwer Academic Publishers, 1995.

[13] R.A. Johnson and D.W. Wichern, Applied Multivariate Statis-

tical Analysis, Prentice-Hall Inc., 1998.

[14] P.W. Hamilton, P.H. Bartels, D. Thompson, N. Anderson, R.

Montironi and J.M. Sloan, Automatic detection of dysplas-

tic fields in colorectal tissue using image texture analysis,

J. Pathol. 182 (1997), 68–75.

[15] R.M. Haralick, K. Shanmugam and I. Dinstein, Texture feature

for image classification, IEEE Trans. on System, Man, and Cy-

bernetics, 3(6) (1973), 610–624.

[16] R.M. Haralick, Statistical and structural approaches to texture,

Proc. IEEE 67(5) (1979), 768–804.



244 H.-G. Hwang et al. / Multi-resolution wavelet-transformed image analysis of histological sections

[17] Y. Hayashi, R. Setiono and K. Yoshida, A comparison between

two neural network rule extraction techniques for the diagnosis

of hepatobiliary disorders, Artif. Intell. Med. 20 (2000), 205–

216.

[18] K.J. Khouzani and H. Soltanian, Multiwavelet grading of

pathological images of prostate, IEEE Trans. Bio-Med. Eng.

50(6) (2003), 697–704.

[19] D.S. Kim and S.J. Lee, Diagnostic pathology of the breast,

Academia (1990), 139–172.

[20] P. Kronqvist, T. Kuopio and Y. Collan, Effect of freezing on his-

tologic grading of invasive ductal breast cancer, Analyt. Quant.

Cytol. Histol. 25 (2003), 47–52.

[21] T.L. McClelland and D.E. Rumelhart, Parallel Distributed

Processing, MIT Press and the PDP Research Group, Cam-

bridge, 1986.

[22] B. Palcic, B. Jaggi and C. MacAulay, The importance of im-

age quality for computing texture features in biomedical spec-

imens, Proc. SPIE 1205 (1990), 155–162.

[23] C.I. Park, H.S. Koo and G.Y. Choi, The Korean society of

pathologists, Pathology, 4th edn, Go moon sa, 2000.

[24] L. Prasad and S.S. Iyengar, Wavelet Analysis with Application

to Images Processing, CRC Press, 1997.

[25] N.J. Pressman, Markovian analysis of cervical cell images,

J. Histochem. Cytochem. 24 (1976), 138–144.

[26] R.M. Rao and A.S. Bopardikar, Wavelet Transforms, Addison-

Wesley, 1998.

[27] K. Rodenacker, Invariance of texture features in image cytom-

etry under variation of size and pixel magnitude, Anal. Cell.

Pathol. 8 (1995), 117–133.

[28] K. Rodenacker and E. Bengtsson, A feature set for cytometry

on digitized microscopic images, Anal. Cell. Pathol. 25 (2003),

1–36.

[29] H. Schulerud, G.B. Kristensen, K. Liestol, L. Vlatkovic, A. Re-

ith, F. Albregtsen and H.E. Danielsen, A review of caveats in

statistical nuclear image analysis, Anal. Cell. Pathol. 16 (1998),

327–343.

[30] A.J.C. Sharkey, N.E. Sharkey and S.S. Cross, Adapting an

ensemble approach for the diagnosis of breast cancer, Proc.

ICANN (1998), 281–286.

[31] V. Sharifi-Salamatian, A.R. Roquancourt and J.P. Rigaut,

Breast carcinoma, intratumour heterogeneity and histological

grading, using geostatistics, Anal. Cell. Pathol. 20 (2000), 83–

91.

[32] J.F. Simpson and D.L. Page, Status of breast cancer prognosti-

cation based on histopathologic data, Am. J. Clin. Pathol. 102

(1994), 3–8.

[33] Statistical Analysis System (SAS), 8.01, SAS Institute Inc.

Cary, NC, USA, 2001.

[34] G. Tinacci, M.P. Cariaggi, F. Carozzi, A. Foggi, G. Miccinesi,

F. Mirri, P. Pasquini, M. Zappa and M. Confortini, Digital im-

ages for interobserver variability comparison in cervicovaginal

cytology, Analyt. Quant. Cytol. Histol. 25 (2003), 1–7.

[35] M. Vetterli and J. Kovacevic, Wavelets and Subband Coding,

Prentice Hall, Inc., 1995.

[36] M. Wiltgen, A. Gerger, C. Wagner, P. Bergthaler and J.

Smolle, Discrimination of benign common nevi from malig-

nant melanoma lesions by use of features based on spectral

properties of the wavelet transform, Analyt. Quant. Cytol. His-

tol. 25 (2003), 243–253.

[37] G.V. de Wouwer, P. Scheunders, S. Livens and D. Van Dyck,

Wavelet correlation signatures for color texture characteriza-

tion, Pattern Recogn. 32 (1999), 443–451.

[38] J.S. Walker, A Primer on Wavelets and Their Scientific Appli-

cations, CRC Press, LLC, 1999.



Submit your manuscripts at

http://www.hindawi.com

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

MEDIATORS
INFLAMMATION

of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Behavioural 
Neurology

Endocrinology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Disease Markers

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 

Research International

Oncology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Oxidative Medicine and 
Cellular Longevity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

PPAR Research

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Immunology Research
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Obesity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Computational and  
Mathematical Methods 
in Medicine

Ophthalmology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Diabetes Research
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Research and Treatment

AIDS

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gastroenterology 
Research and Practice

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Parkinson’s 

Disease

Evidence-Based 
Complementary and 
Alternative Medicine

Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com


