Multi-Resource Packing for Cluster Schedulers

Robert Grandl*:
Sriram Rao:

Abstract- Tasks in modern data-parallel clusters have highly di-
verse resource requirements along CPU, memory, disk and network.
We present Tetris, a multi-resource cluster scheduler that packs tasks
to machines based on their requirements of all resource types. Do-
ing so avoids resource fragmentation as well as over-allocation of the
resources that are not explicitly allocated, both of which are draw-
backs of current schedulers. Tetris adapts heuristics for the multi-
dimensional bin packing problem to the context of cluster sched-
ulers wherein task arrivals and machine availability change in an
online manner and wherein tasK’s resource needs change with time
and with the machine that the task is placed at. In addition, Tetris
improves average job completion time by preferentially serving jobs
that have less remaining work. We observe that fair allocations do
not offer the best performance and the above heuristics are com-
patible with a large class of fairness policies; hence, we show how
to simultaneously achieve good performance and fairness. Trace-
driven simulations and deployment of our Apache YARN prototype
on a 250 node cluster show gains of over 30% in makespan and job
completion time while achieving nearly perfect fairness.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Systems

Keywords

Cluster schedulers; multi-dimensional packing; makespan; comple-
tion time; fairness

1. INTRODUCTION

To analyze large datasets, it has become typical to use clusters of
machines to execute jobs consisting of many tasks. Jobs of many
applications coexist on these clusters and their tasks have diverse
resource demands. For instance, machine learning tasks are CPU-
intensive while sort tasks are memory-intensive. Often, tasks are
constrained on multiple resources, e.g., reduce tasks that are both
memory- as well as network-intensive.

Given such diversity, we seek to build a cluster scheduler that
packs tasks to machines based on their requirements on all the re-
sources. Our objective in packing is to maximize the task through-
put (or minimize makespan ') and speed up job completion. Pack-
ing is important in today’s clusters due to balanced machine spec-
ifications (e.g., enough memory to be able to use all available disk
drives and enough cross-rack network bandwidth [8, 13, 15] to use

'Makespan = time to finish a set of jobs

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SIGCOMM'’14, August 17-22, 2014, Chicago, IL, USA.

Copyright 2014 ACM 978-1-4503-2836-4/14/08 ...$15.00.
http://dx.doi.org/10.1145/2619239.2626334.

Ganesh Ananthanarayanan:

Srikanth Kandula:

Aditya Akella*
Microsoft', Univ. of Wisconsin, Madison*, Univ. of California, Berkeley?

455

all the available CPU cores). Therefore, any of the resources—cores,
memory, disk or network—can become fully used on a machine and
prevent further tasks from being scheduled there.

Current schedulers neither pack tasks nor consider all their rel-
evant resource demands. This results in fragmentation and over-
allocation of resources, respectively. (i) Schedulers divide resources
into slots (corresponding to some amount of memory and cores [5])
and offer the slots greedily to the job that is furthest from its fair
share [3, 4, 12]. Such scheduling results in resource fragmentation,
the magnitude of which increases with the number of resources be-
ing allocated [20].* (ii) Schedulers also ignore disk and network
requirements of tasks [5, 12, 18]. When assigning tasks to machines,
they only check that tasks’ CPU and memory needs are satisfiable.
Hence, they can schedule many network or disk-intensive tasks on
the same machine. Such over-allocation leads to interference-disk
seeks or network incast- that can sharply lower throughput. Also,
over-allocation wastes resources. For example, when two tasks that
can both use all of the available network bandwidth on a machine
are scheduled together, they will take twice as long to finish. In doing
so, they hold to their cores and memory and prevent other tasks that
do not need the network from using them. Our analysis shows that,
due to fragmentation and over-allocation of resources, the state-of-
the-art schedulers in Facebook’s and Bing’s analytics clusters delay
job completions and increase makespan by over 45%.

Multi-resource packing of tasks is analogous to multi-
dimensional bin packing. Given balls and bins with sizes in
Rd, where d is the number of resources to be allocated, multi-
dimensional bin packing assigns the balls to the fewest number of
bins. Doing so maximizes the number of simultaneously scheduled
tasks, thus minimizing makespan and improving job completion
time. Even though multi-dimensional bin packing is known to be
APX-Hard [27],® several heuristics exist [20]. However, they do not
directly apply to our scenario. Whereas the heuristics consider balls
of a fixed size, the resource demands of tasks (a) vary with time and
based on the machine that they are placed at, and (b) are elastic, as
in, tasks can function with less than their peak demand. Further,
whereas the heuristics assume all balls are known apriori, a cluster
scheduler has to cope with online arrivals of jobs, the dependencies
between tasks, and cluster activity such as evacuation and ingestion
of new data which compete for resources with tasks.

This paper presents Tetris, a cluster scheduler that packs tasks
to machines based on their requirements along multiple resources.
Tetris adaptively learns task requirements ¢, and monitors available
resources at machines m,. The packing heuristic projects t, and m,
into a euclidean space and picks the (task, machine) pair with the
highest dot product value. Task requirements are adjusted to reflect
placement at the given machine; only tasks whose requirements are
satisfiable are considered; and the dot product prefers large tasks
and those that use resources in proportions similar to what is avail-
able; for e.g., if machine has network free, other things being equal,

*With d resources, the packing efficiency can be (5)™ of optimal.
3 APX-Hard means that there is no asymptotic polynomial time ap-
proximation unless P=NP; it is a strict subset of NP-hard.

a network-intensive task has a higher dot product. This heuristic
prevents over-allocation and reduces resource fragmentation.

Achieving good packing efficiency improves makespan but does
not necessarily speed up individual jobs. Preferentially offering re-
sources to the job with the smallest remaining time (SRTF) will min-
imize average job completion time [16]. However, the job with the
least remaining work may not have tasks that pack well and hence a
strict job time ordering can slow down everyone. Tetris develops a
multi-resource version of SRTF for jobs which are DAGs of depen-
dent tasks and combines both heuristics - best packing and shortest
remaining job time - to reduce average job completion time.

While we have focused on performance metrics thus far, fair-
ness is an important tool to ensure predictable performance. Prior
work has developed multi-resource versions of fairness [12]. We
show by counter-example as well as our evaluation that fair allo-
cations, even when pareto efficient * and work conserving, do not
yield the best job completion time and makespan. We also find that
the best-performing schedule is not incompatible with the most-fair
schedule. In particular, typical fair schedulers operate by offering re-
sources to the job (or group of jobs) that is currently furthest from
fair share. Using Tetris to pick the best-for-packing task from among
this constrained subset will improve performance without compro-
mising on fairness. Tetris offers a natural generalization— use the
packing and job time heuristics to pick the best task from the (1 — f)
fraction of running jobs (or groups) that are furthest from their fair
share. Choosing f = o leads to best makespan and completion time,
while f — 1 offers strict fairness. We will show that for f € [.25, 5],
Tetris offers nearly the best performance and the impact on jobs due
to the resulting unfairness is negligibly small.

We believe our work makes the following advancements.

o We identify the importance of scheduling and packing all rel-
evant resources. Otherwise, resources get fragmented and can
be over-allocated, significantly affecting performance.

e We present a heuristic solution to the APX-hard problem of
packing tasks along multiple resources in cluster schedulers.

e We show how to combine heuristics that improve packing ef-
ficiency with those that lower average job completion time.

o We show that pareto-efficient fair allocations do not yield best
performance. Whereas performance and fairness are often
unacheivable together, we show that in the context of clus-
ter schedulers much better performance can be achieved with
just a little unfairness and expose the trade-off with a knob.

We have built Tetris, the first data-parallel cluster scheduler to
explicitly consider multi-resource packing, as a modification to the
scheduler in YARN [s5]. Tetris estimates task demands from previous
executions of the same job and from completed tasks of the current
job. Tetris uses a resource tracker to independently monitor the uti-
lizations at the machines, thus allowing it to account for any errors
in demand estimations and to adjust scheduling around unforeseen
hotspots and misbehaving nodes. Tetris has been evaluated in sim-
ulations over production traces and using a deployment on a 250
machine cluster. Compared to state-of-the-art scheduling policies
(slot-based [3, 4] as well as multi-resource fair (DRF) [12]), Tetris
improves makespan and job completion by 30% in deployment and
up to 40% in simulations over Facebook traces. These gains are
80% of the estimated gains from a simple upper-bound (not a true
upper-bound since computing that is intractable). Further, Tetris
offers a smooth trade-off between fairness and performance; we use
f = 0.25 to achieve the above gains and fewer than 6% of the jobs

“no job can increase share without decreasing the share of another

456

slow down compared to a fair allocation; the average (max) slow-
down is 6 (10)%.

2. MOTIVATION

We motivate multi-resource packing of tasks using examples and
production workloads. By devising an approximate upper bound
on the potential gains from packing, we show that production jobs
could speed up by 45% compared to existing schedulers.

2.1 Limitations of Existing Schedulers

Current schedulers are limited in their ability to pack tasks be-
cause they define slots based on only one resource (e.g., memory)
and they allot slots to tasks based only on fairness. Job completion
times and packing efficiency suffer as a consequence.

Slots: Analytics frameworks typically define slots based on only one
resource (commonly, memory) [3, 4, 5, 18]. It is easy to see that stat-
ically sizing the slots leads to wastage and fragmentation when task
requirements vary. While dynamic sizing of slots avoids wastage of
the resource on which the slots are defined, other resources end up
being over-allocated.

Take the example of intermediate tasks of a job (e.g., reduce tasks
in MapReduce). These tasks read data from multiple machines and
have high network requirements. Scheduling them based on only
their memory footprint can cause needless contention for the net-
work (and the disk if they write a lot of output). When tasks con-
tend for a resource, the total effective throughput is lowered due to
systemic reasons such as buffer overflows on switches (incast), disk
seek overheads, and processor cache misses. Further, tasks delayed
due to contention hold the memory for much longer and prevent
other tasks from being scheduled at that machine.

Fairness: As mentioned earlier, a commonly used scheduling ap-
proach is to pick tasks from the job that is farthest from its fair share.
A common problem with fairness based schedulers is that they do
not pack the different resources. We use examples of Dominant Re-
source Fairness (DRF) [12] to illustrate this.

Consider a cluster with 18 cores, 36GB of memory and 3Gbps of
network. Three jobs A, B and C have two phases each that are sep-
arated by a barrier; the "map" phase consists of 18, 6, and 6 tasks re-
spectively and the "reduce"” phase has 3 tasks for all jobs. Map tasks of
job A require 1 core and 2GB of memory, while those for jobs B and
C require 3 cores and 1GB of memory. All reduce tasks need 1Gbps
of network and very little CPU or memory. Assume that all tasks
run for t time units. Note that this example resembles map-reduce;
map tasks are CPU and memory intensive while reduce tasks are
network-intensive.

DRF will schedule 6 map tasks of job A and 2 map tasks each of
jobs B and C, at a time, giving each job a dominant resource share of
* (A's dominant resource is memory whereas for B and C it is CPU
cores). Hence, all of the map phases finish at 3¢. Such an allocation,
however, leaves 20GB of cluster memory idle. For the reduce phase,
DRF will run 1 reduce task from each of the jobs (network is the
dominant resource for all jobs now) for a dominant resource share
of * per job. All jobs finish at 6t.

Consider a packing scheduler instead. Scheduling all 18 map tasks
of A would fully use up the cluster’s memory. Then, reduce tasks of A
become runnable and have complementary resource demands to the
mappers, allowing the cluster to schedule all 6 maps of B along with
the 3 reducers of A. Such a schedule is shown in Figure 1. The jobs
now finish at times 2t, 3t and 4t. Average completion time reduces by
50% over DRF (6t — 3t); the cluster’s makespan reduces by 33% (6t
— 4t) and every job finishes earlier compared to the fair schedule!

18 cores | 18 cores | 18 cores | Ocores | Ocores | 0cores
16 GB 16 GB 16 GB 0GB 0GB 0GB
0Gbps | 0Gbps | 0Gbps | 3Gbps | 3Gbps | 3 Gbps
6tasks 6tasks 6 tasks 1 task 1 task 1task
I.¥ (phase 1) (phase 1) (phase 1) (phase 2) (phase2) (phase 2)
B 2tasks | 2tasks | 2tasks 1 task 1 task 1task
(phase 1) | (phase 1) | (phase 1) | (phase 2) | (phase 2) | (phase 2)
c 2tasks 2tasks 2 tasks 1 task 1task 1task
(phase 1) (phase 1) (phase 1) (phase 2) (phase2) (phase 2)
t 2t 3t 4t 5t 6t
(a) Job schedule under DRF allocation
18 cores | 18 cores | 18 cores | 0 cores -
36 GB 6 GB 6 GB 0GB - -
0 Gbps 3Gbps | 3Gbps 3 Gbps - -
A
6tasks | 3tasks
B | Otesks (phase 1) | (phase 2)
6tasks 3 tasks
[ef] Otasks Otasks (phase 1) (phase 2)
t 2t 3t 4t 5t 6t

(b) Job schedule with multi-resource Packing

Figure 1: Comparing schedules for DAGs of tasks that result from fair-
ness based allocation (e.g., DRF [12]) with alternatives. Each job has two
phases with a strict barrier between them. The tables on top (in white)
show resource utilization. Packing can avoid resource fragmentation and
leverage complementarity of task requirements.

Observe that these gains hold if the packing schedule is used for
any permutation among jobs A, B and C. Second, we implicitly ex-
tended DRE to also consider the network above; if DRF only consid-
ers CPU and memory, after the map phase phases, it would sched-
ule all of the reduce tasks simultaneously since reducers have in-
significant CPU and memory needs. Each reduce task then gets only
iGbps due to contention, causing tasks to run for 3t each and poten-
tially longer if incast happens. Third, note that treating the cluster
as one big bag of resources hides the impact of fragmentation. If
instead the cluster consists of three machines with one-third cluster
resources each, then with DRF all of the jobs will finish at 7t°. This
is 43% worse makespan and 57% worse avg. completion time. Fi-
nally, the gains for the packing schedule accrue from avoiding frag-
mentation, preferring jobs with less remaining work and by exploit-
ing complementarity in tasks’ resource demands; we will show how
Tetris show can do all of these.

The above examples highlight that fairness-based schedulers do
not optimize job completion time. We have also discussed how slot-
based scheduling causes fragmentation and wastage. And, disre-
garding relevant resources leads to their over-allocation and detri-
mental interference.

2.2 Workload Analysis

We build upon the aspects highlighted in the previous section to
analyze their impact on production workloads.

°Here is the DRF schedule for the map phases; read it as the first

map task of job A, A}, scheduled at machine M, for the first ¢ units.

The reduce phases take an extra 3t similar to the case of Fig. 1(a).
Il t | 2t | 3t | at

1 42 p2 47 2 410 411 412 13 414 6 6
M, A‘mA{"BSmAgn CmAgnAznAm ASmA{snB]rg cs,
My BmAznAg'Ag[B;nBrAn B;'IAV%KAIg

1 1
My ConAmAmAm CnCm ConAmAm

457

Bing Facebook

Dates 12/2013, two days | 1/2012, 1imonth

Cluster Size Thousands 3000

Framework Dryad [17] Hadoop [1]

Script Scope [30] Hive [24]

DAG Depth Large 2

File System Cosmos HDFS

Network Links 10Gbps 1Gbps

Oversubscription <2 4

Table 1: Summary of datasets.
|| Cores | Memory | Disk | Network |

Cores — 0.33,0.41 | 0.22,0.12 0.29,0.23
Memory — — —0.11,0.28 0.04, —0.1

Disk — — — 0.26, —0.07
Network — — — —

Table 2: Correlation matrix of task resource demands; each table entry
shows the numbers for {Bing, Facebook}. There is little correlation across
demands for various resources.

2.2.1 Production Clusters

We analyze production traces from Facebook’s Hadoop and Bing’s
Cosmos clusters. These clusters consist of thousands of machines
that are well provisioned in the number of cores, memory, disks and
network connectivity. The clusters co-locate computation and stor-
age. Table 1 lists some details. Both traces contain task-level in-
formation: start and end times, size of input and output, the ma-
chine on which it executed, along with tasks’ resource requirements
of CPU cycles, memory, disk IOPS and network bandwidth usage.

The computation frameworks in these clusters define slots based
on cores and memory and allot slots to jobs based on fairness, i.e.,
distributing proportionally the slots between the running jobs. Both
clusters preferentially place tasks close to their input data.

2.2.2 Task Profiles

Tasks are significantly diverse in their requirements. Figure 2
shows the variation of resource requirements of tasks across re-
sources. CPU usage varies all the way from only 2% of a core to
over 6 cores. Similarly, memory usage ranges from 100MB to nearly
17GB. While some tasks are IO-intensive, others are less so. Overall,
the minimum values of resource requirements are 5—10x lower than
the median, which in turn is 20x lower than the maximum values.
The coeflicient-of-variations among tasks in their requirements for
CPU, memory, disk and network bandwidths are high at 1.42, 1.26,
2.24 and 2.05, respectively.

Demands for different resources are not correlated. Table 2 lists
the correlation coefficients between pairs of resources. Even the
highest correlation, between cores and memory, is only moder-
ate. This is because the variety of specialized applications using
these frameworks have focused requirements, e.g., compute- or IO-
intensive. Hence overall, the tasks have complementary demands.

As aresult of the diversity of resource demands and lack of corre-
lation between them, utilization of different resources peaks at dif-
ferent times. Table 3 quantifies the fraction of times when the uti-
lizations are "tight" (defined as, usage being higher than a certain
fraction of capacity). Multiple resources become tight, albeit at dif-
ferent machines and times, thus calling for a packing solution that
dynamically accounts for contended resources.

2.2.3 Upper bounding potential gains

How much can a scheduler that considers varying task require-
ments and resource usages help? Finding the optimal packing solu-
tion, especially considering dynamic job arrivals, is a daunting task
(APX-hard). Instead, we solve a related but much simplified prob-

g 1 [

%0.8 E 0.8

s 06 £ 06

£ 04 + 04

[el

= 02 F ® 02

E 0 s 0

o} o

o 0 02 04 06 038 1~ 0 0.2 04 06 038

Num. Cores Num. Cores

Network 10 (GB)

1 65 1 1le+08
0.8 o 08 le+07
= le+06
0.6 2 06 10000C
0.4 ¥ 04 10000
® 1000
0.2 3 5 02 100
0 —— o R 10
0 0.2 04 06 038 1 © 0 02 04 06 08 1
Num. Cores Num. Cores

Figure 2: Heatmap of task requirements. Note the significant variation in the number of cores, memory, network and disk usage of tasks. The axes are
normalized; the color of a point indicates the number of tasks, in logarithmic scale, having the corresponding resource demands.

| >75%used >90%used > 95% used |

CPU 0.58 0.35 0.28
Memory 0.68 0.41 0.22
Disk in 0.11 0.02 0.003
Disk out 0.26 0.04 0.006
Network in 0.22 0.01 0.008
Network out 0.44 0.28 0.05

Table 3: Tightness of resources. Probability that a type of resource is used
at above a certain fraction of its capacity in the Facebook cluster.

lem and hope that the optimal solution to the actual problem will
not be better. In particular, this loose upper bound has these sim-
plifying assumptions. First, it is offered an aggregated view of the
cluster across each of its resources, i.e., one large bin per time rather
than a bin per machine per time; hence, it does not have to worry
about resource fragmentation at machine-level. Second, it assumes
that tasks of a job (or phase) have the same resource requirements,
thus reducing the search space; this assumption is mostly true (§4.1).
Third, it avoids over-allocation explicitly by scheduling a task only
when enough resources are available to meet its demands. We be-
lieve that gains for this simpler problem are an upper bound on the
gains from optimal packing.

Our analysis shows that packing could reduce makespan (aver-
age job completion time) by 49% (46%) compared to slot-based
fair scheduling and 38% (41%) compared to DRE But, the gains are
lopsided— 16% of the jobs slow down by 26%; the overall gains were
calculated including the slowed-down jobs.

Motivated by the gains, we seek to design an online scheduler that
packs tasks based on their requirements to improve cluster through-
put and job completion times, while limiting the fallout due to any
unfairness in the allocations.

3. Tetris SCHEDULER

In this section, we describe Tetris’s scheduling heuristic, assum-
ing complete knowledge of the resource requirements of tasks and
resource availabilities at machines; we explain how to estimate these
in $4. We begin with an analytical model that explains the compu-
tational complexity of our problem (§3.1). We then develop heuris-
tics that match tasks to machines so as to reduce makespan (§3.2)
and average job completion time ($3.3). Finally, we combine these
heuristics with a large class of fairness algorithms (§3.4).

3.1 Analytical model

To connect the task scheduling problem with prior theoretical
work, we cast it into a general optimization framework.

Notations: We consider demands of tasks along four resources:
CPU, memory, disk, and network bandwidth (see Table 4). For every
resource 1, we denote (i) the capacity of that resource on machine i
as ¢, and (ii) the demand of task j on resource r as d;-.

Next, we define variables that encode the task schedule and re-
source allocation. Note that allocation happens across machines
(spatial) and over time (temporal). Let Y,-’j be an indicator variable

458

Term Explanation
d}c.P", f;pu CPU demand (i.e., cores) (d) and cpu cycles (f)
d;“em Peak memory used by task

A9SKR " gdiskW 1 peak disk read/write bandwidth of the task (d), bytes to

fdiskR fdiskW be read from machine i and output (f)
ij)

Peak network bandwidth in/out of a machine that the

dr}etln dnet()ut
o7
task can use (d)

Table 4: Resource demands of task j. Note that the demands for network
resource depend on task placement.

that is 1 if task j is allocated to machine i at time ¢ (time is dis-
cretized). Also, task j is allocated X,.'J’.t units of resource type r on
machine i, at time ¢. Let ij* denote the machine that task j is sched-
uled at and start; and duration; denote the corresponding aspects of
task j.° We do not model preemption here for simplicity. Note that
a task may need network and other resources at multiple machines

in the cluster due to remote reads.

Constraints: First, the cumulative resource usage on a machine i at
any given time cannot exceed its capacity:

ZX;]'-t <ci, Vi, tr. (1)
j

Second, tasks need no more than their peak requirements and no
resources are allocated when tasks are inactive.

o< X' <d},Vr,i,j,t. (2)
(3)

Third, to avoid costs of preemption, schedulers may prefer to unin-
terruptedly allot resources until the task completes.

Vi,r,r X;'f"

' = oif t ¢ [start), start; + duration;].

start;+duration ;
! ! Y - duration; machine i = i} @
_ i o other machines 4
t—startj

Fourth, the duration of a task depends on task placement and re-
source allocation:
S

cpu,f > diskW,t >
Z‘Xi’?j Z‘Xi%j

fdlskW

diskR
vi Ji_
diskR, 7 >
e X
diskR
Zi:i}* f:j
Xne([n,t >
! x;].

(5)

duration; = max

diskR
ij

netOut, ¢
X X

. %
Vlilj,

®Though we use start; and i} in the constraints below for conve-

nience, note that they are unknown apriori. Hence, all their occur-
rences need to be replaced with equivalent terms using the indicator

: t it _ t 75t
variables Y;;. For example Xl.;j =2, X

Term
Cpu cmem

| Explanation
Number of cores, Memory size
Disk read and write bandwidth
Network bandwidth in/out of machine

i 27
C?lSkR) C?lskW
netln Cr}elOut

Ci >vi

Table 5: Resources measured at machine i. Note that the availability of
these resources changes as tasks are scheduled on the machine.

In each term, the numerator(f) is the total resource requirement
(e.g., cpu cycles or bytes), while the denominator is the allocated
resource rate (e.g., cores or bandwidth). From top to bottom, the
terms correspond to cpu cycles, writing output to local-disk, read-
ing from (multiple) disks containing the input, network bandwidth
into the machine that runs the task and network bandwidth out of
other machines that have task input. Note here that cores and mem-
ory are only allocated at the machine that the task is placed at but
the disk and network bandwidths are needed at every machine that
contains task input. We assumed here for simplicity that task out-
put just goes to local disk and that the bandwidths are provisioned
at each time so as to not bottleneck transfers, i.e.,

netOut, t

.. e diskR, ¢ netln,t netOut,t
Vi joi# i XU 2 X and XA > DI i

i%i*

We also assumed that the task is allocated its peak memory size since
unlike the above resources, tasks’ runtime can be arbitrarily worse
(due to thrashing) if it were allocated less than its peak required, i.e.,
Vt Xmem,t _ dmem

i -%

Objective function: Our setup lends itself to various objective
functions of interest to distributed clusters including minimizing
makespan 7 and job completion time ®. Minimizing makespan is
equivalent to maximizing packing efficiency. Further, we can pose
fairness as an additional constraint to be meet at all times.”

Takeaways: The above analytical formulation is essentially a hard-
ness result. Regardless of the objective, several of the constraints are
non-linear. Resource malleability (eqn:2), task placement (eqn:s)
and how task duration relates to the resources allocated at mul-
tiple machines (eqn:s) are some of the complicating factors. Fast
solvers are only known for a few special cases with non-linear con-
straints (e.g., the quadratic assignment problem). Finding the opti-
mal allocation, therefore, is computationally expensive. Note that
these non-linearities remain inspite of ignoring the dependencies
between tasks (e.g., the DAG) and the several simplifications used
throughout (e.g., no task preemption). In fact, scheduling theory
shows that even when placement considerations are eliminated, the
problem of packing multi-dimensional balls to minimal number
of bins is APX-Hard [27]. Worse, re-solving the problem when-
ever new jobs arrive requires online scheduling. For the online
case, recent work also shows that no polynomial time approxima-
tion scheme is possible with competitive ratio of the number of di-
mensions unless NP=ZPP [9].

Given this computational complexity, unsurprisingly, cluster
schedulers deployed in practice do not attempt to pack tasks. All
known research proposals rely on heuristics. We discuss them in
further detail later, but note here that we are unaware of any that
considers multiple resources and simultaneously considers improv-
ing makespan, average job completion time and fairness considera-
tions. Next, we develop heuristics for packing efficiency (§3.2), job
completion time (§3.3) and incorporate fairness (§3.4).

t
’Makespan = MaXjoh ; MaXpek ;o) MAXtime (Y5> 0)
*Job J’s finish time is max, g je job y M3Xtime (Yi;>0)

°Dominant resource share of J at time = maxresource r S o
it

459

3.2 Packing Efficiency for Makespan

Packing tasks to machines is analogous to the multi-dimensional
bin packing referred above. To develop an efficient heuristic, we
draw an analogy with the solution in a one-dimensional space (both
balls and bins). An effective heuristic proceeds by repeatedly match-
ing the largest ball that fits in the current bin; when no more balls
fit, a new bin is opened. Intuitively, this approach reduces the un-
used space in each bin (i.e., reduces fragmentation) and therefore,
reduces the total number of bins used. In one-dimensional space,
this heuristic requires no more than (%})OPT+1 bins, where OPT is
the optimal number of bins [25].

Alignment: We extend the above heuristic by defining alignment
of a task relative to a machine across multiple dimensions. Similar
to the one-dimensional case, the larger the alignment the lower the
fragmentation. We considered many options for defining the align-
ment. Among them, the best packing efficiency was obtained using
the dot product between task requirements and resource availabili-
ties on machines.

Our allocation operates as follows. When resources on a machine
become available, the scheduler first selects the set of tasks whose
peak usage of each resource can be accommodated on that machine.
For each task in this set, Tetris computes an alignment score to the
machine. The alignment score is a weighted dot product between
the vector of machine’s available resources and the task’s peak usage
of resources. The task with the highest alignment score is scheduled
and allocated its peak resource demands. This process is repeated re-
cursively until the machine cannot accommodate any further tasks.

Picking tasks as above has these properties. First, only tasks’
whose peak demands are satisfiable are considered; so over-
allocation is impossible. Under-utilization of resources is possible,
however, we discuss how to mitigate that using a resource tracker
in §4.1. Second, the alignment score is largest for the task that uses
the most resources on the machine along every resource type. Third,
if a particular resource is abundant on a machine, then tasks that
require that resource will have higher scores compared to tasks that
use the same amount of resources overall. Together, this reduces
fragmentation; loosely, bigger balls are placed first and machine re-
sources that are currently abundant are used up before those that are
currently scarce by choosing tasks appropriately.

When computing the dot product, Tetris normalizes the task re-
quirements as well as available resources on the machine by the ma-
chin€’s overall capacity. This ensures that the numerical range of a
machine’s resource (e.g., 16 cores vs. 96GB of RAM) and tasks’ de-
mands (e.g., 4 cores vs. 1 Gbps network) do not affect the alignment
score. All the resources are weighed equally.

Incorporating task placement: A subtle aspect in calculating the
alignment score is to appropriately adjust the disk and network de-
mands based on task placement. Recall that while CPU and mem-
ory allotment are primarily local, disk and network resources may
be needed at multiple machines if data is read (or written) remotely.
For remote reads, Tetris checks before placing a task on a machine
that sufficient disk read and network-out bandwidth are available
at each of the remote machines that contain task input and that
sufficient network-in bandwidth is available at the local machine.
Including these remote resources in the alignment score computa-
tion (dot product) is problematic. The vectors become as large as the
number of machines in the cluster. Also, since the score is higher
for tasks that use more resources overall, remote placement is pre-
ferred! Instead, Tetris computes the alignment score with only the
local resources and imposes a remote penalty (of, say, 10%) to penal-
ize use of remote resources. We run sensitivity analysis on the value
of this remote penalty in §5.3.3. Together, this ensures that over-

allocation is still impossible, fragmentation is reduced and using lo-
cal resources is preferred. Consequently, the network and remote
disks are free for tasks that compulsively need them.

3.3 Average Completion Time

Achieving packing efficiency does not necessarily improve job
completion time. Consider two jobs running on a two machine
cluster. Machines have 2 cores and 4GB of memory. The first job
has six tasks each requiring (2 cores,3 GB) while the second job
has two tasks requiring (1 cores, 2 GB). Tasks of the first job have
higher alignment score. Hence, the above packing efficiency heuris-
tic schedules all tasks of the first job before the second job’s tasks.
Assuming all the tasks have the same duration, it is easy to see that
swapping the order lowers average job completion time.

A useful starting point to reduce average job completion time
is the shortest-remaining-time-first (SRTF) algorithm [16]. SRTF
schedules jobs in ascending order of their remaining time. While
one can extend SRTF to consider multiple resource requirements of
tasks, its greedy scheduling approach nonetheless leads to resource
fragmentation [20]. The consequent loss in packing efficiency delays
the scheduling of other waiting jobs, thus inflating their durations.
Therefore, the challenge in improving job completion time is to bal-
ance prioritization of jobs that have less remaining work against loss
in packing efficiency.

3.3.1 Shortest Remaining Time

We first extend the SRTF scheduling algorithm to incorporate
multiple resources. Consider scheduling jobs in increasing order
of their number of remaining tasks. The fewer tasks remaining in
a job, the lower is its remaining duration. However, tasks can have
different durations. Worse, tasks can have varying requirements for
different resources. Scheduling a job with high resource require-
ments, even if it has the smallest duration, incurs the opportunity
cost of not scheduling other jobs simultaneously. Intuitively, favor-
ing jobs that have the least remaining work improves average com-
pletion time the most with the least effort.

Scoring job’s remaining work: We calculate the total resource re-
quirements of all remaining tasks of the job across all dimensions.
To be immune to variations in numerical ranges of the different re-
sources, we normalize the various resources as before. The resource
consumption of a task is the sum across all the (normalized) re-
source dimensions multiplied by the task duration. We estimate task
duration based on earlier runs of the same or similar jobs as well as
the completed tasks of the same phase. The score for a job is the total
resource consumption of its remaining tasks.

Scheduling jobs with lower scores first reduces average comple-
tion time the most. The score prefers jobs with low duration mimic-
ing the SRTF heuristic. In addition, favoring jobs that need less re-
sources has smaller opportunity cost since more resources are avail-
able for other jobs.

3.3.2 Combining with Packing Efficiency

Recall that we need to combine the above score with the packing
efficiency heuristic since using only the above score can fragment
resources which delays jobs and inflates cluster makespan.

We combine the two metrics —remaining resource usage and
alignment score—using a weighted sum. Denoting the alignment
score by a and the remaining resource usage as p, we pick the task
with the highest value of (a + € - p). To ensure that the expression is
not dominated by either, we recommend ¢ = (a/p), where @ and p
denote the average scores for alignment and remaining work. Note
that a is per-task, whereas p is per-job. While the best choice of ¢
depends on the workload, our evaluation shows that the gains from

460

packing efficiency are only moderately sensitive to € since most jobs
have pending tasks with similar resource profiles. Improving av-
erage job completion time, however, requires non-zero values of
¢ though the gains stabilize quickly. We will show in §5.3 that the
above combination significantly improves over alternatives.

3.4 Incorporating fairness

As described so far, Tetris matches tasks to machines to improve
cluster efficiency and job completion time without considering fair-
ness. Fairness is a useful tool in shared clusters. Conversations with
cluster operators indicate that proportional allocations improve per-
formance predictability. However, it is not an absolute require-
ment and deviations in fairness for better performance are accept-
able. Other properties such as strategy-proofness, envy freedom
and sharing incentive are less important in private clusters since the
organization can mandate sharing and audit jobs post facto. Here,
we describe how Tetris balances performance with fair allocations.

A common property to many fairness based schedulers is to keep
track of the allocations of running jobs and offer the next available
resource to the job that is farthest from its fair share. Slot based
fairness [3, 4] has this property: the next slot is allocated to the
job that occupies the fewest slots relative to its fair share. Likewise,
DREF [12] offers resources to the job whose dominant resource’s allo-
cation is furthest from its fair share. Similar to DRR scheduling,
long-running or resource-hungry tasks (alt: large packets) cause
short-term unfairness during such allocation. However, bounded
task sizes (as in our clusters) limits the unfairness and, in practice,
the above method offers fairness at meaningful timescales.

Tetris uses a fairness knob to trade-off fairness for performance.
The knob f takes values in the range of [0,1) and intuitively quan-
tifies the extent to which Tetris adheres to fair allocations. When
resources become available, Tetris sorts the jobs (set J) in decreas-
ing order of how far they are from their fair share. Note that most
fair schedulers already maintain such a list. It then looks for the
best task (as before) among the runnable tasks belonging to the first
[(1= f) J] jobs in the sorted list. Setting f = o results in the most
efficient scheduling choice, whereas f — 1yields perfect fairness. In
this way, Tetris can incorporate most policies for fairness.

The trade-off between fairness and performance is rarely smooth.
However, in scheduling tasks in data-parallel clusters, we find that
the above knob lets Tetris achieve schedules that are both reasonably
fair and reasonably efficient. For knob values in the range [0.25,0.5],
Tetris's makespan is within 10% of the most-efficient (and most-
unfair) schedule while delaying jobs by no more than 10% compared
to the fair schedulers. This is because though the fairness constraint
restricts which jobs (or queues) the available resources can be of-
fered to, there are many tasks pending in a job or queue and from
among these many choices it is still possible to pick a task that aligns
well with the resources on the machine to be allocated, leading to
nearly the same packing efficiency.

3.5 Discussion

DAG Awareness: The last few tasks before a barrier (e.g., some-
times, no reduce task can start before all maps finish) present a low-
cost high-gain opportunity. For the purpose of this discussion, the
end of a job can also be considered a barrier. Delay in scheduling
these tasks directly impacts job completion time. However, schedul-
ing just these last few tasks preferentially has little impact on other
jobs since it is taking away only a small amount of resources. Tetris
uses knowledge of the job's DAG to preferentially schedule the last
few tasks before a barrier. Given a barrier knob value b € [o,1),
whenever resources are available Tetris preferentially offers them to
tasks that remain after b fraction of tasks in the stage preceding a

lob Manager,

Multi-resource asks; Offers

barrier hint 1
Asks|

Cluster-wide Resource Manager

MNew logic to match tasks to machines
(+packing, +SRTF, +fairness)

Mode Manager;
Track resource usage;

Allocations

Resource
availability reports

enforce allocations

Figure 3: Typical Architecture of a Data-Parallel Cluster Scheduler and
the changes to add Tetris (shown in red).

barrier have finished. Among these tasks, Tetris still ensures that
sufficient resources are available and chooses based on alignment
score. Results in §5.3.3 show that values of b € [.85,.95] improve
both job completion time and makespan.

Starvation Prevention: Initially, we were concerned that the above
solution can starve tasks that have large resource demands. Since the
scheduler assigns resources on a machine as soon as they are avail-
able, it could take a long time to accommodate large tasks. Note that
DAG awareness kicks in only for the last few tasks of a job, and hence
may not help. However, in practice, we do not encounter such star-
vation due to two reasons. First, recall from Figure 2 that most tasks
have demands within one order of magnitude of one another. As a
result, it is likely that the machine resources that become free when
one or a small number of tasks finish suffice to fit even the larger
tasks. Second, machines report resource availability to the sched-
uler periodically ($4.4). The intended goal was to keep the sched-
uler load low. But, doing so also causes the scheduler to learn about
all the resources freed up by the tasks that finish in the preceding
period together. A more principled solution that reserves machine
resources for starved tasks is left to future work.

Future Demands: While our solution is online, we point out that
(imperfect) knowledge of the future is already available. Since each
job manager knows its DAG, it knows the future tasks. The sched-
uler can also estimate when future machine resources become avail-
able; each job manager can estimate when an assigned task will fin-
ish similar to how they estimate tasks’ resource demands. Using
such future knowledge, the scheduler can better mimic the offline
solution. We leave to future work how to extend the scheduler to
use such future knowledge.

4. SYSTEM DESIGN

In this section, we describe how Tetris estimates task require-
ments and resource availability at machines, and how to add Tetris
to cluster schedulers.

4.1 Estimating task demands and available
resources

Recall from Tables 4 and 5 that Tetris considers the following re-
sources for scheduling: CPU, memory, disk and the network. Since
clusters today have small over-subscription factors in the core [13],
a simplification is to only consider the network bandwidth on the
last hop, i.e., the link between the machine and the ToR switch.

Per resource, Tetris has to estimate their dynamic availability at
machines. To do so, Tetris employs a resource tracker process that
runs at every node in the cluster; the tracker observes aggregate re-
source usages from operating system counters and periodically re-
ports to a cluster-wide resource manager that handles scheduling.

Also, per-resource Tetris has to estimate tasks peak demands
(e.g., rate of reading in Gbps). Here, Tetris uses these ideas. First, the
size and location of inputs of tasks are known before their execution.
Second, recurring jobs are fairly common in clusters [7]; analytics

461

jobs repeat hourly (or daily) to do the same computation on newly
arriving data. For such jobs, Tetris uses task statistics measured in
prior runs of the job. Third, since tasks in a phase perform the same
computation on different partitions of data, their resource use is sta-
tistically similar. Hence, Tetris estimates the demands of later tasks
in a phase using the measured statistics from the first few tasks. In
our traces we find that the coefficient-of-variation in resource use
among tasks in a phase is 0.13, 0.022, 0.25 and 0.41 for CPU, mem-
ory, disk and network bandwidths respectively at median. Many
phases with large CoV have only a small number of tasks. Other
phases have greater variation on the low-end, e.g., tasks placed lo-
cally do not use network bandwidth. Fourth, when none of the
above methods are available, such as for the first few tasks in a phase,
Tetris over-estimates their task demands. Over-estimation is better
than under-estimation which needlessly slows down tasks. How-
ever, resources can remain idle due to such over-estimates. Tetris re-
lies on the resource tracker to report unused resources and allocates
them to new tasks. In its reports, the tracker provides allowance
for newly assigned tasks to “ramp up” their usages. It does so by in-
creasing the observed usage by a small amount per task; the amount
decreases over the tasK’s lifetime and goes to zero after a threshold
(we use 30s). Finally, there has been recent work on static program
analysis to estimate resource demands [14]. The techniques are not
yet applicable to arbitrary programs but represent a potential solu-
tion for the future.

4.2 Enforcing allocations

Due to arbitrariness in the user code, tasks actual resource use
may not conform to their allocations. For e.g., a TCP flow can ramp
up to use all the available network bandwidth. To guard against this,
Tetris explicitly enforces allocations.”® For disk and network usage,
Tetris intercepts all calls to read or write from the filesystem, in-
cluding remote reads. Each call is routed to a corresponding to-
ken bucket that allows the call to go through if enough tokens re-
main, or queues it otherwise. Tokens arrive at the allocated rate, the
size of the bucket determines the maximum burst size, and each call
deducts a corresponding number of tokens when it goes through.

4.3 Ingest, evac., and other cluster activity

The resource tracker also helps the scheduler to be aware of other
activities in the cluster. In addition to executing jobs, data ingestion
and maintenance operations can use up a lot of cluster resources.
Ingestion refers to storing incoming data for later analytics; some
clusters report volumes of up to 10TB per hour [2, 6]. Prior to
maintenance operations on machines, their data is evacuated and
re-replicated to ensure that availability is unchanged. By using the
tracker’s reports, the scheduler can avoid contention between its
tasks and these activities.

4.4 Adding Tetris to cluster schedulers

Figure 3 depicts the core pieces of typical cluster schedulers today
and shows in red the new functionality to be added to each piece for
Tetris. For scale, performance and reliability, today’s data-parallel
cluster schedulers, as well as earlier grid computing schedulers [23],
breakdown cluster scheduling into three parts. A node manager
runs on every node in the cluster, responsible for running tasks and
reporting node liveness. Per job, a job manager process runs on
some node in the cluster and holds job context such as task progress
and dependencies (e.g., DAG). A cluster-wide resource arbiter re-
ceives asks from various job managers for their pending tasks; an ask

"°For memory and CPU cores, Tetris relies on existing support in
Yarn; it uses OS mechanisms for the latter and explicitly tracks the
total memory used by the task and its child processes for the former.

encodes preferences for data locality etc., and in turn offers guidance
as to where the tasks can run.

We incorporated Tetris into the Yarn framework (Hadoop 2.4). ™
To do so, we made these modifications:

1. Matching tasks to machines, at the cluster-wide resource
manager, now implements the ideas in §3 (packing, multi-
resource SRTFE, fairness knob, barrier hints).

2. The job manager estimates task demands from historical jobs
and from earlier tasks in the phase (§4.1); asks from the job
manager report task demands across multiple resource types
and also identify the last few tasks before a barrier ($3.5).

3. The node manager now observes dynamic resource availabil-
ity across various resources and enforces task allocations.

These changes do not impact the underlying complexity and
hence the scheduler’s scalability with two exceptions. First, since
task placement changes its demands for disk and network, e.g., los-
ing data locality adds need for network bandwidth, how can the job
manager specify demands in its ask before the task is placed? If the
ask were to contain task demands for each possible placement, it
would be too large. Tetris keeps the asks succinct by observing that
given the locations and sizes of a tasK’s inputs, its resource demands
can be inferred for any potential placement. Second, the new logic
to match tasks to machines is more complex; we report overhead
measured using our prototype in §5.2.2.

S. EVALUATION

We evaluate Tetris using our prototype implementation on a 250
machine cluster. To understand performance at larger scale, we do
trace-driven simulations using traces from production clusters.

5.1 Setup

Cluster: On the larger, 250 server, cluster each machine has 32
cores, 96GB of memory, 8 1TB 7200RPM disk drives, a 10Gbps NIC
and runs Linux 2.6.32. The machines are 40 to a rack connected in
a folded CLOS with 1.25X over-subscription between racks. We also
report experiments on a smaller, 7 server, cluster. Here each ma-
chine has 6 cores, 12GB of memory, 3 1TB disks and a 1Gbps NIC.

Baselines: We compare Tetris to state-of-the-art scheduling algo-
rithms implemented in Hadoop 2.4. The Fair and Capacity Sched-
ulers [3] are deployed in production clusters at Facebook and Yahoo!
respectively. Conceptually, both schedulers allocate slots (defined
on memory) to jobs based on fairness; we use a slot size of 2GB simi-
lar to the Facebook cluster. Dominant Resource Fairness (DRF) [12]
is a recent multi-resource fairness algorithm that is available with
YARN. DRF considers memory and CPU requirements. To the best
of our knowledge, none of the existing schedulers consider disk or
network bandwidths in their allocations. Further, the schedulers try
to place map tasks on local slots [29] and reduce tasks on any avail-
able slot. Finally, we also compare Tetris’s gains to the simple upper
bound described in §2.2.

Trace-driven Simulator: To evaluate Tetris at a larger scale and un-
der many more parameter choices, we built a trace-driven simulator
that replays logs from FacebooK’s production clusters. The simulator
mimics these aspects from the original trace: job arrival times, task
resource requirements, the input and output sizes of tasks, the lo-
cation of inputs in HDFS and the probabilities of failures. Further,
we use the same machine profile as the original cluster: 12 cores,
32GB memory, 4 disks operating at 50MBps each for read/write and
a1Gbps NIC.

"In Yarn's terminology, the Job Manager in Fig. 3 is referred to as
the application master (AM), the Cluster-wide resource manager is
called the RM and the node manager is NM.

462

=Tetris vs. CS +Tetris vs. DRF

.
LI
o

100

80

w 60
a

O 40

20

01 0

0.1
Reduction in Job Duration
(a) CDF of change in Job Completion Time

02 03 04 05 06 0.7 038

| Avg. | Stdev.

Tetris vs. CS 20% | 2.94%

Tetrisvs. DRF || 275% | 3.50%
(b) Makespan Reduction

Figure 4: Comparing Tetris vs. baselines. The results are from running a
workload of over 100 jobs on a 250 server cluster running Yarn 2.4. Each
experiment run takes > 10 hours; repeat five times.

Workload: To test our prototype, we constructed a workload suite
of over 100 jobs by picking uniformly at random from the following
choices. Job size (number of tasks) and the selectivity of map and
reduce tasks are chosen from one of four choices: large & highly-
selective, medium & inflating, medium & selective and, small & se-
lective. The ratios of input to output are: 1:2 for inflating, 1:0.5 for se-
lective and 1:0.2 for highly selective. The sizes are: couple 1000 tasks
for large, 1000 for medium, 100s for small. A map- or reduce- stage
could either have tasks of high-mem (8 GB) or low-mem (2GB). Sim-
ilarly the stage could either have tasks with high-cpu or low-cpu; the
former indicates that tasks do substantial computation per data read
or written and hence have low peak I/O demands. Job arrival time
is uniformly picked at random between [0:3600]s. Each experiment
run takes about five hours and we repeat five times.

Metrics: Our figures of merit are improvements in job comple-
tion time, makespan and the extent of unfairness. For the first two
metrics, we compute the percentage improvement (or reduction)
as 100 X % 25% improvement means Tetris is 1.33X bet-
ter. We report the changes at the average as well as the distribution
across jobs. To quantify unfairness, we report the fraction of jobs
that slow down (and by how much) compared to a fair allocation.

Highlights: The highlights of our evaluation are as follows.

1. Tetris improves cluster makespan and average job comple-
tion time by about 30% in our deployment and by up to 40%
when replaying Facebook traces in simulation. We estimate
that these gains are 80% of the simple upper bound §2.2.3.
The gains accrue from avoiding fragmentation and over-
allocation and from exploiting complementary demands for
better packing.

2. Tetris offers the above efficiency gains with only a slight loss
in fairness. These gains use fairness knob f = 0.25 and fewer
than 6% of jobs are delayed by no more than 10% compared to
a fair allocation. Setting f = o, the most efficient and unfair
schedule, improves makespan by up to 50% but the ensuing
unfairness delays more jobs. Surprisingly f = 1, the most fair
schedule, also offers sizable improvements in efficiency.

3. We compare against several alternatives and perform a de-
tailed sensitivity analysis on parameters.

5.2 Deployment Results

Figure 4 compares the performance of Tetris with baseline
schemes. Each experiment runs our workload (described above) on
the cluster. We see that Tetris improves job completion time, at me-
dian, by 30%. The top fifth of jobs improve by over 40%. Gains are

* «DRF

e=Tetris

8000
7000
<5 6000
85000
24000
£3000
52000
1000

0 4000 8000 16000 20000 24000

12000
Time (s)
(a) Number of running tasks

—CPU o Mem =In Nw =In St

100
80

§60

0 2500 5000 _7500 10000 12500 15000
Time (s)
(b) Tetris
200 -CPU * Mem =In Nw =In St

(%)

150
c
£100
©
£ 50 N
S At Al

0 4500 9000 13500 18000 22500
Time (s)
(c) Capacity Scheduler
—-CPU * Mem =In Nw =In St

0 4500

9000 13500
Time (s)

(d) DRF

18000 22500

Figure 5: Number of running tasks and total resources used during an
example experiment run.

slightly larger compared to the capacity scheduler (CS) than with
DRE. Makespan also improves by about 30%.

To understand in a bit more detail, Figure 5 shows the details for
one example run. A couple of points stand out. First, we see from
Fig. 5a that Tetris keeps consistently high numbers of running tasks
in the cluster. DRE at all times, has scheduled fewer tasks. Capac-
ity scheduler (CS) has slightly higher throughput but is less con-
sistent. Partly, this is because neither DRF nor CS explicitly avoid
resource fragmentation. Further, DRF is not pareto-efficient when
allocating resources spread across multiple machines; it uses a sim-
pler one-machine model [12]. More importantly, pareto efficient
fair allocations do not lead to the best performance, as we saw in
the example; partly, this is due to the DAG structure of jobs and
tasks having different resource profiles. Second, Fig. sb shows the
(estimated) usage of resources across the cluster. We see that, with
Tetris, the cluster is bottlenecked on different resources at different
times. Comparatively, we see in Fig. 5c that the capacity scheduler
is unable to fully use even the resources that it considers explicitly
for scheduling (memory and CPU). This is due to fragmentation.
Worse, it over-allocates the other resources (network and disk cross
100% at several times). DREF is slightly better but qualitatively sim-
ilar. Third, we observe that due to efficient packing, not only is the
bottleneck resource fully utilized at all times but also the utilization
of other resources increases. For example, the network and disk
usages are markedly higher with Tetris compared to the baselines.
We summarize that avoiding fragmentation and over-allocation by

463

|| CPU | Memory | Disk | Network |
Tetris .90,.82,— | .47,.31,— 41,.24, — .55, .30, —
CS .87, .33, .18 38, —, — .29, .19, .13 .42,.34,.28
DRF .53, .13, — .56, —, — .12, .07, .05 .40, .27, .20

Table 6: Probability that a machine is highly using a type of resource at
above a certain fraction (> 75%, > 90%, > 100%) of its capacity.

6Time Ingestion —Cs Time Ingestion -CS

150

=Tetris

«<Tetris
n

Disk Usage
g 3

]
1
1
1
1
1
0

o

2000 0 500 1000
Time (s)

(b) Disk usage

0 500 1000 1500 2000

Time (s)

(a) Number of scheduled tasks

1500

Figure 6: On a machine overloaded by data ingestion, Tetris stops
scheduling further tasks. CS does not react; the resulting contention low-
ers disk throughput slowing down both tasks and ingestion.

Time to process CS Tetris
15K (45K) tasks 15K (45K) tasks
NM heartbeat .06ms (.a12ms) [[.oéms (.o7yms)
AM heartbeat ‘ .2ms (.2ms) asms (.15ms)

Table 7: Overheads: Average time to process heartbeats from the NM and
the AM with and without Tetris; vary tasks pending; 250 servers.

explicitly packing on all the relevant resources improves efficiency.
The gains accrue from (a) increase in the number of simultaneously
running tasks, (b) reduced task duration (by not over-allocating)
and (c) improved usage of all cluster resources.

Table 6 depicts aspects of machine-level resource usage during
an example run. It measures the likelihood of a machine to have a
certain usage for each resource. We confirm that Tetris is able to use
more of all resources (by avoiding fragmentation). Baseline schemes
under-use due to fragmentation and occasionally over-allocate the
disk and network.

5.2.1 Micro-benchmark: resource tracker

We use micro-benchmarks to highlight aspects that are not as
easy to see from the large workload runs above.

To evaluate how Tetris adapts to cluster activity, we mimic inges-
tion on a machine in our small cluster. Fig. 6 shows the number of
running tasks on that machine as well as the disk load of the ma-
chine; ingestion begins at ¢ = 1255. We see that the resource tracker
used by Tetris observes the rising disk usage and schedules no more
tasks on that machine. Tasks already scheduled complete at t = 250s.
In contrast, the capacity scheduler proceeds unaware; the resulting
contention lowers disk throughput leading to both straggler tasks
and delays in ingestion.

5.2.2 Overheads and Scalability

Recall from our prototype description (§4.4) that Tetris’s logic to
match tasks to machines is more complex than that in Yarn. To esti-
mate overheads, we ran experiments with different cluster sizes and
different numbers of jobs and pending tasks. We find that the ad-
ditional network overhead, due to expanding the size of the asks is
negligible. Further, the memory usage at the cluster-wide resource
manager increases very slightly; the timeline graphs (not shown)
are dominated by when garbage collection happens. For the com-
putational overhead, we observe the time taken by the cluster-wide
resource manager (RM) to process a heartbeat from the node man-
ager (NM) and from the job manager (AM). Yarn’s RM does the
actual allocation during the NM heartbeat; AM asks are cumula-
tive, so at an AM heartbeat, the RM simply updates the cumulative
ask and responds with any tasks in the (past) asks that have been

==Tetris vs. Fair
«« Tetris vs. DRF

<+ Upper-bound vs. Fair

Upper-bound vs. DRF
100

80
60
40
20 _oegs

CDF

-10 0 10 20 30 40 50 60 70 80 90 100
Reduction (%) in Job Duration

Figure 7: CDF of improvement in job completion time. The top 20% of
jobs improve by over 50%.

matched (during the NM heartbeats) since the AM’s previous ask.
We see from Table 7 that Tetris takes about the same time for an AM
heartbeat, but is slightly faster on the NM heartbeat esp: when more
tasks are pending. This is because default Yarn RM does some ex-
tra work per heartbeat that is not needed given Tetris. Despite the
fact that our prototype is not optimized, we estimate that an RM us-
ing Tetris scales similarly to the default Yarn. Recall that scalability
was a key reason behind our choice to avoid more complex solutions
based on flow-networks and integer linear programming [18].

5.3 Trace-driven Simulations

Here, we mimic scheduling in a several thousand server facebook
cluster. Unless otherwise specified, results use Tetris’s default pa-
rameter values (fairness knob f = 0.25, barrierknob b = 0.9, ¢ = %).

We measure sensitivity to parameters in §5.3.2 and §5.3.3.

5.3.1 Efficiency

Job Completion Time: Compared to the fair scheduler and DRF,
Tetris speeds up jobs by 40% and 35% on average. Figure 7 shows
the CDF of the improvement in job completion time over jobs in the
trace. We see that the top fifth of jobs speed-up by over 50%. The
gains at the median are over 30%. Tetris’s gains are slightly more rel-
ative to the fair-scheduler in Hadoop than in DRF but not markedly
so. Further, Tetris’s average gains are 81% of those from the sim-
ple upper-bound scheduler. Recall that the simple upper-bound en-
sures minimal fragmentation and avoids over-allocation but is not a
true upper bound; the true upper bound is intractable to compute.
A few jobs slow down- fewer than 6% of jobs by less than 10% each.
These slow downs are because Tetris trades off fairness for efficiency.

Where do the gains come from? We find that task durations im-
prove by about 25%. Since resource fragmentation has no impact on
task duration, we believe task durations improve because of avoid-
ing over-allocation. Reduce tasks improve more than the map tasks.
Recall that the baseline schedulers do not consider disk- or network-
bandwidths when scheduling tasks and can over-allocate these re-
sources causing tasks to contend needlessly for disk and network
while holding on to the other resources. If Tetris were modified to
consider only CPU and memory (i.e., it also over-allocates disk and
network bandwidths), the average gains drop from 40% to 15% for
Tetris vs. Fair and 35% to 13% for Tetris vs. DRE Hence, nearly two-
thirds of the gains are due to avoiding over-allocation, and one-third
due to avoiding fragmentation.

Further, we find that while jobs of all sizes see speed-up in com-
pletion time, large jobs (> 1000 tasks) see a greater benefit; over
50% (not shown). This is likely because avoiding fragmentation al-
lows Tetris to schedule more of their tasks early. Gains for small
jobs (< 25 tasks), however, are still significant at 35% due largely to
our use of SRTF heuristic. Using only the SRTF heuristic lowers the
improvement in average completion time to 27% and 26% over the

464

Alignment Avg. Gain in Job Gain in
Heuristic Completion Time (%) | Makespan (%)
Cosine Similarity 40% 41%
L2-Norm-Diff 30% 40%
L2-Norm-Ratio 33% 36%
FFD-Prod 25% 24%
FFED-Sum 26% 31%

Table 8: Cosine similarity outperforms the alternatives for calculating the
alignment score.

fair scheduler and DRE, respectively. The corresponding numbers
from using only the packing efficiency heuristic are 31% and 28%.
We conclude that Tetris’s combination of the two heuristics is better
than using either individually.

Makespan: To analyze the change in makespan, we assume that all
jobs arrived at the beginning of the trace and measure the time un-
til the last job finishes. Tetris reduces makespan by 33% and 24%
compared to the fair scheduler and DREF. These gains are less than
the simple upper bound scheduler’s makespan reductions of 49%
and 38%, respectively. The main reason is that Tetris’s preference for
jobs with less remaining work loses some of the makespan gains in
favor of reducing average job completion time. In fact, just using the
packing heuristic (¢ = o) improves makespan by a bit more, 41% and
29% respectively. We believe € = % to be a reasonable compromise;
we evaluate sensitivity on ¢ in §5.3.3.

Alternative Packing Heuristics: Tetris’s use of cosine similarity to
calculate the alignment score performed the best among several al-
ternatives proposed in literature [20, 25]. For a task with demands
d to be scheduled on a machine with available resources a, cosine
similarity is a - d where both the a and d vectors are normalized to
the machiné’s capacity. To compare, L2-Norm-Diffis 3°; (d; — a;)?,

L2-Norm-Ratio is }; (%)2, FFD-Prod is []; d; and FFD-Sum is
Y.;di [20]. Table 8 has our findings. Gains in both completion
time as well as makespan are clearly better with cosine similarity;
L2-Norm-Diff does well on makespan but lags behind in speeding

up jobs. We conclude by noting that better heuristics may exist.

5.3.2 Fairness vs. Efficiency

Recall from §3.4 that Tetris offers a trade-off between fair-
ness (f — 1) and efficiency (f = o). Figure 8 shows job completion
and makespan for different values of this knob f.

Couple points stand out. First, even with f — 1, wherein avail-
able resources are always allocated to the job that is furthest from
fair share, Tetris offers sizable gains. Makespan improves by 10%
and average job duration improves by 23%. This is because even
when restricted to the subset of allocations that are fair (e.g., which
job(s) to give resources to) there are many choices (e.g., which of the
pending tasks in those job(s) to schedule). By picking a suitable task
from the constrained set of jobs, Tetris improves efficiency while be-
ing fair. Second, knob values around o.25 achieve most of the gains.
Job completion time gains plateau beyond f = o0.5. While makespan
continuously improves by reducing f, f = 0.25 is less than 10% away
from the best possible gains.

Finally, we report the impact of unfairness on jobs. Whereas most
jobs finish faster under Tetris, some jobs slow down. We can mea-
sure the impact of Tetris’s unfairness through the prevalence and
magnitude of job slow-down. Figure 9 shows the fraction of jobs
that slow-down and the average (error-bars=worst) per-job slow-
down due to unfairness compared to the fair scheduler and DRF.
Whereas f = o can slowdown up to 15% of jobs, f = 0.25 has nearly
the same impact as choosing f — 1; about 5% of jobs slow down by

OTetgis vs. Fair #Tetris vs. DRF <Tetris vs. Fair #Tetris vs. DRF

) 0 ——] 50
g 40 £ 40
5§30 —— 2530 [,

SEX U EEa|

3810 T ‘gﬁm “‘“‘0
g8 o0 8%
é 0 025 05075 1X 0 02505 075 1
o Fairness Knob Fairness Knob

(a) Job Duration (b) Makespan

Figure 8: Impact of varying the fairness knob. We see that setting a knob
value around o.75 offers nearly the best possible efficiency.

o 20
Q #Tetris vs. Fair «+Tetris vs. DRF
25 15 Qe
2810 N
s o 5
g g ‘oo‘ooO.l00.0~0.0v.,...‘.‘..".".‘
S3 o I PP
Z o
s? o 0.25 05 0.75 1
- Fairness Knob
(a) % jobs slowing down
35 30
a 30 o 25 .
L0 25 L0 20 ‘
=£2 SE5 |
8515 g5 %
cE 10 P 10 u
o 50 uuullllu
28 5 238 5 138
° £ - E
1K 1
2 0 02505075 1 = 0 02505 075 1

Fairness Knob Fairness Knob

(b) Baseline: Fair (c) Baseline: DRF

Figure 9: Job Slowdown. For fairness knob values € [0.25,0.5], only a few
jobs slow down and only by a small amount.

about 5% each. Notice that even f — 1 slows-down some jobs; some
of this is statistical noise; some of it is because even with f — 1,
Tetris picks tasks from the job in an order that is appropriate for
packing which may not be the best for job’s runtime (for example if
a long-running task is scheduled later).

Relative Integral Unfairness: We now employ a stricter metric to
quantify unfairness: if a(t) and f(t) are the actual allocation re-
ceived by a job at time t and its purported fair allocation, we measure

(/. r%dt) where the integral runs over the job’s runtime. We
call this the relative integral unfairness. Jobs that have a value below
zero have received worse service due to Tetris than they would have
in a fair scheme; value above zero implies job was treated better by
Tetris. We find only a few jobs have negative values (about 5%) and
the average negative value is small (about 5%). This hints that Tetris’s
violations of fair allocation are transient; when measured across the
lifetime of a job the net violation (and hence, slowdown) are small.

5.3.3 Sensitivity Analysis

Here, we evaluate Tetris under different conditions.
Barrier Knob: Recall from §3.5 that Tetris preferentially schedules
the last few tasks in a stage preceding a barrier after a b fraction of
tasks finish. Figure 10 shows the impact of changing b. When b =1,
no tasks are preferentially treated. Lower the value of b, the larger
the fraction of tasks that receive preference. Doing so will speed
up the corresponding job but can delay other jobs since it takes re-
sources away from them. Figure 10 shows that b < 0.75is worse than
not using the barrier promotion at all (i.e., b = 1). However, setting
b around .9 is net positive. For e.g., Tetris vs. DRE, makespan re-
duction increases from 22% to 30%. Across different subsets of jobs

465

<+Tetris vs. Fair ®Tetris vs. DRF «Tetris vs. Fair ® Tetris vs. DRF

e 50— 50 ———————
E g 40 & 240 —— —
£ 30 c 830 T govti
2 C B 7" @eees@orr @ .,
S22 g o Pt e
c O S ®©
so0f————— %510 —n———
g§ ot———— & oL
E 0.75 0.8 0.85 0.9 0.95 1 0.750.80.850.90.95 1

Barrier Knob
(b) Makespan

Barrier Knob

(a) Job Duration

Figure 10: Barrier threshold value of 0.9 balances stagnation-avoidance
with the loss from not picking the best task for packing.

«+Tetris vs. Fair #Tetris vs. DRF +Tetris vs. Fair #Tetris vs. DRF

® 80— 80

<5 £

£ 60 Q<60

ge tg

“E40 5 240

£ T3

820 3520

T &

e oL— 0
0 2 4 6 8 10 0 2 4 6 8 10
Multiple of Original Load Multiple of Original Load

(a) Job Duration (b) Makespan

Figure 11: Tetris’s gains increase as the cluster load increases.

and traces from different days, we found b € [.85,.95] to be a good
choice for the Facebook cluster.

Remote Penalty: Tetris uses a penalty in its alignment score (of 10%)
when remote resources are used by a task. The penalty is a sim-
ple way to prefer local placement whenever possible. Our analysis
shows that both completion time and makespan change little when
the penalty value is between 6% and 15%. On either side of this range,
gains drop moderately due to over-using remote resources or being
too conservative and letting them lie fallow.

Weighting Alignment vs. SRTF: Recall that we combine align-
ment score (a) and remaining work (p) using a weighted sum,
(a+e- p) (83.3.2). Our default choice of ¢ is a/p where x is the av-
erage value of x. Here we evaluate the sensitivity of e. Let m = ¢p/a.
While gains in completion time drop by about 10% for m = o, they
do not improve beyond m = 1.5. Gains in makespan are higher by
8% for m = .5 and do not drop much beyond m = 1.5. Thus, using a
value of m close to 1 is appropriate.

Cluster Load: Utilization of a cluster impacts the possible gains
from better packing/ scheduling. For example, if the load is one task
at a time, packing is not required. The cluster whose trace we replay
is only moderately loaded. Figure 11 examines the performance of
Tetris under different cluster load. We vary load by changing the
number of servers; half as many servers leads to twice the load. As
expected, the figure shows that the gains due to Tetris improve with
cluster load. At 4x the current load, Tetris improves makespan by
well over 60% and average completion time by over 50%. Several
studies show that faster job completion cause more jobs to be sub-
mitted to the cluster [6, 21]. Hence, techniques such as Tetris could
be more useful in the future.

6. RELATED WORK

Tetris’s contributions are, (a) multi-resource packing of tasks to
machines, and (b) simultaneous support for complementary objec-
tives of fairness, minimizing job completion time and minimizing
cluster makespan. We contrast these contributions with some exist-
ing work. We did relate to well-known algorithmic results on bin
packing earlier (§3.1); we mention a few more here.

Cluster Schedulers: Early cluster schedulers [3, 18, 4] focused pri-
marily on maximizing data locality, scale and fairness. Dominant
Resource Fairness [12] allocates multiple resources in a manner that
is pareto-efficient, strategy-proof, envy-free and incentivizes shar-
ing. Available implementations of DRF and the earlier schedulers
only consider CPU and memory. We show that the focus on fairness
detracts considerably from performance; that ignoring disk and net-
work leads to harmful over-allocation; and posit multi-dimensional
packing to be a key aspect of cluster scheduling.

Network Optimizations: Allocating IO is not a simple extension
to multi-resource schedulers. Unlike CPU and memory which are
purelylocal resources, the IO demands of a task depend on its place-
ment relative to its input locations. Some prior work focuses on
fair network allocation even when the applications are uncooper-
ative [22], as well as better ways to schedule network transfers [10]
and to steer around network hotspots [11]. Here, Tetris shows how
to seamlessly choose between local and remote task placements and
to allocate network and disk bandwidths to tasks so as to improve
job and cluster performance.

Fairness vs. Cluster Efficiency vs. Job completion time: We are
hardly the first to explore this trade-off. There is notable perfor-
mance analysis on the impact of preferring short jobs [28] and on
the unfairness of schedulers [26]. While less analytical, our key con-
tribution here is a practical system that reaches a good operating
point in this trade-off space. We also notice how in data-parallel
clusters the tradeoff is smoother since one can be fair to jobs and
still improve packing by scheduling an appropriate task.

Bin Packing: We build upon algorithmic work on multi-
dimensional bin packing. Their goal translates directly to minimiz-
ing cluster makespan. We rely on them to understand the com-
putational complexity of our problem [9, 27] and use their heuris-
tics [20, 25] as a starting point. We extend to handle practical con-
cerns (placement, resource malleability) and add support for com-
plementary objectives (minimize job completion time; fairness).
Virtual Machine Packing: A related problem involves consolidat-
ing VMs, with multi-dimensional resource requirements, on to the
fewest number of servers [19]. The best work there focuses on dif-
ferent challenges and is not applicable to task packing. For e.g., they
balance load across servers, ensure VM availability inspite of fail-
ures, allow for quick software and hardware updates etc. They have
no corresponding entity to a job and hence job completion time
is unexpressible. Explicit resource requirements (e.g., small VM)
makes VM packing simpler but since VMs last for much longer than
tasks mistakes in packing substantially reduce gains.

7. CONCLUSION

In the context of multi-resource schedulers, we show that the fo-
cus on fairness and not allocating IO lead to significantly worse per-
formance. We present heuristics that efficiently pack along multi-
ple resources and prefer jobs with less “remaining work” As a re-
sult both cluster efficiency (makespan) and average job completion
time improve. Both these aspects are novel in the context of clus-
ter schedulers. Devising an optimal solution to the core problem of
scheduling tasks with diverse resource demands is hard; just packing
to minimize makespan is APX-Hard. Our approach here is towards
finding a practical solution, which requires, in addition to the above,
the ability to incorporate fairness. We do not offer new notions of
fairness but rather show how achieving desired amounts of fairness
can coexist with improving cluster performance through packing.
We note that our methods to avoid starvation and properly use the
DAG structure of jobs are rather ad-hoc. However, we believe this
to be a first substantial step in the right direction. We have im-

466

plemented our heuristics inside the YARN framework; trace-driven
simulations and deployment show encouraging initial results.

Acknowledgements

We thank our shepherd Andrew Moore and the anonymous re-
viewers for their feedback. Chris Douglas and Carlo Curino of-
fered help and suggestions that significantly improved our proto-
type. Ganesh was supported in part by NSF grants CCF-1139158,
the DARPA XData Award FA8750-12-2-0331 and gifts from various
companies. Robert and Aditya were supported in part by NSF grants
CNS-1302041, CNS-1314363 and CNS-1040757.

References

(1]
[2]

Apache Hadoop. http://hadoop.apache.org.

Facebook Data Grows By Over 500 TB Daily.
http://bit.ly/1p5EV3c.

Hadoop MapReduce - Capacity Scheduler.
http://bit.ly/1tGpbDN.

Hadoop MapReduce - Fair Scheduler. http://bit.1ly/1p7sJ1I.
Hadoop YARN Project. http://bit.1ly/1iS8xvP.

Petabyte Storage at Half Price with QFS. http://bit.1ly/1x4A6vF.
S. Agarwal et al. Re-optimizing data parallel computing. In NSDI,
2012.

M. Al-Fares et al. A Scalable, Commodity Data Center Network
Architecture. In SIGCOMM, 2008.

Y. Azar et al. Tight Bounds for Online Vector Bin Packing. In STOC,
2013.

M. Chowdhury et al. Managing Data Transfers in Computer Clusters
with Orchestra. In SIGCOMM, 2011.

M. Chowdhury et al. Leveraging Endpoint Flexibility in
Data-Intensive Clusters. In SIGCOMM, 2013.

A. Ghodsi et al. Dominant Resource Fairness: Fair Allocation Of
Multiple Resource Types. In NSDI, 2011.

A. Greenberg et al. A Scalable and Flexible Datacenter Network . In
SIGCOMM, 2009.

S. Gulwani et al. SPEED: Precise And Efficient Static Estimation Of
Program Computational Complexity. In POPL, 2009.

C. Guo et al. BCube: A High Performance, Server-centric Network
Architecture for Modular Data Centers . In SIGCOMM, 2009.

M. Harchol-Balter et al. Connection Scheduling in Web Servers. In
USITS, 1999.

M. Isard et al. Dryad: Distributed Data-Parallel Programs From
Sequential Building Blocks. In EuroSys, 2007.

M. Isard et al. Quincy: Fair Scheduling For Distributed Computing
Clusters. In SOSP, 2009.

L. Lu et al. Predictive VM Consolidation on Multiple Resources:
Beyond Load Balancing. In IWQoS, 2013.

R. Panigrahy et al. Heuristics for Vector Bin Packing. In MSR TR,
2011.

A. Rasmussen et al. Themis: An I/O-Efficient MapReduce. In SoCC,
2012.

A. Shieh et al. Sharing the Data Center Network. In NSDI, 2011.

T. Tannenbaum et al. Condor - A Distributed Job Scheduler. In
Beowulf Cluster Computing with Linux. MIT Press, 2001.

A. Thusoo et al. Hive: A Warehousing Solution Over A Map-Reduce
Framework. Proc. VLDB Endow., 2009.

V. V. Vazirani. Approximation Algorithms. In Springer-Verlag, 2001.
A. Wierman et al. Classifying Scheduling Policies with Respect to
Unfairness in an M/GI/1. In SIGMETRICS, 2003.

G. J. Woeginger. There Is No Asymptotic Ptas For Two-Dimensional
Vector Packing. In Information Processing Letters, 1997.

C.-W. Yang et al. Tail Asymptotics For Policies Favoring Short Jobs In
A Many-Flows Regime. In SIGMETRICS, 2006.

M. Zaharia et al. Delay Scheduling: A Technique For Achieving
Locality And Fairness In Cluster Scheduling. In EuroSys, 2010.

J. Zhou et al. SCOPE: Parallel Databases Meet MapReduce. Proc.
VLDB Endow., 2012.

[3

=
=

http://hadoop.apache.org
http://bit.ly/1p5EV3c
http://bit.ly/1tGpbDN
http://bit.ly/1p7sJ1I
http://bit.ly/1iS8xvP
http://bit.ly/1x4A6vF

	Introduction
	Motivation
	Limitations of Existing Schedulers
	Workload Analysis
	Production Clusters
	Task Profiles
	Upper bounding potential gains

	Tetris Scheduler
	Analytical model
	Packing Efficiency for Makespan
	Average Completion Time
	Shortest Remaining Time
	Combining with Packing Efficiency

	Incorporating fairness
	Discussion

	System Design
	Estimating task demands and available resources
	Enforcing allocations
	Ingest, evac., and other cluster activity
	Adding Tetris to cluster schedulers

	Evaluation
	Setup
	Deployment Results
	Micro-benchmark: resource tracker
	Overheads and Scalability

	Trace-driven Simulations
	Efficiency
	Fairness vs. Efficiency
	Sensitivity Analysis

	Related Work
	Conclusion

